1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-09-28 14:10:23 +03:00
openwrt-xburst/target/linux/s3c24xx/files-2.6.30/drivers/ar6000/ar6000/wireless_ext.c

1980 lines
55 KiB
C
Raw Normal View History

/*
*
* Copyright (c) 2004-2007 Atheros Communications Inc.
* All rights reserved.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
*
*
*/
#include "ar6000_drv.h"
static A_UINT8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static void ar6000_set_quality(struct iw_quality *iq, A_INT8 rssi);
extern unsigned int wmitimeout;
extern A_WAITQUEUE_HEAD arEvent;
extern wait_queue_head_t ar6000_scan_queue;
/*
* Encode a WPA or RSN information element as a custom
* element using the hostap format.
*/
static u_int
encode_ie(void *buf, size_t bufsize,
const u_int8_t *ie, size_t ielen,
const char *leader, size_t leader_len)
{
u_int8_t *p;
int i;
if (bufsize < leader_len)
return 0;
p = buf;
memcpy(p, leader, leader_len);
bufsize -= leader_len;
p += leader_len;
for (i = 0; i < ielen && bufsize > 2; i++)
p += sprintf(p, "%02x", ie[i]);
return (i == ielen ? p - (u_int8_t *)buf : 0);
}
void
ar6000_scan_node(void *arg, bss_t *ni)
{
struct iw_event iwe;
#if WIRELESS_EXT > 14
char buf[64*2 + 30];
#endif
struct ar_giwscan_param *param;
A_CHAR *current_ev;
A_CHAR *end_buf;
struct ieee80211_common_ie *cie;
struct iw_request_info info;
info.cmd = 0;
info.flags = 0;
param = (struct ar_giwscan_param *)arg;
if (param->current_ev >= param->end_buf) {
return;
}
if ((param->firstPass == TRUE) &&
((ni->ni_cie.ie_wpa == NULL) && (ni->ni_cie.ie_rsn == NULL))) {
/*
* Only forward wpa bss's in first pass
*/
return;
}
if ((param->firstPass == FALSE) &&
((ni->ni_cie.ie_wpa != NULL) || (ni->ni_cie.ie_rsn != NULL))) {
/*
* Only forward non-wpa bss's in 2nd pass
*/
return;
}
current_ev = param->current_ev;
end_buf = param->end_buf;
cie = &ni->ni_cie;
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
A_MEMCPY(iwe.u.ap_addr.sa_data, ni->ni_macaddr, 6);
current_ev = iwe_stream_add_event(&info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.flags = 1;
iwe.u.data.length = cie->ie_ssid[1];
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe,
&cie->ie_ssid[2]);
if (cie->ie_capInfo & (IEEE80211_CAPINFO_ESS|IEEE80211_CAPINFO_IBSS)) {
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
iwe.u.mode = cie->ie_capInfo & IEEE80211_CAPINFO_ESS ?
IW_MODE_MASTER : IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(&info, current_ev, end_buf, &iwe,
IW_EV_UINT_LEN);
}
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = cie->ie_chan * 100000;
iwe.u.freq.e = 1;
current_ev = iwe_stream_add_event(&info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVQUAL;
ar6000_set_quality(&iwe.u.qual, ni->ni_snr);
current_ev = iwe_stream_add_event(&info, current_ev, end_buf, &iwe,
IW_EV_QUAL_LEN);
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (cie->ie_capInfo & IEEE80211_CAPINFO_PRIVACY) {
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
} else {
iwe.u.data.flags = IW_ENCODE_DISABLED;
}
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe, "");
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
snprintf(buf, sizeof(buf), "bcn_int=%d", cie->ie_beaconInt);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe, buf);
if (cie->ie_wpa != NULL) {
static const char wpa_leader[] = "wpa_ie=";
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf), cie->ie_wpa,
cie->ie_wpa[1]+2,
wpa_leader, sizeof(wpa_leader)-1);
if (iwe.u.data.length != 0) {
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe,
buf);
}
}
if (cie->ie_rsn != NULL && cie->ie_rsn[0] == IEEE80211_ELEMID_RSN) {
static const char rsn_leader[] = "rsn_ie=";
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf), cie->ie_rsn,
cie->ie_rsn[1]+2,
rsn_leader, sizeof(rsn_leader)-1);
if (iwe.u.data.length != 0) {
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe,
buf);
}
}
if (cie->ie_wmm != NULL) {
static const char wmm_leader[] = "wmm_ie=";
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf), cie->ie_wmm,
cie->ie_wmm[1]+2,
wmm_leader, sizeof(wmm_leader)-1);
if (iwe.u.data.length != 0) {
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe,
buf);
}
}
if (cie->ie_ath != NULL) {
static const char ath_leader[] = "ath_ie=";
A_MEMZERO(&iwe, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf), cie->ie_ath,
cie->ie_ath[1]+2,
ath_leader, sizeof(ath_leader)-1);
if (iwe.u.data.length != 0) {
current_ev = iwe_stream_add_point(&info, current_ev, end_buf, &iwe,
buf);
}
}
param->current_ev = current_ev;
}
int
ar6000_ioctl_giwscan(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct ar_giwscan_param param;
int i;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arWmiReady == FALSE) {
return -EIO;
}
param.current_ev = extra;
param.end_buf = extra + IW_SCAN_MAX_DATA;
param.firstPass = TRUE;
/*
* Do two passes to insure WPA scan candidates
* are sorted to the front. This is a hack to deal with
* the wireless extensions capping scan results at
* IW_SCAN_MAX_DATA bytes. In densely populated environments
* it's easy to overflow this buffer (especially with WPA/RSN
* information elements). Note this sorting hack does not
* guarantee we won't overflow anyway.
*/
for (i = 0; i < 2; i++) {
/*
* Translate data to WE format.
*/
wmi_iterate_nodes(ar->arWmi, ar6000_scan_node, &param);
param.firstPass = FALSE;
if (param.current_ev >= param.end_buf) {
data->length = param.current_ev - extra;
return -E2BIG;
}
}
data->length = param.current_ev - extra;
return 0;
}
extern int reconnect_flag;
/* SIOCSIWESSID */
static int
ar6000_ioctl_siwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *ssid)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
A_STATUS status;
A_UINT8 arNetworkType;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arWmiReady == FALSE) {
return -EIO;
}
/*
* iwconfig passes a string with length excluding any trailing NUL.
* FIXME: we should be able to set an ESSID of 32 bytes, yet things fall
* over badly if we do. So we limit the ESSID to 31 bytes.
*/
if (data->flags && (!data->length || data->length >= sizeof(ar->arSsid))) {
/*
* ssid is invalid
*/
return -EINVAL;
}
/* Added for bug 25178, return an IOCTL error instead of target returning
Illegal parameter error when either the BSSID or channel is missing
and we cannot scan during connect.
*/
if (data->flags) {
if (ar->arSkipScan == TRUE &&
(ar->arChannelHint == 0 ||
(!ar->arReqBssid[0] && !ar->arReqBssid[1] && !ar->arReqBssid[2] &&
!ar->arReqBssid[3] && !ar->arReqBssid[4] && !ar->arReqBssid[5])))
{
return -EINVAL;
}
}
if (down_interruptible(&ar->arSem)) {
return -ERESTARTSYS;
}
if (ar->arTxPending[WMI_CONTROL_PRI]) {
/*
* sleep until the command queue drains
*/
wait_event_interruptible_timeout(arEvent,
ar->arTxPending[WMI_CONTROL_PRI] == 0, wmitimeout * HZ);
if (signal_pending(current)) {
return -EINTR;
}
}
if (!data->flags) {
arNetworkType = ar->arNetworkType;
ar6000_init_profile_info(ar);
ar->arNetworkType = arNetworkType;
}
/*
* The original logic here prevented a disconnect if issuing an "essid off"
* if no ESSID was set, presumably to prevent sending multiple disconnects
* to the WMI.
*
* Unfortunately, this also meant that no disconnect was sent when we were
* already connected, but the profile has been changed since (which also
* clears the ESSID as a reminder that the WMI needs updating.)
*
* The "1 ||" makes sure we always disconnect or reconnect. The WMI doesn't
* seem to mind being sent multiple disconnects.
*/
if (1 || (ar->arSsidLen) || (!data->flags))
{
if ((!data->flags) ||
(A_MEMCMP(ar->arSsid, ssid, ar->arSsidLen) != 0) ||
(ar->arSsidLen != (data->length)))
{
/*
* SSID set previously or essid off has been issued.
*
* Disconnect Command is issued in two cases after wmi is ready
* (1) ssid is different from the previous setting
* (2) essid off has been issued
*
*/
if (ar->arWmiReady == TRUE) {
reconnect_flag = 0;
status = wmi_disconnect_cmd(ar->arWmi);
A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
ar->arSsidLen = 0;
if (ar->arSkipScan == FALSE) {
A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid));
}
if (!data->flags) {
up(&ar->arSem);
return 0;
}
} else {
up(&ar->arSem);
}
}
else
{
/*
* SSID is same, so we assume profile hasn't changed.
* If the interface is up and wmi is ready, we issue
* a reconnect cmd. Issue a reconnect only we are already
* connected.
*/
if((ar->arConnected == TRUE) && (ar->arWmiReady == TRUE))
{
reconnect_flag = TRUE;
status = wmi_reconnect_cmd(ar->arWmi,ar->arReqBssid,
ar->arChannelHint);
up(&ar->arSem);
if (status != A_OK) {
return -EIO;
}
return 0;
}
else{
/*
* Dont return if connect is pending.
*/
if(!(ar->arConnectPending)) {
up(&ar->arSem);
return 0;
}
}
}
}
ar->arSsidLen = data->length;
A_MEMCPY(ar->arSsid, ssid, ar->arSsidLen);
/* The ssid length check prevents second "essid off" from the user,
to be treated as a connect cmd. The second "essid off" is ignored.
*/
if((ar->arWmiReady == TRUE) && (ar->arSsidLen > 0) )
{
AR6000_SPIN_LOCK(&ar->arLock, 0);
if (SHARED_AUTH == ar->arDot11AuthMode) {
ar6000_install_static_wep_keys(ar);
}
AR_DEBUG_PRINTF("Connect called with authmode %d dot11 auth %d"\
" PW crypto %d PW crypto Len %d GRP crypto %d"\
" GRP crypto Len %d\n",
ar->arAuthMode, ar->arDot11AuthMode,
ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
ar->arGroupCrypto, ar->arGroupCryptoLen);
reconnect_flag = 0;
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
status = wmi_connect_cmd(ar->arWmi, ar->arNetworkType,
ar->arDot11AuthMode, ar->arAuthMode,
ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
ar->arGroupCrypto,ar->arGroupCryptoLen,
ar->arSsidLen, ar->arSsid,
ar->arReqBssid, ar->arChannelHint,
ar->arConnectCtrlFlags);
up(&ar->arSem);
if (status != A_OK) {
return -EIO;
}
ar->arConnectPending = TRUE;
}else{
up(&ar->arSem);
}
return 0;
}
/* SIOCGIWESSID */
static int
ar6000_ioctl_giwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *essid)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
data->flags = 1;
data->length = ar->arSsidLen;
A_MEMCPY(essid, ar->arSsid, ar->arSsidLen);
return 0;
}
void ar6000_install_static_wep_keys(AR_SOFTC_T *ar)
{
A_UINT8 index;
A_UINT8 keyUsage;
for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
if (ar->arWepKeyList[index].arKeyLen) {
keyUsage = GROUP_USAGE;
if (index == ar->arDefTxKeyIndex) {
keyUsage |= TX_USAGE;
}
wmi_addKey_cmd(ar->arWmi,
index,
WEP_CRYPT,
keyUsage,
ar->arWepKeyList[index].arKeyLen,
NULL,
ar->arWepKeyList[index].arKey, KEY_OP_INIT_VAL,
NO_SYNC_WMIFLAG);
}
}
}
int
ar6000_ioctl_delkey(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
return 0;
}
int
ar6000_ioctl_setmlme(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct ieee80211req_mlme *mlme = (struct ieee80211req_mlme *)extra;
if ((ar->arWmiReady == FALSE) || (ar->arConnected != TRUE))
return -EIO;
switch (mlme->im_op) {
case IEEE80211_MLME_DISASSOC:
case IEEE80211_MLME_DEAUTH:
/* Not Supported */
break;
default:
break;
}
return 0;
}
int
ar6000_ioctl_setwmmparams(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
return -EIO; /* for now */
}
int
ar6000_ioctl_getwmmparams(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
return -EIO; /* for now */
}
int ar6000_ioctl_setoptie(struct net_device *dev, struct iw_request_info *info,
struct iw_point *data, char *extra)
{
/* The target generates the WPA/RSN IE */
return 0;
}
int
ar6000_ioctl_setauthalg(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct ieee80211req_authalg *req = (struct ieee80211req_authalg *)extra;
int ret = 0;
AR6000_SPIN_LOCK(&ar->arLock, 0);
if (req->auth_alg == AUTH_ALG_OPEN_SYSTEM) {
ar->arDot11AuthMode = OPEN_AUTH;
} else if (req->auth_alg == AUTH_ALG_LEAP) {
ar->arDot11AuthMode = LEAP_AUTH;
ar->arPairwiseCrypto = WEP_CRYPT;
ar->arGroupCrypto = WEP_CRYPT;
} else {
ret = -EIO;
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
return ret;
}
static int
ar6000_ioctl_addpmkid(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct ieee80211req_addpmkid *req = (struct ieee80211req_addpmkid *)extra;
A_STATUS status;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
AR_DEBUG_PRINTF("Add pmkid for %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x en=%d\n",
req->pi_bssid[0], req->pi_bssid[1], req->pi_bssid[2],
req->pi_bssid[3], req->pi_bssid[4], req->pi_bssid[5],
req->pi_enable);
status = wmi_setPmkid_cmd(ar->arWmi, req->pi_bssid, req->pi_pmkid,
req->pi_enable);
if (status != A_OK) {
return -EIO;
}
return 0;
}
/*
* SIOCSIWRATE
*/
int
ar6000_ioctl_siwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
A_UINT32 kbps;
if (rrq->fixed) {
kbps = rrq->value / 1000; /* rrq->value is in bps */
} else {
kbps = -1; /* -1 indicates auto rate */
}
if(kbps != -1 && wmi_validate_bitrate(ar->arWmi, kbps) == A_EINVAL)
{
AR_DEBUG_PRINTF("BitRate is not Valid %d\n", kbps);
return -EINVAL;
}
ar->arBitRate = kbps;
if(ar->arWmiReady == TRUE)
{
if (wmi_set_bitrate_cmd(ar->arWmi, kbps) != A_OK) {
return -EINVAL;
}
}
return 0;
}
/*
* SIOCGIWRATE
*/
int
ar6000_ioctl_giwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int ret = 0;
if (down_interruptible(&ar->arSem)) {
return -ERESTARTSYS;
}
if(ar->arWmiReady == TRUE)
{
ar->arBitRate = 0xFFFF;
if (wmi_get_bitrate_cmd(ar->arWmi) != A_OK) {
up(&ar->arSem);
return -EIO;
}
wait_event_interruptible_timeout(arEvent, ar->arBitRate != 0xFFFF, wmitimeout * HZ);
if (signal_pending(current)) {
ret = -EINTR;
}
}
/* If the interface is down or wmi is not ready or the target is not
connected - return the value stored in the device structure */
if (!ret) {
if (ar->arBitRate == -1) {
rrq->fixed = TRUE;
rrq->value = 0;
} else {
rrq->value = ar->arBitRate * 1000;
}
}
up(&ar->arSem);
return ret;
}
/*
* SIOCSIWTXPOW
*/
static int
ar6000_ioctl_siwtxpow(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
A_UINT8 dbM;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arRadioSwitch == WLAN_ENABLED
&& rrq->disabled) {
if (wmi_switch_radio(ar->arWmi, WLAN_DISABLED) < 0)
return -EIO;
ar->arRadioSwitch = WLAN_DISABLED;
} else if (ar->arRadioSwitch == WLAN_DISABLED
&& !rrq->disabled) {
if (wmi_switch_radio(ar->arWmi, WLAN_ENABLED) < 0)
return -EIO;
ar->arRadioSwitch = WLAN_ENABLED;
}
if (rrq->fixed) {
if (rrq->flags != IW_TXPOW_DBM) {
return -EOPNOTSUPP;
}
ar->arTxPwr= dbM = rrq->value;
ar->arTxPwrSet = TRUE;
} else {
ar->arTxPwr = dbM = 0;
ar->arTxPwrSet = FALSE;
}
if(ar->arWmiReady == TRUE)
{
AR_DEBUG_PRINTF("Set tx pwr cmd %d dbM\n", dbM);
wmi_set_txPwr_cmd(ar->arWmi, dbM);
}
return 0;
}
/*
* SIOCGIWTXPOW
*/
int
ar6000_ioctl_giwtxpow(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int ret = 0;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arRadioSwitch == WLAN_DISABLED) {
rrq->disabled = 1;
return 0;
}
if (down_interruptible(&ar->arSem)) {
return -ERESTARTSYS;
}
if((ar->arWmiReady == TRUE) && (ar->arConnected == TRUE))
{
ar->arTxPwr = 0;
if (wmi_get_txPwr_cmd(ar->arWmi) != A_OK) {
up(&ar->arSem);
return -EIO;
}
wait_event_interruptible_timeout(arEvent, ar->arTxPwr != 0, wmitimeout * HZ);
if (signal_pending(current)) {
ret = -EINTR;
}
}
/* If the interace is down or wmi is not ready or target is not connected
then return value stored in the device structure */
if (!ret) {
if (ar->arTxPwrSet == TRUE) {
rrq->fixed = TRUE;
}
rrq->value = ar->arTxPwr;
rrq->flags = IW_TXPOW_DBM;
}
up(&ar->arSem);
return ret;
}
/*
* SIOCSIWRETRY
* since iwconfig only provides us with one max retry value, we use it
* to apply to data frames of the BE traffic class.
*/
static int
ar6000_ioctl_siwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (rrq->disabled) {
return -EOPNOTSUPP;
}
if ((rrq->flags & IW_RETRY_TYPE) != IW_RETRY_LIMIT) {
return -EOPNOTSUPP;
}
if ( !(rrq->value >= WMI_MIN_RETRIES) || !(rrq->value <= WMI_MAX_RETRIES)) {
return - EINVAL;
}
if(ar->arWmiReady == TRUE)
{
if (wmi_set_retry_limits_cmd(ar->arWmi, DATA_FRAMETYPE, WMM_AC_BE,
rrq->value, 0) != A_OK){
return -EINVAL;
}
}
ar->arMaxRetries = rrq->value;
return 0;
}
/*
* SIOCGIWRETRY
*/
static int
ar6000_ioctl_giwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
rrq->disabled = 0;
switch (rrq->flags & IW_RETRY_TYPE) {
case IW_RETRY_LIFETIME:
return -EOPNOTSUPP;
break;
case IW_RETRY_LIMIT:
rrq->flags = IW_RETRY_LIMIT;
switch (rrq->flags & IW_RETRY_MODIFIER) {
case IW_RETRY_MIN:
rrq->flags |= IW_RETRY_MIN;
rrq->value = WMI_MIN_RETRIES;
break;
case IW_RETRY_MAX:
rrq->flags |= IW_RETRY_MAX;
rrq->value = ar->arMaxRetries;
break;
}
break;
}
return 0;
}
/*
* SIOCSIWENCODE
*/
static int
ar6000_ioctl_siwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *keybuf)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int index;
A_INT32 auth = ar->arDot11AuthMode;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
index = erq->flags & IW_ENCODE_INDEX;
if (index && (((index - 1) < WMI_MIN_KEY_INDEX) ||
((index - 1) > WMI_MAX_KEY_INDEX)))
{
return -EIO;
}
if (erq->flags & IW_ENCODE_DISABLED) {
/*
* Encryption disabled
*/
if (index) {
/*
* If key index was specified then clear the specified key
*/
index--;
A_MEMZERO(ar->arWepKeyList[index].arKey,
sizeof(ar->arWepKeyList[index].arKey));
ar->arWepKeyList[index].arKeyLen = 0;
}
ar->arDot11AuthMode = OPEN_AUTH;
ar->arPairwiseCrypto = NONE_CRYPT;
ar->arGroupCrypto = NONE_CRYPT;
ar->arAuthMode = NONE_AUTH;
} else {
/*
* Enabling WEP encryption
*/
if (index) {
index--; /* keyindex is off base 1 in iwconfig */
}
if (erq->flags & IW_ENCODE_OPEN) {
auth = OPEN_AUTH;
} else if (erq->flags & IW_ENCODE_RESTRICTED) {
auth = SHARED_AUTH;
}
if (erq->length) {
if (!IEEE80211_IS_VALID_WEP_CIPHER_LEN(erq->length)) {
return -EIO;
}
A_MEMZERO(ar->arWepKeyList[index].arKey,
sizeof(ar->arWepKeyList[index].arKey));
A_MEMCPY(ar->arWepKeyList[index].arKey, keybuf, erq->length);
ar->arWepKeyList[index].arKeyLen = erq->length;
} else {
if (ar->arWepKeyList[index].arKeyLen == 0) {
return -EIO;
}
ar->arDefTxKeyIndex = index;
}
ar->arPairwiseCrypto = WEP_CRYPT;
ar->arGroupCrypto = WEP_CRYPT;
ar->arDot11AuthMode = auth;
ar->arAuthMode = NONE_AUTH;
}
/*
* profile has changed. Erase ssid to signal change
*/
A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
ar->arSsidLen = 0;
return 0;
}
static int
ar6000_ioctl_giwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *key)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
A_UINT8 keyIndex;
struct ar_wep_key *wk;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arPairwiseCrypto == NONE_CRYPT) {
erq->length = 0;
erq->flags = IW_ENCODE_DISABLED;
} else {
/* get the keyIndex */
keyIndex = erq->flags & IW_ENCODE_INDEX;
if (0 == keyIndex) {
keyIndex = ar->arDefTxKeyIndex;
} else if ((keyIndex - 1 < WMI_MIN_KEY_INDEX) ||
(keyIndex - 1 > WMI_MAX_KEY_INDEX))
{
keyIndex = WMI_MIN_KEY_INDEX;
} else {
keyIndex--;
}
erq->flags = keyIndex + 1;
erq->flags |= IW_ENCODE_ENABLED;
wk = &ar->arWepKeyList[keyIndex];
if (erq->length > wk->arKeyLen) {
erq->length = wk->arKeyLen;
}
if (wk->arKeyLen) {
A_MEMCPY(key, wk->arKey, erq->length);
}
if (ar->arDot11AuthMode == OPEN_AUTH) {
erq->flags |= IW_ENCODE_OPEN;
} else if (ar->arDot11AuthMode == SHARED_AUTH) {
erq->flags |= IW_ENCODE_RESTRICTED;
}
}
return 0;
}
static int ar6000_ioctl_siwpower(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
WMI_POWER_MODE power_mode;
if (wrqu->power.disabled)
power_mode = MAX_PERF_POWER;
else
power_mode = REC_POWER;
if (wmi_powermode_cmd(ar->arWmi, power_mode) < 0)
return -EIO;
return 0;
}
static int ar6000_ioctl_giwpower(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
/*
* FIXME:
* https://docs.openmoko.org/trac/ticket/2267
* When starting wpa_supplicant the kernel oopses.
* The following condition avoids the oops.
* Remove this comment to bless this solution.
*/
if (ar->arWlanState == WLAN_DISABLED || ar->arWmiReady == FALSE)
return -EIO;
return wmi_get_power_mode_cmd(ar->arWmi);
}
static int ar6000_ioctl_siwgenie(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *dwrq,
char *extra)
{
/* The target does that for us */
return 0;
}
static int ar6000_ioctl_giwgenie(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *dwrq,
char *extra)
{
return 0;
}
static int ar6000_ioctl_siwauth(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *param,
char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int reset = 0;
switch (param->flags & IW_AUTH_INDEX) {
case IW_AUTH_WPA_VERSION:
if (param->value & IW_AUTH_WPA_VERSION_DISABLED) {
ar->arAuthMode = NONE_AUTH;
}
if (param->value & IW_AUTH_WPA_VERSION_WPA) {
ar->arAuthMode = WPA_AUTH;
}
if (param->value & IW_AUTH_WPA_VERSION_WPA2) {
ar->arAuthMode = WPA2_AUTH;
}
reset = 1;
break;
case IW_AUTH_CIPHER_PAIRWISE:
if (param->value & IW_AUTH_CIPHER_NONE) {
ar->arPairwiseCrypto = NONE_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_WEP40) {
ar->arPairwiseCrypto = WEP_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_TKIP) {
ar->arPairwiseCrypto = TKIP_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_CCMP) {
ar->arPairwiseCrypto = AES_CRYPT;
}
reset = 1;
break;
case IW_AUTH_CIPHER_GROUP:
if (param->value & IW_AUTH_CIPHER_NONE) {
ar->arGroupCrypto = NONE_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_WEP40) {
ar->arGroupCrypto = WEP_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_TKIP) {
ar->arGroupCrypto = TKIP_CRYPT;
}
if (param->value & IW_AUTH_CIPHER_CCMP) {
ar->arGroupCrypto = AES_CRYPT;
}
reset = 1;
break;
case IW_AUTH_KEY_MGMT:
if (param->value & IW_AUTH_KEY_MGMT_PSK) {
if (ar->arAuthMode == WPA_AUTH) {
ar->arAuthMode = WPA_PSK_AUTH;
} else if (ar->arAuthMode == WPA2_AUTH) {
ar->arAuthMode = WPA2_PSK_AUTH;
}
reset = 1;
}
break;
case IW_AUTH_TKIP_COUNTERMEASURES:
if (ar->arWmiReady == FALSE) {
return -EIO;
}
wmi_set_tkip_countermeasures_cmd(ar->arWmi, param->value);
break;
case IW_AUTH_DROP_UNENCRYPTED:
break;
case IW_AUTH_80211_AUTH_ALG:
if (param->value & IW_AUTH_ALG_OPEN_SYSTEM) {
ar->arDot11AuthMode = OPEN_AUTH;
}
if (param->value & IW_AUTH_ALG_SHARED_KEY) {
ar->arDot11AuthMode = SHARED_AUTH;
}
if (param->value & IW_AUTH_ALG_LEAP) {
ar->arDot11AuthMode = LEAP_AUTH;
ar->arPairwiseCrypto = WEP_CRYPT;
ar->arGroupCrypto = WEP_CRYPT;
}
reset = 1;
break;
case IW_AUTH_WPA_ENABLED:
reset = 1;
break;
case IW_AUTH_RX_UNENCRYPTED_EAPOL:
break;
case IW_AUTH_PRIVACY_INVOKED:
break;
default:
printk("%s(): Unknown flag 0x%x\n", __FUNCTION__, param->flags);
return -EOPNOTSUPP;
}
if (reset) {
A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
ar->arSsidLen = 0;
}
return 0;
}
static int ar6000_ioctl_giwauth(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *dwrq,
char *extra)
{
return 0;
}
static int ar6000_ioctl_siwencodeext(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct iw_point *encoding = &wrqu->encoding;
struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
int alg = ext->alg, idx;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
/* Determine and validate the key index */
idx = (encoding->flags & IW_ENCODE_INDEX) - 1;
if (idx) {
if (idx < 0 || idx > 3)
return -EINVAL;
}
if ((alg == IW_ENCODE_ALG_TKIP) || (alg == IW_ENCODE_ALG_CCMP)) {
struct ieee80211req_key ik;
KEY_USAGE key_usage;
CRYPTO_TYPE key_type = NONE_CRYPT;
int status;
ar->user_saved_keys.keyOk = FALSE;
if (alg == IW_ENCODE_ALG_TKIP) {
key_type = TKIP_CRYPT;
ik.ik_type = IEEE80211_CIPHER_TKIP;
} else {
key_type = AES_CRYPT;
ik.ik_type = IEEE80211_CIPHER_AES_CCM;
}
ik.ik_keyix = idx;
ik.ik_keylen = ext->key_len;
ik.ik_flags = IEEE80211_KEY_RECV;
if (ext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY) {
ik.ik_flags |= IEEE80211_KEY_XMIT
| IEEE80211_KEY_DEFAULT;
}
if (ext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) {
memcpy(&ik.ik_keyrsc, ext->rx_seq, 8);
}
memcpy(ik.ik_keydata, ext->key, ext->key_len);
ar->user_saved_keys.keyType = key_type;
if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) {
key_usage = GROUP_USAGE;
memset(ik.ik_macaddr, 0, ETH_ALEN);
memcpy(&ar->user_saved_keys.bcast_ik, &ik,
sizeof(struct ieee80211req_key));
} else {
key_usage = PAIRWISE_USAGE;
memcpy(ik.ik_macaddr, ext->addr.sa_data, ETH_ALEN);
memcpy(&ar->user_saved_keys.ucast_ik, &ik,
sizeof(struct ieee80211req_key));
}
status = wmi_addKey_cmd(ar->arWmi, ik.ik_keyix, key_type,
key_usage, ik.ik_keylen,
(A_UINT8 *)&ik.ik_keyrsc,
ik.ik_keydata,
KEY_OP_INIT_VAL, SYNC_BEFORE_WMIFLAG);
if (status < 0)
return -EIO;
ar->user_saved_keys.keyOk = TRUE;
return 0;
} else {
/* WEP falls back to SIWENCODE */
return -EOPNOTSUPP;
}
return 0;
}
static int ar6000_ioctl_giwencodeext(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *dwrq,
char *extra)
{
return 0;
}
static int
ar6000_ioctl_setparam(struct net_device *dev,
struct iw_request_info *info,
void *erq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int *i = (int *)extra;
int param = i[0];
int value = i[1];
int ret = 0;
A_BOOL profChanged = FALSE;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
switch (param) {
case IEEE80211_PARAM_WPA:
switch (value) {
case WPA_MODE_WPA1:
ar->arAuthMode = WPA_AUTH;
profChanged = TRUE;
break;
case WPA_MODE_WPA2:
ar->arAuthMode = WPA2_AUTH;
profChanged = TRUE;
break;
case WPA_MODE_NONE:
ar->arAuthMode = NONE_AUTH;
profChanged = TRUE;
break;
default:
printk("IEEE80211_PARAM_WPA: Unknown value %d\n", value);
}
break;
case IEEE80211_PARAM_AUTHMODE:
switch(value) {
case IEEE80211_AUTH_WPA_PSK:
if (WPA_AUTH == ar->arAuthMode) {
ar->arAuthMode = WPA_PSK_AUTH;
profChanged = TRUE;
} else if (WPA2_AUTH == ar->arAuthMode) {
ar->arAuthMode = WPA2_PSK_AUTH;
profChanged = TRUE;
} else {
AR_DEBUG_PRINTF("Error - Setting PSK mode when WPA "\
"param was set to %d\n",
ar->arAuthMode);
ret = -1;
}
break;
case IEEE80211_AUTH_WPA_CCKM:
if (WPA2_AUTH == ar->arAuthMode) {
ar->arAuthMode = WPA2_AUTH_CCKM;
} else {
ar->arAuthMode = WPA_AUTH_CCKM;
}
break;
default:
break;
}
break;
case IEEE80211_PARAM_UCASTCIPHER:
switch (value) {
case IEEE80211_CIPHER_AES_CCM:
ar->arPairwiseCrypto = AES_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_TKIP:
ar->arPairwiseCrypto = TKIP_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_WEP:
ar->arPairwiseCrypto = WEP_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_NONE:
ar->arPairwiseCrypto = NONE_CRYPT;
profChanged = TRUE;
break;
}
break;
case IEEE80211_PARAM_UCASTKEYLEN:
if (!IEEE80211_IS_VALID_WEP_CIPHER_LEN(value)) {
ret = -EIO;
} else {
ar->arPairwiseCryptoLen = value;
}
break;
case IEEE80211_PARAM_MCASTCIPHER:
switch (value) {
case IEEE80211_CIPHER_AES_CCM:
ar->arGroupCrypto = AES_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_TKIP:
ar->arGroupCrypto = TKIP_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_WEP:
ar->arGroupCrypto = WEP_CRYPT;
profChanged = TRUE;
break;
case IEEE80211_CIPHER_NONE:
ar->arGroupCrypto = NONE_CRYPT;
profChanged = TRUE;
break;
}
break;
case IEEE80211_PARAM_MCASTKEYLEN:
if (!IEEE80211_IS_VALID_WEP_CIPHER_LEN(value)) {
ret = -EIO;
} else {
ar->arGroupCryptoLen = value;
}
break;
case IEEE80211_PARAM_COUNTERMEASURES:
if (ar->arWmiReady == FALSE) {
return -EIO;
}
wmi_set_tkip_countermeasures_cmd(ar->arWmi, value);
break;
default:
break;
}
if (profChanged == TRUE) {
/*
* profile has changed. Erase ssid to signal change
*/
A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
ar->arSsidLen = 0;
}
return ret;
}
int
ar6000_ioctl_getparam(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
return -EIO; /* for now */
}
int
ar6000_ioctl_setkey(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct ieee80211req_key *ik = (struct ieee80211req_key *)extra;
KEY_USAGE keyUsage;
A_STATUS status;
CRYPTO_TYPE keyType = NONE_CRYPT;
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
ar->user_saved_keys.keyOk = FALSE;
if ( 0 == memcmp(ik->ik_macaddr, "\x00\x00\x00\x00\x00\x00",
IEEE80211_ADDR_LEN)) {
keyUsage = GROUP_USAGE;
A_MEMCPY(&ar->user_saved_keys.bcast_ik, ik,
sizeof(struct ieee80211req_key));
} else {
keyUsage = PAIRWISE_USAGE;
A_MEMCPY(&ar->user_saved_keys.ucast_ik, ik,
sizeof(struct ieee80211req_key));
}
switch (ik->ik_type) {
case IEEE80211_CIPHER_WEP:
keyType = WEP_CRYPT;
break;
case IEEE80211_CIPHER_TKIP:
keyType = TKIP_CRYPT;
break;
case IEEE80211_CIPHER_AES_CCM:
keyType = AES_CRYPT;
break;
default:
break;
}
ar->user_saved_keys.keyType = keyType;
if (IEEE80211_CIPHER_CCKM_KRK != ik->ik_type) {
if (NONE_CRYPT == keyType) {
return -EIO;
}
status = wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, keyType, keyUsage,
ik->ik_keylen, (A_UINT8 *)&ik->ik_keyrsc,
ik->ik_keydata, KEY_OP_INIT_VAL,
SYNC_BEFORE_WMIFLAG);
if (status != A_OK) {
return -EIO;
}
} else {
status = wmi_add_krk_cmd(ar->arWmi, ik->ik_keydata);
}
ar->user_saved_keys.keyOk = TRUE;
return 0;
}
/*
* SIOCGIWNAME
*/
int
ar6000_ioctl_giwname(struct net_device *dev,
struct iw_request_info *info,
char *name, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
switch (ar->arPhyCapability) {
case (WMI_11A_CAPABILITY):
strncpy(name, "AR6000 802.11a", IFNAMSIZ);
break;
case (WMI_11G_CAPABILITY):
strncpy(name, "AR6000 802.11g", IFNAMSIZ);
break;
case (WMI_11AG_CAPABILITY):
strncpy(name, "AR6000 802.11ag", IFNAMSIZ);
break;
default:
strncpy(name, "AR6000 802.11", IFNAMSIZ);
break;
}
return 0;
}
/*
* SIOCSIWFREQ
*/
int
ar6000_ioctl_siwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *freq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
/*
* We support limiting the channels via wmiconfig.
*
* We use this command to configure the channel hint for the connect cmd
* so it is possible the target will end up connecting to a different
* channel.
*/
if (freq->e > 1) {
return -EINVAL;
} else if (freq->e == 1) {
ar->arChannelHint = freq->m / 100000;
} else {
ar->arChannelHint = wlan_ieee2freq(freq->m);
}
A_PRINTF("channel hint set to %d\n", ar->arChannelHint);
return 0;
}
/*
* SIOCGIWFREQ
*/
int
ar6000_ioctl_giwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *freq, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arConnected != TRUE) {
return -EINVAL;
}
freq->m = ar->arBssChannel * 100000;
freq->e = 1;
return 0;
}
/*
* SIOCSIWMODE
*/
int
ar6000_ioctl_siwmode(struct net_device *dev,
struct iw_request_info *info,
__u32 *mode, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
switch (*mode) {
case IW_MODE_INFRA:
ar->arNetworkType = INFRA_NETWORK;
break;
case IW_MODE_ADHOC:
ar->arNetworkType = ADHOC_NETWORK;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* SIOCGIWMODE
*/
int
ar6000_ioctl_giwmode(struct net_device *dev,
struct iw_request_info *info,
__u32 *mode, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
switch (ar->arNetworkType) {
case INFRA_NETWORK:
*mode = IW_MODE_INFRA;
break;
case ADHOC_NETWORK:
*mode = IW_MODE_ADHOC;
break;
default:
return -EIO;
}
return 0;
}
/*
* SIOCSIWSENS
*/
int
ar6000_ioctl_siwsens(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *sens, char *extra)
{
return 0;
}
/*
* SIOCGIWSENS
*/
int
ar6000_ioctl_giwsens(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *sens, char *extra)
{
sens->value = 0;
sens->fixed = 1;
return 0;
}
/*
* SIOCGIWRANGE
*/
int
ar6000_ioctl_giwrange(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
struct iw_range *range = (struct iw_range *) extra;
int i, ret = 0;
if (ar->arWmiReady == FALSE) {
return -EIO;
}
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (down_interruptible(&ar->arSem)) {
return -ERESTARTSYS;
}
ar->arNumChannels = -1;
A_MEMZERO(ar->arChannelList, sizeof (ar->arChannelList));
if (wmi_get_channelList_cmd(ar->arWmi) != A_OK) {
up(&ar->arSem);
return -EIO;
}
wait_event_interruptible_timeout(arEvent, ar->arNumChannels != -1, wmitimeout * HZ);
if (signal_pending(current)) {
up(&ar->arSem);
return -EINTR;
}
data->length = sizeof(struct iw_range);
A_MEMZERO(range, sizeof(struct iw_range));
range->txpower_capa = IW_TXPOW_DBM;
range->min_pmp = 1 * 1024;
range->max_pmp = 65535 * 1024;
range->min_pmt = 1 * 1024;
range->max_pmt = 1000 * 1024;
range->pmp_flags = IW_POWER_PERIOD;
range->pmt_flags = IW_POWER_TIMEOUT;
range->pm_capa = 0;
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 13;
range->retry_capa = IW_RETRY_LIMIT;
range->retry_flags = IW_RETRY_LIMIT;
range->min_retry = 0;
range->max_retry = 255;
range->num_frequency = range->num_channels = ar->arNumChannels;
for (i = 0; i < ar->arNumChannels; i++) {
range->freq[i].i = wlan_freq2ieee(ar->arChannelList[i]);
range->freq[i].m = ar->arChannelList[i] * 100000;
range->freq[i].e = 1;
/*
* Linux supports max of 32 channels, bail out once you
* reach the max.
