1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-18 20:31:07 +02:00

250 lines
5.9 KiB
C
Raw Normal View History

/*
* Platform independend driver for JZ4740.
*
* Copyright (c) 2007 Ingenic Semiconductor Inc.
* Author: <jlwei@ingenic.cn>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <common.h>
#if defined(CONFIG_CMD_NAND)
#include <nand.h>
#include <asm/io.h>
#include <asm/jz4740.h>
#define __nand_ecc_enable() (REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST )
#define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE)
#define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000)
#define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000)
#define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000)
#define BIT(x) (1 << (x))
#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
#define JZ_NAND_ECC_CTRL_RS BIT(2)
#define JZ_NAND_ECC_CTRL_RESET BIT(1)
#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
static struct nand_ecclayout qi_lb60_ecclayout_2gb = {
.eccbytes = 72,
.eccpos = {
12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83},
.oobfree = {
{.offset = 2,
.length = 10},
{.offset = 84,
.length = 44}}
};
static int is_reading;
static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_ALE)
this->IO_ADDR_W = JZ_NAND_ADDR_ADDR;
else if (ctrl & NAND_CLE)
this->IO_ADDR_W = JZ_NAND_CMD_ADDR;
else
this->IO_ADDR_W = JZ_NAND_DATA_ADDR;
if (ctrl & NAND_NCE)
REG_EMC_NFCSR |= EMC_NFCSR_NFCE1;
else
REG_EMC_NFCSR &= ~EMC_NFCSR_NFCE1;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
static int jz_nand_device_ready(struct mtd_info *mtd)
{
udelay(20);
return (REG_GPIO_PXPIN(2) & 0x40000000) ? 1 : 0;
}
void board_nand_select_device(struct nand_chip *nand, int chip)
{
/*
* Don't use "chip" to address the NAND device,
* generate the cs from the address where it is encoded.
*/
}
static int jz_nand_rs_calculate_ecc(struct mtd_info* mtd, const u_char* dat,
u_char* ecc_code)
{
uint32_t reg, status;
int i;
volatile u8 *paraddr = (volatile u8 *)EMC_NFPAR0;
if(is_reading)
return 0;
do {
status = REG_EMC_NFINTS;
} while(!(status & EMC_NFINTS_ENCF));
__nand_ecc_disable();
for(i = 0; i < 9; i++)
ecc_code[i] = *(paraddr + i);
return 0;
}
static void jz_nand_hwctl(struct mtd_info* mtd, int mode)
{
uint32_t reg;
REG_EMC_NFINTS = 0;
reg = REG_EMC_NFECR;
reg |= JZ_NAND_ECC_CTRL_RESET;
reg |= JZ_NAND_ECC_CTRL_ENABLE;
reg |= JZ_NAND_ECC_CTRL_RS;
switch(mode) {
case NAND_ECC_READ:
reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
is_reading = 1;
break;
case NAND_ECC_WRITE:
reg |= JZ_NAND_ECC_CTRL_ENCODING;
is_reading = 0;
break;
default:
break;
}
REG_EMC_NFECR = reg;
}
/* Correct 1~9-bit errors in 512-bytes data */
static void jz_rs_correct(unsigned char *dat, int idx, int mask)
{
int i;
idx--;
i = idx + (idx >> 3);
if (i >= 512)
return;
mask <<= (idx & 0x7);
dat[i] ^= mask & 0xff;
if (i < 511)
dat[i+1] ^= (mask >> 8) & 0xff;
}
static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
int k;
uint32_t reg, status;
volatile u8 *paraddr = (volatile u8 *)EMC_NFPAR0;
/* Set PAR values */
static uint8_t all_ff_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f};
if (read_ecc[0] == 0xff &&
read_ecc[1] == 0xff &&
read_ecc[2] == 0xff &&
read_ecc[3] == 0xff &&
read_ecc[4] == 0xff &&
read_ecc[5] == 0xff &&
read_ecc[6] == 0xff &&
read_ecc[7] == 0xff &&
read_ecc[8] == 0xff) {
for (k = 0; k < 9; k++)
*(paraddr + k) = all_ff_ecc[k];
} else {
for (k = 0; k < 9; k++)
*(paraddr + k) = read_ecc[k];
}
/* Set PRDY */
REG_EMC_NFECR |= EMC_NFECR_PRDY;
/* Wait for completion */
do {
status = REG_EMC_NFINTS;
} while (!(status & EMC_NFINTS_DECF));
__nand_ecc_disable();
/* Check decoding */
if (status & EMC_NFINTS_ERR) {
if (status & EMC_NFINTS_UNCOR) {
printk("uncorrectable ecc\n");
return -1;
}
uint32_t errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
switch (errcnt) {
case 4:
jz_rs_correct(dat,
(REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT,
(REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
case 3:
jz_rs_correct(dat,
(REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT,
(REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
case 2:
jz_rs_correct(dat,
(REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT,
(REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
case 1:
jz_rs_correct(dat,
(REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT,
(REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT);
return errcnt;
default:
break;
}
}
return 0;
}
/*
* Main initialization routine
*/
int board_nand_init(struct nand_chip *nand)
{
/* EMC setup, Set NFE bit */
REG_EMC_NFCSR |= EMC_NFCSR_NFE1;
REG_EMC_SMCR1 = 0x094c4400;
/* REG_EMC_SMCR3 = 0x04444400; */
nand->IO_ADDR_R = JZ_NAND_DATA_ADDR;
nand->IO_ADDR_W = JZ_NAND_DATA_ADDR;
nand->cmd_ctrl = jz_nand_cmd_ctrl;
nand->dev_ready = jz_nand_device_ready;
nand->ecc.hwctl = jz_nand_hwctl;
nand->ecc.correct = jz_nand_rs_correct_data;
nand->ecc.calculate = jz_nand_rs_calculate_ecc;
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
nand->ecc.layout = &qi_lb60_ecclayout_2gb;
nand->chip_delay = 50;
return 0;
}
#endif /* (CONFIG_CMD_NAND) */