1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-24 17:31:06 +02:00

2508 lines
82 KiB
C
Raw Normal View History

/******************************************************************************
**
** FILE NAME : ifxmips_atm_core.c
** PROJECT : UEIP
** MODULES : ATM
**
** DATE : 7 Jul 2009
** AUTHOR : Xu Liang
** DESCRIPTION : ATM driver common source file (core functions)
** COPYRIGHT : Copyright (c) 2006
** Infineon Technologies AG
** Am Campeon 1-12, 85579 Neubiberg, Germany
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** HISTORY
** $Date $Author $Comment
** 07 JUL 2009 Xu Liang Init Version
*******************************************************************************/
/*
* ####################################
* Version No.
* ####################################
*/
#define IFX_ATM_VER_MAJOR 1
#define IFX_ATM_VER_MID 0
#define IFX_ATM_VER_MINOR 8
/*
* ####################################
* Head File
* ####################################
*/
/*
* Common Head File
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/atmdev.h>
#include <linux/atm.h>
/*
* Chip Specific Head File
*/
#include <asm/ifx/ifx_types.h>
#include <asm/ifx/ifx_regs.h>
#include <asm/ifx/common_routines.h>
#include "ifxmips_atm_core.h"
/*
* ####################################
* Kernel Version Adaption
* ####################################
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
#define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
#define MODULE_PARM(a, b) module_param(a, int, 0)
#else
#define MODULE_PARM_ARRAY(a, b) MODULE_PARM(a, b)
#endif
/*!
\addtogroup IFXMIPS_ATM_MODULE_PARAMS
*/
/*@{*/
/*
* ####################################
* Parameters to Configure PPE
* ####################################
*/
/*!
\brief QSB cell delay variation due to concurrency
*/
static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
/*!
\brief QSB scheduler burst length
*/
static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
/*!
\brief QSB time step, all legal values are 1, 2, 4
*/
static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
/*!
\brief Write descriptor delay
*/
static int write_descriptor_delay = 0x20; /* Write descriptor delay */
/*!
\brief AAL5 padding byte ('~')
*/
static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
/*!
\brief Max frame size for RX
*/
static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
/*!
\brief Min frame size for RX
*/
static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
/*!
\brief Max frame size for TX
*/
static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
/*!
\brief Min frame size for TX
*/
static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
/*!
\brief Drop error packet in RX path
*/
static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
/*!
\brief Number of descriptors per DMA RX channel
*/
static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
/*!
\brief Number of descriptors per DMA TX channel
*/
static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
/*!
\brief PPE core clock cycles between descriptor write and effectiveness in external RAM
*/
static int dma_rx_clp1_descriptor_threshold = 38;
/*@}*/
MODULE_PARM(qsb_tau, "i");
MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
MODULE_PARM(qsb_srvm, "i");
MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
MODULE_PARM(qsb_tstep, "i");
MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
MODULE_PARM(write_descriptor_delay, "i");
MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
MODULE_PARM(aal5_fill_pattern, "i");
MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
MODULE_PARM(aal5r_max_packet_size, "i");
MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5r_min_packet_size, "i");
MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5s_max_packet_size, "i");
MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5s_min_packet_size, "i");
MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5r_drop_error_packet, "i");
MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
MODULE_PARM(dma_rx_descriptor_length, "i");
MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
MODULE_PARM(dma_tx_descriptor_length, "i");
MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
/*
* ####################################
* Definition
* ####################################
*/
#define DUMP_SKB_LEN ~0
/*
* ####################################
* Declaration
* ####################################
*/
/*
* Network Operations
*/
static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
static int ppe_open(struct atm_vcc *);
static void ppe_close(struct atm_vcc *);
static int ppe_send(struct atm_vcc *, struct sk_buff *);
static int ppe_send_oam(struct atm_vcc *, void *, int);
static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
/*
* ADSL LED
*/
static INLINE int adsl_led_flash(void);
/*
* 64-bit operation used by MIB calculation
*/
static INLINE void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
/*
* buffer manage functions
*/
static INLINE struct sk_buff* alloc_skb_rx(void);
static INLINE struct sk_buff* alloc_skb_tx(unsigned int);
struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
static INLINE void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int);
static INLINE int get_tx_desc(unsigned int);
/*
* mailbox handler and signal function
*/
static INLINE void mailbox_oam_rx_handler(void);
static INLINE void mailbox_aal_rx_handler(void);
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
static void do_ppe_tasklet(unsigned long);
#endif
static irqreturn_t mailbox_irq_handler(int, void *);
static INLINE void mailbox_signal(unsigned int, int);
/*
* QSB & HTU setting functions
*/
static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
static void qsb_global_set(void);
static INLINE void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
static INLINE void clear_htu_entry(unsigned int);
static void validate_oam_htu_entry(void);
static void invalidate_oam_htu_entry(void);
/*
* look up for connection ID
*/
static INLINE int find_vpi(unsigned int);
static INLINE int find_vpivci(unsigned int, unsigned int);
static INLINE int find_vcc(struct atm_vcc *);
/*
* Debug Functions
*/
#if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
static void dump_skb(struct sk_buff *, u32, char *, int, int, int);
#else
#define dump_skb(skb, len, title, port, ch, is_tx) do {} while (0)
#endif
/*
* Proc File Functions
*/
static INLINE void proc_file_create(void);
static INLINE void proc_file_delete(void);
static int proc_read_version(char *, char **, off_t, int, int *, void *);
static int proc_read_mib(char *, char **, off_t, int, int *, void *);
static int proc_write_mib(struct file *, const char *, unsigned long, void *);
