1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-01 13:05:18 +02:00
openwrt-xburst/target/linux/ifxmips/files/arch/mips/danube/pci.c

320 lines
9.2 KiB
C
Raw Normal View History

#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <asm/danube/danube.h>
#include <asm/danube/danube_irq.h>
#include <asm/addrspace.h>
#include <linux/vmalloc.h>
#define DANUBE_PCI_MEM_BASE 0x18000000
#define DANUBE_PCI_MEM_SIZE 0x02000000
#define DANUBE_PCI_IO_BASE 0x1AE00000
#define DANUBE_PCI_IO_SIZE 0x00200000
#define DANUBE_PCI_CFG_BUSNUM_SHF 16
#define DANUBE_PCI_CFG_DEVNUM_SHF 11
#define DANUBE_PCI_CFG_FUNNUM_SHF 8
#define PCI_ACCESS_READ 0
#define PCI_ACCESS_WRITE 1
static int danube_pci_read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val);
static int danube_pci_write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val);
struct pci_ops danube_pci_ops = {
.read = danube_pci_read_config_dword,
.write = danube_pci_write_config_dword
};
static struct resource pci_io_resource = {
.name = "io pci IO space",
.start = DANUBE_PCI_IO_BASE,
.end = DANUBE_PCI_IO_BASE + DANUBE_PCI_IO_SIZE - 1,
.flags = IORESOURCE_IO
};
static struct resource pci_mem_resource = {
.name = "ext pci memory space",
.start = DANUBE_PCI_MEM_BASE,
.end = DANUBE_PCI_MEM_BASE + DANUBE_PCI_MEM_SIZE - 1,
.flags = IORESOURCE_MEM
};
static struct pci_controller danube_pci_controller = {
.pci_ops = &danube_pci_ops,
.mem_resource = &pci_mem_resource,
.mem_offset = 0x00000000UL,
.io_resource = &pci_io_resource,
.io_offset = 0x00000000UL,
};
static u32 danube_pci_mapped_cfg;
static int
danube_pci_config_access(unsigned char access_type,
struct pci_bus *bus, unsigned int devfn, unsigned int where, u32 *data)
{
unsigned long cfg_base;
unsigned long flags;
u32 temp;
/* Danube support slot from 0 to 15 */
/* dev_fn 0&0x68 (AD29) is danube itself */
if ((bus->number != 0) || ((devfn & 0xf8) > 0x78)
|| ((devfn & 0xf8) == 0) || ((devfn & 0xf8) == 0x68))
return 1;
local_irq_save(flags);
cfg_base = danube_pci_mapped_cfg;
cfg_base |= (bus->number << DANUBE_PCI_CFG_BUSNUM_SHF) | (devfn <<
DANUBE_PCI_CFG_FUNNUM_SHF) | (where & ~0x3);
/* Perform access */
if (access_type == PCI_ACCESS_WRITE)
{
#ifdef CONFIG_DANUBE_PCI_HW_SWAP
writel(swab32(*data), ((u32*)cfg_base));
#else
writel(*data, ((u32*)cfg_base));
#endif
} else {
*data = readl(((u32*)(cfg_base)));
#ifdef CONFIG_DANUBE_PCI_HW_SWAP
*data = swab32(*data);
#endif
}
wmb();
/* clean possible Master abort */
cfg_base = (danube_pci_mapped_cfg | (0x0 << DANUBE_PCI_CFG_FUNNUM_SHF)) + 4;
temp = readl(((u32*)(cfg_base)));
#ifdef CONFIG_DANUBE_PCI_HW_SWAP
temp = swab32 (temp);
#endif
cfg_base = (danube_pci_mapped_cfg | (0x68 << DANUBE_PCI_CFG_FUNNUM_SHF)) + 4;
writel(temp, ((u32*)cfg_base));
local_irq_restore(flags);
if (((*data) == 0xffffffff) && (access_type == PCI_ACCESS_READ))
return 1;
return 0;
}
static int danube_pci_read_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 * val)
{
u32 data = 0;
if (danube_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
return PCIBIOS_DEVICE_NOT_FOUND;
if (size == 1)
*val = (data >> ((where & 3) << 3)) & 0xff;
else if (size == 2)
*val = (data >> ((where & 3) << 3)) & 0xffff;
else
*val = data;
return PCIBIOS_SUCCESSFUL;
}
static int danube_pci_write_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
u32 data = 0;
if (size == 4)
{
data = val;
} else {
if (danube_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
return PCIBIOS_DEVICE_NOT_FOUND;
if (size == 1)
data = (data & ~(0xff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
else if (size == 2)
data = (data & ~(0xffff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
}
if (danube_pci_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data))
return PCIBIOS_DEVICE_NOT_FOUND;
return PCIBIOS_SUCCESSFUL;
}
int pcibios_plat_dev_init(struct pci_dev *dev){
u8 pin;
pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
switch(pin) {
case 0:
break;
case 1:
//falling edge level triggered:0x4, low level:0xc, rising edge:0x2
printk("%s:%s[%d] %08X \n", __FILE__, __func__, __LINE__, dev->irq);
writel(readl(DANUBE_EBU_PCC_CON) | 0xc, DANUBE_EBU_PCC_CON);
writel(readl(DANUBE_EBU_PCC_IEN) | 0x10, DANUBE_EBU_PCC_IEN);
break;
case 2:
case 3:
case 4:
printk ("WARNING: interrupt pin %d not supported yet!\n", pin);
default:
printk ("WARNING: invalid interrupt pin %d\n", pin);
return 1;
}
return 0;
}
static void __init danube_pci_startup (void){
/*initialize the first PCI device--danube itself */
u32 temp_buffer;
/*TODO: trigger reset */
writel(readl(DANUBE_CGU_IFCCR) & ~0xf00000, DANUBE_CGU_IFCCR);
writel(readl(DANUBE_CGU_IFCCR) | 0x800000, DANUBE_CGU_IFCCR);
/* PCIS of IF_CLK of CGU : 1 =>PCI Clock output
0 =>clock input
PADsel of PCI_CR of CGU : 1 =>From CGU
: 0 =>From pad
*/
writel(readl(DANUBE_CGU_IFCCR) | (1 << 16), DANUBE_CGU_IFCCR);
writel((1 << 31) | (1 << 30), DANUBE_CGU_PCICR);
/* prepare GPIO */
/* PCI_RST: P1.5 ALT 01 */
//pliu20060613: start
writel(readl(DANUBE_GPIO_P1_OUT) | (1 << 5), DANUBE_GPIO_P1_OUT);
writel(readl(DANUBE_GPIO_P1_OD) | (1 << 5), DANUBE_GPIO_P1_OD);
writel(readl(DANUBE_GPIO_P1_DIR) | (1 << 5), DANUBE_GPIO_P1_DIR);
writel(readl(DANUBE_GPIO_P1_ALTSEL1) & ~(1 << 5), DANUBE_GPIO_P1_ALTSEL1);
writel(readl(DANUBE_GPIO_P1_ALTSEL0) & ~(1 << 5), DANUBE_GPIO_P1_ALTSEL0);
//pliu20060613: end
/* PCI_REQ1: P1.13 ALT 01 */
/* PCI_GNT1: P1.14 ALT 01 */
writel(readl(DANUBE_GPIO_P1_DIR) & ~0x2000, DANUBE_GPIO_P1_DIR);
writel(readl(DANUBE_GPIO_P1_DIR) | 0x4000, DANUBE_GPIO_P1_DIR);
writel(readl(DANUBE_GPIO_P1_ALTSEL1) & ~0x6000, DANUBE_GPIO_P1_ALTSEL1);
writel(readl(DANUBE_GPIO_P1_ALTSEL0) | 0x6000, DANUBE_GPIO_P1_ALTSEL0);
/* PCI_REQ2: P1.15 ALT 10 */
/* PCI_GNT2: P1.7 ALT 10 */
/* enable auto-switching between PCI and EBU */
writel(0xa, PCI_CR_CLK_CTRL);
/* busy, i.e. configuration is not done, PCI access has to be retried */
writel(readl(PCI_CR_PCI_MOD) & ~(1 << 24), PCI_CR_PCI_MOD);
wmb ();
/* BUS Master/IO/MEM access */
writel(readl(PCI_CS_STS_CMD) | 7, PCI_CS_STS_CMD);
