1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-25 19:16:16 +02:00
openwrt-xburst/target/linux/generic-2.6/files/crypto/ocf/safe/safe.c

2289 lines
61 KiB
C
Raw Normal View History

/*-
* Linux port done by David McCullough <david_mccullough@securecomputing.com>
* Copyright (C) 2004-2007 David McCullough
* The license and original author are listed below.
*
* Copyright (c) 2003 Sam Leffler, Errno Consulting
* Copyright (c) 2003 Global Technology Associates, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
__FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $");
*/
#ifndef AUTOCONF_INCLUDED
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/random.h>
#include <linux/version.h>
#include <linux/skbuff.h>
#include <asm/io.h>
/*
* SafeNet SafeXcel-1141 hardware crypto accelerator
*/
#include <cryptodev.h>
#include <uio.h>
#include <safe/safereg.h>
#include <safe/safevar.h>
#if 1
#define DPRINTF(a) do { \
if (debug) { \
printk("%s: ", sc ? \
device_get_nameunit(sc->sc_dev) : "safe"); \
printk a; \
} \
} while (0)
#else
#define DPRINTF(a)
#endif
/*
* until we find a cleaner way, include the BSD md5/sha1 code
* here
*/
#define HMAC_HACK 1
#ifdef HMAC_HACK
#define LITTLE_ENDIAN 1234
#define BIG_ENDIAN 4321
#ifdef __LITTLE_ENDIAN
#define BYTE_ORDER LITTLE_ENDIAN
#endif
#ifdef __BIG_ENDIAN
#define BYTE_ORDER BIG_ENDIAN
#endif
#include <safe/md5.h>
#include <safe/md5.c>
#include <safe/sha1.h>
#include <safe/sha1.c>
u_int8_t hmac_ipad_buffer[64] = {
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
};
u_int8_t hmac_opad_buffer[64] = {
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C
};
#endif /* HMAC_HACK */
/* add proc entry for this */
struct safe_stats safestats;
#define debug safe_debug
int safe_debug = 0;
module_param(safe_debug, int, 0644);
MODULE_PARM_DESC(safe_debug, "Enable debug");
static void safe_callback(struct safe_softc *, struct safe_ringentry *);
static void safe_feed(struct safe_softc *, struct safe_ringentry *);
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
static void safe_rng_init(struct safe_softc *);
int safe_rngbufsize = 8; /* 32 bytes each read */
module_param(safe_rngbufsize, int, 0644);
MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)");
int safe_rngmaxalarm = 8; /* max alarms before reset */
module_param(safe_rngmaxalarm, int, 0644);
MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset");
#endif /* SAFE_NO_RNG */
static void safe_totalreset(struct safe_softc *sc);
static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op);
static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op);
static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re);
static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint);
static int safe_kstart(struct safe_softc *sc);
static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr);
static void safe_kfeed(struct safe_softc *sc);
static void safe_kpoll(unsigned long arg);
static void safe_kload_reg(struct safe_softc *sc, u_int32_t off,
u_int32_t len, struct crparam *n);
static int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
static int safe_freesession(device_t, u_int64_t);
static int safe_process(device_t, struct cryptop *, int);
static device_method_t safe_methods = {
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, safe_newsession),
DEVMETHOD(cryptodev_freesession,safe_freesession),
DEVMETHOD(cryptodev_process, safe_process),
DEVMETHOD(cryptodev_kprocess, safe_kprocess),
};
#define READ_REG(sc,r) readl((sc)->sc_base_addr + (r))
#define WRITE_REG(sc,r,val) writel((val), (sc)->sc_base_addr + (r))
#define SAFE_MAX_CHIPS 8
static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS];
/*
* split our buffers up into safe DMAable byte fragments to avoid lockup
* bug in 1141 HW on rev 1.0.
*/
static int
pci_map_linear(
struct safe_softc *sc,
struct safe_operand *buf,
void *addr,
int len)
{
dma_addr_t tmp;
int chunk, tlen = len;
tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL);
buf->mapsize += len;
while (len > 0) {
chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len;
buf->segs[buf->nsegs].ds_addr = tmp;
buf->segs[buf->nsegs].ds_len = chunk;
buf->segs[buf->nsegs].ds_tlen = tlen;
buf->nsegs++;
tmp += chunk;
len -= chunk;
tlen = 0;
}
return 0;
}
/*
* map in a given uio buffer (great on some arches :-)
*/
static int
pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio)
{
struct iovec *iov = uio->uio_iov;
int n;
DPRINTF(("%s()\n", __FUNCTION__));
buf->mapsize = 0;
buf->nsegs = 0;
for (n = 0; n < uio->uio_iovcnt; n++) {
pci_map_linear(sc, buf, iov->iov_base, iov->iov_len);
iov++;
}
/* identify this buffer by the first segment */
buf->map = (void *) buf->segs[0].ds_addr;
return(0);
}
/*
* map in a given sk_buff
*/
static int
pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb)
{
int i;
DPRINTF(("%s()\n", __FUNCTION__));
buf->mapsize = 0;
buf->nsegs = 0;
pci_map_linear(sc, buf, skb->data, skb_headlen(skb));
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
pci_map_linear(sc, buf,
page_address(skb_shinfo(skb)->frags[i].page) +
skb_shinfo(skb)->frags[i].page_offset,
skb_shinfo(skb)->frags[i].size);
}
/* identify this buffer by the first segment */
buf->map = (void *) buf->segs[0].ds_addr;
return(0);
}
#if 0 /* not needed at this time */
static void
pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf)
{
int i;
DPRINTF(("%s()\n", __FUNCTION__));
for (i = 0; i < buf->nsegs; i++)
pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
}
#endif
static void
pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf)
{
int i;
DPRINTF(("%s()\n", __FUNCTION__));
for (i = 0; i < buf->nsegs; i++) {
if (buf->segs[i].ds_tlen) {
DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL);
DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
}
buf->segs[i].ds_addr = 0;
buf->segs[i].ds_len = 0;
buf->segs[i].ds_tlen = 0;
}
buf->nsegs = 0;
buf->mapsize = 0;
buf->map = 0;
}
/*
* SafeXcel Interrupt routine
*/
static irqreturn_t
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
safe_intr(int irq, void *arg)
#else
safe_intr(int irq, void *arg, struct pt_regs *regs)
#endif
{
struct safe_softc *sc = arg;
int stat;
unsigned long flags;
stat = READ_REG(sc, SAFE_HM_STAT);
DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat));
if (stat == 0) /* shared irq, not for us */
return IRQ_NONE;
WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
if ((stat & SAFE_INT_PE_DDONE)) {
/*
* Descriptor(s) done; scan the ring and
* process completed operations.
