1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-25 04:11:07 +02:00

952 lines
26 KiB
C
Raw Normal View History

/*
* BCM47XX Sonics SiliconBackplane MIPS core routines
*
* Copyright 2004, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id$
*/
#include <typedefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <bcmnvram.h>
#include <bcmutils.h>
#include <hndmips.h>
#include <sbconfig.h>
#include <sbextif.h>
#include <sbchipc.h>
#include <sbmemc.h>
/*
* Memory segments (32bit kernel mode addresses)
*/
#undef KUSEG
#undef KSEG0
#undef KSEG1
#undef KSEG2
#undef KSEG3
#define KUSEG 0x00000000
#define KSEG0 0x80000000
#define KSEG1 0xa0000000
#define KSEG2 0xc0000000
#define KSEG3 0xe0000000
/*
* Map an address to a certain kernel segment
*/
#undef KSEG0ADDR
#undef KSEG1ADDR
#undef KSEG2ADDR
#undef KSEG3ADDR
#define KSEG0ADDR(a) (((a) & 0x1fffffff) | KSEG0)
#define KSEG1ADDR(a) (((a) & 0x1fffffff) | KSEG1)
#define KSEG2ADDR(a) (((a) & 0x1fffffff) | KSEG2)
#define KSEG3ADDR(a) (((a) & 0x1fffffff) | KSEG3)
/*
* The following macros are especially useful for __asm__
* inline assembler.
*/
#ifndef __STR
#define __STR(x) #x
#endif
#ifndef STR
#define STR(x) __STR(x)
#endif
/* *********************************************************************
* CP0 Registers
********************************************************************* */
#define C0_INX 0 /* CP0: TLB Index */
#define C0_RAND 1 /* CP0: TLB Random */
#define C0_TLBLO0 2 /* CP0: TLB EntryLo0 */
#define C0_TLBLO C0_TLBLO0 /* CP0: TLB EntryLo0 */
#define C0_TLBLO1 3 /* CP0: TLB EntryLo1 */
#define C0_CTEXT 4 /* CP0: Context */
#define C0_PGMASK 5 /* CP0: TLB PageMask */
#define C0_WIRED 6 /* CP0: TLB Wired */
#define C0_BADVADDR 8 /* CP0: Bad Virtual Address */
#define C0_COUNT 9 /* CP0: Count */
#define C0_TLBHI 10 /* CP0: TLB EntryHi */
#define C0_COMPARE 11 /* CP0: Compare */
#define C0_SR 12 /* CP0: Processor Status */
#define C0_STATUS C0_SR /* CP0: Processor Status */
#define C0_CAUSE 13 /* CP0: Exception Cause */
#define C0_EPC 14 /* CP0: Exception PC */
#define C0_PRID 15 /* CP0: Processor Revision Indentifier */
#define C0_CONFIG 16 /* CP0: Config */
#define C0_LLADDR 17 /* CP0: LLAddr */
#define C0_WATCHLO 18 /* CP0: WatchpointLo */
#define C0_WATCHHI 19 /* CP0: WatchpointHi */
#define C0_XCTEXT 20 /* CP0: XContext */
#define C0_DIAGNOSTIC 22 /* CP0: Diagnostic */
#define C0_BROADCOM C0_DIAGNOSTIC /* CP0: Broadcom Register */
#define C0_ECC 26 /* CP0: ECC */
#define C0_CACHEERR 27 /* CP0: CacheErr */
#define C0_TAGLO 28 /* CP0: TagLo */
#define C0_TAGHI 29 /* CP0: TagHi */
#define C0_ERREPC 30 /* CP0: ErrorEPC */
/*
* Macros to access the system control coprocessor
*/
