1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-12 05:00:36 +02:00
openwrt-xburst/target/linux/xburst/files-2.6.27/arch/mips/jz4750d/dma.c

823 lines
24 KiB
C
Raw Normal View History

/*
* linux/arch/mips/jz4750d/dma.c
*
* Support functions for the JZ4750D internal DMA channels.
* No-descriptor transfer only.
* Descriptor transfer should also call jz_request_dma() to get a free
* channel and call jz_free_dma() to free the channel. And driver should
* build the DMA descriptor and setup the DMA channel by itself.
*
* Copyright (C) 2006 - 2008 Ingenic Semiconductor Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/soundcard.h>
#include <asm/system.h>
#include <asm/addrspace.h>
#include <asm/jzsoc.h>
/*
* A note on resource allocation:
*
* All drivers needing DMA channels, should allocate and release them
* through the public routines `jz_request_dma()' and `jz_free_dma()'.
*
* In order to avoid problems, all processes should allocate resources in
* the same sequence and release them in the reverse order.
*
* So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
* When releasing them, first release the IRQ, then release the DMA. The
* main reason for this order is that, if you are requesting the DMA buffer
* done interrupt, you won't know the irq number until the DMA channel is
* returned from jz_request_dma().
*/
struct jz_dma_chan jz_dma_table[MAX_DMA_NUM] = {
{dev_id:DMA_ID_BCH_ENC,}, /* DMAC0 channel 0, reserved for BCH */
{dev_id:-1,}, /* DMAC0 channel 1 */
{dev_id:-1,}, /* DMAC0 channel 2 */
{dev_id:-1,}, /* DMAC0 channel 3 */
{dev_id:-1,}, /* DMAC1 channel 0 */
{dev_id:-1,}, /* DMAC1 channel 1 */
{dev_id:-1,}, /* DMAC1 channel 2 */
{dev_id:-1,}, /* DMAC1 channel 3 */
};
// Device FIFO addresses and default DMA modes
static const struct {
unsigned int fifo_addr;
unsigned int dma_mode;
unsigned int dma_source;
} dma_dev_table[DMA_ID_MAX] = {
{0, DMA_AUTOINIT, DMAC_DRSR_RS_EXT}, /* External request with DREQn */
{0x18000000, DMA_AUTOINIT, DMAC_DRSR_RS_NAND}, /* NAND request */
{CPHYSADDR(BCH_DR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_BCH_ENC},
{CPHYSADDR(BCH_DR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_BCH_DEC},
{0, DMA_AUTOINIT, DMAC_DRSR_RS_AUTO},
// {CPHYSADDR(TSSI_FIFO), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_TSSIIN},
{CPHYSADDR(UART3_TDR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_UART3OUT},
{CPHYSADDR(UART3_RDR), DMA_8BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_UART3IN},
{CPHYSADDR(UART2_TDR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_UART2OUT},
{CPHYSADDR(UART2_RDR), DMA_8BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_UART2IN},
{CPHYSADDR(UART1_TDR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_UART1OUT},
{CPHYSADDR(UART1_RDR), DMA_8BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_UART1IN},
{CPHYSADDR(UART0_TDR), DMA_8BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_UART0OUT},