*/
spin_lock_irqsave(&sc->sc_ringmtx, flags);
while (sc->sc_back != sc->sc_front) {
struct safe_ringentry *re = sc->sc_back;
#ifdef SAFE_DEBUG
if (debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
/*
* safe_process marks ring entries that were allocated
* but not used with a csr of zero. This insures the
* ring front pointer never needs to be set backwards
* in the event that an entry is allocated but not used
* because of a setup error.
*/
DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr));
if (re->re_desc.d_csr != 0) {
if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) {
DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__));
break;
}
if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) {
DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__));
break;
}
sc->sc_nqchip--;
safe_callback(sc, re);
}
if (++(sc->sc_back) == sc->sc_ringtop)
sc->sc_back = sc->sc_ring;
}
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
}
/*
* Check to see if we got any DMA Error
*/
if (stat & SAFE_INT_PE_ERROR) {
printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev),
(int)READ_REG(sc, SAFE_PE_DMASTAT));
safestats.st_dmaerr++;
safe_totalreset(sc);
#if 0
safe_feed(sc);
#endif
}
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
DPRINTF(("%s: wakeup crypto %x\n", __func__,
sc->sc_needwakeup));
sc->sc_needwakeup &= ~wakeup;
crypto_unblock(sc->sc_cid, wakeup);
}
return IRQ_HANDLED;
}
/*
* safe_feed() - post a request to chip
*/
static void
safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
{
DPRINTF(("%s()\n", __FUNCTION__));
#ifdef SAFE_DEBUG
if (debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
sc->sc_nqchip++;
if (sc->sc_nqchip > safestats.st_maxqchip)
safestats.st_maxqchip = sc->sc_nqchip;
/* poke h/w to check descriptor ring, any value can be written */
WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
}
#define N(a) (sizeof(a) / sizeof (a[0]))
static void
safe_setup_enckey(struct safe_session *ses, caddr_t key)
{
int i;
bcopy(key, ses->ses_key, ses->ses_klen / 8);
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_key); i++)
ses->ses_key[i] = htole32(ses->ses_key[i]);
}
static void
safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
{
#ifdef HMAC_HACK
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i;
for (i = 0; i < klen; i++)
key[i] ^= HMAC_IPAD_VAL;
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_opad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= HMAC_OPAD_VAL;
#if 0
/*
* this code prevents SHA working on a BE host,
* so it is obviously wrong. I think the byte
* swap setup we do with the chip fixes this for us
*/
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_hminner); i++) {
ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
}
#endif
#else /* HMAC_HACK */
printk("safe: md5/sha not implemented\n");
#endif /* HMAC_HACK */
}
#undef N
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct safe_softc *sc = device_get_softc(dev);
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct safe_session *ses = NULL;
int sesn;
DPRINTF(("%s()\n", __FUNCTION__));
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC ||
c->cri_alg == CRYPTO_SHA1_HMAC ||
c->cri_alg == CRYPTO_NULL_HMAC) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC ||
c->cri_alg == CRYPTO_AES_CBC ||
c->cri_alg == CRYPTO_NULL_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (encini) { /* validate key length */
switch (encini->cri_alg) {
case CRYPTO_DES_CBC:
if (encini->cri_klen != 64)
return (EINVAL);
break;
case CRYPTO_3DES_CBC:
if (encini->cri_klen != 192)
return (EINVAL);
break;
case CRYPTO_AES_CBC:
if (encini->cri_klen != 128 &&
encini->cri_klen != 192 &&
encini->cri_klen != 256)
return (EINVAL);
break;
}
}
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct safe_session *)
kmalloc(sizeof(struct safe_session), SLAB_ATOMIC);
if (ses == NULL)
return (ENOMEM);
memset(ses, 0, sizeof(struct safe_session));
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct safe_session *)
kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC);
if (ses == NULL)
return (ENOMEM);
memset(ses, 0, (sesn + 1) * sizeof(struct safe_session));
bcopy(sc->sc_sessions, ses, sesn *
sizeof(struct safe_session));
bzero(sc->sc_sessions, sesn *
sizeof(struct safe_session));
kfree(sc->sc_sessions);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(struct safe_session));
ses->ses_used = 1;
if (encini) {
/* get an IV */
/* XXX may read fewer than requested */
read_random(ses->ses_iv, sizeof(ses->ses_iv));
ses->ses_klen = encini->cri_klen;
if (encini->cri_key != NULL)
safe_setup_enckey(ses, encini->cri_key);
}
if (macini) {
ses->ses_mlen = macini->cri_mlen;
if (ses->ses_mlen == 0) {
if (macini->cri_alg == CRYPTO_MD5_HMAC)
ses->ses_mlen = MD5_HASH_LEN;
else
ses->ses_mlen = SHA1_HASH_LEN;
}
if (macini->cri_key != NULL) {
safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
macini->cri_klen / 8);
}
}
*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
*/
static int
safe_freesession(device_t dev, u_int64_t tid)
{
struct safe_softc *sc = device_get_softc(dev);
int session, ret;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
DPRINTF(("%s()\n", __FUNCTION__));
if (sc == NULL)
return (EINVAL);
session = SAFE_SESSION(sid);
if (session < sc->sc_nsessions) {
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
ret = 0;
} else
ret = EINVAL;
return (ret);
}
static int
safe_process(device_t dev, struct cryptop *crp, int hint)
{
struct safe_softc *sc = device_get_softc(dev);
int err = 0, i, nicealign, uniform;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int bypass, oplen, ivsize;
caddr_t iv;
int16_t coffset;
struct safe_session *ses;
struct safe_ringentry *re;
struct safe_sarec *sa;
struct safe_pdesc *pd;
u_int32_t cmd0, cmd1, staterec;
unsigned long flags;
DPRINTF(("%s()\n", __FUNCTION__));
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
safestats.st_invalid++;
return (EINVAL);
}
if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
safestats.st_badsession++;
return (EINVAL);
}
spin_lock_irqsave(&sc->sc_ringmtx, flags);
if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
safestats.st_ringfull++;
sc->sc_needwakeup |= CRYPTO_SYMQ;
