1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-29 14:27:42 +02:00
openwrt-xburst/target/linux/ubicom32/files/drivers/mmc/host/ubicom32sd.c

774 lines
20 KiB
C
Raw Normal View History

/*
* drivers/mmc/host/ubicom32sd.c
* Ubicom32 Secure Digital Host Controller Interface driver
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/leds.h>
#include <linux/gpio.h>
#include <linux/mmc/host.h>
#include <asm/ubicom32sd.h>
#define DRIVER_NAME "ubicom32sd"
#define sd_printk(...)
//#define sd_printk printk
#define SDTIO_VP_VERSION 3
#define SDTIO_MAX_SG_BLOCKS 16
enum sdtio_commands {
SDTIO_COMMAND_NOP,
SDTIO_COMMAND_SETUP,
SDTIO_COMMAND_SETUP_SDIO,
SDTIO_COMMAND_EXECUTE,
SDTIO_COMMAND_RESET,
};
#define SDTIO_COMMAND_SHIFT 24
#define SDTIO_COMMAND_FLAG_STOP_RSP_CRC (1 << 10)
#define SDTIO_COMMAND_FLAG_STOP_RSP_136 (1 << 9)
#define SDTIO_COMMAND_FLAG_STOP_RSP (1 << 8)
#define SDTIO_COMMAND_FLAG_STOP_CMD (1 << 7)
#define SDTIO_COMMAND_FLAG_DATA_STREAM (1 << 6)
#define SDTIO_COMMAND_FLAG_DATA_RD (1 << 5)
#define SDTIO_COMMAND_FLAG_DATA_WR (1 << 4)
#define SDTIO_COMMAND_FLAG_CMD_RSP_CRC (1 << 3)
#define SDTIO_COMMAND_FLAG_CMD_RSP_136 (1 << 2)
#define SDTIO_COMMAND_FLAG_CMD_RSP (1 << 1)
#define SDTIO_COMMAND_FLAG_CMD (1 << 0)
/*
* SDTIO_COMMAND_SETUP_SDIO
*/
#define SDTIO_COMMAND_FLAG_SDIO_INT_EN (1 << 0)
/*
* SDTIO_COMMAND_SETUP
* clock speed in arg
*/
#define SDTIO_COMMAND_FLAG_4BIT (1 << 3)
#define SDTIO_COMMAND_FLAG_1BIT (1 << 2)
#define SDTIO_COMMAND_FLAG_SET_CLOCK (1 << 1)
#define SDTIO_COMMAND_FLAG_SET_WIDTH (1 << 0)
#define SDTIO_COMMAND_FLAG_CMD_RSP_MASK (SDTIO_COMMAND_FLAG_CMD_RSP | SDTIO_COMMAND_FLAG_CMD_RSP_136)
#define SDTIO_COMMAND_FLAG_STOP_RSP_MASK (SDTIO_COMMAND_FLAG_STOP_RSP | SDTIO_COMMAND_FLAG_STOP_RSP_136)
#define SDTIO_COMMAND_FLAG_RSP_MASK (SDTIO_COMMAND_FLAG_CMD_RSP_MASK | SDTIO_COMMAND_FLAG_STOP_RSP_MASK)
struct sdtio_vp_sg {
volatile void *addr;
volatile u32_t len;
};
#define SDTIO_VP_INT_STATUS_DONE (1 << 31)
#define SDTIO_VP_INT_STATUS_SDIO_INT (1 << 10)
#define SDTIO_VP_INT_STATUS_DATA_CRC_ERR (1 << 9)
#define SDTIO_VP_INT_STATUS_DATA_PROG_ERR (1 << 8)
#define SDTIO_VP_INT_STATUS_DATA_TIMEOUT (1 << 7)
#define SDTIO_VP_INT_STATUS_STOP_RSP_CRC (1 << 6)
#define SDTIO_VP_INT_STATUS_STOP_RSP_TIMEOUT (1 << 5)
#define SDTIO_VP_INT_STATUS_CMD_RSP_CRC (1 << 4)
#define SDTIO_VP_INT_STATUS_CMD_RSP_TIMEOUT (1 << 3)
#define SDTIO_VP_INT_STATUS_CMD_TIMEOUT (1 << 2)
#define SDTIO_VP_INT_STATUS_CARD1_INSERT (1 << 1)
#define SDTIO_VP_INT_STATUS_CARD0_INSERT (1 << 0)
struct sdtio_vp_regs {
u32_t version;
u32_t f_max;
u32_t f_min;
volatile u32_t int_status;
volatile u32_t command;
volatile u32_t arg;
volatile u32_t cmd_opcode;
volatile u32_t cmd_arg;
volatile u32_t cmd_rsp0;
volatile u32_t cmd_rsp1;
volatile u32_t cmd_rsp2;
volatile u32_t cmd_rsp3;
volatile u32_t stop_opcode;
volatile u32_t stop_arg;
volatile u32_t stop_rsp0;
volatile u32_t stop_rsp1;
