1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-24 20:09:55 +02:00
openwrt-xburst/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c

1189 lines
27 KiB
C
Raw Normal View History

/*
* Micron SPI-ER NAND Flash Memory
* This code uses the built in Ubicom flash controller
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#define DRIVER_NAME "ubi32-nand-spi-er"
#define UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6)
#define UBI32_NAND_SPI_ER_STATUS_P_FAIL (1 << 3)
#define UBI32_NAND_SPI_ER_STATUS_E_FAIL (1 << 2)
#define UBI32_NAND_SPI_ER_STATUS_OIP (1 << 0)
#define UBI32_NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF
#define UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08
struct ubi32_nand_spi_er_device {
const char *name;
uint16_t id;
unsigned int blocks;
unsigned int pages_per_block;
unsigned int page_size;
unsigned int write_size;
unsigned int erase_size;
};
struct ubi32_nand_spi_er {
char name[24];
const struct ubi32_nand_spi_er_device *device;
struct mutex lock;
struct platform_device *pdev;
struct mtd_info mtd;
unsigned int last_row; /* the last row we fetched */
/*
* Bad block table (MUST be last in strcuture)
*/
unsigned long nbb;
unsigned long bbt[0];
};
/*
* Chip supports a write_size of 512, but we cannot do partial
* page with command 0x84.
*
* We need to use command 0x84 because we cannot fill the FIFO fast
* enough to transfer the whole 512 bytes at a time. (maybe through
* OCM?)
*/
const struct ubi32_nand_spi_er_device ubi32_nand_spi_er_devices[] = {
{
name: "MT29F1G01ZDC",
id: 0x2C12,
blocks: 1024,
pages_per_block: 64,
page_size: 2048,
write_size: 2048,
erase_size: 64 * 2048,
},
{
name: "MT29F1G01ZDC",
id: 0x2C13,
blocks: 1024,
pages_per_block: 64,
page_size: 2048,
write_size: 2048,
erase_size: 64 * 2048,
},
};
static int read_only = 0;
module_param(read_only, int, 0);
MODULE_PARM_DESC(read_only, "Leave device locked");
/*
* Ubicom32 FLASH Command Set
*/
#define FLASH_PORT RA
#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */
#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */
#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */
#define FLASH_COMMAND_KICK_OFF(io) \
asm volatile( \
" bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
" jmpt.t .+4 \n\t" \
" bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \
: \
: "a" (io) \
: "cc" \
);
#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \
asm volatile( \
" btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
" jmpeq.f .-4 \n\t" \
: \
: "a" (io) \
: "cc" \
);
#define FLASH_COMMAND_EXEC(io) \
FLASH_COMMAND_KICK_OFF(io) \
FLASH_COMMAND_WAIT_FOR_COMPLETION(io)
/*
* ubi32_nand_spi_er_get_feature
* Get Feature register
*/
static uint8_t ubi32_nand_spi_er_get_feature(uint32_t reg)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
/*
* Note that this will produce the sequence:
* SI [0F][REG][00][00]
* SO ---------[SR][SR][SR]
* Since the flash controller can only output 24 bits of address, this is
* ok for this command since the data will just repeat as long as the CS
* is asserted and the clock is running.
*/
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x0F) | IO_XFL_CTL2_FC_ADDR(reg << 16);
FLASH_COMMAND_EXEC(io);
return io->status1 & 0xFF;
}
/*
* ubi32_nand_spi_er_write_buf
* writes a buffer to the bus
*
* Writes 511 + 1 bytes to the bus, we have to stuff one data byte into the address.