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
return (ERESTART);
}
re = sc->sc_front;
staterec = re->re_sa.sa_staterec; /* save */
/* NB: zero everything but the PE descriptor */
bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
re->re_sa.sa_staterec = staterec; /* restore */
re->re_crp = crp;
re->re_sesn = SAFE_SESSION(crp->crp_sid);
re->re_src.nsegs = 0;
re->re_dst.nsegs = 0;
if (crp->crp_flags & CRYPTO_F_SKBUF) {
re->re_src_skb = (struct sk_buff *)crp->crp_buf;
re->re_dst_skb = (struct sk_buff *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
re->re_src_io = (struct uio *)crp->crp_buf;
re->re_dst_io = (struct uio *)crp->crp_buf;
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
sa = &re->re_sa;
ses = &sc->sc_sessions[re->re_sesn];
crd1 = crp->crp_desc;
if (crd1 == NULL) {
safestats.st_nodesc++;
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
cmd1 = 0;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) {
maccrd = crd1;
enccrd = NULL;
cmd0 |= SAFE_SA_CMD0_OP_HASH;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) {
maccrd = NULL;
enccrd = crd1;
cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC ||
crd2->crd_alg == CRYPTO_NULL_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC ||
crd2->crd_alg == CRYPTO_NULL_HMAC) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
cmd0 |= SAFE_SA_CMD0_OP_BOTH;
}
if (enccrd) {
if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
safe_setup_enckey(ses, enccrd->crd_key);
if (enccrd->crd_alg == CRYPTO_DES_CBC) {
cmd0 |= SAFE_SA_CMD0_DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
cmd0 |= SAFE_SA_CMD0_3DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
cmd0 |= SAFE_SA_CMD0_AES;
cmd1 |= SAFE_SA_CMD1_CBC;
if (ses->ses_klen == 128)
cmd1 |= SAFE_SA_CMD1_AES128;
else if (ses->ses_klen == 192)
cmd1 |= SAFE_SA_CMD1_AES192;
else
cmd1 |= SAFE_SA_CMD1_AES256;
ivsize = 4*sizeof(u_int32_t);
} else {
cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
ivsize = 0;
}
/*
* Setup encrypt/decrypt state. When using basic ops
* we can't use an inline IV because hash/crypt offset
* must be from the end of the IV to the start of the
* crypt data and this leaves out the preceding header
* from the hash calculation. Instead we place the IV
* in the state record and set the hash/crypt offset to
* copy both the header+IV.
*/
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
cmd0 |= SAFE_SA_CMD0_OUTBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
iv = enccrd->crd_iv;
else
iv = (caddr_t) ses->ses_iv;
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivsize, iv);
}
bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
/* make iv LE */
for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
re->re_sastate.sa_saved_iv[i] =
cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
} else {
cmd0 |= SAFE_SA_CMD0_INBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
bcopy(enccrd->crd_iv,
re->re_sastate.sa_saved_iv, ivsize);
} else {
crypto_copydata(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivsize,
(caddr_t)re->re_sastate.sa_saved_iv);
}
/* make iv LE */
for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
re->re_sastate.sa_saved_iv[i] =
cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
}
/*
* For basic encryption use the zero pad algorithm.
* This pads results to an 8-byte boundary and
* suppresses padding verification for inbound (i.e.
* decrypt) operations.
*
* NB: Not sure if the 8-byte pad boundary is a problem.
*/
cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
/* XXX assert key bufs have the same size */
bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
}
if (maccrd) {
if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
safe_setup_mackey(ses, maccrd->crd_alg,
maccrd->crd_key, maccrd->crd_klen / 8);
}
if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
cmd0 |= SAFE_SA_CMD0_MD5;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
cmd0 |= SAFE_SA_CMD0_SHA1;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else {
cmd0 |= SAFE_SA_CMD0_HASH_NULL;
}
/*
* Digest data is loaded from the SA and the hash
* result is saved to the state block where we
* retrieve it for return to the caller.
*/
/* XXX assert digest bufs have the same size */
bcopy(ses->ses_hminner, sa->sa_indigest,
sizeof(sa->sa_indigest));
bcopy(ses->ses_hmouter, sa->sa_outdigest,
sizeof(sa->sa_outdigest));
cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
}
if (enccrd && maccrd) {
/*
* The offset from hash data to the start of
* crypt data is the difference in the skips.
*/
bypass = maccrd->crd_skip;
coffset = enccrd->crd_skip - maccrd->crd_skip;
if (coffset < 0) {
DPRINTF(("%s: hash does not precede crypt; "
"mac skip %u enc skip %u\n",
__func__, maccrd->crd_skip, enccrd->crd_skip));
safestats.st_skipmismatch++;
err = EINVAL;
goto errout;
}
oplen = enccrd->crd_skip + enccrd->crd_len;
if (maccrd->crd_skip + maccrd->crd_len != oplen) {
DPRINTF(("%s: hash amount %u != crypt amount %u\n",
__func__, maccrd->crd_skip + maccrd->crd_len,
oplen));
safestats.st_lenmismatch++;
err = EINVAL;
goto errout;
}
#ifdef SAFE_DEBUG
if (debug) {
printf("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len,
maccrd->crd_inject);
printf("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len,
enccrd->crd_inject);
printf("bypass %d coffset %d oplen %d\n",
bypass, coffset, oplen);
}
#endif
if (coffset & 3) { /* offset must be 32-bit aligned */
DPRINTF(("%s: coffset %u misaligned\n",
__func__, coffset));
safestats.st_coffmisaligned++;
err = EINVAL;
goto errout;
}
coffset >>= 2;
if (coffset > 255) { /* offset must be <256 dwords */
DPRINTF(("%s: coffset %u too big\n",
__func__, coffset));
safestats.st_cofftoobig++;
err = EINVAL;
goto errout;
}
/*
* Tell the hardware to copy the header to the output.
* The header is defined as the data from the end of
* the bypass to the start of data to be encrypted.
* Typically this is the inline IV. Note that you need
* to do this even if src+dst are the same; it appears
* that w/o this bit the crypted data is written
* immediately after the bypass data.
*/
cmd1 |= SAFE_SA_CMD1_HDRCOPY;
/*
* Disable IP header mutable bit handling. This is
* needed to get correct HMAC calculations.