#define MFC0(source, sel) \
({ \
int __res; \
__asm__ __volatile__( \
".set\tnoreorder\n\t" \
".set\tnoat\n\t" \
".word\t"STR(0x40010000 | ((source)<<11) | (sel))"\n\t" \
"move\t%0,$1\n\t" \
".set\tat\n\t" \
".set\treorder" \
:"=r" (__res) \
: \
:"$1"); \
__res; \
})
#define MTC0(source, sel, value) \
do { \
__asm__ __volatile__( \
".set\tnoreorder\n\t" \
".set\tnoat\n\t" \
"move\t$1,%z0\n\t" \
".word\t"STR(0x40810000 | ((source)<<11) | (sel))"\n\t" \
".set\tat\n\t" \
".set\treorder" \
: \
:"Jr" (value) \
:"$1"); \
} while (0)
/*
* R4x00 interrupt enable / cause bits
*/
#undef IE_SW0
#undef IE_SW1
#undef IE_IRQ0
#undef IE_IRQ1
#undef IE_IRQ2
#undef IE_IRQ3
#undef IE_IRQ4
#undef IE_IRQ5
#define IE_SW0 (1<< 8)
#define IE_SW1 (1<< 9)
#define IE_IRQ0 (1<<10)
#define IE_IRQ1 (1<<11)
#define IE_IRQ2 (1<<12)
#define IE_IRQ3 (1<<13)
#define IE_IRQ4 (1<<14)
#define IE_IRQ5 (1<<15)
/*
* Bitfields in the R4xx0 cp0 status register
*/
#define ST0_IE 0x00000001
#define ST0_EXL 0x00000002
#define ST0_ERL 0x00000004
#define ST0_KSU 0x00000018
# define KSU_USER 0x00000010
# define KSU_SUPERVISOR 0x00000008
# define KSU_KERNEL 0x00000000
#define ST0_UX 0x00000020
#define ST0_SX 0x00000040
#define ST0_KX 0x00000080
#define ST0_DE 0x00010000
#define ST0_CE 0x00020000
/*
* Status register bits available in all MIPS CPUs.
*/
#define ST0_IM 0x0000ff00
#define ST0_CH 0x00040000
#define ST0_SR 0x00100000
#define ST0_TS 0x00200000
#define ST0_BEV 0x00400000
#define ST0_RE 0x02000000
#define ST0_FR 0x04000000
#define ST0_CU 0xf0000000
#define ST0_CU0 0x10000000
#define ST0_CU1 0x20000000
#define ST0_CU2 0x40000000
#define ST0_CU3 0x80000000
#define ST0_XX 0x80000000 /* MIPS IV naming */
/*
* Cache Operations
*/
#ifndef Fill_I
#define Fill_I 0x14
#endif
#define cache_unroll(base,op) \
__asm__ __volatile__(" \
.set noreorder; \
.set mips3; \
cache %1, (%0); \
.set mips0; \
.set reorder" \
: \
: "r" (base), \
"i" (op));
/*
* These are the UART port assignments, expressed as offsets from the base
* register. These assignments should hold for any serial port based on
* a 8250, 16450, or 16550(A).
*/
#define UART_MCR 4 /* Out: Modem Control Register */
#define UART_MSR 6 /* In: Modem Status Register */
#define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
/*
* Returns TRUE if an external UART exists at the given base
* register.
*/
static bool
serial_exists(uint8 *regs)
{
uint8 save_mcr, status1;
save_mcr = R_REG(&regs[UART_MCR]);
W_REG(&regs[UART_MCR], UART_MCR_LOOP | 0x0a);
status1 = R_REG(&regs[UART_MSR]) & 0xf0;
W_REG(&regs[UART_MCR], save_mcr);
return (status1 == 0x90);
}
/*
* Initializes UART access. The callback function will be called once
* per found UART.