{CPHYSADDR(UART0_RDR), DMA_8BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_UART0IN},
{CPHYSADDR(SSI_DR(0)), DMA_32BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_SSI0OUT},
{CPHYSADDR(SSI_DR(0)), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_SSI0IN},
{CPHYSADDR(AIC_DR), DMA_32BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_AICOUT},
{CPHYSADDR(AIC_DR), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_AICIN},
{CPHYSADDR(MSC_TXFIFO(0)), DMA_32BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_MSC0OUT},
{CPHYSADDR(MSC_RXFIFO(0)), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_MSC0IN},
{0, DMA_AUTOINIT, DMAC_DRSR_RS_TCU},
{SADC_TSDAT, DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_SADC},/* Touch Screen Data Register */
{CPHYSADDR(MSC_TXFIFO(1)), DMA_32BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_MSC1OUT}, /* SSC1 TX */
{CPHYSADDR(MSC_RXFIFO(1)), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_MSC1IN}, /* SSC1 RX */
{CPHYSADDR(SSI_DR(1)), DMA_32BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_SSI1OUT},
{CPHYSADDR(SSI_DR(1)), DMA_32BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_SSI1IN},
{CPHYSADDR(PCM_DP), DMA_16BIT_TX_CMD | DMA_MODE_WRITE, DMAC_DRSR_RS_PMOUT},
{CPHYSADDR(PCM_DP), DMA_16BIT_RX_CMD | DMA_MODE_READ, DMAC_DRSR_RS_PMIN},
{},
};
int jz_dma_read_proc(char *buf, char **start, off_t fpos,
int length, int *eof, void *data)
{
int i, len = 0;
struct jz_dma_chan *chan;
for (i = 0; i < MAX_DMA_NUM; i++) {
if ((chan = get_dma_chan(i)) != NULL) {
len += sprintf(buf + len, "%2d: %s\n",
i, chan->dev_str);
}
}
if (fpos >= len) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + fpos;
if ((len -= fpos) > length)
return length;
*eof = 1;
return len;
}
void dump_jz_dma_channel(unsigned int dmanr)
{
struct jz_dma_chan *chan;
if (dmanr > MAX_DMA_NUM)
return;
chan = &jz_dma_table[dmanr];
printk("DMA%d Registers:\n", dmanr);
printk(" DMACR = 0x%08x\n", REG_DMAC_DMACR(chan->io/HALF_DMA_NUM));
printk(" DSAR = 0x%08x\n", REG_DMAC_DSAR(dmanr));
printk(" DTAR = 0x%08x\n", REG_DMAC_DTAR(dmanr));
printk(" DTCR = 0x%08x\n", REG_DMAC_DTCR(dmanr));
printk(" DRSR = 0x%08x\n", REG_DMAC_DRSR(dmanr));
printk(" DCCSR = 0x%08x\n", REG_DMAC_DCCSR(dmanr));
printk(" DCMD = 0x%08x\n", REG_DMAC_DCMD(dmanr));
printk(" DDA = 0x%08x\n", REG_DMAC_DDA(dmanr));
printk(" DMADBR = 0x%08x\n", REG_DMAC_DMADBR(chan->io/HALF_DMA_NUM));
}
/**
* jz_request_dma - dynamically allcate an idle DMA channel to return
* @dev_id: the specified dma device id or DMA_ID_RAW_SET
* @dev_str: the specified dma device string name
* @irqhandler: the irq handler, or NULL
* @irqflags: the irq handler flags
* @irq_dev_id: the irq handler device id for shared irq
*
* Finds a free channel, and binds the requested device to it.
* Returns the allocated channel number, or negative on error.
* Requests the DMA done IRQ if irqhandler != NULL.
