mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2025-01-01 02:30:49 +02:00
534 lines
13 KiB
C
534 lines
13 KiB
C
|
|
||
|
/*
|
||
|
* MTD driver for the SPI Flash Memory support.
|
||
|
*
|
||
|
* Copyright (c) 2005-2006 Atheros Communications Inc.
|
||
|
* Copyright (C) 2006-2007 FON Technology, SL.
|
||
|
* Copyright (C) 2006-2007 Imre Kaloz <kaloz@openwrt.org>
|
||
|
* Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*===========================================================================
|
||
|
** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT
|
||
|
**
|
||
|
** This module contains the Serial Flash access routines for the Atheros SOC.
|
||
|
** The Atheros SOC integrates a SPI flash controller that is used to access
|
||
|
** serial flash parts. The SPI flash controller executes in "Little Endian"
|
||
|
** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
|
||
|
** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
|
||
|
** ONLY byteswapping when accessed via the SPI Flash Alias memory region
|
||
|
** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
|
||
|
** flash sectors is stored in "Little Endian" format.
|
||
|
**
|
||
|
** The spiflash_write() routine performs byteswapping on all write
|
||
|
** operations.
|
||
|
**===========================================================================*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/version.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/mtd/mtd.h>
|
||
|
#include <linux/mtd/partitions.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/squashfs_fs.h>
|
||
|
#include <linux/root_dev.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <asm/delay.h>
|
||
|
#include <asm/io.h>
|
||
|
#include "spiflash.h"
|
||
|
|
||
|
#ifndef __BIG_ENDIAN
|
||
|
#error This driver currently only works with big endian CPU.
|
||
|
#endif
|
||
|
|
||
|
#define MAX_PARTS 32
|
||
|
|
||
|
#define SPIFLASH "spiflash: "
|
||
|
|
||
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||
|
|
||
|
#define busy_wait(condition, wait) \
|
||
|
do { \
|
||
|
while (condition) { \
|
||
|
spin_unlock_bh(&spidata->mutex); \
|
||
|
if (wait > 1) \
|
||
|
msleep(wait); \
|
||
|
else if ((wait == 1) && need_resched()) \
|
||
|
schedule(); \
|
||
|
else \
|
||
|
udelay(1); \
|
||
|
spin_lock_bh(&spidata->mutex); \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
|
||
|
static __u32 spiflash_regread32(int reg);
|
||
|
static void spiflash_regwrite32(int reg, __u32 data);
|
||
|
static __u32 spiflash_sendcmd (int op, u32 addr);
|
||
|
|
||
|
int __init spiflash_init (void);
|
||
|
void __exit spiflash_exit (void);
|
||
|
static int spiflash_probe_chip (void);
|
||
|
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
|
||
|
static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
|
||
|
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
|
||
|
|
||
|
/* Flash configuration table */
|
||
|
struct flashconfig {
|
||
|
__u32 byte_cnt;
|
||
|
__u32 sector_cnt;
|
||
|
__u32 sector_size;
|
||
|
__u32 cs_addrmask;
|
||
|
} flashconfig_tbl[MAX_FLASH] =
|
||
|
{
|
||
|
{ 0, 0, 0, 0},
|
||
|
{ STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
|
||
|
{ STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
|
||
|
{ STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
|
||
|
{ STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0},