*/
void
sb_serial_init(void *sbh, void (*add)(void *regs, uint irq, uint baud_base, uint reg_shift))
{
void *regs;
ulong base;
uint irq;
int i, n;
if ((regs = sb_setcore(sbh, SB_EXTIF, 0))) {
extifregs_t *eir = (extifregs_t *) regs;
sbconfig_t *sb;
/* Determine external UART register base */
sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF);
base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1)));
/* Determine IRQ */
irq = sb_irq(sbh);
/* Disable GPIO interrupt initially */
W_REG(&eir->gpiointpolarity, 0);
W_REG(&eir->gpiointmask, 0);
/* Search for external UARTs */
n = 2;
for (i = 0; i < 2; i++) {
regs = (void *) REG_MAP(base + (i * 8), 8);
if (serial_exists(regs)) {
/* Set GPIO 1 to be the external UART IRQ */
W_REG(&eir->gpiointmask, 2);
if (add)
add(regs, irq, 13500000, 0);
}
}
/* Add internal UART if enabled */
if (R_REG(&eir->corecontrol) & CC_UE)
if (add)
add((void *) &eir->uartdata, irq, sb_clock(sbh), 2);
} else if ((regs = sb_setcore(sbh, SB_CC, 0))) {
chipcregs_t *cc = (chipcregs_t *) regs;
uint32 rev, cap, pll, baud_base, div;
/* Determine core revision and capabilities */
rev = sb_corerev(sbh);
cap = R_REG(&cc->capabilities);
pll = cap & CAP_PLL_MASK;
/* Determine IRQ */
irq = sb_irq(sbh);
if (pll == PLL_TYPE1) {
/* PLL clock */
baud_base = sb_clock_rate(pll,
R_REG(&cc->clockcontrol_n),
R_REG(&cc->clockcontrol_m2));
div = 1;
} else if (rev >= 3) {
/* Internal backplane clock */
baud_base = sb_clock_rate(pll,
R_REG(&cc->clockcontrol_n),
R_REG(&cc->clockcontrol_sb));
div = 2; /* Minimum divisor */
W_REG(&cc->clkdiv, ((R_REG(&cc->clkdiv) & ~CLKD_UART) | div));
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((rev > 0) && ((R_REG(&cc->corecontrol) & CC_UARTCLKO) == 0)) {
if ((cap & CAP_UCLKSEL) == CAP_UINTCLK) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
/* Add internal UARTs */
n = cap & CAP_UARTS_MASK;
for (i = 0; i < n; i++) {
/* Register offset changed after revision 0 */
if (rev)
regs = (void *)((ulong) &cc->uart0data + (i * 256));
else
regs = (void *)((ulong) &cc->uart0data + (i * 8));
if (add)
add(regs, irq, baud_base, 0);
}
}
}
/* Returns the SB interrupt flag of the current core. */
uint32
sb_flag(void *sbh)
{
void *regs;
sbconfig_t *sb;
regs = sb_coreregs(sbh);
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
return (R_REG(&sb->sbtpsflag) & SBTPS_NUM0_MASK);
}
static const uint32 sbips_int_mask[] = {
0,
SBIPS_INT1_MASK,
SBIPS_INT2_MASK,
SBIPS_INT3_MASK,
SBIPS_INT4_MASK
};
static const uint32 sbips_int_shift[] = {
0,
0,
SBIPS_INT2_SHIFT,
SBIPS_INT3_SHIFT,
SBIPS_INT4_SHIFT
};
/*
* Returns the MIPS IRQ assignment of the current core. If unassigned,
* 0 is returned.
*/
uint
sb_irq(void *sbh)
{
uint idx;
void *regs;
sbconfig_t *sb;
uint32 flag, sbipsflag;
uint irq = 0;
flag = sb_flag(sbh);
idx = sb_coreidx(sbh);
if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
(regs = sb_setcore(sbh, SB_MIPS33, 0))) {
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
/* sbipsflag specifies which core is routed to interrupts 1 to 4 */
sbipsflag = R_REG(&sb->sbipsflag);
for (irq = 1; irq <= 4; irq++) {
if (((sbipsflag & sbips_int_mask[irq]) >> sbips_int_shift[irq]) == flag)
break;
}
if (irq == 5)
irq = 0;
}
sb_setcoreidx(sbh, idx);
return irq;
}
/* Clears the specified MIPS IRQ. */
static void
sb_clearirq(void *sbh, uint irq)
{
void *regs;
sbconfig_t *sb;
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(regs);
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
if (irq == 0)
W_REG(&sb->sbintvec, 0);
else
OR_REG(&sb->sbipsflag, sbips_int_mask[irq]);
}
/*
* Assigns the specified MIPS IRQ to the specified core. Shared MIPS
* IRQ 0 may be assigned more than once.