temp_buffer = readl(PCI_CR_PC_ARB);
/* enable external 2 PCI masters */
temp_buffer &= (~(0xf << 16));
/* enable internal arbiter */
temp_buffer |= (1 << INTERNAL_ARB_ENABLE_BIT);
/* enable internal PCI master reqest */
temp_buffer &= (~(3 << PCI_MASTER0_REQ_MASK_2BITS));
/* enable EBU reqest */
temp_buffer &= (~(3 << PCI_MASTER1_REQ_MASK_2BITS));
/* enable all external masters request */
temp_buffer &= (~(3 << PCI_MASTER2_REQ_MASK_2BITS));
writel(temp_buffer, PCI_CR_PC_ARB);
wmb ();
/* FPI ==> PCI MEM address mapping */
/* base: 0xb8000000 == > 0x18000000 */
/* size: 8x4M = 32M */
writel(0x18000000, PCI_CR_FCI_ADDR_MAP0);
writel(0x18400000, PCI_CR_FCI_ADDR_MAP1);
writel(0x18800000, PCI_CR_FCI_ADDR_MAP2);
writel(0x18c00000, PCI_CR_FCI_ADDR_MAP3);
writel(0x19000000, PCI_CR_FCI_ADDR_MAP4);
writel(0x19400000, PCI_CR_FCI_ADDR_MAP5);
writel(0x19800000, PCI_CR_FCI_ADDR_MAP6);
writel(0x19c00000, PCI_CR_FCI_ADDR_MAP7);
/* FPI ==> PCI IO address mapping */
/* base: 0xbAE00000 == > 0xbAE00000 */
/* size: 2M */
writel(0xbae00000, PCI_CR_FCI_ADDR_MAP11hg);
/* PCI ==> FPI address mapping */
/* base: 0x0 ==> 0x0 */
/* size: 32M */
/* BAR1 32M map to SDR address */
writel(0x0e000008, PCI_CR_BAR11MASK);
writel(0, PCI_CR_PCI_ADDR_MAP11);
writel(0, PCI_CS_BASE_ADDR1);
#ifdef CONFIG_DANUBE_PCI_HW_SWAP
/* both TX and RX endian swap are enabled */
DANUBE_PCI_REG32 (PCI_CR_PCI_EOI_REG) |= 3;
wmb ();
#endif
/*TODO: disable BAR2 & BAR3 - why was this in the origianl infineon code */
writel(readl(PCI_CR_BAR12MASK) | 0x80000000, PCI_CR_BAR12MASK);
writel(readl(PCI_CR_BAR13MASK) | 0x80000000, PCI_CR_BAR13MASK);
/*use 8 dw burse length */
writel(0x303, PCI_CR_FCI_BURST_LENGTH);
writel(readl(PCI_CR_PCI_MOD) | (1 << 24), PCI_CR_PCI_MOD);
wmb();
writel(readl(DANUBE_GPIO_P1_OUT) & ~(1 << 5), DANUBE_GPIO_P1_OUT);
wmb();
mdelay (1);
writel(readl(DANUBE_GPIO_P1_OUT) | (1 << 5), DANUBE_GPIO_P1_OUT);
}
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin){
printk("\n\n\n%s:%s[%d] %d %d\n", __FILE__, __func__, __LINE__, slot, pin);
switch (slot) {
case 13:
/* IDSEL = AD29 --> USB Host Controller */
return (INT_NUM_IM1_IRL0 + 17);
case 14:
/* IDSEL = AD30 --> mini PCI connector */
//return (INT_NUM_IM1_IRL0 + 14);
return (INT_NUM_IM0_IRL0 + 22);
default:
printk("Warning: no IRQ found for PCI device in slot %d, pin %d\n", slot, pin);
return 0;
}
}
int pcibios_init(void){
extern int pci_probe_only;
pci_probe_only = 0;
printk ("PCI: Probing PCI hardware on host bus 0.\n");
danube_pci_startup ();
// DANUBE_PCI_REG32(PCI_CR_CLK_CTRL_REG) &= (~8);
danube_pci_mapped_cfg = ioremap_nocache(0x17000000, 0x800 * 16);
printk("Danube PCI mapped to 0x%08X\n", (unsigned long)danube_pci_mapped_cfg);
danube_pci_controller.io_map_base = (unsigned long)ioremap(DANUBE_PCI_IO_BASE, DANUBE_PCI_IO_SIZE - 1);
printk("Danube PCI I/O mapped to 0x%08X\n", (unsigned long)danube_pci_controller.io_map_base);
register_pci_controller(&danube_pci_controller);
return 0;
}
arch_initcall(pcibios_init);