*/
static void ubi32_nand_spi_er_write_buf(const uint8_t *buf, uint32_t col)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
uint32_t tmp;
asm volatile (
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
" pipe_flush 0 \n\t"
:
: [port] "a" (FLASH_PORT)
: "cc"
);
/*
* Write the data into the cache
*/
io->ctl1 &= ~IO_XFL_CTL1_MASK;
#ifdef SUPPORT_512_FIFO
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(511) |
#endif
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(31) |
IO_XFL_CTL1_FC_ADDR;
/*
* Construct the address with the first byte of data
*/
tmp = (col << 8) | *buf++;
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84) | IO_XFL_CTL2_FC_ADDR(tmp);
asm volatile (
/*
* Move 32 bytes
*
* The first word needs to be [11][22][33][33] to work around a flash
* controller bug.
*/
" move.2 %[tmp], (%[data])2++ \n\t"
" shmrg.1 %[tmp], (%[data]), %[tmp] \n\t"
" shmrg.1 %[tmp], (%[data])1++, %[tmp] \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), %[tmp] \n\t"
/*
* We're aligned again!
*/
" .rept 7 \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
" .endr \n\t"
/*
* Kick off the flash command
*/
" bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpt.t .+4 \n\t"
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
#ifdef SUPPORT_512_FIFO
/*
* Fill the remaining 120 words as space becomes available
*/
"1: \n\t"
" cmpi "D(IO_FIFO_LEVEL)"(%[port]), #4 \n\t"
" jmpgt.s.t 1b \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
" add.4 %[cnt], #-4, %[cnt] \n\t"
" jmpgt.t 1b \n\t"
#endif
/*
* Wait for the transaction to finish
*/
" btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpeq.f .-4 \n\t"
: [tmp] "=&d" (tmp),
[data] "+&a" (buf)
: [column] "d" (col),
[port] "a" (FLASH_PORT),
[cnt] "d" (120) // see above comment
: "cc"
);
}
/*
* ubi32_nand_spi_er_send_rd_addr
* perform FC_RD: CMD + address
*/
static void ubi32_nand_spi_er_send_rd_addr(uint8_t command, uint32_t address)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(4) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address);
FLASH_COMMAND_EXEC(io);
}
/*
* ubi32_nand_spi_er_send_cmd_addr
* perform FC_(xxx): CMD + address
*/
static void ubi32_nand_spi_er_send_cmd_addr(uint8_t command, uint32_t address)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address);
FLASH_COMMAND_EXEC(io);
}
/*
* ubi32_nand_spi_er_write_disable
* clear the write enable bit
*/
static void ubi32_nand_spi_er_write_disable(void)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x04);
FLASH_COMMAND_EXEC(io);
}
/*
* ubi32_nand_spi_er_write_enable
* set the write enable bit
*/
static void ubi32_nand_spi_er_write_enable(void)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x06);
FLASH_COMMAND_EXEC(io);
}
/*
* ubi32_nand_spi_er_busywait
* Wait until the chip is not busy
*/
static uint8_t ubi32_nand_spi_er_busywait(void)
{
int i;
uint8_t data;
/*
* tRD is 100us, so don't delay too long, however, tERS is
* 10ms so you'd better loop enough.
*/
for (i = 0; i < 200; i++) {
data = ubi32_nand_spi_er_get_feature(0xC0);
if (!(data & UBI32_NAND_SPI_ER_STATUS_OIP)) {
break;
}
udelay(50);
}
return data;
}
/*
* ubi32_nand_spi_er_erase
* Erase a block, parameters must be block aligned
*/
static int ubi32_nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct ubi32_nand_spi_er *chip = mtd->priv;
int res;
DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len);
if ((instr->addr + instr->len) > mtd->size) {
return -EINVAL;
}
if (instr->addr & (chip->device->erase_size - 1)) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr);
return -EINVAL;
}
if (instr->len & (chip->device->erase_size - 1)) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len);
return -EINVAL;
}
mutex_lock(&chip->lock);
chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
while (instr->len) {
uint32_t block = instr->addr >> 17;
uint32_t row = block << 6;
uint8_t stat;
DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len);
/*
* Test for bad block
*/
if (test_bit(block, chip->bbt)) {
instr->fail_addr = block << 17;
instr->state = MTD_ERASE_FAILED;
res = -EBADMSG;
goto done;
}
ubi32_nand_spi_er_write_enable();
/*
* Block erase
*/
ubi32_nand_spi_er_send_cmd_addr(0xD8, row);
/*
* Wait
*/
stat = ubi32_nand_spi_er_busywait();
if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
instr->fail_addr = block << 17;
instr->state = MTD_ERASE_FAILED;
DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
/*
* Chip is stuck?