*/
cmd1 |= SAFE_SA_CMD1_MUTABLE;
} else {
if (enccrd) {
bypass = enccrd->crd_skip;
oplen = bypass + enccrd->crd_len;
} else {
bypass = maccrd->crd_skip;
oplen = bypass + maccrd->crd_len;
}
coffset = 0;
}
/* XXX verify multiple of 4 when using s/g */
if (bypass > 96) { /* bypass offset must be <= 96 bytes */
DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
safestats.st_bypasstoobig++;
err = EINVAL;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_SKBUF) {
if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) {
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (pci_map_uio(sc, &re->re_src, re->re_src_io)) {
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
}
nicealign = safe_dmamap_aligned(sc, &re->re_src);
uniform = safe_dmamap_uniform(sc, &re->re_src);
DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
nicealign, uniform, re->re_src.nsegs));
if (re->re_src.nsegs > 1) {
re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
for (i = 0; i < re->re_src_nsegs; i++) {
/* NB: no need to check if there's space */
pd = sc->sc_spfree;
if (++(sc->sc_spfree) == sc->sc_springtop)
sc->sc_spfree = sc->sc_spring;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus source particle descriptor; flags %x",
pd->pd_flags));
pd->pd_addr = re->re_src_segs[i].ds_addr;
pd->pd_size = re->re_src_segs[i].ds_len;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_IGATHER;
} else {
/*
* No need for gather, reference the operand directly.
*/
re->re_desc.d_src = re->re_src_segs[0].ds_addr;
}
if (enccrd == NULL && maccrd != NULL) {
/*
* Hash op; no destination needed.
*/
} else {
if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) {
if (!nicealign) {
safestats.st_iovmisaligned++;
err = EINVAL;
goto errout;
}
if (uniform != 1) {
device_printf(sc->sc_dev, "!uniform source\n");
if (!uniform) {
/*
* There's no way to handle the DMA
* requirements with this uio. We
* could create a separate DMA area for
* the result and then copy it back,
* but for now we just bail and return
* an error. Note that uio requests
* > SAFE_MAX_DSIZE are handled because
* the DMA map and segment list for the
* destination wil result in a
* destination particle list that does
* the necessary scatter DMA.
*/
safestats.st_iovnotuniform++;
err = EINVAL;
goto errout;
}
} else
re->re_dst = re->re_src;
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout;
}
if (re->re_dst.nsegs > 1) {
re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
for (i = 0; i < re->re_dst_nsegs; i++) {
pd = sc->sc_dpfree;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus dest particle descriptor; flags %x",
pd->pd_flags));
if (++(sc->sc_dpfree) == sc->sc_dpringtop)
sc->sc_dpfree = sc->sc_dpring;
pd->pd_addr = re->re_dst_segs[i].ds_addr;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_OSCATTER;
} else {
/*
* No need for scatter, reference the operand directly.
*/
re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
}
}
/*
* All done with setup; fillin the SA command words
* and the packet engine descriptor. The operation
* is now ready for submission to the hardware.
*/
sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
sa->sa_cmd1 = cmd1
| (coffset << SAFE_SA_CMD1_OFFSET_S)
| SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
| SAFE_SA_CMD1_SRPCI
;
/*
* NB: the order of writes is important here. In case the
* chip is scanning the ring because of an outstanding request
* it might nab this one too. In that case we need to make
* sure the setup is complete before we write the length
* field of the descriptor as it signals the descriptor is
* ready for processing.
*/
re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
if (maccrd)
re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
wmb();
re->re_desc.d_len = oplen
| SAFE_PE_LEN_READY
| (bypass << SAFE_PE_LEN_BYPASS_S)
;
safestats.st_ipackets++;
safestats.st_ibytes += oplen;
if (++(sc->sc_front) == sc->sc_ringtop)
sc->sc_front = sc->sc_ring;
/* XXX honor batching */
safe_feed(sc, re);
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
return (0);
errout:
if (re->re_src.map != re->re_dst.map)
pci_unmap_operand(sc, &re->re_dst);
if (re->re_src.map)
pci_unmap_operand(sc, &re->re_src);
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
if (err != ERESTART) {
crp->crp_etype = err;
crypto_done(crp);
} else {
sc->sc_needwakeup |= CRYPTO_SYMQ;
}
return (err);
}
static void
safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp = (struct cryptop *)re->re_crp;
struct cryptodesc *crd;
DPRINTF(("%s()\n", __FUNCTION__));
safestats.st_opackets++;
safestats.st_obytes += re->re_dst.mapsize;
if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
re->re_desc.d_csr,
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
safestats.st_peoperr++;
crp->crp_etype = EIO; /* something more meaningful? */
}
if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map)
pci_unmap_operand(sc, &re->re_dst);
pci_unmap_operand(sc, &re->re_src);
/*
* If result was written to a differet mbuf chain, swap
* it in as the return value and reclaim the original.
*/
if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) {
device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n");
/* kfree_skb(skb) */
/* crp->crp_buf = (caddr_t)re->re_dst_skb */
return;
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
/* copy out IV for future use */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
int i;
int ivsize;
if (crd->crd_alg == CRYPTO_DES_CBC ||
crd->crd_alg == CRYPTO_3DES_CBC) {
ivsize = 2*sizeof(u_int32_t);
} else if (crd->crd_alg == CRYPTO_AES_CBC) {
ivsize = 4*sizeof(u_int32_t);
} else
continue;
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize, ivsize,
(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
for (i = 0;
i < ivsize/sizeof(sc->sc_sessions[re->re_sesn].ses_iv[0]);
i++)
sc->sc_sessions[re->re_sesn].ses_iv[i] =
cpu_to_le32(sc->sc_sessions[re->re_sesn].ses_iv[i]);
break;
}
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
/* copy out ICV result */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
crd->crd_alg == CRYPTO_SHA1_HMAC ||
crd->crd_alg == CRYPTO_NULL_HMAC))
continue;
if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
/*
* SHA-1 ICV's are byte-swapped; fix 'em up
* before copy them to their destination.