*/
static void
sb_setirq(void *sbh, uint irq, uint coreid, uint coreunit)
{
void *regs;
sbconfig_t *sb;
uint32 flag;
regs = sb_setcore(sbh, coreid, coreunit);
ASSERT(regs);
flag = sb_flag(sbh);
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(regs);
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
if (irq == 0)
OR_REG(&sb->sbintvec, 1 << flag);
else {
flag <<= sbips_int_shift[irq];
ASSERT(!(flag & ~sbips_int_mask[irq]));
flag |= R_REG(&sb->sbipsflag) & ~sbips_int_mask[irq];
W_REG(&sb->sbipsflag, flag);
}
}
/*
* Initializes clocks and interrupts. SB and NVRAM access must be
* initialized prior to calling.
*/
void
sb_mips_init(void *sbh)
{
ulong hz, ns, tmp;
extifregs_t *eir;
chipcregs_t *cc;
char *value;
uint irq;
/* Figure out current SB clock speed */
if ((hz = sb_clock(sbh)) == 0)
hz = 100000000;
ns = 1000000000 / hz;
/* Setup external interface timing */
if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
/* Initialize extif so we can get to the LEDs and external UART */
W_REG(&eir->prog_config, CF_EN);
/* Set timing for the flash */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set programmable interface timing for external uart */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
} else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
/* Set timing for the flash */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */
tmp |= CEIL(120, ns); /* W0 = 120nS */
W_REG(&cc->flash_waitcount, tmp);
W_REG(&cc->pcmcia_memwait, tmp);
}
/* Chip specific initialization */
switch (sb_chip(sbh)) {
case BCM4710_DEVICE_ID:
/* Clear interrupt map */
for (irq = 0; irq <= 4; irq++)
sb_clearirq(sbh, irq);
sb_setirq(sbh, 0, SB_CODEC, 0);
sb_setirq(sbh, 0, SB_EXTIF, 0);
sb_setirq(sbh, 2, SB_ENET, 1);
sb_setirq(sbh, 3, SB_ILINE20, 0);
sb_setirq(sbh, 4, SB_PCI, 0);
ASSERT(eir);
value = nvram_get("et0phyaddr");
if (value && !strcmp(value, "31")) {
/* Enable internal UART */
W_REG(&eir->corecontrol, CC_UE);
/* Give USB its own interrupt */
sb_setirq(sbh, 1, SB_USB, 0);
} else {
/* Disable internal UART */
W_REG(&eir->corecontrol, 0);
/* Give Ethernet its own interrupt */
sb_setirq(sbh, 1, SB_ENET, 0);
sb_setirq(sbh, 0, SB_USB, 0);
}
break;
case BCM4310_DEVICE_ID:
MTC0(C0_BROADCOM, 0, MFC0(C0_BROADCOM, 0) & ~(1 << 22));
break;
}
}
uint32
sb_mips_clock(void *sbh)
{
extifregs_t *eir;
chipcregs_t *cc;
uint32 n, m;
uint idx;
uint32 pll_type, rate = 0;
/* get index of the current core */
idx = sb_coreidx(sbh);
pll_type = PLL_TYPE1;
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
n = R_REG(&eir->clockcontrol_n);
m = R_REG(&eir->clockcontrol_sb);
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
n = R_REG(&cc->clockcontrol_n);
if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4))
m = R_REG(&cc->clockcontrol_mips);
else if (pll_type == PLL_TYPE3) {
rate = 200000000;
goto out;
} else
m = R_REG(&cc->clockcontrol_sb);
} else
goto out;
/* calculate rate */
rate = sb_clock_rate(pll_type, n, m);
out:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return rate;
}
static void
icache_probe(int *size, int *lsize)
{
uint32 config1;
uint sets, ways;
config1 = MFC0(C0_CONFIG, 1);
/* Instruction Cache Size = Associativity * Line Size * Sets Per Way */
if ((*lsize = ((config1 >> 19) & 7)))
*lsize = 2 << *lsize;
sets = 64 << ((config1 >> 22) & 7);
ways = 1 + ((config1 >> 16) & 7);
*size = *lsize * sets * ways;
}
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)
static void
handler(void)
{
/* Step 11 */
__asm__ (
".set\tmips32\n\t"
"ssnop\n\t"
"ssnop\n\t"
/* Disable interrupts */
/* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
"mfc0 $15, $12\n\t"
"and $15, $15, -31746\n\t"
"mtc0 $15, $12\n\t"
"eret\n\t"
"nop\n\t"
"nop\n\t"
".set\tmips0"
);
}
/* The following MUST come right after handler() */
static void
afterhandler(void)
{
}
/*
* Set the MIPS, backplane and PCI clocks as closely as possible.