*/
res = -EIO;
goto done;
}
/*
* Check the status register
*/
if (stat & UBI32_NAND_SPI_ER_STATUS_E_FAIL) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat);
instr->fail_addr = block << 17;
instr->state = MTD_ERASE_FAILED;
goto done;
}
/*
* Next
*/
block++;
instr->len -= chip->device->erase_size;
instr->addr += chip->device->erase_size;
}
instr->state = MTD_ERASE_DONE;
mutex_unlock(&chip->lock);
return 0;
done:
ubi32_nand_spi_er_write_disable();
mutex_unlock(&chip->lock);
mtd_erase_callback(instr);
return 0;
}
/*
* ubi32_nand_spi_er_read
*
* return -EUCLEAN: ecc error recovered
* return -EBADMSG: ecc error not recovered
*/
static int ubi32_nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct ubi32_nand_spi_er *chip = mtd->priv;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
uint32_t row;
uint32_t column;
int retval = 0;
uint32_t *pbuf = (uint32_t *)buf;
*retlen = 0;
DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf);
/*
* buf should be aligned
*/
if ((uint32_t)buf & 0x03) {
return -EINVAL;
}
/*
* Zero length reads, nothing to do
*/
if (len == 0) {
return 0;
}
/*
* Reject reads which go over the end of the flash
*/
if ((from + len) > mtd->size) {
return -EINVAL;
}
/*
* Get the row and column address to start at
*/
row = from >> 11;
column = from & 0x7FF;
DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row);
/*
* Read the data from the chip
*/
mutex_lock(&chip->lock);
while (len) {
uint8_t stat;
size_t toread;
int i;
int tmp;
/*
* Figure out how much to read
*
* If we are reading from the middle of a page then the most we
* can read is to the end of the page
*/
toread = len;
if (toread > (chip->device->page_size - column)) {
toread = chip->device->page_size - column;
}
DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, pbuf, toread, row, column, chip->last_row);
if (chip->last_row != row) {
/*
* Check if the block is bad
*/
if (test_bit(UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) {
mutex_unlock(&chip->lock);
return -EBADMSG;
}
/*
* Load the appropriate page
*/
ubi32_nand_spi_er_send_cmd_addr(0x13, row);
/*
* Wait
*/
stat = ubi32_nand_spi_er_busywait();
if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
/*
* Chip is stuck?
*/
mutex_unlock(&chip->lock);
return -EIO;
}
/*
* Check the ECC bits
*/
stat >>= 4;
if (stat == 1) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row);
retval = -EUCLEAN;
}
if (stat == 2) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row);
chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
mutex_unlock(&chip->lock);
return -EBADMSG;
}
}
chip->last_row = row;
/*
* Read out the data:
* We can always read a little too much since there is the
* OOB after byte addr 2047. The most we'll overread is 3 bytes.