*/
re->re_sastate.sa_saved_indigest[0] =
cpu_to_be32(re->re_sastate.sa_saved_indigest[0]);
re->re_sastate.sa_saved_indigest[1] =
cpu_to_be32(re->re_sastate.sa_saved_indigest[1]);
re->re_sastate.sa_saved_indigest[2] =
cpu_to_be32(re->re_sastate.sa_saved_indigest[2]);
} else {
re->re_sastate.sa_saved_indigest[0] =
cpu_to_le32(re->re_sastate.sa_saved_indigest[0]);
re->re_sastate.sa_saved_indigest[1] =
cpu_to_le32(re->re_sastate.sa_saved_indigest[1]);
re->re_sastate.sa_saved_indigest[2] =
cpu_to_le32(re->re_sastate.sa_saved_indigest[2]);
}
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject,
sc->sc_sessions[re->re_sesn].ses_mlen,
(caddr_t)re->re_sastate.sa_saved_indigest);
break;
}
}
crypto_done(crp);
}
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
#define SAFE_RNG_MAXWAIT 1000
static void
safe_rng_init(struct safe_softc *sc)
{
u_int32_t w, v;
int i;
DPRINTF(("%s()\n", __FUNCTION__));
WRITE_REG(sc, SAFE_RNG_CTRL, 0);
/* use default value according to the manual */
WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
/*
* There is a bug in rev 1.0 of the 1140 that when the RNG
* is brought out of reset the ready status flag does not
* work until the RNG has finished its internal initialization.
*
* So in order to determine the device is through its
* initialization we must read the data register, using the
* status reg in the read in case it is initialized. Then read
* the data register until it changes from the first read.
* Once it changes read the data register until it changes
* again. At this time the RNG is considered initialized.
* This could take between 750ms - 1000ms in time.
*/
i = 0;
w = READ_REG(sc, SAFE_RNG_OUT);
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w) {
w = v;
break;
}
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
/* Wait Until data changes again */
i = 0;
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w)
break;
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
}
static __inline void
safe_rng_disable_short_cycle(struct safe_softc *sc)
{
DPRINTF(("%s()\n", __FUNCTION__));
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
}
static __inline void
safe_rng_enable_short_cycle(struct safe_softc *sc)
{
DPRINTF(("%s()\n", __FUNCTION__));
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
}
static __inline u_int32_t
safe_rng_read(struct safe_softc *sc)
{
int i;
i = 0;
while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
;
return READ_REG(sc, SAFE_RNG_OUT);
}
static int
safe_read_random(void *arg, u_int32_t *buf, int maxwords)
{
struct safe_softc *sc = (struct safe_softc *) arg;
int i, rc;
DPRINTF(("%s()\n", __FUNCTION__));
safestats.st_rng++;
/*
* Fetch the next block of data.
*/
if (maxwords > safe_rngbufsize)
maxwords = safe_rngbufsize;
if (maxwords > SAFE_RNG_MAXBUFSIZ)
maxwords = SAFE_RNG_MAXBUFSIZ;
retry:
/* read as much as we can */
for (rc = 0; rc < maxwords; rc++) {
if (READ_REG(sc, SAFE_RNG_STAT) != 0)
break;
buf[rc] = READ_REG(sc, SAFE_RNG_OUT);
}
if (rc == 0)
return 0;
/*
* Check the comparator alarm count and reset the h/w if
* it exceeds our threshold. This guards against the
* hardware oscillators resonating with external signals.
*/
if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
u_int32_t freq_inc, w;
DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
(unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
safestats.st_rngalarm++;
safe_rng_enable_short_cycle(sc);
freq_inc = 18;
for (i = 0; i < 64; i++) {
w = READ_REG(sc, SAFE_RNG_CNFG);
freq_inc = ((w + freq_inc) & 0x3fL);
w = ((w & ~0x3fL) | freq_inc);
WRITE_REG(sc, SAFE_RNG_CNFG, w);
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
(void) safe_rng_read(sc);
DELAY(25);
if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
safe_rng_disable_short_cycle(sc);
goto retry;
}
freq_inc = 1;
}
safe_rng_disable_short_cycle(sc);
} else
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
return(rc);
}
#endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
safe_reset_board(struct safe_softc *sc)
{
u_int32_t v;
/*
* Reset the device. The manual says no delay
* is needed between marking and clearing reset.
*/
DPRINTF(("%s()\n", __FUNCTION__));
v = READ_REG(sc, SAFE_PE_DMACFG) &~
(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v
| SAFE_PE_DMACFG_PERESET
| SAFE_PE_DMACFG_PDRRESET
| SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v);
}
/*
* Initialize registers we need to touch only once.
*/
static void
safe_init_board(struct safe_softc *sc)
{
u_int32_t v, dwords;
DPRINTF(("%s()\n", __FUNCTION__));
v = READ_REG(sc, SAFE_PE_DMACFG);
v &=~ ( SAFE_PE_DMACFG_PEMODE
| SAFE_PE_DMACFG_FSENA /* failsafe enable */
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
| SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
);
v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
#if 0
| SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
#endif
;
WRITE_REG(sc, SAFE_PE_DMACFG, v);
#ifdef __BIG_ENDIAN
/* tell the safenet that we are 4321 and not 1234 */
WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b);
#endif
if (sc->sc_chiprev == SAFE_REV(1,0)) {
/*
* Avoid large PCI DMA transfers. Rev 1.0 has a bug where
* "target mode transfers" done while the chip is DMA'ing
* >1020 bytes cause the hardware to lockup. To avoid this
* we reduce the max PCI transfer size and use small source
* particle descriptors (<= 256 bytes).
*/
WRITE_REG(sc, SAFE_DMA_CFG, 256);
device_printf(sc->sc_dev,
"Reduce max DMA size to %u words for rev %u.%u WAR\n",
(unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff),
(unsigned) SAFE_REV_MAJ(sc->sc_chiprev),
(unsigned) SAFE_REV_MIN(sc->sc_chiprev));
sc->sc_max_dsize = 256;
} else {
sc->sc_max_dsize = SAFE_MAX_DSIZE;
}
/* NB: operands+results are overlaid */
WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
/*
* Configure ring entry size and number of items in the ring.
*/
KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
("PE ring entry not 32-bit aligned!"));
dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
WRITE_REG(sc, SAFE_PE_RINGCFG,
(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_PARTSIZE,
(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
/*
* NB: destination particles are fixed size. We use
* an mbuf cluster and require all results go to
* clusters or smaller.
*/
WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize);
/* it's now safe to enable PE mode, do it */
WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
/*
* Configure hardware to use level-triggered interrupts and
* to interrupt after each descriptor is processed.
*/
WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff);
WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
}
/*
* Clean up after a chip crash.
* It is assumed that the caller in splimp()
*/
static void
safe_cleanchip(struct safe_softc *sc)
{
DPRINTF(("%s()\n", __FUNCTION__));
if (sc->sc_nqchip != 0) {
struct safe_ringentry *re = sc->sc_back;
while (re != sc->sc_front) {
if (re->re_desc.d_csr != 0)
safe_free_entry(sc, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
}
sc->sc_back = re;
sc->sc_nqchip = 0;
}
}
/*
* free a safe_q
* It is assumed that the caller is within splimp().