|
||
|
{ STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0}
|
||
|
};
|
||
|
|
||
|
/* Mapping of generic opcodes to STM serial flash opcodes */
|
||
|
#define SPI_WRITE_ENABLE 0
|
||
|
#define SPI_WRITE_DISABLE 1
|
||
|
#define SPI_RD_STATUS 2
|
||
|
#define SPI_WR_STATUS 3
|
||
|
#define SPI_RD_DATA 4
|
||
|
#define SPI_FAST_RD_DATA 5
|
||
|
#define SPI_PAGE_PROGRAM 6
|
||
|
#define SPI_SECTOR_ERASE 7
|
||
|
#define SPI_BULK_ERASE 8
|
||
|
#define SPI_DEEP_PWRDOWN 9
|
||
|
#define SPI_RD_SIG 10
|
||
|
#define SPI_MAX_OPCODES 11
|
||
|
|
||
|
struct opcodes {
|
||
|
__u16 code;
|
||
|
__s8 tx_cnt;
|
||
|
__s8 rx_cnt;
|
||
|
} stm_opcodes[] = {
|
||
|
{STM_OP_WR_ENABLE, 1, 0},
|
||
|
{STM_OP_WR_DISABLE, 1, 0},
|
||
|
{STM_OP_RD_STATUS, 1, 1},
|
||
|
{STM_OP_WR_STATUS, 1, 0},
|
||
|
{STM_OP_RD_DATA, 4, 4},
|
||
|
{STM_OP_FAST_RD_DATA, 5, 0},
|
||
|
{STM_OP_PAGE_PGRM, 8, 0},
|
||
|
{STM_OP_SECTOR_ERASE, 4, 0},
|
||
|
{STM_OP_BULK_ERASE, 1, 0},
|
||
|
{STM_OP_DEEP_PWRDOWN, 1, 0},
|
||
|
{STM_OP_RD_SIG, 4, 1},
|
||
|
};
|
||
|
|
||
|
/* Driver private data structure */
|
||
|
struct spiflash_data {
|
||
|
struct mtd_info *mtd;
|
||
|
struct mtd_partition *parsed_parts; /* parsed partitions */
|
||
|
void *readaddr; /* memory mapped data for read */
|
||
|
void *mmraddr; /* memory mapped register space */
|
||
|
wait_queue_head_t wq;
|
||
|
spinlock_t mutex;
|
||
|
int state;
|
||
|
};
|
||
|
enum {
|
||
|
FL_READY,
|
||
|
FL_READING,
|
||
|
FL_ERASING,
|
||
|
FL_WRITING
|
||
|
};
|
||
|
|
||
|
static struct spiflash_data *spidata;
|
||
|
|
||
|
extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
|
||
|
|
||
|
/***************************************************************************************************/
|
||
|
|
||
|
static __u32
|
||
|
spiflash_regread32(int reg)
|
||
|
{
|
||
|
volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg);
|
||
|
|
||
|
return (*data);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
spiflash_regwrite32(int reg, __u32 data)
|
||
|
{
|
||
|
volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg);
|
||
|
|
||
|
*addr = data;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
static __u32
|
||
|
spiflash_sendcmd (int op, u32 addr)
|
||
|
{
|
||
|
u32 reg;
|
||
|
u32 mask;
|
||
|
struct opcodes *ptr_opcode;
|
||
|
|
||
|
ptr_opcode = &stm_opcodes[op];
|
||
|
busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
|
||
|
spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8));
|
||
|
|
||
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
|
||
|
(ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
|
||
|
|
||
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
||
|
busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0);
|
||
|
|
||
|
if (!ptr_opcode->rx_cnt)
|
||
|
return 0;
|
||
|
|
||
|
reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
|
||
|
|
||
|
switch (ptr_opcode->rx_cnt) {
|
||
|
case 1:
|
||
|
mask = 0x000000ff;
|
||
|
break;
|
||
|
case 2:
|
||
|
mask = 0x0000ffff;
|
||
|
break;
|
||
|
case 3:
|
||
|
mask = 0x00ffffff;
|
||
|
break;
|
||
|
default:
|
||
|
mask = 0xffffffff;
|
||
|
break;
|
||
|
}
|
||
|
reg &= mask;
|
||
|
|
||
|
return reg;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* Probe SPI flash device
|
||
|
* Function returns 0 for failure.
|
||
|
* and flashconfig_tbl array index for success.