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int proc_read_dbg(char *, char **, off_t, int, int *, void *);
static int proc_write_dbg(struct file *, const char *, unsigned long, void *);
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
static int proc_read_htu(char *, char **, off_t, int, int *, void *);
static int proc_read_txq(char *, char **, off_t, int, int *, void *);
#endif
/*
* Proc Help Functions
*/
static int stricmp(const char *, const char *);
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int strincmp(const char *, const char *, int);
#endif
static INLINE int ifx_atm_version(char *);
//static INLINE int print_reset_domain(char *, int);
//static INLINE int print_reset_handler(char *, int, ifx_rcu_handler_t *);
/*
* Init & clean-up functions
*/
#ifdef MODULE
static INLINE void reset_ppe(void);
#endif
static INLINE void check_parameters(void);
static INLINE int init_priv_data(void);
static INLINE void clear_priv_data(void);
static INLINE void init_rx_tables(void);
static INLINE void init_tx_tables(void);
/*
* Exteranl Function
*/
#if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
extern void ifx_push_oam(unsigned char *);
#else
static inline void ifx_push_oam(unsigned char *dummy) {}
#endif
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
extern int ifx_mei_atm_led_blink(void);
extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
#else
static inline int ifx_mei_atm_led_blink(void) { return IFX_SUCCESS; }
static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
{
if ( is_showtime != NULL )
*is_showtime = 0;
return IFX_SUCCESS;
}
#endif
/*
* External variable
*/
extern struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int);
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
extern int (*ifx_mei_atm_showtime_exit)(void);
#else
int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
int (*ifx_mei_atm_showtime_exit)(void) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
#endif
/*
* ####################################
* Local Variable
* ####################################
*/
static struct atm_priv_data g_atm_priv_data;
static struct atmdev_ops g_ifx_atm_ops = {
.open = ppe_open,
.close = ppe_close,
.ioctl = ppe_ioctl,
.send = ppe_send,
.send_oam = ppe_send_oam,
.change_qos = ppe_change_qos,
.owner = THIS_MODULE,
};
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
#endif
static int g_showtime = 0;
static void *g_xdata_addr = NULL;
unsigned int ifx_atm_dbg_enable = 0;
static struct proc_dir_entry* g_atm_dir = NULL;
/*
* ####################################
* Local Function
* ####################################
*/
static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
{
int ret = 0;
atm_cell_ifEntry_t mib_cell;
atm_aal5_ifEntry_t mib_aal5;
atm_aal5_vcc_x_t mib_vcc;
unsigned int value;
int conn;
if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
|| _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
return -ENOTTY;
if ( _IOC_DIR(cmd) & _IOC_READ )
ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
else if ( _IOC_DIR(cmd) & _IOC_WRITE )
ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
if ( ret )
return -EFAULT;
switch ( cmd )
{
case PPE_ATM_MIB_CELL: /* cell level MIB */
/* These MIB should be read at ARC side, now put zero only. */
mib_cell.ifHCInOctets_h = 0;
mib_cell.ifHCInOctets_l = 0;
mib_cell.ifHCOutOctets_h = 0;
mib_cell.ifHCOutOctets_l = 0;
mib_cell.ifInErrors = 0;
mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
mib_cell.ifOutErrors = 0;
ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
break;
case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
value = WAN_MIB_TABLE->wrx_total_byte;
u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
g_atm_priv_data.prev_wrx_total_byte = value;
mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
value = WAN_MIB_TABLE->wtx_total_byte;
u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
g_atm_priv_data.prev_wtx_total_byte = value;
mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
break;
case PPE_ATM_MIB_VCC: /* VCC related MIB */
copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
if ( conn >= 0 )
{
mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
}
else
ret = -EINVAL;
break;
default:
ret = -ENOIOCTLCMD;
}
return ret;
}
static int ppe_open(struct atm_vcc *vcc)
{
int ret;
short vpi = vcc->vpi;
int vci = vcc->vci;
struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
int conn;
int f_enable_irq = 0;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
int sys_flag;
#endif
if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
return -EPROTONOSUPPORT;
/* check bandwidth */
if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
{
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
/* check existing vpi,vci */
conn = find_vpivci(vpi, vci);
if ( conn >= 0 ) {
ret = -EADDRINUSE;
goto PPE_OPEN_EXIT;
}
/* check whether it need to enable irq */
if ( g_atm_priv_data.conn_table == 0 )
f_enable_irq = 1;
/* allocate connection */
for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[conn].vcc = vcc;
break;
}
}
if ( conn == MAX_PVC_NUMBER )
{
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
/* reserve bandwidth */
switch ( vcc->qos.txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate += vcc->qos.txtp.scr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
break;
}
/* set qsb */
set_qsb(vcc, &vcc->qos, conn);
/* update atm_vcc structure */
vcc->itf = (int)vcc->dev->dev_data;
vcc->vpi = vpi;
vcc->vci = vci;
set_bit(ATM_VF_READY, &vcc->flags);
/* enable irq */
if (f_enable_irq ) {
ifx_atm_alloc_tx = atm_alloc_tx;
*MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
*MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
enable_irq(PPE_MAILBOX_IGU1_INT);
}
/* set port */
WTX_QUEUE_CONFIG(conn)->sbid = (int)vcc->dev->dev_data;
/* set htu entry */
set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
// ReTX: occupy second QID
local_irq_save(sys_flag);
if ( g_retx_htu && vcc->qos.aal == ATM_AAL5 )
{
int retx_conn = (conn + 8) % 16; // ReTX queue
if ( retx_conn < MAX_PVC_NUMBER && test_and_set_bit(retx_conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[retx_conn].vcc = vcc;
set_htu_entry(vpi, vci, retx_conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 1);
}
}
local_irq_restore(sys_flag);
#endif
ret = 0;
PPE_OPEN_EXIT:
return ret;
}
static void ppe_close(struct atm_vcc *vcc)
{
int conn;
struct port *port;
struct connection *connection;
if ( vcc == NULL )
return;
/* get connection id */
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("can't find vcc");
goto PPE_CLOSE_EXIT;
}
connection = &g_atm_priv_data.conn[conn];
port = &g_atm_priv_data.port[connection->port];
/* clear htu */
clear_htu_entry(conn);
/* release connection */
clear_bit(conn, &g_atm_priv_data.conn_table);
connection->vcc = NULL;