*/
static int
safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp;
DPRINTF(("%s()\n", __FUNCTION__));
/*
* Free header MCR
*/
if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb))
#ifdef NOTYET
m_freem(re->re_dst_m);
#else
printk("%s,%d: SKB not supported\n", __FILE__, __LINE__);
#endif
crp = (struct cryptop *)re->re_crp;
re->re_desc.d_csr = 0;
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller is in splimp()
*/
static void
safe_totalreset(struct safe_softc *sc)
{
DPRINTF(("%s()\n", __FUNCTION__));
safe_reset_board(sc);
safe_init_board(sc);
safe_cleanchip(sc);
}
/*
* Is the operand suitable aligned for direct DMA. Each
* segment must be aligned on a 32-bit boundary and all
* but the last segment must be a multiple of 4 bytes.
*/
static int
safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op)
{
int i;
DPRINTF(("%s()\n", __FUNCTION__));
for (i = 0; i < op->nsegs; i++) {
if (op->segs[i].ds_addr & 3)
return (0);
if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
return (0);
}
return (1);
}
/*
* Is the operand suitable for direct DMA as the destination
* of an operation. The hardware requires that each ``particle''
* but the last in an operation result have the same size. We
* fix that size at SAFE_MAX_DSIZE bytes. This routine returns
* 0 if some segment is not a multiple of of this size, 1 if all
* segments are exactly this size, or 2 if segments are at worst
* a multple of this size.
*/
static int
safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op)
{
int result = 1;
DPRINTF(("%s()\n", __FUNCTION__));
if (op->nsegs > 0) {
int i;
for (i = 0; i < op->nsegs-1; i++) {
if (op->segs[i].ds_len % sc->sc_max_dsize)
return (0);
if (op->segs[i].ds_len != sc->sc_max_dsize)
result = 2;
}
}
return (result);
}
static int
safe_kprocess(device_t dev, struct cryptkop *krp, int hint)
{
struct safe_softc *sc = device_get_softc(dev);
struct safe_pkq *q;
unsigned long flags;
DPRINTF(("%s()\n", __FUNCTION__));
if (sc == NULL) {
krp->krp_status = EINVAL;
goto err;
}
if (krp->krp_op != CRK_MOD_EXP) {
krp->krp_status = EOPNOTSUPP;
goto err;
}
q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
if (q == NULL) {
krp->krp_status = ENOMEM;
goto err;
}
memset(q, 0, sizeof(*q));
q->pkq_krp = krp;
INIT_LIST_HEAD(&q->pkq_list);
spin_lock_irqsave(&sc->sc_pkmtx, flags);
list_add_tail(&q->pkq_list, &sc->sc_pkq);
safe_kfeed(sc);
spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
return (0);
err:
crypto_kdone(krp);
return (0);
}
#define SAFE_CRK_PARAM_BASE 0
#define SAFE_CRK_PARAM_EXP 1
#define SAFE_CRK_PARAM_MOD 2
static int
safe_kstart(struct safe_softc *sc)
{
struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp;
int exp_bits, mod_bits, base_bits;
u_int32_t op, a_off, b_off, c_off, d_off;
DPRINTF(("%s()\n", __FUNCTION__));
if (krp->krp_iparams < 3 || krp->krp_oparams != 1) {
krp->krp_status = EINVAL;
return (1);
}
base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]);
if (base_bits > 2048)
goto too_big;
if (base_bits <= 0) /* 5. base not zero */
goto too_small;
exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]);
if (exp_bits > 2048)
goto too_big;
if (exp_bits <= 0) /* 1. exponent word length > 0 */
goto too_small; /* 4. exponent not zero */
mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]);
if (mod_bits > 2048)
goto too_big;
if (mod_bits <= 32) /* 2. modulus word length > 1 */
goto too_small; /* 8. MSW of modulus != zero */
if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */
goto too_small;
if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0)
goto bad_domain; /* 6. modulus is odd */
if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits)
goto too_small; /* make sure result will fit */
/* 7. modulus > base */
if (mod_bits < base_bits)
goto too_small;
if (mod_bits == base_bits) {
u_int8_t *basep, *modp;
int i;
basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p +
((base_bits + 7) / 8) - 1;
modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p +
((mod_bits + 7) / 8) - 1;
for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) {
if (*modp < *basep)
goto too_small;
if (*modp > *basep)
break;
}
}
/* And on the 9th step, he rested. */
WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32);
WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32);
if (mod_bits > 1024) {
op = SAFE_PK_FUNC_EXP4;
a_off = 0x000;
b_off = 0x100;
c_off = 0x200;
d_off = 0x300;
} else {
op = SAFE_PK_FUNC_EXP16;
a_off = 0x000;
b_off = 0x080;
c_off = 0x100;
d_off = 0x180;
}
sc->sc_pk_reslen = b_off - a_off;
sc->sc_pk_resoff = d_off;
/* A is exponent, B is modulus, C is base, D is result */
safe_kload_reg(sc, a_off, b_off - a_off,
&krp->krp_param[SAFE_CRK_PARAM_EXP]);
WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2);
safe_kload_reg(sc, b_off, b_off - a_off,
&krp->krp_param[SAFE_CRK_PARAM_MOD]);
WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2);
safe_kload_reg(sc, c_off, b_off - a_off,
&krp->krp_param[SAFE_CRK_PARAM_BASE]);
WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2);
WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2);
WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN);
return (0);
too_big:
krp->krp_status = E2BIG;
return (1);
too_small:
krp->krp_status = ERANGE;
return (1);
bad_domain:
krp->krp_status = EDOM;
return (1);
}
static int
safe_ksigbits(struct safe_softc *sc, struct crparam *cr)
{
u_int plen = (cr->crp_nbits + 7) / 8;
int i, sig = plen * 8;
u_int8_t c, *p = cr->crp_p;
DPRINTF(("%s()\n", __FUNCTION__));
for (i = plen - 1; i >= 0; i--) {
c = p[i];
if (c != 0) {
while ((c & 0x80) == 0) {
sig--;
c <<= 1;
}
break;
}
sig -= 8;
}
return (sig);
}
static void
safe_kfeed(struct safe_softc *sc)
{
struct safe_pkq *q, *tmp;
DPRINTF(("%s()\n", __FUNCTION__));
if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL)
return;
if (sc->sc_pkq_cur != NULL)
return;
list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) {