volatile u32_t stop_rsp2;
volatile u32_t stop_rsp3;
volatile u32_t data_timeout_ns;
volatile u16_t data_blksz;
volatile u16_t data_blkct;
volatile u32_t data_bytes_transferred;
volatile u32_t sg_len;
struct sdtio_vp_sg sg[SDTIO_MAX_SG_BLOCKS];
};
struct ubicom32sd_data {
const struct ubicom32sd_platform_data *pdata;
struct mmc_host *mmc;
/*
* Lock used to protect the data structure
spinlock_t lock;
*/
int int_en;
int int_pend;
/*
* Receive and transmit interrupts used for communicating
* with hardware
*/
int irq_tx;
int irq_rx;
/*
* Current outstanding mmc request
*/
struct mmc_request *mrq;
/*
* Hardware registers
*/
struct sdtio_vp_regs *regs;
};
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#if 0//def CONFIG_PM
int ubicom32sd_suspend_host(struct ubicom32sd_host *host, pm_message_t state)
{
int ret;
ret = mmc_suspend_host(host->mmc, state);
if (ret)
return ret;
free_irq(host->irq, host);
return 0;
}
EXPORT_SYMBOL_GPL(ubicom32sd_suspend_host);
int ubicom32sd_resume_host(struct ubicom32sd_host *host)
{
int ret;
if (host->flags & UBICOM32SD_USE_DMA) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
ret = request_irq(host->irq, ubicom32sd_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
ubicom32sd_init(host);
mmiowb();
ret = mmc_resume_host(host->mmc);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(ubicom32sd_resume_host);
#endif /* CONFIG_PM */
/*
* ubicom32sd_send_command_sync
*/
static void ubicom32sd_send_command_sync(struct ubicom32sd_data *ud, u32_t command, u32_t arg)
{
ud->regs->command = command;
ud->regs->arg = arg;
ubicom32_set_interrupt(ud->irq_tx);
while (ud->regs->command) {
ndelay(100);
}
}
/*
* ubicom32sd_send_command
*/
static void ubicom32sd_send_command(struct ubicom32sd_data *ud, u32_t command, u32_t arg)
{
ud->regs->command = command;
ud->regs->arg = arg;
ubicom32_set_interrupt(ud->irq_tx);
}
/*
* ubicom32sd_reset
*/
static void ubicom32sd_reset(struct ubicom32sd_data *ud)
{
ubicom32sd_send_command_sync(ud, SDTIO_COMMAND_RESET << SDTIO_COMMAND_SHIFT, 0);
ud->regs->int_status = 0;
}
/*
* ubicom32sd_mmc_request
*/
static void ubicom32sd_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
u32_t command = SDTIO_COMMAND_EXECUTE << SDTIO_COMMAND_SHIFT;
int ret = 0;
WARN(ud->mrq != NULL, "ud->mrq still set to %p\n", ud->mrq);
//pr_debug("send cmd %08x arg %08x flags %08x\n", cmd->opcode, cmd->arg, cmd->flags);
if (mrq->cmd) {
struct mmc_command *cmd = mrq->cmd;
sd_printk("%s:\t\t\tsetup cmd %02d arg %08x flags %08x\n", mmc_hostname(mmc), cmd->opcode, cmd->arg, cmd->flags);
ud->regs->cmd_opcode = cmd->opcode;
ud->regs->cmd_arg = cmd->arg;
command |= SDTIO_COMMAND_FLAG_CMD;
if (cmd->flags & MMC_RSP_PRESENT) {
command |= SDTIO_COMMAND_FLAG_CMD_RSP;
}
if (cmd->flags & MMC_RSP_136) {
command |= SDTIO_COMMAND_FLAG_CMD_RSP_136;
}
if (cmd->flags & MMC_RSP_CRC) {
command |= SDTIO_COMMAND_FLAG_CMD_RSP_CRC;
}
}
if (mrq->data) {
struct mmc_data *data = mrq->data;
struct scatterlist *sg = data->sg;
int i;
printk("%s:\t\t\tsetup data blksz %d num %d sglen=%d fl=%08x Tns=%u\n", mmc_hostname(mmc), data->blksz, data->blocks, data->sg_len, data->flags, data->timeout_ns);
sd_printk("%s:\t\t\tsetup data blksz %d num %d sglen=%d fl=%08x Tns=%u\n",
mmc_hostname(mmc), data->blksz, data->blocks, data->sg_len,
data->flags, data->timeout_ns);
if (data->sg_len > SDTIO_MAX_SG_BLOCKS) {
ret = -EINVAL;
data->error = -EINVAL;
goto fail;
}
ud->regs->data_timeout_ns = data->timeout_ns;
ud->regs->data_blksz = data->blksz;
ud->regs->data_blkct = data->blocks;
ud->regs->sg_len = data->sg_len;
/*
* Load all of our sg list into the driver sg buffer
*/
for (i = 0; i < data->sg_len; i++) {
sd_printk("%s: sg %d = %p %d\n", mmc_hostname(mmc), i, sg_virt(sg), sg->length);
ud->regs->sg[i].addr = sg_virt(sg);
ud->regs->sg[i].len = sg->length;
if (((u32_t)ud->regs->sg[i].addr & 0x03) || (sg->length & 0x03)) {
sd_printk("%s: Need aligned buffers\n", mmc_hostname(mmc));
ret = -EINVAL;
data->error = -EINVAL;
goto fail;
}
sg++;
}
if (data->flags & MMC_DATA_READ) {
command |= SDTIO_COMMAND_FLAG_DATA_RD;
} else if (data->flags & MMC_DATA_WRITE) {
command |= SDTIO_COMMAND_FLAG_DATA_WR;
} else if (data->flags & MMC_DATA_STREAM) {
command |= SDTIO_COMMAND_FLAG_DATA_STREAM;
}
}
if (mrq->stop) {
struct mmc_command *stop = mrq->stop;
sd_printk("%s: \t\t\tsetup stop %02d arg %08x flags %08x\n", mmc_hostname(mmc), stop->opcode, stop->arg, stop->flags);
ud->regs->stop_opcode = stop->opcode;
ud->regs->stop_arg = stop->arg;
command |= SDTIO_COMMAND_FLAG_STOP_CMD;
if (stop->flags & MMC_RSP_PRESENT) {
command |= SDTIO_COMMAND_FLAG_STOP_RSP;
}
if (stop->flags & MMC_RSP_136) {
command |= SDTIO_COMMAND_FLAG_STOP_RSP_136;
}
if (stop->flags & MMC_RSP_CRC) {
command |= SDTIO_COMMAND_FLAG_STOP_RSP_CRC;
}
}
ud->mrq = mrq;
sd_printk("%s: Sending command %08x\n", mmc_hostname(mmc), command);
ubicom32sd_send_command(ud, command, 0);
return;
fail:
sd_printk("%s: mmcreq ret = %d\n", mmc_hostname(mmc), ret);
mrq->cmd->error = ret;
mmc_request_done(mmc, mrq);
}
/*
* ubicom32sd_mmc_set_ios
*/
static void ubicom32sd_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
u32_t command = SDTIO_COMMAND_SETUP << SDTIO_COMMAND_SHIFT;
u32_t arg = 0;
sd_printk("%s: ios call bw:%u pm:%u clk:%u\n", mmc_hostname(mmc), 1 << ios->bus_width, ios->power_mode, ios->clock);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
command |= SDTIO_COMMAND_FLAG_SET_WIDTH | SDTIO_COMMAND_FLAG_1BIT;
break;
case MMC_BUS_WIDTH_4:
command |= SDTIO_COMMAND_FLAG_SET_WIDTH | SDTIO_COMMAND_FLAG_4BIT;
break;
}
if (ios->clock) {
arg = ios->clock;
command |= SDTIO_COMMAND_FLAG_SET_CLOCK;
}
switch (ios->power_mode) {
/*
* Turn off the SD bus (power + clock)
*/
case MMC_POWER_OFF:
gpio_set_value(ud->pdata->cards[0].pin_pwr, !ud->pdata->cards[0].pwr_polarity);
command |= SDTIO_COMMAND_FLAG_SET_CLOCK;
break;
/*
* Turn on the power to the SD bus
*/
case MMC_POWER_ON:
gpio_set_value(ud->pdata->cards[0].pin_pwr, ud->pdata->cards[0].pwr_polarity);
break;
/*
* Turn on the clock to the SD bus
*/
case MMC_POWER_UP:
/*
* Done above
*/
break;
}
ubicom32sd_send_command_sync(ud, command, arg);
/*
* Let the power settle down
*/
udelay(500);
}
/*
* ubicom32sd_mmc_get_cd
*/
static int ubicom32sd_mmc_get_cd(struct mmc_host *mmc)
{
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
sd_printk("%s: get cd %u %u\n", mmc_hostname(mmc), ud->pdata->cards[0].pin_cd, gpio_get_value(ud->pdata->cards[0].pin_cd));
return gpio_get_value(ud->pdata->cards[0].pin_cd) ?
ud->pdata->cards[0].cd_polarity :
!ud->pdata->cards[0].cd_polarity;
}
/*
* ubicom32sd_mmc_get_ro
*/
static int ubicom32sd_mmc_get_ro(struct mmc_host *mmc)
{
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
sd_printk("%s: get ro %u %u\n", mmc_hostname(mmc), ud->pdata->cards[0].pin_wp, gpio_get_value(ud->pdata->cards[0].pin_wp));
return gpio_get_value(ud->pdata->cards[0].pin_wp) ?
ud->pdata->cards[0].wp_polarity :
!ud->pdata->cards[0].wp_polarity;
}
/*
* ubicom32sd_mmc_enable_sdio_irq
*/
static void ubicom32sd_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
ud->int_en = enable;
if (enable && ud->int_pend) {
ud->int_pend = 0;
mmc_signal_sdio_irq(mmc);
}
}
/*
* ubicom32sd_interrupt
*/
static irqreturn_t ubicom32sd_interrupt(int irq, void *dev)
{
struct mmc_host *mmc = (struct mmc_host *)dev;
struct mmc_request *mrq;
struct ubicom32sd_data *ud;
u32_t int_status;
if (!mmc) {
return IRQ_HANDLED;
}
ud = (struct ubicom32sd_data *)mmc_priv(mmc);
if (!ud) {
return IRQ_HANDLED;
}
int_status = ud->regs->int_status;
ud->regs->int_status &= ~int_status;
if (int_status & SDTIO_VP_INT_STATUS_SDIO_INT) {
if (ud->int_en) {
ud->int_pend = 0;
mmc_signal_sdio_irq(mmc);
} else {
ud->int_pend++;
}
}
if (!(int_status & SDTIO_VP_INT_STATUS_DONE)) {
return IRQ_HANDLED;
}
mrq = ud->mrq;
if (!mrq) {
sd_printk("%s: Spurious interrupt", mmc_hostname(mmc));
return IRQ_HANDLED;
}
ud->mrq = NULL;
/*
* SDTIO_VP_INT_DONE
*/
if (mrq->cmd->flags & MMC_RSP_PRESENT) {
struct mmc_command *cmd = mrq->cmd;
cmd->error = 0;
if ((cmd->flags & MMC_RSP_CRC) && (int_status & SDTIO_VP_INT_STATUS_CMD_RSP_CRC)) {
cmd->error = -EILSEQ;
} else if (int_status & SDTIO_VP_INT_STATUS_CMD_RSP_TIMEOUT) {
cmd->error = -ETIMEDOUT;
goto done;
} else if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = ud->regs->cmd_rsp0;
cmd->resp[1] = ud->regs->cmd_rsp1;
cmd->resp[2] = ud->regs->cmd_rsp2;
cmd->resp[3] = ud->regs->cmd_rsp3;
} else {
cmd->resp[0] = ud->regs->cmd_rsp0;
}
sd_printk("%s:\t\t\tResponse %08x %08x %08x %08x err=%d\n", mmc_hostname(mmc), cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3], cmd->error);
}
if (mrq->data) {
struct mmc_data *data = mrq->data;
if (int_status & SDTIO_VP_INT_STATUS_DATA_TIMEOUT) {
data->error = -ETIMEDOUT;
sd_printk("%s:\t\t\tData Timeout\n", mmc_hostname(mmc));
goto done;
} else if (int_status & SDTIO_VP_INT_STATUS_DATA_CRC_ERR) {
data->error = -EILSEQ;
sd_printk("%s:\t\t\tData CRC\n", mmc_hostname(mmc));
goto done;
} else if (int_status & SDTIO_VP_INT_STATUS_DATA_PROG_ERR) {
data->error = -EILSEQ;
sd_printk("%s:\t\t\tData Program Error\n", mmc_hostname(mmc));
goto done;
} else {
data->error = 0;
data->bytes_xfered = ud->regs->data_bytes_transferred;
}
}
if (mrq->stop && (mrq->stop->flags & MMC_RSP_PRESENT)) {
struct mmc_command *stop = mrq->stop;
stop->error = 0;
if ((stop->flags & MMC_RSP_CRC) && (int_status & SDTIO_VP_INT_STATUS_STOP_RSP_CRC)) {
stop->error = -EILSEQ;
} else if (int_status & SDTIO_VP_INT_STATUS_STOP_RSP_TIMEOUT) {
stop->error = -ETIMEDOUT;
goto done;
} else if (stop->flags & MMC_RSP_136) {
stop->resp[0] = ud->regs->stop_rsp0;
stop->resp[1] = ud->regs->stop_rsp1;
stop->resp[2] = ud->regs->stop_rsp2;
stop->resp[3] = ud->regs->stop_rsp3;
} else {
stop->resp[0] = ud->regs->stop_rsp0;
}
sd_printk("%s:\t\t\tStop Response %08x %08x %08x %08x err=%d\n", mmc_hostname(mmc), stop->resp[0], stop->resp[1], stop->resp[2], stop->resp[3], stop->error);
}
done:
mmc_request_done(mmc, mrq);
return IRQ_HANDLED;
}
static struct mmc_host_ops ubicom32sd_ops = {
.request = ubicom32sd_mmc_request,
.set_ios = ubicom32sd_mmc_set_ios,
.get_ro = ubicom32sd_mmc_get_ro,
.get_cd = ubicom32sd_mmc_get_cd,
.enable_sdio_irq = ubicom32sd_mmc_enable_sdio_irq,
};
/*
* ubicom32sd_probe
*/
static int __devinit ubicom32sd_probe(struct platform_device *pdev)
{
struct ubicom32sd_platform_data *pdata = (struct ubicom32sd_platform_data *)pdev->dev.platform_data;
struct mmc_host *mmc;
struct ubicom32sd_data *ud;
struct resource *res_regs;
struct resource *res_irq_tx;
struct resource *res_irq_rx;
int ret;
/*
* Get our resources, regs is the hardware driver base address
* and the tx and rx irqs are used to communicate with the
* hardware driver.
*/
res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
if (!res_regs || !res_irq_tx || !res_irq_rx) {
ret = -EINVAL;
goto fail;
}
/*
* Reserve any gpios we need
*/
ret = gpio_request(pdata->cards[0].pin_wp, "sd-wp");
if (ret) {
goto fail;
}
gpio_direction_input(pdata->cards[0].pin_wp);
ret = gpio_request(pdata->cards[0].pin_cd, "sd-cd");
if (ret) {
goto fail_cd;
}
gpio_direction_input(pdata->cards[0].pin_cd);
/*
* HACK: for the dual port controller on port F, we don't support the second port right now
*/
if (pdata->ncards > 1) {
ret = gpio_request(pdata->cards[1].pin_pwr, "sd-pwr");
gpio_direction_output(pdata->cards[1].pin_pwr, !pdata->cards[1].pwr_polarity);
gpio_direction_output(pdata->cards[1].pin_pwr, pdata->cards[1].pwr_polarity);
}
ret = gpio_request(pdata->cards[0].pin_pwr, "sd-pwr");
if (ret) {
goto fail_pwr;
}
gpio_direction_output(pdata->cards[0].pin_pwr, !pdata->cards[0].pwr_polarity);
/*
* Allocate the MMC driver, it includes memory for our data.