*/
bool
sb_mips_setclock(void *sbh, uint32 mipsclock, uint32 sbclock, uint32 pciclock)
{
extifregs_t *eir = NULL;
chipcregs_t *cc = NULL;
mipsregs_t *mipsr = NULL;
volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci;
uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm, new_ratio;
uint32 pll_type, sync_mode;
uint idx, i;
typedef struct {
uint32 mipsclock;
uint16 n;
uint32 sb;
uint32 pci33;
uint32 pci25;
} n3m_table_t;
static n3m_table_t type1_table[] = {
{ 96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011 }, /* 96.000 32.000 24.000 */
{ 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011 }, /* 100.000 33.333 25.000 */
{ 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009 }, /* 104.000 31.200 24.960 */
{ 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802 }, /* 108.000 32.400 24.923 */
{ 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403 }, /* 112.000 32.000 24.889 */
{ 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011 }, /* 115.200 32.000 24.000 */
{ 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011 }, /* 120.000 30.000 24.000 */
{ 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009 }, /* 124.800 31.200 24.960 */
{ 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305 }, /* 128.000 32.000 24.000 */
{ 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305 }, /* 132.000 33.000 24.750 */
{ 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603 }, /* 136.000 32.640 24.727 */
{ 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02 }, /* 140.000 30.000 24.706 */
{ 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021 }, /* 144.000 30.857 24.686 */
{ 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605 }, /* 150.857 33.000 24.000 */
{ 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02 }, /* 152.000 32.571 24.000 */
{ 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009 }, /* 156.000 31.200 24.960 */
{ 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309 }, /* 160.000 32.000 24.000 */
{ 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603 }, /* 163.200 32.640 24.727 */
{ 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403 }, /* 168.000 32.000 24.889 */
{ 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602 }, /* 176.000 33.000 24.000 */
};
typedef struct {
uint32 mipsclock;
uint32 sbclock;
uint16 n;
uint32 sb;
uint32 pci33;
uint32 m2;
uint32 m3;
uint32 ratio;
uint32 ratio_parm;
} n4m_table_t;
static n4m_table_t type2_table[] = {
{ 180000000, 80000000, 0x0403, 0x01010000, 0x01020300, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 180000000, 90000000, 0x0403, 0x01000100, 0x01020300, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
{ 200000000, 100000000, 0x0303, 0x01000000, 0x01000600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
{ 211200000, 105600000, 0x0902, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
{ 220800000, 110400000, 0x1500, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
{ 230400000, 115200000, 0x0604, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
{ 234000000, 104000000, 0x0b01, 0x01010000, 0x01010700, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 240000000, 120000000, 0x0803, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
{ 252000000, 126000000, 0x0504, 0x01000100, 0x01020500, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
{ 264000000, 132000000, 0x0903, 0x01000200, 0x01020700, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
{ 270000000, 120000000, 0x0703, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 276000000, 122666666, 0x1500, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 280000000, 140000000, 0x0503, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
{ 288000000, 128000000, 0x0604, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 288000000, 144000000, 0x0404, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
{ 300000000, 133333333, 0x0803, 0x01010000, 0x01020600, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
{ 300000000, 150000000, 0x0803, 0x01000100, 0x01020600, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }
};
static n4m_table_t type4_table[] = {
{ 192000000, 96000000, 0x0702, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
{ 200000000, 100000000, 0x0009, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
{ 216000000, 108000000, 0x0111, 0x11020005, 0x01030303, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
{ 228000000, 101333333, 0x0e02, 0x11030003, 0x11210005, 0x11030305, 0x04000005, 0x94, 0x012a00a9 },
{ 228000000, 114000000, 0x0e02, 0x11020005, 0x11210005, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
{ 240000000, 120000000, 0x0109, 0x11030002, 0x01050203, 0x11030002, 0x04000003, 0x21, 0x0aaa0555 },
{ 252000000, 126000000, 0x0203, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
{ 264000000, 132000000, 0x0602, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
{ 272000000, 116571428, 0x0c02, 0x04000021, 0x02000909, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
{ 280000000, 120000000, 0x0209, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
{ 288000000, 123428571, 0x0111, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
{ 300000000, 120000000, 0x0009, 0x04000009, 0x01030203, 0x02000902, 0x04000002, 0x52, 0x02520129 }
};
uint icache_size, ic_lsize;
ulong start, end, dst;
bool ret = FALSE;
/* get index of the current core */
idx = sb_coreidx(sbh);
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
pll_type = PLL_TYPE1;
clockcontrol_n = &eir->clockcontrol_n;
clockcontrol_sb = &eir->clockcontrol_sb;
clockcontrol_pci = &eir->clockcontrol_pci;
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
clockcontrol_n = &cc->clockcontrol_n;
clockcontrol_sb = &cc->clockcontrol_sb;
clockcontrol_pci = &cc->clockcontrol_pci;
} else
goto done;
/* Store the current clock register values */
orig_n = R_REG(clockcontrol_n);
orig_sb = R_REG(clockcontrol_sb);
orig_pci = R_REG(clockcontrol_pci);
if (pll_type == PLL_TYPE1) {
/* Keep the current PCI clock if not specified */
if (pciclock == 0) {
pciclock = sb_clock_rate(pll_type, R_REG(clockcontrol_n), R_REG(clockcontrol_pci));
pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
}
/* Search for the closest MIPS clock less than or equal to a preferred value */
for (i = 0; i < ARRAYSIZE(type1_table); i++) {
ASSERT(type1_table[i].mipsclock ==
sb_clock_rate(pll_type, type1_table[i].n, type1_table[i].sb));
if (type1_table[i].mipsclock > mipsclock)
break;
}
if (i == 0) {
ret = FALSE;
goto done;
} else {
ret = TRUE;
i--;
}
ASSERT(type1_table[i].mipsclock <= mipsclock);
/* No PLL change */
if ((orig_n == type1_table[i].n) &&
(orig_sb == type1_table[i].sb) &&
(orig_pci == type1_table[i].pci33))
goto done;
/* Set the PLL controls */
W_REG(clockcontrol_n, type1_table[i].n);
W_REG(clockcontrol_sb, type1_table[i].sb);
if (pciclock == 25000000)
W_REG(clockcontrol_pci, type1_table[i].pci25);
else
W_REG(clockcontrol_pci, type1_table[i].pci33);
/* Reset */
sb_watchdog(sbh, 1);
while (1);
} else if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) {
n4m_table_t *table = (pll_type == PLL_TYPE2) ? type2_table : type4_table;
uint tabsz = (pll_type == PLL_TYPE2) ? ARRAYSIZE(type2_table) : ARRAYSIZE(type4_table);
ASSERT(cc);
/* Store the current clock register values */
orig_m2 = R_REG(&cc->clockcontrol_m2);
orig_mips = R_REG(&cc->clockcontrol_mips);
orig_ratio_parm = 0;
/* Look up current ratio */
for (i = 0; i < tabsz; i++) {
if ((orig_n == table[i].n) &&
(orig_sb == table[i].sb) &&
(orig_pci == table[i].pci33) &&
(orig_m2 == table[i].m2) &&
(orig_mips == table[i].m3)) {
orig_ratio_parm = table[i].ratio_parm;
break;
}
}
/* Search for the closest MIPS clock greater or equal to a preferred value */
for (i = 0; i < tabsz; i++) {
ASSERT(table[i].mipsclock ==
sb_clock_rate(pll_type, table[i].n, table[i].m3));
if ((mipsclock <= table[i].mipsclock) &&
((sbclock == 0) || (sbclock <= table[i].sbclock)))
break;
}
if (i == tabsz) {
ret = FALSE;
goto done;
} else {
ret = TRUE;
}
/* No PLL change */
if ((orig_n == table[i].n) &&
(orig_sb == table[i].sb) &&
(orig_pci == table[i].pci33) &&
(orig_m2 == table[i].m2) &&
(orig_mips == table[i].m3))
goto done;
/* Set the PLL controls */
W_REG(clockcontrol_n, table[i].n);
W_REG(clockcontrol_sb, table[i].sb);
W_REG(clockcontrol_pci, table[i].pci33);
W_REG(&cc->clockcontrol_m2, table[i].m2);
W_REG(&cc->clockcontrol_mips, table[i].m3);
/* No ratio change */
if (orig_ratio_parm == table[i].ratio_parm)
goto end_fill;
new_ratio = table[i].ratio_parm;
icache_probe(&icache_size, &ic_lsize);
/* Preload the code into the cache */
start = ((ulong) &&start_fill) & ~(ic_lsize - 1);
end = ((ulong) &&end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
while (start < end) {
cache_unroll(start, Fill_I);
start += ic_lsize;
}
/* Copy the handler */
start = (ulong) &handler;
end = (ulong) &afterhandler;
dst = KSEG1ADDR(0x180);
for (i = 0; i < (end - start); i += 4)
*((ulong *)(dst + i)) = *((ulong *)(start + i));
/* Preload handler into the cache one line at a time */
for (i = 0; i < (end - start); i += 4)
cache_unroll(dst + i, Fill_I);
/* Clear BEV bit */
MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);
/* Enable interrupts */
MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));
/* Enable MIPS timer interrupt */
if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
!(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(mipsr);
W_REG(&mipsr->intmask, 1);
start_fill:
/* step 1, set clock ratios */
MTC0(C0_BROADCOM, 3, new_ratio);
MTC0(C0_BROADCOM, 1, 8);
/* step 2: program timer intr */
W_REG(&mipsr->timer, 100);
(void) R_REG(&mipsr->timer);
/* step 3, switch to async */
sync_mode = MFC0(C0_BROADCOM, 4);
MTC0(C0_BROADCOM, 4, 1 << 22);
/* step 4, set cfg active */
MTC0(C0_BROADCOM, 2, 0x9);
/* steps 5 & 6 */
__asm__ __volatile__ (
".set\tmips3\n\t"
"wait\n\t"
".set\tmips0"
);
/* step 7, clear cfg_active */
MTC0(C0_BROADCOM, 2, 0);
/* Additional Step: set back to orig sync mode */
MTC0(C0_BROADCOM, 4, sync_mode);
/* step 8, fake soft reset */
MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | 4);
end_fill:
/* step 9 set watchdog timer */
sb_watchdog(sbh, 20);
(void) R_REG(&cc->chipid);
/* step 11 */
__asm__ __volatile__ (
".set\tmips3\n\t"
"sync\n\t"
"wait\n\t"
".set\tmips0"
);
while (1);
}
done:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return ret;
}
/* returns the ncdl value to be programmed into sdram_ncdl for calibration */
uint32
sb_memc_get_ncdl(void *sbh)
{
sbmemcregs_t *memc;
uint32 ret = 0;
uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
uint idx, rev;
idx = sb_coreidx(sbh);
memc = (sbmemcregs_t *)sb_setcore(sbh, SB_MEMC, 0);
if (memc == 0)
goto out;
rev = sb_corerev(sbh);
config = R_REG(&memc->config);
wr = R_REG(&memc->wrncdlcor);
rd = R_REG(&memc->rdncdlcor);
misc = R_REG(&memc->miscdlyctl);
dqsg = R_REG(&memc->dqsgatencdl);
rd &= MEMC_RDNCDLCOR_RD_MASK;
wr &= MEMC_WRNCDLCOR_WR_MASK;
dqsg &= MEMC_DQSGATENCDL_G_MASK;
if (config & MEMC_CONFIG_DDR) {
ret = (wr << 16) | (rd << 8) | dqsg;
} else {
if (rev > 0)
cd = rd;
else
cd = (rd == MEMC_CD_THRESHOLD) ? rd : (wr + MEMC_CD_THRESHOLD);
sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
ret = (sm << 16) | (sd << 8) | cd;
}
out:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return ret;
}