connection->aal5_vcc_crc_err = 0;
connection->aal5_vcc_oversize_sdu = 0;
/* disable irq */
if ( g_atm_priv_data.conn_table == 0 ) {
disable_irq(PPE_MAILBOX_IGU1_INT);
ifx_atm_alloc_tx = NULL;
}
/* release bandwidth */
switch ( vcc->qos.txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate -= vcc->qos.txtp.scr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
break;
}
PPE_CLOSE_EXIT:
return;
}
static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
int ret;
int conn;
int desc_base;
struct tx_descriptor reg_desc = {0};
if ( vcc == NULL || skb == NULL )
return -EINVAL;
skb_get(skb);
atm_free_tx_skb_vcc(skb, vcc);
conn = find_vcc(vcc);
if ( conn < 0 ) {
ret = -EINVAL;
goto FIND_VCC_FAIL;
}
if ( !g_showtime ) {
err("not in showtime");
ret = -EIO;
goto PPE_SEND_FAIL;
}
if ( vcc->qos.aal == ATM_AAL5 ) {
int byteoff;
int datalen;
struct tx_inband_header *header;
datalen = skb->len;
byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH ) {
struct sk_buff *new_skb;
new_skb = alloc_skb_tx(datalen);
if ( new_skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
ret = -ENOMEM;
goto PPE_SEND_FAIL;
}
skb_put(new_skb, datalen);
memcpy(new_skb->data, skb->data, datalen);
dev_kfree_skb_any(skb);
skb = new_skb;
byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
}
skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
header = (struct tx_inband_header *)skb->data;
/* setup inband trailer */
header->uu = 0;
header->cpi = 0;
header->pad = aal5_fill_pattern;
header->res1 = 0;
/* setup cell header */
header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
header->pti = ATM_PTI_US0;
header->vci = vcc->vci;
header->vpi = vcc->vpi;
header->gfc = 0;
/* setup descriptor */
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = datalen;
reg_desc.byteoff = byteoff;
reg_desc.iscell = 0;
}
else {
/* if data pointer is not aligned, allocate new sk_buff */
if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
struct sk_buff *new_skb;
err("skb->data not aligned");
new_skb = alloc_skb_tx(skb->len);
if ( new_skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
ret = -ENOMEM;
goto PPE_SEND_FAIL;
}
skb_put(new_skb, skb->len);
memcpy(new_skb->data, skb->data, skb->len);
dev_kfree_skb_any(skb);
skb = new_skb;
}
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = skb->len;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
}
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
err("ALLOC_TX_CONNECTION_FAIL");
ret = -EIO;
goto PPE_SEND_FAIL;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_pdu++;
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
/* write discriptor to memory and write back cache */
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dma_cache_wback((unsigned long)skb->data, skb->len);
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
mailbox_signal(conn, 1);
adsl_led_flash();
return 0;
FIND_VCC_FAIL:
err("FIND_VCC_FAIL");
g_atm_priv_data.wtx_err_pdu++;
dev_kfree_skb_any(skb);
return ret;
PPE_SEND_FAIL:
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return ret;
}
static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
{
int conn;
struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
int desc_base;
struct sk_buff *skb;
struct tx_descriptor reg_desc = {0};
if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
&& find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
|| ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
&& find_vpi(uni_cell_header->vpi) < 0) )
return -EINVAL;
if ( !g_showtime ) {
err("not in showtime");
return -EIO;
}
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("FIND_VCC_FAIL");
return -EINVAL;
}
skb = alloc_skb_tx(CELL_SIZE);
if ( skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
return -ENOMEM;
}
memcpy(skb->data, cell, CELL_SIZE);
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = CELL_SIZE;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
dev_kfree_skb_any(skb);
err("ALLOC_TX_CONNECTION_FAIL");
return -EIO;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
/* write discriptor to memory and write back cache */
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
mailbox_signal(conn, 1);
adsl_led_flash();
return 0;
}
static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
{
int conn;
if ( vcc == NULL || qos == NULL )
return -EINVAL;
conn = find_vcc(vcc);
if ( conn < 0 )
return -EINVAL;
set_qsb(vcc, qos, conn);
return 0;
}
static INLINE int adsl_led_flash(void)
{
return ifx_mei_atm_led_blink();
}
/*
* Description:
* Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
* Input:
* opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
* opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
* ret --- ppe_u64_t, pointer to a variable to hold result
* Output:
* none
*/
static INLINE void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
{
ret->l = opt1.l + opt2;
if ( ret->l < opt1.l || ret->l < opt2 )
ret->h++;
}
static INLINE struct sk_buff* alloc_skb_rx(void)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
if ( skb != NULL ) {
/* must be burst length alignment */
if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
/* pub skb in reserved area "skb->data - 4" */
*((struct sk_buff **)skb->data - 1) = skb;
/* write back and invalidate cache */
dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
/* invalidate cache */
dma_cache_inv((unsigned long)skb->data, (unsigned int)skb->end - (unsigned int)skb->data);
}
return skb;
}
static INLINE struct sk_buff* alloc_skb_tx(unsigned int size)
{
struct sk_buff *skb;
/* allocate memory including header and padding */
size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
size &= ~(DATA_BUFFER_ALIGNMENT - 1);
skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
/* must be burst length alignment */
if ( skb != NULL )
skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
return skb;
}
struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
{
int conn;
struct sk_buff *skb;
/* oversize packet */
if ( size > aal5s_max_packet_size ) {
err("atm_alloc_tx: oversize packet");
return NULL;
}
/* send buffer overflow */
if ( atomic_read(&sk_atm(vcc)->sk_wmem_alloc) && !atm_may_send(vcc, size) ) {
err("atm_alloc_tx: send buffer overflow");
return NULL;
}
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("atm_alloc_tx: unknown VCC");
return NULL;
}
skb = dev_alloc_skb(size);
if ( skb == NULL ) {
err("atm_alloc_tx: sk buffer is used up");
return NULL;
}
atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
return skb;
}
static INLINE void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
{
if ( vcc->pop != NULL )
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
}
static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
{
unsigned int skb_dataptr;
struct sk_buff *skb;
skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
skb = *(struct sk_buff **)skb_dataptr;
ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
return skb;
}
static INLINE int get_tx_desc(unsigned int conn)
{
int desc_base = -1;
struct connection *p_conn = &g_atm_priv_data.conn[conn];
if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
desc_base = p_conn->tx_desc_pos;
if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
p_conn->tx_desc_pos = 0;
}
return desc_base;
}
static INLINE void mailbox_oam_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
struct rx_descriptor reg_desc;
struct uni_cell_header *header;
int conn;
struct atm_vcc *vcc;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
do {
reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
conn = find_vpivci(header->vpi, header->vci);
else if ( header->vci == 0x03 || header->vci == 0x04 )
conn = find_vpi(header->vpi);
else
conn = -1;
if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
if ( vcc->push_oam != NULL )
vcc->push_oam(vcc, header);
else
ifx_push_oam((unsigned char *)header);
adsl_led_flash();
}
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
g_atm_priv_data.oam_desc_pos = 0;
mailbox_signal(RX_DMA_CH_OAM, 0);
}
}
static INLINE void mailbox_aal_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
struct rx_descriptor reg_desc;
int conn;
struct atm_vcc *vcc;
struct sk_buff *skb, *new_skb;
struct rx_inband_trailer *trailer;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
do {
reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
conn = reg_desc.id;
if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
skb = get_skb_rx_pointer(reg_desc.dataptr);
if ( reg_desc.err ) {
if ( vcc->qos.aal == ATM_AAL5 ) {
trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
if ( trailer->stw_crc )
g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
if ( trailer->stw_ovz )
g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
g_atm_priv_data.wrx_drop_pdu++;
}
if ( vcc->stats ) {
atomic_inc(&vcc->stats->rx_drop);
atomic_inc(&vcc->stats->rx_err);
}
}
else if ( atm_charge(vcc, skb->truesize) ) {
new_skb = alloc_skb_rx();
if ( new_skb != NULL ) {
skb_reserve(skb, reg_desc.byteoff);
skb_put(skb, reg_desc.datalen);
ATM_SKB(skb)->vcc = vcc;
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 0);
vcc->push(vcc, skb);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx);
adsl_led_flash();
reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
}
else {
atm_return(vcc, skb->truesize);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
}
else {
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
}
else {
g_atm_priv_data.wrx_drop_pdu++;
}
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
g_atm_priv_data.aal_desc_pos = 0;
mailbox_signal(RX_DMA_CH_AAL, 0);
}
}
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
static void do_ppe_tasklet(unsigned long arg)
{
*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
mailbox_oam_rx_handler();
mailbox_aal_rx_handler();
if ( (*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0 )
tasklet_schedule(&g_dma_tasklet);
else
enable_irq(PPE_MAILBOX_IGU1_INT);
}
#endif
static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
{
if ( !*MBOX_IGU1_ISR )
return IRQ_HANDLED;
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
disable_irq(PPE_MAILBOX_IGU1_INT);
tasklet_schedule(&g_dma_tasklet);
#else
*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
mailbox_oam_rx_handler();
mailbox_aal_rx_handler();
#endif
return IRQ_HANDLED;
}
static INLINE void mailbox_signal(unsigned int queue, int is_tx)
{
if ( is_tx ) {
while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) );
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
}
else {
while ( MBOX_IGU3_ISR_ISR(queue) );
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
}
}
static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
{
unsigned int qsb_clk = ifx_get_fpi_hz();
unsigned int qsb_qid = queue + FIRST_QSB_QID;
union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
unsigned int tmp;
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
static char *str_traffic_class[9] = {
"ATM_NONE",
"ATM_UBR",
"ATM_CBR",
"ATM_VBR",
"ATM_ABR",
"ATM_ANYCLASS",
"ATM_VBR_RT",
"ATM_UBR_PLUS",
"ATM_MAX_PCR"
};
printk(KERN_INFO "QoS Parameters:\n");
printk(KERN_INFO "\tAAL : %d\n", qos->aal);
printk(KERN_INFO "\tTX Traffic Class: %s\n", str_traffic_class[qos->txtp.traffic_class]);
printk(KERN_INFO "\tTX Max PCR : %d\n", qos->txtp.max_pcr);
printk(KERN_INFO "\tTX Min PCR : %d\n", qos->txtp.min_pcr);
printk(KERN_INFO "\tTX PCR : %d\n", qos->txtp.pcr);
printk(KERN_INFO "\tTX Max CDV : %d\n", qos->txtp.max_cdv);
printk(KERN_INFO "\tTX Max SDU : %d\n", qos->txtp.max_sdu);
printk(KERN_INFO "\tTX SCR : %d\n", qos->txtp.scr);
printk(KERN_INFO "\tTX MBS : %d\n", qos->txtp.mbs);
printk(KERN_INFO "\tTX CDV : %d\n", qos->txtp.cdv);
printk(KERN_INFO "\tRX Traffic Class: %s\n", str_traffic_class[qos->rxtp.traffic_class]);
printk(KERN_INFO "\tRX Max PCR : %d\n", qos->rxtp.max_pcr);
printk(KERN_INFO "\tRX Min PCR : %d\n", qos->rxtp.min_pcr);
printk(KERN_INFO "\tRX PCR : %d\n", qos->rxtp.pcr);
printk(KERN_INFO "\tRX Max CDV : %d\n", qos->rxtp.max_cdv);
printk(KERN_INFO "\tRX Max SDU : %d\n", qos->rxtp.max_sdu);
printk(KERN_INFO "\tRX SCR : %d\n", qos->rxtp.scr);
printk(KERN_INFO "\tRX MBS : %d\n", qos->rxtp.mbs);
printk(KERN_INFO "\tRX CDV : %d\n", qos->rxtp.cdv);
}
#endif // defined(DEBUG_QOS) && DEBUG_QOS
/*
* Peak Cell Rate (PCR) Limiter
*/
if ( qos->txtp.max_pcr == 0 )
qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
else {
/* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
/* check if overflow takes place */
qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
}
// A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
// Send packets to these two PVCs at same time, it trigger strange behavior.
// In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
// In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
// To work around, create UBR always with max_pcr.
// If user want to create UBR without max_pcr, we give a default one larger than line-rate.
if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
int port = g_atm_priv_data.conn[queue].port;
unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
if ( tmp > QSB_TP_TS_MAX )
tmp = QSB_TP_TS_MAX;
else if ( tmp < 1 )
tmp = 1;
qsb_queue_parameter_table.bit.tp = tmp;
}
/*
* Weighted Fair Queueing Factor (WFQF)
*/
switch ( qos->txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
/* real time queue gets weighted fair queueing bypass */
qsb_queue_parameter_table.bit.wfqf = 0;
break;
case ATM_VBR_NRT:
case ATM_UBR_PLUS:
/* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
/* WFQF is maximum cell rate / garenteed cell rate */
/* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
if ( qos->txtp.min_pcr == 0 )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
{
tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
if ( tmp == 0 )
qsb_queue_parameter_table.bit.wfqf = 1;
else if ( tmp > QSB_WFQ_NONUBR_MAX )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
qsb_queue_parameter_table.bit.wfqf = tmp;
}
break;
default:
case ATM_UBR:
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
}
/*
* Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
*/
if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
if ( qos->txtp.scr == 0 ) {
/* disable shaper */
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
else {
/* Cell Loss Priority (CLP) */
if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
/* CLP1 */
qsb_queue_parameter_table.bit.vbr = 1;
else
/* CLP0 */
qsb_queue_parameter_table.bit.vbr = 0;
/* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
if ( tmp == 0 )
qsb_queue_vbr_parameter_table.bit.taus = 1;
else if ( tmp > QSB_TAUS_MAX )
qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
else
qsb_queue_vbr_parameter_table.bit.taus = tmp;
}
}
else {
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
/* Queue Parameter Table (QPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("QPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
/* Queue VBR Paramter Table (QVPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("QVPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
printk("set_qsb\n");
printk(" qsb_clk = %lu\n", (unsigned long)qsb_clk);
printk(" qsb_queue_parameter_table.bit.tp = %d\n", (int)qsb_queue_parameter_table.bit.tp);
printk(" qsb_queue_parameter_table.bit.wfqf = %d (0x%08X)\n", (int)qsb_queue_parameter_table.bit.wfqf, (int)qsb_queue_parameter_table.bit.wfqf);
printk(" qsb_queue_parameter_table.bit.vbr = %d\n", (int)qsb_queue_parameter_table.bit.vbr);
printk(" qsb_queue_parameter_table.dword = 0x%08X\n", (int)qsb_queue_parameter_table.dword);
printk(" qsb_queue_vbr_parameter_table.bit.ts = %d\n", (int)qsb_queue_vbr_parameter_table.bit.ts);
printk(" qsb_queue_vbr_parameter_table.bit.taus = %d\n", (int)qsb_queue_vbr_parameter_table.bit.taus);
printk(" qsb_queue_vbr_parameter_table.dword = 0x%08X\n", (int)qsb_queue_vbr_parameter_table.dword);
}
#endif
}
static void qsb_global_set(void)
{
unsigned int qsb_clk = ifx_get_fpi_hz();
int i;
unsigned int tmp1, tmp2, tmp3;
*QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
*QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
*QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
printk("qsb_clk = %u\n", qsb_clk);
printk("QSB_ICDV (%08X) = %d (%d), QSB_SBL (%08X) = %d (%d), QSB_CFG (%08X) = %d (%d)\n", (unsigned int)QSB_ICDV, *QSB_ICDV, QSB_ICDV_TAU_SET(qsb_tau), (unsigned int)QSB_SBL, *QSB_SBL, QSB_SBL_SBL_SET(qsb_srvm), (unsigned int)QSB_CFG, *QSB_CFG, QSB_CFG_TSTEPC_SET(qsb_tstep >> 1));
}
#endif
/*
* set SCT and SPT per port
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
tmp2 = tmp1 >> 6; /* integer value of Tsb */
tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
/* carry over to integer part (?) */
if ( tmp3 == (1 << 6) )
{
tmp3 = 0;
tmp2++;
}
if ( tmp2 == 0 )
tmp2 = tmp3 = 1;
/* 1. set mask */
/* 2. write value to data transfer register */
/* 3. start the tranfer */
/* SCT (FracRate) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(tmp3);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("SCT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
/* SPT (SBV + PN + IntRage) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("SPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
}
}
}
static INLINE void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
{
struct htu_entry htu_entry = { res1: 0x00,
clp: is_retx ? 0x01 : 0x00,
pid: g_atm_priv_data.conn[queue].port & 0x01,
vpi: vpi,
vci: vci,
pti: 0x00,
vld: 0x01};
struct htu_mask htu_mask = { set: 0x01,
#if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
clp: 0x01,
pid_mask: 0x02,
#else
clp: g_retx_htu ? 0x00 : 0x01,
pid_mask: RETX_MODE_CFG->retx_en ? 0x03 : 0x02,
#endif
vpi_mask: 0x00,
#if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
vci_mask: 0x0000,
#else
vci_mask: RETX_MODE_CFG->retx_en ? 0xFF00 : 0x0000,
#endif
pti_mask: 0x03, // 0xx, user data
clear: 0x00};
struct htu_result htu_result = {res1: 0x00,
cellid: queue,
res2: 0x00,
type: aal5 ? 0x00 : 0x01,
ven: 0x01,
res3: 0x00,
qid: queue};
*HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
*HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
}
static INLINE void clear_htu_entry(unsigned int queue)
{
HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
}
static void validate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 1;
#endif
}
static void invalidate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 0;
#endif
}
static INLINE int find_vpi(unsigned int vpi)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi )
return i;
}
return -1;
}
static INLINE int find_vpivci(unsigned int vpi, unsigned int vci)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi
&& vci == g_atm_priv_data.conn[i].vcc->vci )
return i;
}
return -1;
}
static INLINE int find_vcc(struct atm_vcc *vcc)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc == vcc )
return i;
}
return -1;
}
#if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
static void dump_skb(struct sk_buff *skb, u32 len, char *title, int port, int ch, int is_tx)
{
int i;
if ( !(ifx_atm_dbg_enable & (is_tx ? DBG_ENABLE_MASK_DUMP_SKB_TX : DBG_ENABLE_MASK_DUMP_SKB_RX)) )
return;
if ( skb->len < len )
len = skb->len;
if ( len > RX_DMA_CH_AAL_BUF_SIZE ) {
printk("too big data length: skb = %08x, skb->data = %08x, skb->len = %d\n", (u32)skb, (u32)skb->data, skb->len);
return;
}
if ( ch >= 0 )
printk("%s (port %d, ch %d)\n", title, port, ch);
else
printk("%s\n", title);
printk(" skb->data = %08X, skb->tail = %08X, skb->len = %d\n", (u32)skb->data, (u32)skb->tail, (int)skb->len);
for ( i = 1; i <= len; i++ ) {
if ( i % 16 == 1 )
printk(" %4d:", i - 1);
printk(" %02X", (int)(*((char*)skb->data + i - 1) & 0xFF));
if ( i % 16 == 0 )
printk("\n");
}
if ( (i - 1) % 16 != 0 )
printk("\n");
}
#endif
static INLINE void proc_file_create(void)
{
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
struct proc_dir_entry *res;
#endif
g_atm_dir = proc_mkdir("driver/ifx_atm", NULL);
create_proc_read_entry("version",
0,
g_atm_dir,
proc_read_version,
NULL);
res = create_proc_entry("mib",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_mib;
res->write_proc = proc_write_mib;
}
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
res = create_proc_entry("dbg",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_dbg;
res->write_proc = proc_write_dbg;
}
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
