1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-01 02:30:49 +02:00
openwrt-xburst/target/linux/atheros/files-2.6.28/drivers/mtd/devices/spiflash.c

534 lines
13 KiB
C
Raw Normal View History

/*
* MTD driver for the SPI Flash Memory support.
*
* Copyright (c) 2005-2006 Atheros Communications Inc.
* Copyright (C) 2006-2007 FON Technology, SL.
* Copyright (C) 2006-2007 Imre Kaloz <kaloz@openwrt.org>
* Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
/*===========================================================================
** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT
**
** This module contains the Serial Flash access routines for the Atheros SOC.
** The Atheros SOC integrates a SPI flash controller that is used to access
** serial flash parts. The SPI flash controller executes in "Little Endian"
** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
** ONLY byteswapping when accessed via the SPI Flash Alias memory region
** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
** flash sectors is stored in "Little Endian" format.
**
** The spiflash_write() routine performs byteswapping on all write
** operations.
**===========================================================================*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/squashfs_fs.h>
#include <linux/root_dev.h>
#include <linux/delay.h>
#include <asm/delay.h>
#include <asm/io.h>
#include "spiflash.h"
#ifndef __BIG_ENDIAN
#error This driver currently only works with big endian CPU.
#endif
#define MAX_PARTS 32
#define SPIFLASH "spiflash: "
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define busy_wait(condition, wait) \
do { \
while (condition) { \
spin_unlock_bh(&spidata->mutex); \
if (wait > 1) \
msleep(wait); \
else if ((wait == 1) && need_resched()) \
schedule(); \
else \
udelay(1); \
spin_lock_bh(&spidata->mutex); \
} \
} while (0)
static __u32 spiflash_regread32(int reg);
static void spiflash_regwrite32(int reg, __u32 data);
static __u32 spiflash_sendcmd (int op, u32 addr);
int __init spiflash_init (void);
void __exit spiflash_exit (void);
static int spiflash_probe_chip (void);
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
/* Flash configuration table */
struct flashconfig {
__u32 byte_cnt;
__u32 sector_cnt;
__u32 sector_size;
__u32 cs_addrmask;
} flashconfig_tbl[MAX_FLASH] =
{
{ 0, 0, 0, 0},
{ STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
{ STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
{ STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
{ STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0},
{ STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0}
};
/* Mapping of generic opcodes to STM serial flash opcodes */
#define SPI_WRITE_ENABLE 0
#define SPI_WRITE_DISABLE 1
#define SPI_RD_STATUS 2
#define SPI_WR_STATUS 3
#define SPI_RD_DATA 4
#define SPI_FAST_RD_DATA 5
#define SPI_PAGE_PROGRAM 6
#define SPI_SECTOR_ERASE 7
#define SPI_BULK_ERASE 8
#define SPI_DEEP_PWRDOWN 9
#define SPI_RD_SIG 10
#define SPI_MAX_OPCODES 11
struct opcodes {
__u16 code;
__s8 tx_cnt;
__s8 rx_cnt;
} stm_opcodes[] = {
{STM_OP_WR_ENABLE, 1, 0},
{STM_OP_WR_DISABLE, 1, 0},
{STM_OP_RD_STATUS, 1, 1},
{STM_OP_WR_STATUS, 1, 0},
{STM_OP_RD_DATA, 4, 4},
{STM_OP_FAST_RD_DATA, 5, 0},
{STM_OP_PAGE_PGRM, 8, 0},
{STM_OP_SECTOR_ERASE, 4, 0},
{STM_OP_BULK_ERASE, 1, 0},
{STM_OP_DEEP_PWRDOWN, 1, 0},
{STM_OP_RD_SIG, 4, 1},
};
/* Driver private data structure */
struct spiflash_data {
struct mtd_info *mtd;
struct mtd_partition *parsed_parts; /* parsed partitions */
void *readaddr; /* memory mapped data for read */
void *mmraddr; /* memory mapped register space */
wait_queue_head_t wq;
spinlock_t mutex;
int state;
};
enum {
FL_READY,
FL_READING,
FL_ERASING,
FL_WRITING
};
static struct spiflash_data *spidata;
extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
/***************************************************************************************************/
static __u32
spiflash_regread32(int reg)
{
volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg);
return (*data);
}
static void
spiflash_regwrite32(int reg, __u32 data)
{
volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg);
*addr = data;
return;
}
static __u32
spiflash_sendcmd (int op, u32 addr)
{
u32 reg;
u32 mask;
struct opcodes *ptr_opcode;
ptr_opcode = &stm_opcodes[op];
busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8));
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
(ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0);
if (!ptr_opcode->rx_cnt)
return 0;
reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
switch (ptr_opcode->rx_cnt) {
case 1:
mask = 0x000000ff;
break;
case 2:
mask = 0x0000ffff;
break;
case 3:
mask = 0x00ffffff;
break;
default:
mask = 0xffffffff;
break;
}
reg &= mask;
return reg;
}
/* Probe SPI flash device
* Function returns 0 for failure.
* and flashconfig_tbl array index for success.