*/
if (((uint32_t)pbuf & 0x03) == 0) {
/*
* Aligned read
*/
tmp = toread & (~0x03);
for (i = 0; i < tmp; i += 4) {
ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
*pbuf++ = io->status1;
column += 4;
}
} else {
/*
* Unaligned read
*/
tmp = toread & (~0x03);
for (i = 0; i < tmp; i += 4) {
ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
memcpy(pbuf, &io->status1, 4);
column += 4;
}
}
/*
* Fill in any single bytes
*/
tmp = toread & 0x03;
if (tmp) {
uint8_t *bbuf = pbuf;
uint32_t val;
ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
val = io->status1;
for (i = 0; i < tmp; i++) {
*bbuf++ = val >> 24;
val <<= 8;
}
}
len -= toread;
*retlen += toread;
/*
* For the next page, increment the row and always start at column 0
*/
column = 0;
row++;
}
mutex_unlock(&chip->lock);
return retval;
}
/*
* ubi32_nand_spi_er_write
*/
#define WRITE_NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0)
static int ubi32_nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct ubi32_nand_spi_er *chip = mtd->priv;
const struct ubi32_nand_spi_er_device *device = chip->device;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
uint32_t row;
uint32_t col;
int res = 0;
size_t towrite;
DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf);
*retlen = 0;
/*
* nothing to write
*/
if (!len) {
return 0;
}
/*
* Reject writes which go over the end of the flash
*/
if ((to + len) > mtd->size) {
return -EINVAL;
}
/*
* buf should be aligned to 16 bits
*/
if ((uint32_t)buf & 0x01) {
return -EINVAL;
}
/*
* Check to see if everything is page aligned
*/
if (WRITE_NOT_ALIGNED(to) || WRITE_NOT_ALIGNED(len)) {
printk(KERN_NOTICE "ubi32_nand_spi_er_write: Attempt to write non page aligned data\n");
return -EINVAL;
}
mutex_lock(&chip->lock);
io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
/*
* If the first write is a partial write then write at most the number of
* bytes to get us page aligned and then the remainder will be
* page aligned. The last bit may be a partial page as well.
*/
col = to & (device->page_size - 1);
towrite = device->page_size - col;
if (towrite > len) {
towrite = len;
}
/*
* Write the data
*/
row = to >> 11;
while (len) {
uint8_t stat;
uint32_t my_towrite;
DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len);
ubi32_nand_spi_er_write_enable();
/*
* Move the data into the cache
*/
my_towrite = towrite;
while (my_towrite) {
uint32_t len = my_towrite;
if (len > 32) {
len = 32;
}
ubi32_nand_spi_er_write_buf(buf, col);
buf += len;
col += len;
my_towrite -= len;
}
/*
* Program execute
*/
ubi32_nand_spi_er_send_cmd_addr(0x10, row);
/*
* Wait
*/
stat = ubi32_nand_spi_er_busywait();
if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
/*
* Chip is stuck?
*/
res = -EIO;
goto done;
}
if (stat & (1 << 3)) {
res = -EBADMSG;
goto done;
}
row++;
len -= towrite;
*retlen += towrite;
/*
* At this point, we are always page aligned so start at column 0.
* Note we may not have a full page to write at the end, hence the
* check if towrite > len.
*/
col = 0;
towrite = device->page_size;
if (towrite > len) {
towrite = len;
}
}
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
mutex_unlock(&chip->lock);
return res;
done:
ubi32_nand_spi_er_write_disable();
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
mutex_unlock(&chip->lock);
return res;
}
/*
* ubi32_nand_spi_er_isbad
*/
static int ubi32_nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs)
{
struct ubi32_nand_spi_er *chip = mtd->priv;
uint32_t block;
if (ofs & (chip->device->erase_size - 1)) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
return -EINVAL;
}
block = ofs >> 17;
return test_bit(block, chip->bbt);
}
/*
* ubi32_nand_spi_er_markbad
*/
static int ubi32_nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct ubi32_nand_spi_er *chip = mtd->priv;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
uint32_t block;
uint32_t row;
int res = 0;
uint8_t stat;
if (ofs & (chip->device->erase_size - 1)) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
return -EINVAL;
}
block = ofs >> 17;
/*
* If it's already marked bad, no need to mark it
*/
if (test_bit(block, chip->bbt)) {
return 0;
}
/*
* Mark it in our cache
*/
__set_bit(block, chip->bbt);
/*
* Write the user bad block mark. If it fails, then we really
* can't do anything about it.