create_proc_read_entry("htu",
0,
g_atm_dir,
proc_read_htu,
NULL);
create_proc_read_entry("txq",
0,
g_atm_dir,
proc_read_txq,
NULL);
#endif
}
static INLINE void proc_file_delete(void)
{
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
remove_proc_entry("txq", g_atm_dir);
remove_proc_entry("htu", g_atm_dir);
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
remove_proc_entry("dbg", g_atm_dir);
#endif
remove_proc_entry("version", g_atm_dir);
remove_proc_entry("driver/ifx_atm", NULL);
}
static int proc_read_version(char *buf, char **start, off_t offset, int count, int *eof, void *data)
{
int len = 0;
len += ifx_atm_version(buf + len);
if ( offset >= len ) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + offset;
if ( (len -= offset) > count )
return count;
*eof = 1;
return len;
}
static int proc_read_mib(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "Firmware\n");
len += sprintf(page + off + len, " wrx_drophtu_cell = %u\n", WAN_MIB_TABLE->wrx_drophtu_cell);
len += sprintf(page + off + len, " wrx_dropdes_pdu = %u\n", WAN_MIB_TABLE->wrx_dropdes_pdu);
len += sprintf(page + off + len, " wrx_correct_pdu = %u\n", WAN_MIB_TABLE->wrx_correct_pdu);
len += sprintf(page + off + len, " wrx_err_pdu = %u\n", WAN_MIB_TABLE->wrx_err_pdu);
len += sprintf(page + off + len, " wrx_dropdes_cell = %u\n", WAN_MIB_TABLE->wrx_dropdes_cell);
len += sprintf(page + off + len, " wrx_correct_cell = %u\n", WAN_MIB_TABLE->wrx_correct_cell);
len += sprintf(page + off + len, " wrx_err_cell = %u\n", WAN_MIB_TABLE->wrx_err_cell);
len += sprintf(page + off + len, " wrx_total_byte = %u\n", WAN_MIB_TABLE->wrx_total_byte);
len += sprintf(page + off + len, " wtx_total_pdu = %u\n", WAN_MIB_TABLE->wtx_total_pdu);
len += sprintf(page + off + len, " wtx_total_cell = %u\n", WAN_MIB_TABLE->wtx_total_cell);
len += sprintf(page + off + len, " wtx_total_byte = %u\n", WAN_MIB_TABLE->wtx_total_byte);
len += sprintf(page + off + len, "Driver\n");
len += sprintf(page + off + len, " wrx_pdu = %u\n", g_atm_priv_data.wrx_pdu);
len += sprintf(page + off + len, " wrx_drop_pdu = %u\n", g_atm_priv_data.wrx_drop_pdu);
len += sprintf(page + off + len, " wtx_pdu = %u\n", g_atm_priv_data.wtx_pdu);
len += sprintf(page + off + len, " wtx_err_pdu = %u\n", g_atm_priv_data.wtx_err_pdu);
len += sprintf(page + off + len, " wtx_drop_pdu = %u\n", g_atm_priv_data.wtx_drop_pdu);
*eof = 1;
return len;
}
static int proc_write_mib(struct file *file, const char *buf, unsigned long count, void *data)
{
char str[2048];
char *p;
int len, rlen;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( stricmp(p, "clear") == 0 || stricmp(p, "clear all") == 0
|| stricmp(p, "clean") == 0 || stricmp(p, "clean all") == 0 ) {
memset(WAN_MIB_TABLE, 0, sizeof(*WAN_MIB_TABLE));
g_atm_priv_data.wrx_pdu = 0;
g_atm_priv_data.wrx_drop_pdu = 0;
g_atm_priv_data.wtx_pdu = 0;
g_atm_priv_data.wtx_err_pdu = 0;
g_atm_priv_data.wtx_drop_pdu = 0;
}
return count;
}
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int proc_read_dbg(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "error print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ERR) ? "enabled" : "disabled");
len += sprintf(page + off + len, "debug print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DEBUG_PRINT) ? "enabled" : "disabled");
len += sprintf(page + off + len, "assert - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ASSERT) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump rx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_RX) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump tx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_TX) ? "enabled" : "disabled");
len += sprintf(page + off + len, "qos - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump init - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_INIT) ? "enabled" : "disabled");
*eof = 1;
return len;
}
static int proc_write_dbg(struct file *file, const char *buf, unsigned long count, void *data)
{
static const char *dbg_enable_mask_str[] = {
" error print",
" err",
" debug print",
" dbg",
" assert",
" assert",
" dump rx skb",
" rx",
" dump tx skb",
" tx",
" dump qos",
" qos",
" dump init",
" init",
" all"
};
static const int dbg_enable_mask_str_len[] = {
12, 4,
12, 4,
7, 7,
12, 3,
12, 3,
9, 4,
10, 5,
4
};
u32 dbg_enable_mask[] = {
DBG_ENABLE_MASK_ERR,
DBG_ENABLE_MASK_DEBUG_PRINT,
DBG_ENABLE_MASK_ASSERT,
DBG_ENABLE_MASK_DUMP_SKB_RX,
DBG_ENABLE_MASK_DUMP_SKB_TX,
DBG_ENABLE_MASK_DUMP_QOS,
DBG_ENABLE_MASK_DUMP_INIT,
DBG_ENABLE_MASK_ALL
};
char str[2048];
char *p;
int len, rlen;
int f_enable = 0;
int i;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( strincmp(p, "enable", 6) == 0 ) {
p += 6;
f_enable = 1;
}
else if ( strincmp(p, "disable", 7) == 0 ) {
p += 7;
f_enable = -1;
}
else if ( strincmp(p, "help", 4) == 0 || *p == '?' ) {
printk("echo <enable/disable> [err/dbg/assert/rx/tx/init/all] > /proc/eth/dbg\n");
}
if ( f_enable ) {
if ( *p == 0 ) {
if ( f_enable > 0 )
ifx_atm_dbg_enable |= DBG_ENABLE_MASK_ALL;
else
ifx_atm_dbg_enable &= ~DBG_ENABLE_MASK_ALL;
}
else {
do {
for ( i = 0; i < NUM_ENTITY(dbg_enable_mask_str); i++ )
if ( strincmp(p, dbg_enable_mask_str[i], dbg_enable_mask_str_len[i]) == 0 ) {
if ( f_enable > 0 )
ifx_atm_dbg_enable |= dbg_enable_mask[i >> 1];
else
ifx_atm_dbg_enable &= ~dbg_enable_mask[i >> 1];
p += dbg_enable_mask_str_len[i];
break;
}
} while ( i < NUM_ENTITY(dbg_enable_mask_str) );
}
}
return count;
}
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
static INLINE int print_htu(char *buf, int i)
{
int len = 0;
if ( HTU_ENTRY(i)->vld ) {
len += sprintf(buf + len, "%2d. valid\n", i);
len += sprintf(buf + len, " entry 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_ENTRY(i), HTU_ENTRY(i)->pid, HTU_ENTRY(i)->vpi, HTU_ENTRY(i)->vci, HTU_ENTRY(i)->pti);
len += sprintf(buf + len, " mask 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_MASK(i), HTU_MASK(i)->pid_mask, HTU_MASK(i)->vpi_mask, HTU_MASK(i)->vci_mask, HTU_MASK(i)->pti_mask);
len += sprintf(buf + len, " result 0x%08x - type: %s, qid: %d", *(u32*)HTU_RESULT(i), HTU_RESULT(i)->type ? "cell" : "AAL5", HTU_RESULT(i)->qid);
if ( HTU_RESULT(i)->type )
len += sprintf(buf + len, ", cell id: %d, verification: %s", HTU_RESULT(i)->cellid, HTU_RESULT(i)->ven ? "on" : "off");
len += sprintf(buf + len, "\n");
}
else
len += sprintf(buf + len, "%2d. invalid\n", i);
return len;
}
static int proc_read_htu(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
int len_max = off + count;
char *pstr;
char str[1024];
int llen;
int htuts = *CFG_WRX_HTUTS;
int i;
pstr = *start = page;
llen = sprintf(pstr, "HTU Table (Max %d):\n", htuts);
pstr += llen;
len += llen;
for ( i = 0; i < htuts; i++ ) {
llen = print_htu(str, i);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_HTU_OVERRUN_END;