sc->sc_pkq_cur = q;
list_del(&q->pkq_list);
if (safe_kstart(sc) != 0) {
crypto_kdone(q->pkq_krp);
kfree(q);
sc->sc_pkq_cur = NULL;
} else {
/* op started, start polling */
mod_timer(&sc->sc_pkto, jiffies + 1);
break;
}
}
}
static void
safe_kpoll(unsigned long arg)
{
struct safe_softc *sc = NULL;
struct safe_pkq *q;
struct crparam *res;
int i;
u_int32_t buf[64];
unsigned long flags;
DPRINTF(("%s()\n", __FUNCTION__));
if (arg >= SAFE_MAX_CHIPS)
return;
sc = safe_chip_idx[arg];
if (!sc) {
DPRINTF(("%s() - bad callback\n", __FUNCTION__));
return;
}
spin_lock_irqsave(&sc->sc_pkmtx, flags);
if (sc->sc_pkq_cur == NULL)
goto out;
if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) {
/* still running, check back later */
mod_timer(&sc->sc_pkto, jiffies + 1);
goto out;
}
q = sc->sc_pkq_cur;
res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams];
bzero(buf, sizeof(buf));
bzero(res->crp_p, (res->crp_nbits + 7) / 8);
for (i = 0; i < sc->sc_pk_reslen >> 2; i++)
buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START +
sc->sc_pk_resoff + (i << 2)));
bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8);
/*
* reduce the bits that need copying if possible
*/
res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8);
res->crp_nbits = safe_ksigbits(sc, res);
for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4)
WRITE_REG(sc, i, 0);
crypto_kdone(q->pkq_krp);
kfree(q);
sc->sc_pkq_cur = NULL;
safe_kfeed(sc);
out:
spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
}
static void
safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len,
struct crparam *n)
{
u_int32_t buf[64], i;
DPRINTF(("%s()\n", __FUNCTION__));
bzero(buf, sizeof(buf));
bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8);
for (i = 0; i < len >> 2; i++)
WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2),
cpu_to_le32(buf[i]));
}
#ifdef SAFE_DEBUG
static void
safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
{
printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_DMA_ENDIAN)
, READ_REG(sc, SAFE_DMA_SRCADDR)
, READ_REG(sc, SAFE_DMA_DSTADDR)
, READ_REG(sc, SAFE_DMA_STAT)
);
}
static void
safe_dump_intrstate(struct safe_softc *sc, const char *tag)
{
printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_HI_CFG)
, READ_REG(sc, SAFE_HI_MASK)
, READ_REG(sc, SAFE_HI_DESC_CNT)
, READ_REG(sc, SAFE_HU_STAT)
, READ_REG(sc, SAFE_HM_STAT)
);
}
static void
safe_dump_ringstate(struct safe_softc *sc, const char *tag)
{
u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
/* NB: assume caller has lock on ring */
printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
tag,
estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
(unsigned long)(sc->sc_back - sc->sc_ring),
(unsigned long)(sc->sc_front - sc->sc_ring));
}
static void
safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
{
int ix, nsegs;
ix = re - sc->sc_ring;
printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
, tag
, re, ix
, re->re_desc.d_csr
, re->re_desc.d_src
, re->re_desc.d_dst
, re->re_desc.d_sa
, re->re_desc.d_len
);
if (re->re_src.nsegs > 1) {
ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
printf(" spd[%u] %p: %p size %u flags %x"
, ix, &sc->sc_spring[ix]
, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
, sc->sc_spring[ix].pd_size
, sc->sc_spring[ix].pd_flags
);
if (sc->sc_spring[ix].pd_size == 0)
printf(" (zero!)");
printf("\n");
if (++ix == SAFE_TOTAL_SPART)
ix = 0;
}
}
if (re->re_dst.nsegs > 1) {
ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
printf(" dpd[%u] %p: %p flags %x\n"
, ix, &sc->sc_dpring[ix]
, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
, sc->sc_dpring[ix].pd_flags
);
if (++ix == SAFE_TOTAL_DPART)
ix = 0;
}
}
printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
printf("sa: key %x %x %x %x %x %x %x %x\n"
, re->re_sa.sa_key[0]
, re->re_sa.sa_key[1]
, re->re_sa.sa_key[2]
, re->re_sa.sa_key[3]
, re->re_sa.sa_key[4]
, re->re_sa.sa_key[5]
, re->re_sa.sa_key[6]
, re->re_sa.sa_key[7]
);
printf("sa: indigest %x %x %x %x %x\n"
, re->re_sa.sa_indigest[0]
, re->re_sa.sa_indigest[1]
, re->re_sa.sa_indigest[2]
, re->re_sa.sa_indigest[3]
, re->re_sa.sa_indigest[4]
);
printf("sa: outdigest %x %x %x %x %x\n"
, re->re_sa.sa_outdigest[0]
, re->re_sa.sa_outdigest[1]
, re->re_sa.sa_outdigest[2]
, re->re_sa.sa_outdigest[3]
, re->re_sa.sa_outdigest[4]
);
printf("sr: iv %x %x %x %x\n"
, re->re_sastate.sa_saved_iv[0]
, re->re_sastate.sa_saved_iv[1]
, re->re_sastate.sa_saved_iv[2]
, re->re_sastate.sa_saved_iv[3]
);
printf("sr: hashbc %u indigest %x %x %x %x %x\n"
, re->re_sastate.sa_saved_hashbc
, re->re_sastate.sa_saved_indigest[0]
, re->re_sastate.sa_saved_indigest[1]
, re->re_sastate.sa_saved_indigest[2]
, re->re_sastate.sa_saved_indigest[3]
, re->re_sastate.sa_saved_indigest[4]
);
}
static void
safe_dump_ring(struct safe_softc *sc, const char *tag)
{
unsigned long flags;
spin_lock_irqsave(&sc->sc_ringmtx, flags);
printf("\nSafeNet Ring State:\n");
safe_dump_intrstate(sc, tag);
safe_dump_dmastatus(sc, tag);
safe_dump_ringstate(sc, tag);
if (sc->sc_nqchip) {
struct safe_ringentry *re = sc->sc_back;
do {
safe_dump_request(sc, tag, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
} while (re != sc->sc_front);
}
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
}
#endif /* SAFE_DEBUG */
static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
struct safe_softc *sc = NULL;
u32 mem_start, mem_len, cmd;
int i, rc, devinfo;
dma_addr_t raddr;
static int num_chips = 0;
DPRINTF(("%s()\n", __FUNCTION__));
if (pci_enable_device(dev) < 0)
return(-ENODEV);
if (!dev->irq) {
printk("safe: found device with no IRQ assigned. check BIOS settings!");
pci_disable_device(dev);
return(-ENODEV);
}
if (pci_set_mwi(dev)) {
printk("safe: pci_set_mwi failed!");
return(-ENODEV);
}
sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
if (!sc)
return(-ENOMEM);
memset(sc, 0, sizeof(*sc));