*/
mutex_lock(&chip->lock);
chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
ubi32_nand_spi_er_write_enable();
/*
* Write the mark
*/
io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(6);
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84);
asm volatile (
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
" pipe_flush 0 \n\t"
/*
* Move the data into the FIFO
*/
" move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t"
" move.4 "D(IO_TX_FIFO)"(%[port]), %[word2] \n\t"
/*
* Kick off the flash command
*/
" bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpt.t .+4 \n\t"
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
/*
* Wait for the transaction to finish
*/
" btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpeq.f .-4 \n\t"
:
: [word1] "d" (0x0800dead | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 16)),
[word2] "d" (0xbeef0000),
[port] "a" (FLASH_PORT)
: "cc"
);
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
/*
* Program execute
*/
row = block << 6;
ubi32_nand_spi_er_send_cmd_addr(0x10, row);
/*
* Wait
*/
stat = ubi32_nand_spi_er_busywait();
if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
/*
* Chip is stuck?
*/
res = -EIO;
goto done;
}
if (stat & (1 << 3)) {
res = -EBADMSG;
}
done:
ubi32_nand_spi_er_write_disable();
mutex_unlock(&chip->lock);
return res;
}
/*
* ubi32_nand_spi_er_read_bbt
*/
static int ubi32_nand_spi_er_read_bbt(struct ubi32_nand_spi_er *chip)
{
int j;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
for (j = 0; j < chip->device->blocks; j++) {
unsigned short row = j << 6;
uint8_t stat;
/*
* Read Page
*/
ubi32_nand_spi_er_send_cmd_addr(0x13, row);
/*
* Wait
*/
stat = ubi32_nand_spi_er_busywait();
if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
/*
* Chip is stuck?
*/
return -EIO;
}
/*
* Check factory bad block mark
*/
ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000);
if ((io->status1 >> 24) != 0xFF) {
chip->nbb++;
__set_bit(j, chip->bbt);
continue;
}
ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000 | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 8));
if (io->status1 == 0xdeadbeef) {
chip->nbb++;
__set_bit(j, chip->bbt);
}
}
#if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE)
printk("%s: Bad Block Table:", chip->name);
for (j = 0; j < chip->device->blocks; j++) {
if ((j % 64) == 0) {
printk("\n%s: block %03x: ", chip->name, j);
}
printk("%c", test_bit(j, chip->bbt) ? 'X' : '.');
}
printk("\n%s: Bad Block Numbers: ", chip->name);
for (j = 0; j < chip->device->blocks; j++) {
if (test_bit(j, chip->bbt)) {
printk("%x ", j);
}
}
printk("\n");
#endif
return 0;
}
#ifndef MODULE
/*
* Called at boot time:
*
* ubi32_nand_spi_er=read_only
* if read_only specified then do not unlock device
*/
static int __init ubi32_nand_spi_er_setup(char *str)
{
if (str && (strncasecmp(str, "read_only", 9) == 0)) {
read_only = 1;
}
return 0;
}
__setup("ubi32_nand_spi_er=", ubi32_nand_spi_er_setup);
#endif
/*
* ubi32_nand_spi_er_probe
* Detect and initialize ubi32_nand_spi_er device.