}
*eof = 1;
return len - off;
PROC_READ_HTU_OVERRUN_END:
return len - llen - off;
}
static INLINE int print_tx_queue(char *buf, int i)
{
int len = 0;
if ( (*WTX_DMACH_ON & (1 << i)) ) {
len += sprintf(buf + len, "%2d. valid\n", i);
len += sprintf(buf + len, " queue 0x%08x - sbid %u, qsb %s\n", *(u32*)WTX_QUEUE_CONFIG(i), (unsigned int)WTX_QUEUE_CONFIG(i)->sbid, WTX_QUEUE_CONFIG(i)->qsben ? "enable" : "disable");
len += sprintf(buf + len, " dma 0x%08x - base %08x, len %u, vlddes %u\n", *(u32*)WTX_DMA_CHANNEL_CONFIG(i), WTX_DMA_CHANNEL_CONFIG(i)->desba, WTX_DMA_CHANNEL_CONFIG(i)->deslen, WTX_DMA_CHANNEL_CONFIG(i)->vlddes);
}
else
len += sprintf(buf + len, "%2d. invalid\n", i);
return len;
}
static int proc_read_txq(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
int len_max = off + count;
char *pstr;
char str[1024];
int llen;
int i;
pstr = *start = page;
llen = sprintf(pstr, "TX Queue Config (Max %d):\n", *CFG_WTX_DCHNUM);
pstr += llen;
len += llen;
for ( i = 0; i < 16; i++ ) {
llen = print_tx_queue(str, i);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_HTU_OVERRUN_END;
}
*eof = 1;
return len - off;
PROC_READ_HTU_OVERRUN_END:
return len - llen - off;
}
#endif
static int stricmp(const char *p1, const char *p2)
{
int c1, c2;
while ( *p1 && *p2 )
{
c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
if ( (c1 -= c2) )
return c1;
p1++;
p2++;
}
return *p1 - *p2;
}
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int strincmp(const char *p1, const char *p2, int n)
{
int c1 = 0, c2;
while ( n && *p1 && *p2 )
{
c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
if ( (c1 -= c2) )
return c1;
p1++;
p2++;
n--;
}
return n ? *p1 - *p2 : c1;
}
#endif
static INLINE int ifx_atm_version(char *buf)
{
int len = 0;
unsigned int major, minor;
ifx_atm_get_fw_ver(&major, &minor);
len += sprintf(buf + len, "Infineon Technologies ATM driver version %d.%d.%d\n", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
len += sprintf(buf + len, "Infineon Technologies ATM (A1) firmware version %d.%d\n", major, minor);
return len;
}
#ifdef MODULE
static INLINE void reset_ppe(void)
{
// TODO:
}
#endif
static INLINE void check_parameters(void)
{
/* Please refer to Amazon spec 15.4 for setting these values. */
if ( qsb_tau < 1 )
qsb_tau = 1;
if ( qsb_tstep < 1 )
qsb_tstep = 1;
else if ( qsb_tstep > 4 )
qsb_tstep = 4;
else if ( qsb_tstep == 3 )
qsb_tstep = 2;
/* There is a delay between PPE write descriptor and descriptor is */
/* really stored in memory. Host also has this delay when writing */
/* descriptor. So PPE will use this value to determine if the write */
/* operation makes effect. */
if ( write_descriptor_delay < 0 )
write_descriptor_delay = 0;
if ( aal5_fill_pattern < 0 )
aal5_fill_pattern = 0;
else
aal5_fill_pattern &= 0xFF;
/* Because of the limitation of length field in descriptors, the packet */
/* size could not be larger than 64K minus overhead size. */
if ( aal5r_max_packet_size < 0 )
aal5r_max_packet_size = 0;
else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
if ( aal5r_min_packet_size < 0 )
aal5r_min_packet_size = 0;
else if ( aal5r_min_packet_size > aal5r_max_packet_size )
aal5r_min_packet_size = aal5r_max_packet_size;
if ( aal5s_max_packet_size < 0 )
aal5s_max_packet_size = 0;
else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
if ( aal5s_min_packet_size < 0 )
aal5s_min_packet_size = 0;
else if ( aal5s_min_packet_size > aal5s_max_packet_size )
aal5s_min_packet_size = aal5s_max_packet_size;
if ( dma_rx_descriptor_length < 2 )
dma_rx_descriptor_length = 2;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
if ( dma_rx_clp1_descriptor_threshold < 0 )
dma_rx_clp1_descriptor_threshold = 0;
else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
}
static INLINE int init_priv_data(void)
{
void *p;
int i;
struct rx_descriptor rx_desc = {0};
struct sk_buff *skb;
volatile struct tx_descriptor *p_tx_desc;
struct sk_buff **ppskb;
// clear atm private data structure
memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
// allocate memory for RX (AAL) descriptors
p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.aal_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) descriptors
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.oam_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) buffer
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
g_atm_priv_data.oam_buf_base = p;
p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
g_atm_priv_data.oam_buf = p;
// allocate memory for TX descriptors
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.tx_desc_base = p;
// allocate memory for TX skb pointers
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
g_atm_priv_data.tx_skb_base = p;
// setup RX (AAL) descriptors
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
skb = alloc_skb_rx();
if ( skb == NULL )
return IFX_ERROR;
rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
g_atm_priv_data.aal_desc[i] = rx_desc;
}
// setup RX (OAM) descriptors
p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
g_atm_priv_data.oam_desc[i] = rx_desc;
p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
}
// setup TX descriptors and skb pointers
p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
}
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
return IFX_SUCCESS;
}
static INLINE void clear_priv_data(void)
{
int i, j;
struct sk_buff *skb;
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
for ( j = 0; j < dma_tx_descriptor_length; j++ )
if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
}
}
if ( g_atm_priv_data.tx_skb_base != NULL )
kfree(g_atm_priv_data.tx_skb_base);
if ( g_atm_priv_data.tx_desc_base != NULL )
kfree(g_atm_priv_data.tx_desc_base);
if ( g_atm_priv_data.oam_buf_base != NULL )
kfree(g_atm_priv_data.oam_buf_base);
if ( g_atm_priv_data.oam_desc_base != NULL )
kfree(g_atm_priv_data.oam_desc_base);
if ( g_atm_priv_data.aal_desc_base != NULL ) {
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
dev_kfree_skb_any(skb);
}
}
kfree(g_atm_priv_data.aal_desc_base);
}
}
static INLINE void init_rx_tables(void)
{
int i;
struct wrx_queue_config wrx_queue_config = {0};
struct wrx_dma_channel_config wrx_dma_channel_config = {0};
struct htu_entry htu_entry = {0};
struct htu_result htu_result = {0};
struct htu_mask htu_mask = { set: 0x01,
clp: 0x01,
pid_mask: 0x00,
vpi_mask: 0x00,
vci_mask: 0x00,
pti_mask: 0x00,
clear: 0x00};
/*
* General Registers
*/
*CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
*CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
*CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
*WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
*WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
/*
* WRX Queue Configuration Table
*/