|
||
|
*/
|
||
|
static int
|
||
|
spiflash_probe_chip (void)
|
||
|
{
|
||
|
__u32 sig;
|
||
|
int flash_size;
|
||
|
|
||
|
/* Read the signature on the flash device */
|
||
|
spin_lock_bh(&spidata->mutex);
|
||
|
sig = spiflash_sendcmd(SPI_RD_SIG, 0);
|
||
|
spin_unlock_bh(&spidata->mutex);
|
||
|
|
||
|
switch (sig) {
|
||
|
case STM_8MBIT_SIGNATURE:
|
||
|
flash_size = FLASH_1MB;
|
||
|
break;
|
||
|
case STM_16MBIT_SIGNATURE:
|
||
|
flash_size = FLASH_2MB;
|
||
|
break;
|
||
|
case STM_32MBIT_SIGNATURE:
|
||
|
flash_size = FLASH_4MB;
|
||
|
break;
|
||
|
case STM_64MBIT_SIGNATURE:
|
||
|
flash_size = FLASH_8MB;
|
||
|
break;
|
||
|
case STM_128MBIT_SIGNATURE:
|
||
|
flash_size = FLASH_16MB;
|
||
|
break;
|
||
|
default:
|
||
|
printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n");
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
return (flash_size);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* wait until the flash chip is ready and grab a lock */
|
||
|
static int spiflash_wait_ready(int state)
|
||
|
{
|
||
|
DECLARE_WAITQUEUE(wait, current);
|
||
|
|
||
|
retry:
|
||
|
spin_lock_bh(&spidata->mutex);
|
||
|
if (spidata->state != FL_READY) {
|
||
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
|
add_wait_queue(&spidata->wq, &wait);
|
||
|
spin_unlock_bh(&spidata->mutex);
|
||
|
schedule();
|
||
|
remove_wait_queue(&spidata->wq, &wait);
|
||
|
|
||
|
if(signal_pending(current))
|
||
|
return 0;
|
||
|
|
||
|
goto retry;
|
||
|
}
|
||
|
spidata->state = state;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static inline void spiflash_done(void)
|
||
|
{
|
||
|
spidata->state = FL_READY;
|
||
|
spin_unlock_bh(&spidata->mutex);
|
||
|
wake_up(&spidata->wq);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
|
||
|
{
|
||
|
struct opcodes *ptr_opcode;
|
||
|
u32 temp, reg;
|
||
|
|
||
|
/* sanity checks */
|
||
|
if (instr->addr + instr->len > mtd->size) return (-EINVAL);
|
||
|
|
||
|
if (!spiflash_wait_ready(FL_ERASING))
|
||
|
return -EINTR;
|
||
|
|
||
|
spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
|
||
|
busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
|
||
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
||
|
|
||
|
ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
|
||
|
temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
|
||
|
spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
|
||
|
|
||
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
|
||
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
||
|
|
||
|
/* this will take some time */
|
||
|
spin_unlock_bh(&spidata->mutex);
|
||
|
msleep(800);
|
||
|
spin_lock_bh(&spidata->mutex);
|
||
|
|
||
|
busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20);
|
||
|
spiflash_done();
|
||
|
|
||
|
instr->state = MTD_ERASE_DONE;
|
||
|
if (instr->callback) instr->callback (instr);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
|
||
|
{
|
||
|
u8 *read_addr;
|
||
|
|
||
|
/* sanity checks */
|
||
|
if (!len) return (0);
|
||
|
if (from + len > mtd->size) return (-EINVAL);
|
||
|
|
||
|
/* we always read len bytes */
|
||
|
*retlen = len;
|
||
|
|
||
|
if (!spiflash_wait_ready(FL_READING))
|
||
|
return -EINTR;
|
||
|
read_addr = (u8 *)(spidata->readaddr + from);
|
||
|
memcpy(buf, read_addr, len);
|
||
|
spiflash_done();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
|
||
|
{
|
||
|
u32 opcode, bytes_left;
|
||
|
|
||
|
*retlen = 0;
|
||
|
|
||
|
/* sanity checks */
|
||
|
if (!len) return (0);
|
||
|
if (to + len > mtd->size) return (-EINVAL);
|
||
|
|
||
|
opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
|
||
|
bytes_left = len;
|
||
|
|
||
|
do {
|
||
|
u32 xact_len, reg, page_offset, spi_data = 0;
|
||
|
|
||
|
xact_len = MIN(bytes_left, sizeof(__u32));
|
||
|
|
||
|
/* 32-bit writes cannot span across a page boundary
|
||
|
* (256 bytes). This types of writes require two page
|
||
|
* program operations to handle it correctly. The STM part
|
||
|
* will write the overflow data to the beginning of the
|
||
|
* current page as opposed to the subsequent page.
|
||
|
*/
|
||
|
page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
|
||
|
|
||
|
if (page_offset > STM_PAGE_SIZE) {
|
||
|
xact_len -= (page_offset - STM_PAGE_SIZE);
|
||
|
}
|
||
|
|
||
|
if (!spiflash_wait_ready(FL_WRITING))
|
||
|
return -EINTR;
|
||
|
|
||
|
spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
|
||
|
switch (xact_len) {
|
||
|
case 1:
|
||
|
spi_data = (u32) ((u8) *buf);
|
||
|
break;
|
||
|
case 2:
|
||
|
spi_data = (buf[1] << 8) | buf[0];
|
||
|
break;
|
||
|
case 3:
|
||
|
spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
|
||
|
break;
|
||
|
case 4:
|
||
|
spi_data = (buf[3] << 24) | (buf[2] << 16) |
|
||
|
(buf[1] << 8) | buf[0];
|
||
|
break;
|
||
|
default:
|
||
|
spi_data = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
|
||
|
opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
|
||
|
spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
|
||
|
|
||
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
||
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
|
||
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
||
|
|
||
|
/* give the chip some time before we start busy waiting */
|
||
|
spin_unlock_bh(&spidata->mutex);
|
||
|
schedule();
|
||
|
spin_lock_bh(&spidata->mutex);
|
||
|
|
||
|
busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0);
|
||
|
spiflash_done();
|
||
|
|
||
|
bytes_left -= xact_len;
|
||
|
to += xact_len;
|
||
|
buf += xact_len;
|
||
|
|
||
|
*retlen += xact_len;
|
||
|
} while (bytes_left != 0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef CONFIG_MTD_PARTITIONS
|
||
|
static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "MyLoader", NULL };
|
||
|
#endif
|
||
|
|
||
|
|
||
|
static int spiflash_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
int result = -1;
|
||
|
int index, num_parts;
|
||
|
struct mtd_info *mtd;
|
||
|
|
||
|
spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
|
||
|
spin_lock_init(&spidata->mutex);
|
||
|
init_waitqueue_head(&spidata->wq);
|
||
|
spidata->state = FL_READY;
|
||
|
|
||
|
if (!spidata->mmraddr) {
|
||
|
printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
|
||
|
kfree(spidata);
|
||
|
spidata = NULL;
|
||
|
}
|
||
|
|
||
|
mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
||
|
if (!mtd) {
|
||
|
kfree(spidata);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
if (!(index = spiflash_probe_chip())) {
|
||
|
printk (KERN_WARNING SPIFLASH "Found no serial flash device\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
|
||
|
if (!spidata->readaddr) {
|
||
|
printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
mtd->name = "spiflash";
|
||
|
mtd->type = MTD_NORFLASH;
|
||
|
mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
|
||
|
mtd->size = flashconfig_tbl[index].byte_cnt;
|
||
|
mtd->erasesize = flashconfig_tbl[index].sector_size;
|
||
|
mtd->writesize = 1;
|
||
|
mtd->numeraseregions = 0;
|
||
|
mtd->eraseregions = NULL;
|
||
|
mtd->erase = spiflash_erase;
|
||
|
mtd->read = spiflash_read;
|
||
|
mtd->write = spiflash_write;
|
||
|
mtd->owner = THIS_MODULE;
|
||
|
|
||
|
/* parse redboot partitions */
|
||
|
num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
|
||
|
if (!num_parts)
|
||
|
goto error;
|
||
|
|
||
|
result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
|
||
|
spidata->mtd = mtd;
|
||
|
|
||
|
return (result);
|
||
|
|
||
|
error:
|
||
|
kfree(mtd);
|
||
|
kfree(spidata);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
static int spiflash_remove (struct platform_device *pdev)
|
||
|
{
|
||
|
del_mtd_partitions (spidata->mtd);
|
||
|
kfree(spidata->mtd);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct platform_driver spiflash_driver = {
|
||
|
.driver.name = "spiflash",
|
||
|
.probe = spiflash_probe,
|
||
|
.remove = spiflash_remove,
|
||
|
};
|
||
|
|
||
|
int __init
|
||
|
spiflash_init (void)
|
||
|
{
|
||
|
spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
|
||
|
if (!spidata)
|
||
|
return (-ENXIO);
|
||
|
|
||
|
spin_lock_init(&spidata->mutex);
|
||
|
platform_driver_register(&spiflash_driver);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __exit
|
||
|
spiflash_exit (void)
|
||
|
{
|
||
|
kfree(spidata);
|
||
|
}
|
||
|
|
||
|
module_init (spiflash_init);
|
||
|
module_exit (spiflash_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc");
|
||
|
MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");
|
||
|
|