softc_device_init(sc, "safe", num_chips, safe_methods);
sc->sc_irq = -1;
sc->sc_cid = -1;
sc->sc_pcidev = dev;
if (num_chips < SAFE_MAX_CHIPS) {
safe_chip_idx[device_get_unit(sc->sc_dev)] = sc;
num_chips++;
}
INIT_LIST_HEAD(&sc->sc_pkq);
spin_lock_init(&sc->sc_pkmtx);
pci_set_drvdata(sc->sc_pcidev, sc);
/* we read its hardware registers as memory */
mem_start = pci_resource_start(sc->sc_pcidev, 0);
mem_len = pci_resource_len(sc->sc_pcidev, 0);
sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len);
if (!sc->sc_base_addr) {
device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n",
mem_start, mem_start + mem_len - 1);
goto out;
}
/* fix up the bus size */
if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
goto out;
}
if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n");
goto out;
}
pci_set_master(sc->sc_pcidev);
pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd);
if (!(cmd & PCI_COMMAND_MEMORY)) {
device_printf(sc->sc_dev, "failed to enable memory mapping\n");
goto out;
}
if (!(cmd & PCI_COMMAND_MASTER)) {
device_printf(sc->sc_dev, "failed to enable bus mastering\n");
goto out;
}
rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc);
if (rc) {
device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq);
goto out;
}
sc->sc_irq = dev->irq;
sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
/*
* Allocate packet engine descriptors.
*/
sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
&sc->sc_ringalloc.dma_paddr);
if (!sc->sc_ringalloc.dma_vaddr) {
device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n");
goto out;
}
/*
* Hookup the static portion of all our data structures.
*/
sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
sc->sc_front = sc->sc_ring;
sc->sc_back = sc->sc_ring;
raddr = sc->sc_ringalloc.dma_paddr;
bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
struct safe_ringentry *re = &sc->sc_ring[i];
re->re_desc.d_sa = raddr +
offsetof(struct safe_ringentry, re_sa);
re->re_sa.sa_staterec = raddr +
offsetof(struct safe_ringentry, re_sastate);
raddr += sizeof (struct safe_ringentry);
}
spin_lock_init(&sc->sc_ringmtx);
/*
* Allocate scatter and gather particle descriptors.
*/
sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
&sc->sc_spalloc.dma_paddr);
if (!sc->sc_spalloc.dma_vaddr) {
device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n");
goto out;
}
sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
sc->sc_spfree = sc->sc_spring;
bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
&sc->sc_dpalloc.dma_paddr);
if (!sc->sc_dpalloc.dma_vaddr) {
device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n");
goto out;
}
sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
sc->sc_dpfree = sc->sc_dpring;
bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(sc->sc_dev, "could not get crypto driver id\n");
goto out;
}
printf("%s:", device_get_nameunit(sc->sc_dev));
devinfo = READ_REG(sc, SAFE_DEVINFO);
if (devinfo & SAFE_DEVINFO_RNG) {
sc->sc_flags |= SAFE_FLAGS_RNG;
printf(" rng");
}
if (devinfo & SAFE_DEVINFO_PKEY) {
printf(" key");
sc->sc_flags |= SAFE_FLAGS_KEY;
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
#if 0
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
#endif
init_timer(&sc->sc_pkto);
sc->sc_pkto.function = safe_kpoll;
sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev);
}
if (devinfo & SAFE_DEVINFO_DES) {
printf(" des/3des");
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_AES) {
printf(" aes");
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_MD5) {
printf(" md5");
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_SHA1) {
printf(" sha1");
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
}
printf(" null");
crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
/* XXX other supported algorithms */
printf("\n");
safe_reset_board(sc); /* reset h/w */
safe_init_board(sc); /* init h/w */
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
if (sc->sc_flags & SAFE_FLAGS_RNG) {
safe_rng_init(sc);
crypto_rregister(sc->sc_cid, safe_read_random, sc);
}
#endif /* SAFE_NO_RNG */
return (0);
out:
if (sc->sc_cid >= 0)
crypto_unregister_all(sc->sc_cid);
if (sc->sc_irq != -1)
free_irq(sc->sc_irq, sc);
if (sc->sc_ringalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
if (sc->sc_spalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
if (sc->sc_dpalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
kfree(sc);
return(-ENODEV);
}
static void safe_remove(struct pci_dev *dev)
{
struct safe_softc *sc = pci_get_drvdata(dev);
DPRINTF(("%s()\n", __FUNCTION__));
/* XXX wait/abort active ops */
WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
del_timer_sync(&sc->sc_pkto);
crypto_unregister_all(sc->sc_cid);
safe_cleanchip(sc);
if (sc->sc_irq != -1)
free_irq(sc->sc_irq, sc);
if (sc->sc_ringalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
if (sc->sc_spalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
if (sc->sc_dpalloc.dma_vaddr)
pci_free_consistent(sc->sc_pcidev,
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
sc->sc_irq = -1;
sc->sc_ringalloc.dma_vaddr = NULL;
sc->sc_spalloc.dma_vaddr = NULL;
sc->sc_dpalloc.dma_vaddr = NULL;
}
static struct pci_device_id safe_pci_tbl[] = {
{ PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
{ },
};
MODULE_DEVICE_TABLE(pci, safe_pci_tbl);
static struct pci_driver safe_driver = {
.name = "safe",
.id_table = safe_pci_tbl,
.probe = safe_probe,
.remove = safe_remove,
/* add PM stuff here one day */
};
static int __init safe_init (void)
{
struct safe_softc *sc = NULL;
int rc;
DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init));
rc = pci_register_driver(&safe_driver);
pci_register_driver_compat(&safe_driver, rc);
return rc;
}
static void __exit safe_exit (void)
{
pci_unregister_driver(&safe_driver);
}
module_init(safe_init);
module_exit(safe_exit);
MODULE_LICENSE("BSD");
MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices");