1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-27 17:43:09 +02:00
openwrt-xburst/openwrt/package/kismet/files/kismet_drone.conf

122 lines
5.3 KiB
Plaintext
Raw Normal View History

# Kismet drone config file
version=2005.04.R1
# Name of server (Purely for organiational purposes)
servername=Kismet
# User to setid to (should be your normal user)
suiduser=nobody
# Port to serve packet data... This probably shouldn't be the same as the port
# you configured kismet_server for, or else you'll have problems running them
# on the same system.
tcpport=3501
# People allowed to connect, comma seperated IP addresses or network/mask
# blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as
# numbers (/24)
allowedhosts=127.0.0.1
# Maximum number of concurrent stream attachments
maxclients=5
# Packet sources:
# source=capture_cardtype,capture_interface,capture_name
# Card type - Specifies the type of device. It can be one of:
# cisco - Cisco card with Linux Kernel drivers
# cisco_cvs - Cisco card with CVS Linux drivers
# cisco_bsd - Cisco on *BSD
# prism2 - Prism2 using wlan-ng drivers with pcap support (all
# current versions support pcap)
# prism2_hostap - Prism2 using hostap drivers
# prism2_legacy - Prism2 using wlan-ng drivers without pcap support (0.1.9)
# prism2_bsd - Prism2 on *BSD
# orinoco - Orinoco cards using Snax's patched driers
# generic - Generic card with no specific support. You will have
# to put this into monitor mode yourself!
# wsp100 - WSP100 embedded remote sensor.
# wtapfile - Saved file of packets readable by libwiretap
# ar5k - ar5k 802.11a using the vt_ar5k drivers
# Capture interface - Specifies the network interface Kismet will watch for
# packets to come in on. Typically "ethX" or "wlanX". For the WSP100 capture
# engine, the WSP100 device sends packets via a UDP stream, so the capture
# interface should be in the form of host:port where 'host' is the WSP100 and
# 'port' is the local UDP port that it will send data to.
# Capture Name - The name Kismet uses for this capture source. This is the
# name used to specify what sources to enable.
#
# To enable multiple sources, specify a source line for each and then use the
# enablesources line to enable them. For example:
# source=prism2,wlan0,prism
# source=cisco,eth0,cisco
source=wrt54g,eth1,wireless
# For v1 hardware uncomment this:
# source=wrt54g,eth2,wireless
# Comma-separated list of sources to enable. This is only needed if you wish
# to selectively enable multiple sources.
# enablesources=prism,cisco
# Do we channelhop?
channelhop=true
# How many channels per second do we hop? (1-10)
channelvelocity=5
# By setting the dwell time for channel hopping we override the channelvelocity
# setting above and dwell on each channel for the given number of seconds.
#channeldwell=10
# Do we split channels between cards on the same spectrum? This means if
# multiple 802.11b capture sources are defined, they will be offset to cover
# the most possible spectrum at a given time. This also controls splitting
# fine-tuned sourcechannels lines which cover multiple interfaces (see below)
splitchannels=true
# Basic channel hopping control:
# These define the channels the cards hop through for various frequency ranges
# supported by Kismet. More finegrain control is available via the
# "sourcechannels" configuration option.
#
# Don't change the IEEE80211<x> identifiers or channel hopping won't work.
# Users outside the US might want to use this list:
# defaultchannels=IEEE80211b:1,7,13,2,8,3,14,9,4,10,5,11,6,12
defaultchannels=IEEE80211b:1,6,11,2,7,3,8,4,9,5,10
# 802.11g uses the same channels as 802.11b...
defaultchannels=IEEE80211g:1,6,11,2,7,3,8,4,9,5,10
# 802.11a channels are non-overlapping so sequential is fine. You may want to
# adjust the list depending on the channels your card actually supports.
# defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,132,136,140,149,153,157,161,184,188,192,196,200,204,208,212,216
defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64
# Combo cards like Atheros use both 'a' and 'b/g' channels. Of course, you
# can also explicitly override a given source. You can use the script
# extras/listchan.pl to extract all the channels your card supports.
defaultchannels=IEEE80211ab:1,6,11,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64
# Fine-tuning channel hopping control:
# The sourcechannels option can be used to set the channel hopping for
# specific interfaces, and to control what interfaces share a list of
# channels for split hopping. This can also be used to easily lock
# one card on a single channel while hopping with other cards.
# Any card without a sourcechannel definition will use the standard hopping
# list.
# sourcechannels=sourcename[,sourcename]:ch1,ch2,ch3,...chN
# ie, for us channels on the source 'prism2source' (same as normal channel
# hopping behavior):
# sourcechannels=prism2source:1,6,11,2,7,3,8,4,9,5,10
# Given two capture sources, "prism2a" and "prism2b", we want prism2a to stay
# on channel 6 and prism2b to hop normally. By not setting a sourcechannels
# line for prism2b, it will use the standard hopping.
# sourcechannels=prism2a:6
# To assign the same custom hop channel to multiple sources, or to split the
# same custom hop channel over two sources (if splitchannels is true), list
# them all on the same sourcechannels line:
# sourcechannels=prism2a,prism2b,prism2c:1,6,11