wrx_queue_config.uumask = 0;
wrx_queue_config.cpimask = 0;
wrx_queue_config.uuexp = 0;
wrx_queue_config.cpiexp = 0;
wrx_queue_config.mfs = aal5r_max_packet_size;
wrx_queue_config.oversize = aal5r_max_packet_size;
wrx_queue_config.undersize = aal5r_min_packet_size;
wrx_queue_config.errdp = aal5r_drop_error_packet;
wrx_queue_config.dmach = RX_DMA_CH_AAL;
for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
*WRX_QUEUE_CONFIG(i) = wrx_queue_config;
WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
/*
* WRX DMA Channel Configuration Table
*/
wrx_dma_channel_config.chrl = 0;
wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
wrx_dma_channel_config.mode = 0;
wrx_dma_channel_config.rlcfg = 0;
wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
/*
* HTU Tables
*/
for ( i = 0; i < MAX_PVC_NUMBER; i++ )
{
htu_result.qid = (unsigned int)i;
*HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
*HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
}
/* OAM HTU Entry */
htu_entry.vci = 0x03;
htu_mask.pid_mask = 0x03;
htu_mask.vpi_mask = 0xFF;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x07;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x04;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x00;
htu_entry.pti = 0x04;
htu_mask.vci_mask = 0xFFFF;
htu_mask.pti_mask = 0x01;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
htu_entry.pid = 0x0;
htu_entry.vpi = 0x01;
htu_entry.vci = 0x0001;
htu_entry.pti = 0x00;
htu_mask.pid_mask = 0x0;
htu_mask.vpi_mask = 0x00;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x3;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_ARQ_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_ARQ_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_ARQ_HTU_ENTRY) = htu_entry;
#endif
}
static INLINE void init_tx_tables(void)
{
int i;
struct wtx_queue_config wtx_queue_config = {0};
struct wtx_dma_channel_config wtx_dma_channel_config = {0};
struct wtx_port_config wtx_port_config = { res1: 0,
qid: 0,
qsben: 1};
/*
* General Registers
*/
*CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
*WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
*CFG_WRDES_DELAY = write_descriptor_delay;
/*
* WTX Port Configuration Table
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
*WTX_PORT_CONFIG(i) = wtx_port_config;
/*
* WTX Queue Configuration Table
*/
wtx_queue_config.type = 0x0;
wtx_queue_config.qsben = 1;
wtx_queue_config.sbid = 0;
for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ )
*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
/*
* WTX DMA Channel Configuration Table
*/
wtx_dma_channel_config.mode = 0;
wtx_dma_channel_config.deslen = 0;
wtx_dma_channel_config.desba = 0;
for ( i = 0; i < FIRST_QSB_QID; i++ )
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
/* normal connection */
wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
}
}
/*
* ####################################
* Global Function
* ####################################
*/
static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
{
int i, j;
ASSERT(port_cell != NULL, "port_cell is NULL");
ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
if ( port_cell->tx_link_rate[j] > 0 )
break;
for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate = port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
qsb_global_set();
for ( i = 0; i < MAX_PVC_NUMBER; i++ )
if ( g_atm_priv_data.conn[i].vcc != NULL )
set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
// TODO: ReTX set xdata_addr
g_xdata_addr = xdata_addr;
g_showtime = 1;
#if defined(CONFIG_VR9)
IFX_REG_W32(0x0F, UTP_CFG);
#endif
printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n", g_atm_priv_data.port[0].tx_max_cell_rate, g_atm_priv_data.port[1].tx_max_cell_rate, (unsigned int)g_xdata_addr);
return IFX_SUCCESS;
}
static int atm_showtime_exit(void)
{
#if defined(CONFIG_VR9)
IFX_REG_W32(0x00, UTP_CFG);
#endif
g_showtime = 0;
// TODO: ReTX clean state
g_xdata_addr = NULL;
printk("leave showtime\n");
return IFX_SUCCESS;
}
/*
* ####################################
* Init/Cleanup API
* ####################################
*/
/*
* Description:
* Initialize global variables, PP32, comunication structures, register IRQ
* and register device.
* Input:
* none
* Output:
* 0 --- successful
* else --- failure, usually it is negative value of error code
*/
static int __devinit ifx_atm_init(void)
{
int ret;
int port_num;
struct port_cell_info port_cell = {0};
int i, j;
char ver_str[256];
#ifdef MODULE
reset_ppe();
#endif
check_parameters();
ret = init_priv_data();
if ( ret != IFX_SUCCESS ) {
err("INIT_PRIV_DATA_FAIL");
goto INIT_PRIV_DATA_FAIL;
}
ifx_atm_init_chip();
init_rx_tables();
init_tx_tables();
/* create devices */
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", &g_ifx_atm_ops, -1, NULL);
if ( !g_atm_priv_data.port[port_num].dev ) {
err("failed to register atm device %d!", port_num);
ret = -EIO;
goto ATM_DEV_REGISTER_FAIL;
}
else {
g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
}
}
/* register interrupt handler */
ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
if ( ret ) {
if ( ret == -EBUSY ) {
err("IRQ may be occupied by other driver, please reconfig to disable it.");
}
else {
err("request_irq fail");
}
goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
}
disable_irq(PPE_MAILBOX_IGU1_INT);
ret = ifx_pp32_start(0);
if ( ret ) {
err("ifx_pp32_start fail!");
goto PP32_START_FAIL;
}
port_cell.port_num = ATM_PORT_NUMBER;
ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
if ( g_showtime ) {
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_cell.tx_link_rate[i] != 0 )
break;
for ( j = 0; j < ATM_PORT_NUMBER; j++ )
g_atm_priv_data.port[j].tx_max_cell_rate = port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
}
qsb_global_set();
validate_oam_htu_entry();
/* create proc file */
proc_file_create();
ifx_mei_atm_showtime_enter = atm_showtime_enter;
ifx_mei_atm_showtime_exit = atm_showtime_exit;
ifx_atm_version(ver_str);
printk(KERN_INFO "%s", ver_str);
printk("ifxmips_atm: ATM init succeed\n");
return IFX_SUCCESS;
PP32_START_FAIL:
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
ATM_DEV_REGISTER_FAIL:
while ( port_num-- > 0 )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
INIT_PRIV_DATA_FAIL:
clear_priv_data();
printk("ifxmips_atm: ATM init failed\n");
return ret;
}
/*
* Description:
* Release memory, free IRQ, and deregister device.
* Input:
* none
* Output:
* none
*/
static void __exit ifx_atm_exit(void)
{
int port_num;
ifx_mei_atm_showtime_enter = NULL;
ifx_mei_atm_showtime_exit = NULL;
proc_file_delete();
invalidate_oam_htu_entry();
ifx_pp32_stop(0);
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
ifx_atm_uninit_chip();
clear_priv_data();
}
module_init(ifx_atm_init);
module_exit(ifx_atm_exit);