*/
static int
spiflash_probe_chip (void)
{
__u32 sig;
int flash_size;
/* Read the signature on the flash device */
spin_lock_bh(&spidata->mutex);
sig = spiflash_sendcmd(SPI_RD_SIG, 0);
spin_unlock_bh(&spidata->mutex);
switch (sig) {
case STM_8MBIT_SIGNATURE:
flash_size = FLASH_1MB;
break;
case STM_16MBIT_SIGNATURE:
flash_size = FLASH_2MB;
break;
case STM_32MBIT_SIGNATURE:
flash_size = FLASH_4MB;
break;
case STM_64MBIT_SIGNATURE:
flash_size = FLASH_8MB;
break;
case STM_128MBIT_SIGNATURE:
flash_size = FLASH_16MB;
break;
default:
printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n");
return (0);
}
return (flash_size);
}
/* wait until the flash chip is ready and grab a lock */
static int spiflash_wait_ready(int state)
{
DECLARE_WAITQUEUE(wait, current);
retry:
spin_lock_bh(&spidata->mutex);
if (spidata->state != FL_READY) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&spidata->wq, &wait);
spin_unlock_bh(&spidata->mutex);
schedule();
remove_wait_queue(&spidata->wq, &wait);
if(signal_pending(current))
return 0;
goto retry;
}
spidata->state = state;
return 1;
}
static inline void spiflash_done(void)
{
spidata->state = FL_READY;
spin_unlock_bh(&spidata->mutex);
wake_up(&spidata->wq);
}
static int
spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
{
struct opcodes *ptr_opcode;
u32 temp, reg;
/* sanity checks */
if (instr->addr + instr->len > mtd->size) return (-EINVAL);
if (!spiflash_wait_ready(FL_ERASING))
return -EINTR;
spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
reg = spiflash_regread32(SPI_FLASH_CTL);
ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
/* this will take some time */
spin_unlock_bh(&spidata->mutex);
msleep(800);
spin_lock_bh(&spidata->mutex);
busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20);
spiflash_done();
instr->state = MTD_ERASE_DONE;
if (instr->callback) instr->callback (instr);
return 0;
}
static int
spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
{
u8 *read_addr;
/* sanity checks */
if (!len) return (0);
if (from + len > mtd->size) return (-EINVAL);
/* we always read len bytes */
*retlen = len;
if (!spiflash_wait_ready(FL_READING))
return -EINTR;
read_addr = (u8 *)(spidata->readaddr + from);
memcpy(buf, read_addr, len);
spiflash_done();
return 0;
}
static int
spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
{
u32 opcode, bytes_left;
*retlen = 0;
/* sanity checks */
if (!len) return (0);
if (to + len > mtd->size) return (-EINVAL);
opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
bytes_left = len;
do {
u32 xact_len, reg, page_offset, spi_data = 0;
xact_len = MIN(bytes_left, sizeof(__u32));
/* 32-bit writes cannot span across a page boundary
* (256 bytes). This types of writes require two page
* program operations to handle it correctly. The STM part
* will write the overflow data to the beginning of the
* current page as opposed to the subsequent page.
*/
page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
if (page_offset > STM_PAGE_SIZE) {
xact_len -= (page_offset - STM_PAGE_SIZE);
}
if (!spiflash_wait_ready(FL_WRITING))
return -EINTR;
spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
switch (xact_len) {
case 1:
spi_data = (u32) ((u8) *buf);
break;
case 2:
spi_data = (buf[1] << 8) | buf[0];
break;
case 3:
spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
break;
case 4:
spi_data = (buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
break;
default:
spi_data = 0;
break;
}
spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
reg = spiflash_regread32(SPI_FLASH_CTL);
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
/* give the chip some time before we start busy waiting */
spin_unlock_bh(&spidata->mutex);
schedule();
spin_lock_bh(&spidata->mutex);
busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0);
spiflash_done();
bytes_left -= xact_len;
to += xact_len;
buf += xact_len;
*retlen += xact_len;
} while (bytes_left != 0);
return 0;
}
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "MyLoader", NULL };
#endif
static int spiflash_probe(struct platform_device *pdev)
{
int result = -1;
int index, num_parts;
struct mtd_info *mtd;
spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
spin_lock_init(&spidata->mutex);
init_waitqueue_head(&spidata->wq);
spidata->state = FL_READY;
if (!spidata->mmraddr) {
printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
kfree(spidata);
spidata = NULL;
}
mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd) {
kfree(spidata);
return -ENXIO;
}
if (!(index = spiflash_probe_chip())) {
printk (KERN_WARNING SPIFLASH "Found no serial flash device\n");
goto error;
}
spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
if (!spidata->readaddr) {
printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
goto error;
}
mtd->name = "spiflash";
mtd->type = MTD_NORFLASH;
mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
mtd->size = flashconfig_tbl[index].byte_cnt;
mtd->erasesize = flashconfig_tbl[index].sector_size;
mtd->writesize = 1;
mtd->numeraseregions = 0;
mtd->eraseregions = NULL;
mtd->erase = spiflash_erase;
mtd->read = spiflash_read;
mtd->write = spiflash_write;
mtd->owner = THIS_MODULE;
/* parse redboot partitions */
num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
if (!num_parts)
goto error;
result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
spidata->mtd = mtd;
return (result);
error:
kfree(mtd);
kfree(spidata);
return -ENXIO;
}
static int spiflash_remove (struct platform_device *pdev)
{
del_mtd_partitions (spidata->mtd);
kfree(spidata->mtd);
return 0;
}
struct platform_driver spiflash_driver = {
.driver.name = "spiflash",
.probe = spiflash_probe,
.remove = spiflash_remove,
};
int __init
spiflash_init (void)
{
spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
if (!spidata)
return (-ENXIO);
spin_lock_init(&spidata->mutex);
platform_driver_register(&spiflash_driver);
return 0;
}
void __exit
spiflash_exit (void)
{
kfree(spidata);
}
module_init (spiflash_init);
module_exit (spiflash_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc");
MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");