*/
if (i == IW_MAX_FREQUENCIES) {
break;
}
}
/* Max quality is max field value minus noise floor */
range->max_qual.qual = 0xff - 161;
/*
* In order to use dBm measurements, 'level' must be lower
* than any possible measurement (see iw_print_stats() in
* wireless tools). It's unclear how this is meant to be
* done, but setting zero in these values forces dBm and
* the actual numbers are not used.
*/
range->max_qual.level = 0;
range->max_qual.noise = 0;
range->sensitivity = 3;
range->max_encoding_tokens = 4;
/* XXX query driver to find out supported key sizes */
range->num_encoding_sizes = 3;
range->encoding_size[0] = 5; /* 40-bit */
range->encoding_size[1] = 13; /* 104-bit */
range->encoding_size[2] = 16; /* 128-bit */
range->num_bitrates = 0;
/* estimated maximum TCP throughput values (bps) */
range->throughput = 22000000;
range->min_rts = 0;
range->max_rts = 2347;
range->min_frag = 256;
range->max_frag = 2346;
up(&ar->arSem);
return ret;
}
/*
* SIOCSIWAP
* This ioctl is used to set the desired bssid for the connect command.
*/
int
ar6000_ioctl_siwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *ap_addr, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ap_addr->sa_family != ARPHRD_ETHER) {
return -EIO;
}
if (A_MEMCMP(&ap_addr->sa_data, bcast_mac, AR6000_ETH_ADDR_LEN) == 0) {
A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid));
} else {
A_MEMCPY(ar->arReqBssid, &ap_addr->sa_data, sizeof(ar->arReqBssid));
}
return 0;
}
/*
* SIOCGIWAP
*/
int
ar6000_ioctl_giwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *ap_addr, char *extra)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
if (ar->arConnected != TRUE) {
return -EINVAL;
}
A_MEMCPY(&ap_addr->sa_data, ar->arBssid, sizeof(ar->arBssid));
ap_addr->sa_family = ARPHRD_ETHER;
return 0;
}
/*
* SIOCGIWAPLIST
*/
int
ar6000_ioctl_iwaplist(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
return -EIO; /* for now */
}
/*
* SIOCSIWSCAN
*/
int
ar6000_ioctl_siwscan(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
#define ACT_DWELLTIME_DEFAULT 105
#define HOME_TXDRAIN_TIME 100
#define SCAN_INT HOME_TXDRAIN_TIME + ACT_DWELLTIME_DEFAULT
AR_SOFTC_T *ar = (AR_SOFTC_T *)netdev_priv(dev);
int ret = 0;
if (ar->arWmiReady == FALSE) {
return -EIO;
}
if (ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
/* We ask for everything from the target */
if (wmi_bssfilter_cmd(ar->arWmi, ALL_BSS_FILTER, 0) != A_OK) {
printk("Couldn't set filtering\n");
ret = -EIO;
}
if (wmi_startscan_cmd(ar->arWmi, WMI_LONG_SCAN, FALSE, FALSE, \
HOME_TXDRAIN_TIME, SCAN_INT) != A_OK) {
ret = -EIO;
}
ar->scan_complete = 0;
wait_event_interruptible_timeout(ar6000_scan_queue, ar->scan_complete,
5 * HZ);
if (wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0) != A_OK) {
printk("Couldn't set filtering\n");
ret = -EIO;
}
return ret;
#undef ACT_DWELLTIME_DEFAULT
#undef HOME_TXDRAIN_TIME
#undef SCAN_INT
}
/*
* Units are in db above the noise floor. That means the
* rssi values reported in the tx/rx descriptors in the
* driver are the SNR expressed in db.
*
* If you assume that the noise floor is -95, which is an
* excellent assumption 99.5 % of the time, then you can
* derive the absolute signal level (i.e. -95 + rssi).
* There are some other slight factors to take into account
* depending on whether the rssi measurement is from 11b,
* 11g, or 11a. These differences are at most 2db and
* can be documented.
*
* NB: various calculations are based on the orinoco/wavelan
* drivers for compatibility
*/
static void
ar6000_set_quality(struct iw_quality *iq, A_INT8 rssi)
{
if (rssi < 0) {
iq->qual = 0;
} else {
iq->qual = rssi;
}
/* NB: max is 94 because noise is hardcoded to 161 */
if (iq->qual > 94)
iq->qual = 94;
iq->noise = 161; /* -95dBm */
iq->level = iq->noise + iq->qual;
iq->updated = 7;
}
/* Structures to export the Wireless Handlers */
static const iw_handler ath_handlers[] = {
(iw_handler) NULL, /* SIOCSIWCOMMIT */
(iw_handler) ar6000_ioctl_giwname, /* SIOCGIWNAME */
(iw_handler) NULL, /* SIOCSIWNWID */
(iw_handler) NULL, /* SIOCGIWNWID */
(iw_handler) ar6000_ioctl_siwfreq, /* SIOCSIWFREQ */
(iw_handler) ar6000_ioctl_giwfreq, /* SIOCGIWFREQ */
(iw_handler) ar6000_ioctl_siwmode, /* SIOCSIWMODE */
(iw_handler) ar6000_ioctl_giwmode, /* SIOCGIWMODE */
(iw_handler) ar6000_ioctl_siwsens, /* SIOCSIWSENS */
(iw_handler) ar6000_ioctl_giwsens, /* SIOCGIWSENS */
(iw_handler) NULL /* not _used */, /* SIOCSIWRANGE */
(iw_handler) ar6000_ioctl_giwrange, /* SIOCGIWRANGE */
(iw_handler) NULL /* not used */, /* SIOCSIWPRIV */
(iw_handler) NULL /* kernel code */, /* SIOCGIWPRIV */
(iw_handler) NULL /* not used */, /* SIOCSIWSTATS */
(iw_handler) NULL /* kernel code */, /* SIOCGIWSTATS */
(iw_handler) NULL, /* SIOCSIWSPY */
(iw_handler) NULL, /* SIOCGIWSPY */
(iw_handler) NULL, /* SIOCSIWTHRSPY */
(iw_handler) NULL, /* SIOCGIWTHRSPY */
(iw_handler) ar6000_ioctl_siwap, /* SIOCSIWAP */
(iw_handler) ar6000_ioctl_giwap, /* SIOCGIWAP */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) ar6000_ioctl_iwaplist, /* SIOCGIWAPLIST */
(iw_handler) ar6000_ioctl_siwscan, /* SIOCSIWSCAN */
(iw_handler) ar6000_ioctl_giwscan, /* SIOCGIWSCAN */
(iw_handler) ar6000_ioctl_siwessid, /* SIOCSIWESSID */
(iw_handler) ar6000_ioctl_giwessid, /* SIOCGIWESSID */
(iw_handler) NULL, /* SIOCSIWNICKN */
(iw_handler) NULL, /* SIOCGIWNICKN */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) ar6000_ioctl_siwrate, /* SIOCSIWRATE */
(iw_handler) ar6000_ioctl_giwrate, /* SIOCGIWRATE */
(iw_handler) NULL, /* SIOCSIWRTS */
(iw_handler) NULL, /* SIOCGIWRTS */
(iw_handler) NULL, /* SIOCSIWFRAG */
(iw_handler) NULL, /* SIOCGIWFRAG */
(iw_handler) ar6000_ioctl_siwtxpow, /* SIOCSIWTXPOW */
(iw_handler) ar6000_ioctl_giwtxpow, /* SIOCGIWTXPOW */
(iw_handler) ar6000_ioctl_siwretry, /* SIOCSIWRETRY */
(iw_handler) ar6000_ioctl_giwretry, /* SIOCGIWRETRY */
(iw_handler) ar6000_ioctl_siwencode, /* SIOCSIWENCODE */
(iw_handler) ar6000_ioctl_giwencode, /* SIOCGIWENCODE */
(iw_handler) ar6000_ioctl_siwpower, /* SIOCSIWPOWER */
(iw_handler) ar6000_ioctl_giwpower, /* SIOCGIWPOWER */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) ar6000_ioctl_siwgenie, /* SIOCSIWGENIE */
(iw_handler) ar6000_ioctl_giwgenie, /* SIOCGIWGENIE */
(iw_handler) ar6000_ioctl_siwauth, /* SIOCSIWAUTH */
(iw_handler) ar6000_ioctl_giwauth, /* SIOCGIWAUTH */
(iw_handler) ar6000_ioctl_siwencodeext,/* SIOCSIWENCODEEXT */
(iw_handler) ar6000_ioctl_giwencodeext,/* SIOCGIWENCODEEXT */
(iw_handler) NULL, /* SIOCSIWPMKSA */
};
static const iw_handler ath_priv_handlers[] = {
(iw_handler) ar6000_ioctl_setparam, /* SIOCWFIRSTPRIV+0 */
(iw_handler) ar6000_ioctl_getparam, /* SIOCWFIRSTPRIV+1 */
(iw_handler) ar6000_ioctl_setkey, /* SIOCWFIRSTPRIV+2 */
(iw_handler) ar6000_ioctl_setwmmparams, /* SIOCWFIRSTPRIV+3 */
(iw_handler) ar6000_ioctl_delkey, /* SIOCWFIRSTPRIV+4 */
(iw_handler) ar6000_ioctl_getwmmparams, /* SIOCWFIRSTPRIV+5 */
(iw_handler) ar6000_ioctl_setoptie, /* SIOCWFIRSTPRIV+6 */
(iw_handler) ar6000_ioctl_setmlme, /* SIOCWFIRSTPRIV+7 */
(iw_handler) ar6000_ioctl_addpmkid, /* SIOCWFIRSTPRIV+8 */
};
#define IW_PRIV_TYPE_KEY \
(IW_PRIV_TYPE_BYTE | sizeof(struct ieee80211req_key))
#define IW_PRIV_TYPE_DELKEY \
(IW_PRIV_TYPE_BYTE | sizeof(struct ieee80211req_del_key))
#define IW_PRIV_TYPE_MLME \
(IW_PRIV_TYPE_BYTE | sizeof(struct ieee80211req_mlme))
#define IW_PRIV_TYPE_ADDPMKID \
(IW_PRIV_TYPE_BYTE | sizeof(struct ieee80211req_addpmkid))
static const struct iw_priv_args ar6000_priv_args[] = {
{ IEEE80211_IOCTL_SETKEY,
IW_PRIV_TYPE_KEY | IW_PRIV_SIZE_FIXED, 0, "setkey"},
{ IEEE80211_IOCTL_DELKEY,
IW_PRIV_TYPE_DELKEY | IW_PRIV_SIZE_FIXED, 0, "delkey"},
{ IEEE80211_IOCTL_SETPARAM,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "setparam"},
{ IEEE80211_IOCTL_GETPARAM,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "getparam"},
{ IEEE80211_IOCTL_SETWMMPARAMS,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 4, 0, "setwmmparams"},
{ IEEE80211_IOCTL_GETWMMPARAMS,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 3,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "getwmmparams"},
{ IEEE80211_IOCTL_SETOPTIE,
IW_PRIV_TYPE_BYTE, 0, "setie"},
{ IEEE80211_IOCTL_SETMLME,
IW_PRIV_TYPE_MLME, 0, "setmlme"},
{ IEEE80211_IOCTL_ADDPMKID,
IW_PRIV_TYPE_ADDPMKID | IW_PRIV_SIZE_FIXED, 0, "addpmkid"},
};
void ar6000_ioctl_iwsetup(struct iw_handler_def *def)
{
def->private_args = (struct iw_priv_args *)ar6000_priv_args;
def->num_private_args = ARRAY_SIZE(ar6000_priv_args);
}
struct iw_handler_def ath_iw_handler_def = {
.standard = (iw_handler *)ath_handlers,
.num_standard = ARRAY_SIZE(ath_handlers),
.private = (iw_handler *)ath_priv_handlers,
.num_private = ARRAY_SIZE(ath_priv_handlers),
};