*/
static int __devinit ubi32_nand_spi_er_probe(struct platform_device *pdev)
{
uint32_t i;
uint32_t id;
int res;
size_t bbt_bytes;
struct ubi32_nand_spi_er *chip;
const struct ubi32_nand_spi_er_device *device;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
/*
* Reset
*/
for (i = 0; i < 2; i++) {
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
io->ctl2 = IO_XFL_CTL2_FC_CMD(0xFF);
FLASH_COMMAND_EXEC(io);
udelay(250);
}
udelay(1000);
/*
* Read out ID
*/
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(2) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x9F);
FLASH_COMMAND_EXEC(io);
id = io->status1 >> 16;
device = ubi32_nand_spi_er_devices;
for (i = 0; i < ARRAY_SIZE(ubi32_nand_spi_er_devices); i++) {
if (device->id == id) {
break;
}
device++;
}
if (i == ARRAY_SIZE(ubi32_nand_spi_er_devices)) {
return -ENODEV;
}
/*
* Initialize our chip structure
*/
bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE);
chip = kzalloc(sizeof(struct ubi32_nand_spi_er) + bbt_bytes, GFP_KERNEL);
if (!chip) {
return -ENOMEM;
}
snprintf(chip->name, sizeof(chip->name), "%s", device->name);
chip->device = device;
chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
mutex_init(&chip->lock);
chip->mtd.type = MTD_NANDFLASH;
chip->mtd.flags = MTD_WRITEABLE;
/*
* #blocks * block size * n blocks
*/
chip->mtd.size = device->blocks * device->pages_per_block * device->page_size;
chip->mtd.erasesize = device->erase_size;
/*
* 1 page, optionally we can support partial write (512)
*/
chip->mtd.writesize = device->write_size;
chip->mtd.name = device->name;
chip->mtd.erase = ubi32_nand_spi_er_erase;
chip->mtd.read = ubi32_nand_spi_er_read;
chip->mtd.write = ubi32_nand_spi_er_write;
chip->mtd.block_isbad = ubi32_nand_spi_er_isbad;
chip->mtd.block_markbad = ubi32_nand_spi_er_markbad;
chip->mtd.priv = chip;
/*
* Cache the bad block table
*/
res = ubi32_nand_spi_er_read_bbt(chip);
if (res) {
kfree(chip);
return res;
}
/*
* Un/lock the chip
*/
io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(2);
io->ctl2 = IO_XFL_CTL2_FC_CMD(0x1F);
if (read_only) {
i = 0xa0380000;
} else {
i = 0xa0000000;
}
asm volatile (
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
" pipe_flush 0 \n\t"
/*
* Move the data into the FIFO
*/
" move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t"
/*
* Kick off the flash command
*/
" bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpt.t .+4 \n\t"
" bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
/*
* Wait for the transaction to finish
*/
" btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
" jmpeq.f .-4 \n\t"
:
: [word1] "d" (i),
[port] "a" (FLASH_PORT)
: "cc"
);
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
dev_set_drvdata(&pdev->dev, chip);
printk(KERN_INFO "%s: added device size: %u KBytes %lu bad blocks %s\n", chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : "");
return add_mtd_device(&chip->mtd);
}
/*
* ubi32_nand_spi_er_remove
*/
static int __devexit ubi32_nand_spi_er_remove(struct platform_device *pdev)
{
struct ubi32_nand_spi_er *chip = dev_get_drvdata(&pdev->dev);
int status;
DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", chip->name);
status = del_mtd_device(&chip->mtd);
if (status == 0) {
kfree(chip);
}
dev_set_drvdata(&pdev->dev, NULL);
return status;
}
static struct platform_device *ubi32_nand_spi_er_device;
static struct platform_driver ubi32_nand_spi_er_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.probe = ubi32_nand_spi_er_probe,
.remove = ubi32_nand_spi_er_remove,
};
/*
* ubi32_nand_spi_er_init
*/
static int __init ubi32_nand_spi_er_init(void)
{
int ret;
ret = platform_driver_register(&ubi32_nand_spi_er_driver);
if (ret) {
return ret;
}
ubi32_nand_spi_er_device = platform_device_alloc(DRIVER_NAME, 0);
if (!ubi32_nand_spi_er_device) {
return -ENOMEM;
}
ret = platform_device_add(ubi32_nand_spi_er_device);
if (ret) {
platform_device_put(ubi32_nand_spi_er_device);
platform_driver_unregister(&ubi32_nand_spi_er_driver);
}
return ret;
}
module_init(ubi32_nand_spi_er_init);
/*
* ubi32_nand_spi_er_exit
*/
static void __exit ubi32_nand_spi_er_exit(void)
{
platform_device_unregister(ubi32_nand_spi_er_device);
platform_driver_unregister(&ubi32_nand_spi_er_driver);
}
module_exit(ubi32_nand_spi_er_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Tjin");
MODULE_DESCRIPTION("MTD ubi32_nand_spi_er driver for ubicom32 SPI flash controller.");