*/
mmc = mmc_alloc_host(sizeof(struct ubicom32sd_data), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto fail_mmc;
}
ud = (struct ubicom32sd_data *)mmc_priv(mmc);
ud->mmc = mmc;
ud->pdata = pdata;
ud->regs = (struct sdtio_vp_regs *)res_regs->start;
ud->irq_tx = res_irq_tx->start;
ud->irq_rx = res_irq_rx->start;
platform_set_drvdata(pdev, mmc);
ret = request_irq(ud->irq_rx, ubicom32sd_interrupt, IRQF_DISABLED, mmc_hostname(mmc), mmc);
if (ret) {
goto fail_mmc;
}
/*
* Fill in the mmc structure
*/
mmc->ops = &ubicom32sd_ops;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_NEEDS_POLL | MMC_CAP_SDIO_IRQ |
MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
mmc->f_min = ud->regs->f_min;
mmc->f_max = ud->regs->f_max;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
/*
* Setup some restrictions on transfers
*
* We allow up to SDTIO_MAX_SG_BLOCKS of data to DMA into, there are
* not really any "max_seg_size", "max_req_size", or "max_blk_count"
* restrictions (must be less than U32_MAX though), pick
* something large?!...
*
* The hardware can do up to 4095 bytes per block, since the spec
* only requires 2048, we'll set it to that and not worry about
* potential weird blk lengths.
*/
mmc->max_hw_segs = SDTIO_MAX_SG_BLOCKS;
mmc->max_phys_segs = SDTIO_MAX_SG_BLOCKS;
mmc->max_seg_size = 1024 * 1024;
mmc->max_req_size = 1024 * 1024;
mmc->max_blk_count = 1024;
mmc->max_blk_size = 2048;
ubicom32sd_reset(ud);
/*
* enable interrupts
*/
ud->int_en = 0;
ubicom32sd_send_command_sync(ud, SDTIO_COMMAND_SETUP_SDIO << SDTIO_COMMAND_SHIFT | SDTIO_COMMAND_FLAG_SDIO_INT_EN, 0);
mmc_add_host(mmc);
printk(KERN_INFO "%s at %p, irq %d/%d\n", mmc_hostname(mmc),
ud->regs, ud->irq_tx, ud->irq_rx);
return 0;
fail_mmc:
gpio_free(pdata->cards[0].pin_pwr);
fail_pwr:
gpio_free(pdata->cards[0].pin_cd);
fail_cd:
gpio_free(pdata->cards[0].pin_wp);
fail:
return ret;
}
/*
* ubicom32sd_remove
*/
static int __devexit ubicom32sd_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (mmc) {
struct ubicom32sd_data *ud = (struct ubicom32sd_data *)mmc_priv(mmc);
gpio_free(ud->pdata->cards[0].pin_pwr);
gpio_free(ud->pdata->cards[0].pin_cd);
gpio_free(ud->pdata->cards[0].pin_wp);
mmc_remove_host(mmc);
mmc_free_host(mmc);
}
/*
* Note that our data is allocated as part of the mmc structure
* so we don't need to free it.
*/
return 0;
}
static struct platform_driver ubicom32sd_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.probe = ubicom32sd_probe,
.remove = __devexit_p(ubicom32sd_remove),
#if 0
.suspend = ubicom32sd_suspend,
.resume = ubicom32sd_resume,
#endif
};
/*
* ubicom32sd_init
*/
static int __init ubicom32sd_init(void)
{
return platform_driver_register(&ubicom32sd_driver);
}
module_init(ubicom32sd_init);
/*
* ubicom32sd_exit
*/
static void __exit ubicom32sd_exit(void)
{
platform_driver_unregister(&ubicom32sd_driver);
}
module_exit(ubicom32sd_exit);
MODULE_AUTHOR("Patrick Tjin");
MODULE_DESCRIPTION("Ubicom32 Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL");