1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-15 04:01:07 +02:00

1767 lines
46 KiB
C
Raw Normal View History

/*-
* Linux port done by David McCullough <david_mccullough@mcafee.com>
* Copyright (C) 2006-2010 David McCullough
* Copyright (C) 2004-2005 Intel Corporation.
* The license and original author are listed below.
*
* Redistribution and use in source and binary forms, with or without
* Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
*
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if 0
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
#endif
/*
* Cryptographic Subsystem.
*
* This code is derived from the Openbsd Cryptographic Framework (OCF)
* that has the copyright shown below. Very little of the original
* code remains.
*/
/*-
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*
__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
*/
#include <linux/version.h>
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4)
#include <linux/kthread.h>
#endif
#include <cryptodev.h>
/*
* keep track of whether or not we have been initialised, a big
* issue if we are linked into the kernel and a driver gets started before
* us
*/
static int crypto_initted = 0;
/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid() and then registering
* each algorithm they support with crypto_register() and crypto_kregister().
*/
/*
* lock on driver table
* we track its state as spin_is_locked does not do anything on non-SMP boxes
*/
static spinlock_t crypto_drivers_lock;
static int crypto_drivers_locked; /* for non-SMP boxes */
#define CRYPTO_DRIVER_LOCK() \
({ \
spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
crypto_drivers_locked = 1; \
dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
})
#define CRYPTO_DRIVER_UNLOCK() \
({ \
dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
crypto_drivers_locked = 0; \
spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
})
#define CRYPTO_DRIVER_ASSERT() \
({ \
if (!crypto_drivers_locked) { \
dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
} \
})
/*
* Crypto device/driver capabilities structure.
*
* Synchronization:
* (d) - protected by CRYPTO_DRIVER_LOCK()
* (q) - protected by CRYPTO_Q_LOCK()
* Not tagged fields are read-only.
*/
struct cryptocap {
device_t cc_dev; /* (d) device/driver */
u_int32_t cc_sessions; /* (d) # of sessions */
u_int32_t cc_koperations; /* (d) # os asym operations */
/*
* Largest possible operator length (in bits) for each type of
* encryption algorithm. XXX not used
*/
u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
int cc_flags; /* (d) flags */
#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
int cc_qblocked; /* (q) symmetric q blocked */
int cc_kqblocked; /* (q) asymmetric q blocked */
int cc_unqblocked; /* (q) symmetric q blocked */
int cc_unkqblocked; /* (q) asymmetric q blocked */
};
static struct cryptocap *crypto_drivers = NULL;
static int crypto_drivers_num = 0;
/*
* There are two queues for crypto requests; one for symmetric (e.g.
* cipher) operations and one for asymmetric (e.g. MOD)operations.
* A single mutex is used to lock access to both queues. We could
* have one per-queue but having one simplifies handling of block/unblock
* operations.
*/
static LIST_HEAD(crp_q); /* crypto request queue */
static LIST_HEAD(crp_kq); /* asym request queue */
static spinlock_t crypto_q_lock;
int crypto_all_qblocked = 0; /* protect with Q_LOCK */
module_param(crypto_all_qblocked, int, 0444);
MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
module_param(crypto_all_kqblocked, int, 0444);
MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
#define CRYPTO_Q_LOCK() \
({ \
spin_lock_irqsave(&crypto_q_lock, q_flags); \
dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
})
#define CRYPTO_Q_UNLOCK() \
({ \
dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
})
/*
* There are two queues for processing completed crypto requests; one
* for the symmetric and one for the asymmetric ops. We only need one
* but have two to avoid type futzing (cryptop vs. cryptkop). A single
* mutex is used to lock access to both queues. Note that this lock
* must be separate from the lock on request queues to insure driver
* callbacks don't generate lock order reversals.
*/
static LIST_HEAD(crp_ret_q); /* callback queues */
static LIST_HEAD(crp_ret_kq);
static spinlock_t crypto_ret_q_lock;
#define CRYPTO_RETQ_LOCK() \
({ \
spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
})
#define CRYPTO_RETQ_UNLOCK() \
({ \
dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
})
#define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
static kmem_cache_t *cryptop_zone;
static kmem_cache_t *cryptodesc_zone;
#else
static struct kmem_cache *cryptop_zone;
static struct kmem_cache *cryptodesc_zone;
#endif
#define debug crypto_debug
int crypto_debug = 0;
module_param(crypto_debug, int, 0644);
MODULE_PARM_DESC(crypto_debug, "Enable debug");
EXPORT_SYMBOL(crypto_debug);
/*
* Maximum number of outstanding crypto requests before we start
* failing requests. We need this to prevent DOS when too many
* requests are arriving for us to keep up. Otherwise we will
* run the system out of memory. Since crypto is slow, we are
* usually the bottleneck that needs to say, enough is enough.
*
* We cannot print errors when this condition occurs, we are already too
* slow, printing anything will just kill us
*/
static int crypto_q_cnt = 0;
module_param(crypto_q_cnt, int, 0444);
MODULE_PARM_DESC(crypto_q_cnt,
"Current number of outstanding crypto requests");
static int crypto_q_max = 1000;
module_param(crypto_q_max, int, 0644);
MODULE_PARM_DESC(crypto_q_max,
"Maximum number of outstanding crypto requests");
#define bootverbose crypto_verbose
static int crypto_verbose = 0;
module_param(crypto_verbose, int, 0644);
MODULE_PARM_DESC(crypto_verbose,
"Enable verbose crypto startup");
int crypto_usercrypto = 1; /* userland may do crypto reqs */
module_param(crypto_usercrypto, int, 0644);
MODULE_PARM_DESC(crypto_usercrypto,
"Enable/disable user-mode access to crypto support");
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
module_param(crypto_userasymcrypto, int, 0644);
MODULE_PARM_DESC(crypto_userasymcrypto,
"Enable/disable user-mode access to asymmetric crypto support");
int crypto_devallowsoft = 0; /* only use hardware crypto */
module_param(crypto_devallowsoft, int, 0644);
MODULE_PARM_DESC(crypto_devallowsoft,
"Enable/disable use of software crypto support");
/*
* This parameter controls the maximum number of crypto operations to
* do consecutively in the crypto kernel thread before scheduling to allow
* other processes to run. Without it, it is possible to get into a
* situation where the crypto thread never allows any other processes to run.
* Default to 1000 which should be less than one second.
*/
static int crypto_max_loopcount = 1000;
module_param(crypto_max_loopcount, int, 0644);
MODULE_PARM_DESC(crypto_max_loopcount,
"Maximum number of crypto ops to do before yielding to other processes");
#ifndef CONFIG_NR_CPUS
#define CONFIG_NR_CPUS 1
#endif
static struct task_struct *cryptoproc[CONFIG_NR_CPUS];
static struct task_struct *cryptoretproc[CONFIG_NR_CPUS];
static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
static int crypto_proc(void *arg);
static int crypto_ret_proc(void *arg);
static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
static int crypto_kinvoke(struct cryptkop *krp, int flags);
static void crypto_exit(void);
static int crypto_init(void);
static struct cryptostats cryptostats;
static struct cryptocap *
crypto_checkdriver(u_int32_t hid)
{
if (crypto_drivers == NULL)
return NULL;
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
}
/*
* Compare a driver's list of supported algorithms against another
* list; return non-zero if all algorithms are supported.
*/
static int
driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
{
const struct cryptoini *cr;
/* See if all the algorithms are supported. */
for (cr = cri; cr; cr = cr->cri_next)
if (cap->cc_alg[cr->cri_alg] == 0)
return 0;
return 1;
}
/*
* Select a driver for a new session that supports the specified
* algorithms and, optionally, is constrained according to the flags.
* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need. If there
* are multiple drivers we choose the driver with the fewest active
* sessions. We prefer hardware-backed drivers to software ones.
*
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
static struct cryptocap *
crypto_select_driver(const struct cryptoini *cri, int flags)
{
struct cryptocap *cap, *best;
int match, hid;
CRYPTO_DRIVER_ASSERT();
/*
* Look first for hardware crypto devices if permitted.
*/
if (flags & CRYPTOCAP_F_HARDWARE)
match = CRYPTOCAP_F_HARDWARE;
else
match = CRYPTOCAP_F_SOFTWARE;
best = NULL;
again:
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = &crypto_drivers[hid];
/*
* If it's not initialized, is in the process of
* going away, or is not appropriate (hardware
* or software based on match), then skip.
*/
if (cap->cc_dev == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
(cap->cc_flags & match) == 0)
continue;
/* verify all the algorithms are supported. */
if (driver_suitable(cap, cri)) {
if (best == NULL ||
cap->cc_sessions < best->cc_sessions)
best = cap;
}
}
if (best != NULL)
return best;
if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
/* sort of an Algol 68-style for loop */
match = CRYPTOCAP_F_SOFTWARE;
goto again;
}
return best;
}
/*
* Create a new session. The crid argument specifies a crypto
* driver to use or constraints on a driver to select (hardware
* only, software only, either). Whatever driver is selected
* must be capable of the requested crypto algorithms.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
{
struct cryptocap *cap;
u_int32_t hid, lid;
int err;
unsigned long d_flags;
CRYPTO_DRIVER_LOCK();
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
/*
* Use specified driver; verify it is capable.
*/
cap = crypto_checkdriver(crid);
if (cap != NULL && !driver_suitable(cap, cri))
cap = NULL;
} else {
/*
* No requested driver; select based on crid flags.
*/
cap = crypto_select_driver(cri, crid);
/*
* if NULL then can't do everything in one session.
* XXX Fix this. We need to inject a "virtual" session
* XXX layer right about here.
*/
}
if (cap != NULL) {
/* Call the driver initialization routine. */
hid = cap - crypto_drivers;
lid = hid; /* Pass the driver ID. */
cap->cc_sessions++;
CRYPTO_DRIVER_UNLOCK();
err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
CRYPTO_DRIVER_LOCK();
if (err == 0) {
(*sid) = (cap->cc_flags & 0xff000000)
| (hid & 0x00ffffff);
(*sid) <<= 32;
(*sid) |= (lid & 0xffffffff);
} else
cap->cc_sessions--;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
static void
crypto_remove(struct cryptocap *cap)
{
CRYPTO_DRIVER_ASSERT();
if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
bzero(cap, sizeof(*cap));
}
/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
int
crypto_freesession(u_int64_t sid)
{
struct cryptocap *cap;
u_int32_t hid;
int err = 0;
unsigned long d_flags;
dprintk("%s()\n", __FUNCTION__);
CRYPTO_DRIVER_LOCK();
if (crypto_drivers == NULL) {
err = EINVAL;
goto done;
}
/* Determine two IDs. */
hid = CRYPTO_SESID2HID(sid);
if (hid >= crypto_drivers_num) {
dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
err = ENOENT;
goto done;
}
cap = &crypto_drivers[hid];
if (cap->cc_dev) {
CRYPTO_DRIVER_UNLOCK();
/* Call the driver cleanup routine, if available, unlocked. */
err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
CRYPTO_DRIVER_LOCK();
}
if (cap->cc_sessions)
cap->cc_sessions--;
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
crypto_remove(cap);
done:
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Return an unused driver id. Used by drivers prior to registering
* support for the algorithms they handle.
*/
int32_t
crypto_get_driverid(device_t dev, int flags)
{
struct cryptocap *newdrv;
int i;
unsigned long d_flags;
if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
printf("%s: no flags specified when registering driver\n",
device_get_nameunit(dev));
return -1;
}
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_num; i++) {
if (crypto_drivers[i].cc_dev == NULL &&
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
break;
}
}
/* Out of entries, allocate some more. */
if (i == crypto_drivers_num) {
/* Be careful about wrap-around. */
if (2 * crypto_drivers_num <= crypto_drivers_num) {
CRYPTO_DRIVER_UNLOCK();
printk("crypto: driver count wraparound!\n");
return -1;
}
newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
GFP_KERNEL);
if (newdrv == NULL) {
CRYPTO_DRIVER_UNLOCK();
printk("crypto: no space to expand driver table!\n");
return -1;
}
memcpy(newdrv, crypto_drivers,
crypto_drivers_num * sizeof(struct cryptocap));
memset(&newdrv[crypto_drivers_num], 0,
crypto_drivers_num * sizeof(struct cryptocap));
crypto_drivers_num *= 2;
kfree(crypto_drivers);
crypto_drivers = newdrv;
}
/* NB: state is zero'd on free */
crypto_drivers[i].cc_sessions = 1; /* Mark */
crypto_drivers[i].cc_dev = dev;
crypto_drivers[i].cc_flags = flags;
if (bootverbose)
printf("crypto: assign %s driver id %u, flags %u\n",
device_get_nameunit(dev), i, flags);
CRYPTO_DRIVER_UNLOCK();
return i;
}
/*
* Lookup a driver by name. We match against the full device
* name and unit, and against just the name. The latter gives
* us a simple widlcarding by device name. On success return the
* driver/hardware identifier; otherwise return -1.
*/
int
crypto_find_driver(const char *match)
{
int i, len = strlen(match);
unsigned long d_flags;
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_num; i++) {
device_t dev = crypto_drivers[i].cc_dev;
if (dev == NULL ||
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
continue;
if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
strncmp(match, device_get_name(dev), len) == 0)
break;
}
CRYPTO_DRIVER_UNLOCK();
return i < crypto_drivers_num ? i : -1;
}
/*
* Return the device_t for the specified driver or NULL
* if the driver identifier is invalid.
*/
device_t
crypto_find_device_byhid(int hid)
{
struct cryptocap *cap = crypto_checkdriver(hid);
return cap != NULL ? cap->cc_dev : NULL;
}
/*
* Return the device/driver capabilities.
*/
int
crypto_getcaps(int hid)
{
struct cryptocap *cap = crypto_checkdriver(hid);
return cap != NULL ? cap->cc_flags : 0;
}
/*
* Register support for a key-related algorithm. This routine
* is called once for each algorithm supported a driver.
*/
int
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
{
struct cryptocap *cap;
int err;
unsigned long d_flags;
dprintk("%s()\n", __FUNCTION__);
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
if (bootverbose)
printf("crypto: %s registers key alg %u flags %u\n"
, device_get_nameunit(cap->cc_dev)
, kalg
, flags
);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Register support for a non-key-related algorithm. This routine
* is called once for each such algorithm supported by a driver.
*/
int
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
u_int32_t flags)
{
struct cryptocap *cap;
int err;
unsigned long d_flags;
dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
driverid, alg, maxoplen, flags);
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
/* NB: algorithms are in the range [1..max] */
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
cap->cc_max_op_len[alg] = maxoplen;
if (bootverbose)
printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
, device_get_nameunit(cap->cc_dev)
, alg
, flags
, maxoplen
);
cap->cc_sessions = 0; /* Unmark */
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
static void
driver_finis(struct cryptocap *cap)
{
u_int32_t ses, kops;
CRYPTO_DRIVER_ASSERT();
ses = cap->cc_sessions;
kops = cap->cc_koperations;
bzero(cap, sizeof(*cap));
if (ses != 0 || kops != 0) {
/*
* If there are pending sessions,
* just mark as invalid.
*/
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
cap->cc_sessions = ses;
cap->cc_koperations = kops;
}
}
/*
* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver has been unregistered and
* reroute requests.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
{
struct cryptocap *cap;
int i, err;
unsigned long d_flags;
dprintk("%s()\n", __FUNCTION__);
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
cap->cc_alg[alg] != 0) {
cap->cc_alg[alg] = 0;
cap->cc_max_op_len[alg] = 0;
/* Was this the last algorithm ? */
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
if (cap->cc_alg[i] != 0)
break;
if (i == CRYPTO_ALGORITHM_MAX + 1)
driver_finis(cap);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(u_int32_t driverid)
{
struct cryptocap *cap;
int err;
unsigned long d_flags;
dprintk("%s()\n", __FUNCTION__);
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
driver_finis(cap);
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Clear blockage on a driver. The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(u_int32_t driverid, int what)
{
struct cryptocap *cap;
int err;
unsigned long q_flags;
CRYPTO_Q_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
if (what & CRYPTO_SYMQ) {
cap->cc_qblocked = 0;
cap->cc_unqblocked = 0;
crypto_all_qblocked = 0;
}
if (what & CRYPTO_ASYMQ) {
cap->cc_kqblocked = 0;
cap->cc_unkqblocked = 0;
crypto_all_kqblocked = 0;
}
wake_up_interruptible(&cryptoproc_wait);
err = 0;
} else
err = EINVAL;
CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
return err;
}
/*
* Add a crypto request to a queue, to be processed by the kernel thread.
*/
int
crypto_dispatch(struct cryptop *crp)
{
struct cryptocap *cap;
int result = -1;
unsigned long q_flags;
dprintk("%s()\n", __FUNCTION__);
cryptostats.cs_ops++;
CRYPTO_Q_LOCK();
if (crypto_q_cnt >= crypto_q_max) {
cryptostats.cs_drops++;
CRYPTO_Q_UNLOCK();
return ENOMEM;
}
crypto_q_cnt++;
/* make sure we are starting a fresh run on this crp. */
crp->crp_flags &= ~CRYPTO_F_DONE;
crp->crp_etype = 0;
/*
* Caller marked the request to be processed immediately; dispatch
* it directly to the driver unless the driver is currently blocked.
*/
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
int hid = CRYPTO_SESID2HID(crp->crp_sid);
cap = crypto_checkdriver(hid);
/* Driver cannot disappear when there is an active session. */
KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
if (!cap->cc_qblocked) {
crypto_all_qblocked = 0;
crypto_drivers[hid].cc_unqblocked = 1;
CRYPTO_Q_UNLOCK();
result = crypto_invoke(cap, crp, 0);
CRYPTO_Q_LOCK();
if (result == ERESTART)
if (crypto_drivers[hid].cc_unqblocked)
crypto_drivers[hid].cc_qblocked = 1;
crypto_drivers[hid].cc_unqblocked = 0;
}
}
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
list_add(&crp->crp_next, &crp_q);
cryptostats.cs_blocks++;
result = 0;
} else if (result == -1) {
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
result = 0;
}
wake_up_interruptible(&cryptoproc_wait);
CRYPTO_Q_UNLOCK();
return result;
}
/*
* Add an asymetric crypto request to a queue,
* to be processed by the kernel thread.
*/
int
crypto_kdispatch(struct cryptkop *krp)
{
int error;
unsigned long q_flags;
cryptostats.cs_kops++;
error = crypto_kinvoke(krp, krp->krp_crid);
if (error == ERESTART) {
CRYPTO_Q_LOCK();
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
wake_up_interruptible(&cryptoproc_wait);
CRYPTO_Q_UNLOCK();
error = 0;
}
return error;
}
/*
* Verify a driver is suitable for the specified operation.
*/
static __inline int
kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
{
return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
}
/*
* Select a driver for an asym operation. The driver must
* support the necessary algorithm. The caller can constrain
* which device is selected with the flags parameter. The
* algorithm we use here is pretty stupid; just use the first
* driver that supports the algorithms we need. If there are
* multiple suitable drivers we choose the driver with the
* fewest active operations. We prefer hardware-backed
* drivers to software ones when either may be used.
*/
static struct cryptocap *
crypto_select_kdriver(const struct cryptkop *krp, int flags)
{
struct cryptocap *cap, *best, *blocked;
int match, hid;
CRYPTO_DRIVER_ASSERT();
/*
* Look first for hardware crypto devices if permitted.
*/
if (flags & CRYPTOCAP_F_HARDWARE)
match = CRYPTOCAP_F_HARDWARE;
else
match = CRYPTOCAP_F_SOFTWARE;
best = NULL;
blocked = NULL;
again:
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = &crypto_drivers[hid];
/*
* If it's not initialized, is in the process of
* going away, or is not appropriate (hardware
* or software based on match), then skip.
*/
if (cap->cc_dev == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
(cap->cc_flags & match) == 0)
continue;
/* verify all the algorithms are supported. */
if (kdriver_suitable(cap, krp)) {
if (best == NULL ||
cap->cc_koperations < best->cc_koperations)
best = cap;
}
}
if (best != NULL)
return best;
if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
/* sort of an Algol 68-style for loop */
match = CRYPTOCAP_F_SOFTWARE;
goto again;
}
return best;
}
/*
* Dispatch an assymetric crypto request.
*/
static int
crypto_kinvoke(struct cryptkop *krp, int crid)
{
struct cryptocap *cap = NULL;
int error;
unsigned long d_flags;
KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
KASSERT(krp->krp_callback != NULL,
("%s: krp->crp_callback == NULL", __func__));
CRYPTO_DRIVER_LOCK();
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
cap = crypto_checkdriver(crid);
if (cap != NULL) {
/*
* Driver present, it must support the necessary
* algorithm and, if s/w drivers are excluded,
* it must be registered as hardware-backed.
*/
if (!kdriver_suitable(cap, krp) ||
(!crypto_devallowsoft &&
(cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
cap = NULL;
}
} else {
/*
* No requested driver; select based on crid flags.
*/
if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
crid &= ~CRYPTOCAP_F_SOFTWARE;
cap = crypto_select_kdriver(krp, crid);
}
if (cap != NULL && !cap->cc_kqblocked) {
krp->krp_hid = cap - crypto_drivers;
cap->cc_koperations++;
CRYPTO_DRIVER_UNLOCK();
error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
CRYPTO_DRIVER_LOCK();
if (error == ERESTART) {
cap->cc_koperations--;
CRYPTO_DRIVER_UNLOCK();
return (error);
}
/* return the actual device used */
krp->krp_crid = krp->krp_hid;
} else {
/*
* NB: cap is !NULL if device is blocked; in
* that case return ERESTART so the operation
* is resubmitted if possible.
*/
error = (cap == NULL) ? ENODEV : ERESTART;
}
CRYPTO_DRIVER_UNLOCK();
if (error) {
krp->krp_status = error;
crypto_kdone(krp);
}
return 0;
}
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
{
KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
KASSERT(crp->crp_callback != NULL,
("%s: crp->crp_callback == NULL", __func__));
KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
dprintk("%s()\n", __FUNCTION__);
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
#endif
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
struct cryptodesc *crd;
u_int64_t nid;
/*
* Driver has unregistered; migrate the session and return
* an error to the caller so they'll resubmit the op.
*
* XXX: What if there are more already queued requests for this
* session?
*/
crypto_freesession(crp->crp_sid);
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
/* XXX propagate flags from initial session? */
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
crp->crp_sid = nid;
crp->crp_etype = EAGAIN;
crypto_done(crp);
return 0;
} else {
/*
* Invoke the driver to process the request.
*/
return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
}
}
/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
{
struct cryptodesc *crd;
if (crp == NULL)
return;
#ifdef DIAGNOSTIC
{
struct cryptop *crp2;
unsigned long q_flags;
CRYPTO_Q_LOCK();
TAILQ_FOREACH(crp2, &crp_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the crypto queue (%p).",
crp));
}
CRYPTO_Q_UNLOCK();
CRYPTO_RETQ_LOCK();
TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the return queue (%p).",
crp));
}
CRYPTO_RETQ_UNLOCK();
}
#endif
while ((crd = crp->crp_desc) != NULL) {
crp->crp_desc = crd->crd_next;
kmem_cache_free(cryptodesc_zone, crd);
}
kmem_cache_free(cryptop_zone, crp);
}
/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
{
struct cryptodesc *crd;
struct cryptop *crp;
crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
if (crp != NULL) {
memset(crp, 0, sizeof(*crp));
INIT_LIST_HEAD(&crp->crp_next);
init_waitqueue_head(&crp->crp_waitq);
while (num--) {
crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
if (crd == NULL) {
crypto_freereq(crp);
return NULL;
}
memset(crd, 0, sizeof(*crd));
crd->crd_next = crp->crp_desc;
crp->crp_desc = crd;
}
}
return crp;
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
unsigned long q_flags;
dprintk("%s()\n", __FUNCTION__);
if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
crp->crp_flags |= CRYPTO_F_DONE;
CRYPTO_Q_LOCK();
crypto_q_cnt--;
CRYPTO_Q_UNLOCK();
} else
printk("crypto: crypto_done op already done, flags 0x%x",
crp->crp_flags);
if (crp->crp_etype != 0)
cryptostats.cs_errs++;
/*
* CBIMM means unconditionally do the callback immediately;
* CBIFSYNC means do the callback immediately only if the
* operation was done synchronously. Both are used to avoid
* doing extraneous context switches; the latter is mostly
* used with the software crypto driver.
*/
if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
(CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
crp->crp_callback(crp);
} else {
unsigned long r_flags;
/*
* Normal case; queue the callback for the thread.
*/
CRYPTO_RETQ_LOCK();
wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
CRYPTO_RETQ_UNLOCK();
}
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
{
struct cryptocap *cap;
unsigned long d_flags;
if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
printk("crypto: crypto_kdone op already done, flags 0x%x",
krp->krp_flags);
krp->krp_flags |= CRYPTO_KF_DONE;
if (krp->krp_status != 0)
cryptostats.cs_kerrs++;
CRYPTO_DRIVER_LOCK();
/* XXX: What if driver is loaded in the meantime? */
if (krp->krp_hid < crypto_drivers_num) {
cap = &crypto_drivers[krp->krp_hid];
cap->cc_koperations--;
KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
crypto_remove(cap);
}
CRYPTO_DRIVER_UNLOCK();
/*
* CBIMM means unconditionally do the callback immediately;
* This is used to avoid doing extraneous context switches
*/
if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
krp->krp_callback(krp);
} else {
unsigned long r_flags;
/*
* Normal case; queue the callback for the thread.
*/
CRYPTO_RETQ_LOCK();
wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
CRYPTO_RETQ_UNLOCK();
}
}
int
crypto_getfeat(int *featp)
{
int hid, kalg, feat = 0;
unsigned long d_flags;
CRYPTO_DRIVER_LOCK();
for (hid = 0; hid < crypto_drivers_num; hid++) {
const struct cryptocap *cap = &crypto_drivers[hid];
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
!crypto_devallowsoft) {
continue;
}
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
feat |= 1 << kalg;
}
CRYPTO_DRIVER_UNLOCK();
*featp = feat;
return (0);
}
/*
* Crypto thread, dispatches crypto requests.
*/
static int
crypto_proc(void *arg)
{
struct cryptop *crp, *submit;
struct cryptkop *krp, *krpp;
struct cryptocap *cap;
u_int32_t hid;
int result, hint;
unsigned long q_flags;
int loopcount = 0;
set_current_state(TASK_INTERRUPTIBLE);
CRYPTO_Q_LOCK();
for (;;) {
/*
* we need to make sure we don't get into a busy loop with nothing
* to do, the two crypto_all_*blocked vars help us find out when
* we are all full and can do nothing on any driver or Q. If so we
* wait for an unblock.
*/
crypto_all_qblocked = !list_empty(&crp_q);
/*
* Find the first element in the queue that can be
* processed and look-ahead to see if multiple ops
* are ready for the same driver.
*/
submit = NULL;
hint = 0;
list_for_each_entry(crp, &crp_q, crp_next) {
hid = CRYPTO_SESID2HID(crp->crp_sid);
cap = crypto_checkdriver(hid);
/*
* Driver cannot disappear when there is an active
* session.
*/
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
if (cap == NULL || cap->cc_dev == NULL) {
/* Op needs to be migrated, process it. */
if (submit == NULL)
submit = crp;
break;
}
if (!cap->cc_qblocked) {
if (submit != NULL) {
/*
* We stop on finding another op,
* regardless whether its for the same
* driver or not. We could keep
* searching the queue but it might be
* better to just use a per-driver
* queue instead.
*/
if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
hint = CRYPTO_HINT_MORE;
break;
} else {
submit = crp;
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
break;
/* keep scanning for more are q'd */
}
}
}
if (submit != NULL) {
hid = CRYPTO_SESID2HID(submit->crp_sid);
crypto_all_qblocked = 0;
list_del(&submit->crp_next);
crypto_drivers[hid].cc_unqblocked = 1;
cap = crypto_checkdriver(hid);
CRYPTO_Q_UNLOCK();
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
result = crypto_invoke(cap, submit, hint);
CRYPTO_Q_LOCK();
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
list_add(&submit->crp_next, &crp_q);
cryptostats.cs_blocks++;
if (crypto_drivers[hid].cc_unqblocked)
crypto_drivers[hid].cc_qblocked=0;
crypto_drivers[hid].cc_unqblocked=0;
}
crypto_drivers[hid].cc_unqblocked = 0;
}
crypto_all_kqblocked = !list_empty(&crp_kq);
/* As above, but for key ops */
krp = NULL;
list_for_each_entry(krpp, &crp_kq, krp_next) {
cap = crypto_checkdriver(krpp->krp_hid);
if (cap == NULL || cap->cc_dev == NULL) {
/*
* Operation needs to be migrated, invalidate
* the assigned device so it will reselect a
* new one below. Propagate the original
* crid selection flags if supplied.
*/
krp->krp_hid = krp->krp_crid &
(CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
if (krp->krp_hid == 0)
krp->krp_hid =
CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
break;
}
if (!cap->cc_kqblocked) {
krp = krpp;
break;
}
}
if (krp != NULL) {
crypto_all_kqblocked = 0;
list_del(&krp->krp_next);
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
CRYPTO_Q_UNLOCK();
result = crypto_kinvoke(krp, krp->krp_hid);
CRYPTO_Q_LOCK();
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptkop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
list_add(&krp->krp_next, &crp_kq);
cryptostats.cs_kblocks++;
} else
crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
}
if (submit == NULL && krp == NULL) {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more ops to process.
* This happens either by submission or by a driver
* becoming unblocked and notifying us through
* crypto_unblock. Note that when we wakeup we
* start processing each queue again from the
* front. It's not clear that it's important to
* preserve this ordering since ops may finish
* out of order if dispatched to different devices
* and some become blocked while others do not.
*/
dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
__FUNCTION__,
list_empty(&crp_q), crypto_all_qblocked,
list_empty(&crp_kq), crypto_all_kqblocked);
loopcount = 0;
CRYPTO_Q_UNLOCK();
wait_event_interruptible(cryptoproc_wait,
!(list_empty(&crp_q) || crypto_all_qblocked) ||
!(list_empty(&crp_kq) || crypto_all_kqblocked) ||
kthread_should_stop());
if (signal_pending (current)) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
spin_lock_irq(&current->sigmask_lock);
#endif
flush_signals(current);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
spin_unlock_irq(&current->sigmask_lock);
#endif
}
CRYPTO_Q_LOCK();
dprintk("%s - awake\n", __FUNCTION__);
if (kthread_should_stop())
break;
cryptostats.cs_intrs++;
} else if (loopcount > crypto_max_loopcount) {
/*
* Give other processes a chance to run if we've
* been using the CPU exclusively for a while.
*/
loopcount = 0;
CRYPTO_Q_UNLOCK();
schedule();
CRYPTO_Q_LOCK();
}
loopcount++;
}
CRYPTO_Q_UNLOCK();
return 0;
}
/*
* Crypto returns thread, does callbacks for processed crypto requests.
* Callbacks are done here, rather than in the crypto drivers, because
* callbacks typically are expensive and would slow interrupt handling.
*/
static int
crypto_ret_proc(void *arg)
{
struct cryptop *crpt;
struct cryptkop *krpt;
unsigned long r_flags;
set_current_state(TASK_INTERRUPTIBLE);
CRYPTO_RETQ_LOCK();
for (;;) {
/* Harvest return q's for completed ops */
crpt = NULL;
if (!list_empty(&crp_ret_q))
crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
if (crpt != NULL)
list_del(&crpt->crp_next);
krpt = NULL;
if (!list_empty(&crp_ret_kq))
krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
if (krpt != NULL)
list_del(&krpt->krp_next);
if (crpt != NULL || krpt != NULL) {
CRYPTO_RETQ_UNLOCK();
/*
* Run callbacks unlocked.
*/
if (crpt != NULL)
crpt->crp_callback(crpt);
if (krpt != NULL)
krpt->krp_callback(krpt);
CRYPTO_RETQ_LOCK();
} else {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more returns to process.
*/
dprintk("%s - sleeping\n", __FUNCTION__);
CRYPTO_RETQ_UNLOCK();
wait_event_interruptible(cryptoretproc_wait,
!list_empty(&crp_ret_q) ||
!list_empty(&crp_ret_kq) ||
kthread_should_stop());
if (signal_pending (current)) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
spin_lock_irq(&current->sigmask_lock);
#endif
flush_signals(current);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
spin_unlock_irq(&current->sigmask_lock);
#endif
}
CRYPTO_RETQ_LOCK();
dprintk("%s - awake\n", __FUNCTION__);
if (kthread_should_stop()) {
dprintk("%s - EXITING!\n", __FUNCTION__);
break;
}
cryptostats.cs_rets++;
}
}
CRYPTO_RETQ_UNLOCK();
return 0;
}
#if 0 /* should put this into /proc or something */
static void
db_show_drivers(void)
{
int hid;
db_printf("%12s %4s %4s %8s %2s %2s\n"
, "Device"
, "Ses"
, "Kops"
, "Flags"
, "QB"
, "KB"
);
for (hid = 0; hid < crypto_drivers_num; hid++) {
const struct cryptocap *cap = &crypto_drivers[hid];
if (cap->cc_dev == NULL)
continue;
db_printf("%-12s %4u %4u %08x %2u %2u\n"
, device_get_nameunit(cap->cc_dev)
, cap->cc_sessions
, cap->cc_koperations
, cap->cc_flags
, cap->cc_qblocked
, cap->cc_kqblocked
);
}
}
DB_SHOW_COMMAND(crypto, db_show_crypto)
{
struct cryptop *crp;
db_show_drivers();
db_printf("\n");
db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
"HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
"Desc", "Callback");
TAILQ_FOREACH(crp, &crp_q, crp_next) {
db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
, (int) CRYPTO_SESID2HID(crp->crp_sid)
, (int) CRYPTO_SESID2CAPS(crp->crp_sid)
, crp->crp_ilen, crp->crp_olen
, crp->crp_etype
, crp->crp_flags
, crp->crp_desc
, crp->crp_callback
);
}
if (!TAILQ_EMPTY(&crp_ret_q)) {
db_printf("\n%4s %4s %4s %8s\n",
"HID", "Etype", "Flags", "Callback");
TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
db_printf("%4u %4u %04x %8p\n"
, (int) CRYPTO_SESID2HID(crp->crp_sid)
, crp->crp_etype
, crp->crp_flags
, crp->crp_callback
);
}
}
}
DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
{
struct cryptkop *krp;
db_show_drivers();
db_printf("\n");
db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
"Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
, krp->krp_op
, krp->krp_status
, krp->krp_iparams, krp->krp_oparams
, krp->krp_crid, krp->krp_hid
, krp->krp_callback
);
}
if (!TAILQ_EMPTY(&crp_ret_q)) {
db_printf("%4s %5s %8s %4s %8s\n",
"Op", "Status", "CRID", "HID", "Callback");
TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
db_printf("%4u %5u %08x %4u %8p\n"
, krp->krp_op
, krp->krp_status
, krp->krp_crid, krp->krp_hid
, krp->krp_callback
);
}
}
}
#endif
static int
crypto_init(void)
{
int error;
unsigned long cpu;
dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
if (crypto_initted)
return 0;
crypto_initted = 1;
spin_lock_init(&crypto_drivers_lock);
spin_lock_init(&crypto_q_lock);
spin_lock_init(&crypto_ret_q_lock);
cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
0, SLAB_HWCACHE_ALIGN, NULL
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
, NULL
#endif
);
cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
0, SLAB_HWCACHE_ALIGN, NULL
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
, NULL
#endif
);
if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
printk("crypto: crypto_init cannot setup crypto zones\n");
error = ENOMEM;
goto bad;
}
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
GFP_KERNEL);
if (crypto_drivers == NULL) {
printk("crypto: crypto_init cannot setup crypto drivers\n");
error = ENOMEM;
goto bad;
}
memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
ocf_for_each_cpu(cpu) {
cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu,
"ocf_%d", (int) cpu);
if (IS_ERR(cryptoproc[cpu])) {
error = PTR_ERR(cryptoproc[cpu]);
printk("crypto: crypto_init cannot start crypto thread; error %d",
error);
goto bad;
}
kthread_bind(cryptoproc[cpu], cpu);
wake_up_process(cryptoproc[cpu]);
cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu,
"ocf_ret_%d", (int) cpu);
if (IS_ERR(cryptoretproc[cpu])) {
error = PTR_ERR(cryptoretproc[cpu]);
printk("crypto: crypto_init cannot start cryptoret thread; error %d",
error);
goto bad;
}
kthread_bind(cryptoretproc[cpu], cpu);
wake_up_process(cryptoretproc[cpu]);
}
return 0;
bad:
crypto_exit();
return error;
}
static void
crypto_exit(void)
{
int cpu;
dprintk("%s()\n", __FUNCTION__);
/*
* Terminate any crypto threads.
*/
ocf_for_each_cpu(cpu) {
kthread_stop(cryptoproc[cpu]);
kthread_stop(cryptoretproc[cpu]);
}
/*
* Reclaim dynamically allocated resources.
*/
if (crypto_drivers != NULL)
kfree(crypto_drivers);
if (cryptodesc_zone != NULL)
kmem_cache_destroy(cryptodesc_zone);
if (cryptop_zone != NULL)
kmem_cache_destroy(cryptop_zone);
}
EXPORT_SYMBOL(crypto_newsession);
EXPORT_SYMBOL(crypto_freesession);
EXPORT_SYMBOL(crypto_get_driverid);
EXPORT_SYMBOL(crypto_kregister);
EXPORT_SYMBOL(crypto_register);
EXPORT_SYMBOL(crypto_unregister);
EXPORT_SYMBOL(crypto_unregister_all);
EXPORT_SYMBOL(crypto_unblock);
EXPORT_SYMBOL(crypto_dispatch);
EXPORT_SYMBOL(crypto_kdispatch);
EXPORT_SYMBOL(crypto_freereq);
EXPORT_SYMBOL(crypto_getreq);
EXPORT_SYMBOL(crypto_done);
EXPORT_SYMBOL(crypto_kdone);
EXPORT_SYMBOL(crypto_getfeat);
EXPORT_SYMBOL(crypto_userasymcrypto);
EXPORT_SYMBOL(crypto_getcaps);
EXPORT_SYMBOL(crypto_find_driver);
EXPORT_SYMBOL(crypto_find_device_byhid);
module_init(crypto_init);
module_exit(crypto_exit);
MODULE_LICENSE("BSD");
MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");