*
*/
/*int jz_request_dma(int dev_id, const char *dev_str,
void (*irqhandler)(int, void *, struct pt_regs *),
unsigned long irqflags,
void *irq_dev_id)
*/
int jz_request_dma(int dev_id, const char *dev_str,
irqreturn_t (*irqhandler)(int, void *),
unsigned long irqflags,
void *irq_dev_id)
{
struct jz_dma_chan *chan;
int i, ret;
if (dev_id < 0 || dev_id >= DMA_ID_MAX)
return -EINVAL;
for (i = 0; i < MAX_DMA_NUM; i++) {
if (jz_dma_table[i].dev_id < 0)
break;
}
if (i == MAX_DMA_NUM) /* no free channel */
return -ENODEV;
/* we got a free channel */
chan = &jz_dma_table[i];
if (irqhandler) {
chan->irq = IRQ_DMA_0 + i; // allocate irq number
chan->irq_dev = irq_dev_id;
if ((ret = request_irq(chan->irq, irqhandler, irqflags,
dev_str, chan->irq_dev))) {
chan->irq = -1;
chan->irq_dev = NULL;
return ret;
}
} else {
chan->irq = -1;
chan->irq_dev = NULL;
}
// fill it in
chan->io = i;
chan->dev_id = dev_id;
chan->dev_str = dev_str;
chan->fifo_addr = dma_dev_table[dev_id].fifo_addr;
chan->mode = dma_dev_table[dev_id].dma_mode;
chan->source = dma_dev_table[dev_id].dma_source;
if (i < HALF_DMA_NUM)
REG_DMAC_DMACKE(0) = 1 << i;
else
REG_DMAC_DMACKE(1) = 1 << (i - HALF_DMA_NUM);
return i;
}
void jz_free_dma(unsigned int dmanr)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan) {
printk("Trying to free DMA%d\n", dmanr);
return;
}
disable_dma(dmanr);
if (chan->irq)
free_irq(chan->irq, chan->irq_dev);
chan->irq = -1;
chan->irq_dev = NULL;
chan->dev_id = -1;
}
void jz_set_dma_dest_width(int dmanr, int nbit)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCMD_DWDH_MASK;
switch (nbit) {
case 8:
chan->mode |= DMAC_DCMD_DWDH_8;
break;
case 16:
chan->mode |= DMAC_DCMD_DWDH_16;
break;
case 32:
chan->mode |= DMAC_DCMD_DWDH_32;
break;
}
}
void jz_set_dma_src_width(int dmanr, int nbit)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCMD_SWDH_MASK;
switch (nbit) {
case 8:
chan->mode |= DMAC_DCMD_SWDH_8;
break;
case 16:
chan->mode |= DMAC_DCMD_SWDH_16;
break;
case 32:
chan->mode |= DMAC_DCMD_SWDH_32;
break;
}
}
void jz_set_dma_block_size(int dmanr, int nbyte)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCMD_DS_MASK;
switch (nbyte) {
case 1:
chan->mode |= DMAC_DCMD_DS_8BIT;
break;
case 2:
chan->mode |= DMAC_DCMD_DS_16BIT;
break;
case 4:
chan->mode |= DMAC_DCMD_DS_32BIT;
break;
case 16:
chan->mode |= DMAC_DCMD_DS_16BYTE;
break;
case 32:
chan->mode |= DMAC_DCMD_DS_32BYTE;
break;
}
}
unsigned int jz_get_dma_command(int dmanr)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
return chan->mode;
}
/**
* jz_set_dma_mode - do the raw settings for the specified DMA channel
* @dmanr: the specified DMA channel
* @mode: dma operate mode, DMA_MODE_READ or DMA_MODE_WRITE
* @dma_mode: dma raw mode
* @dma_source: dma raw request source
* @fifo_addr: dma raw device fifo address
*
* Ensure call jz_request_dma(DMA_ID_RAW_SET, ...) first, then call
* jz_set_dma_mode() rather than set_dma_mode() if you work with
* and external request dma device.
*
* NOTE: Don not dynamically allocate dma channel if one external request
* dma device will occupy this channel.
*/
int jz_set_dma_mode(unsigned int dmanr, unsigned int mode,
unsigned int dma_mode, unsigned int dma_source,
unsigned int fifo_addr)
{
int dev_id, i;
struct jz_dma_chan *chan;
if (dmanr > MAX_DMA_NUM)
return -ENODEV;
for (i = 0; i < MAX_DMA_NUM; i++) {
if (jz_dma_table[i].dev_id < 0)
break;
}
if (i == MAX_DMA_NUM)
return -ENODEV;
chan = &jz_dma_table[dmanr];
dev_id = chan->dev_id;
if (dev_id > 0) {
printk(KERN_DEBUG "%s sets the allocated DMA channel %d!\n",
__FUNCTION__, dmanr);
return -ENODEV;
}
/* clone it from the dynamically allocated. */
if (i != dmanr) {
chan->irq = jz_dma_table[i].irq;
chan->irq_dev = jz_dma_table[i].irq_dev;
chan->dev_str = jz_dma_table[i].dev_str;
jz_dma_table[i].irq = 0;
jz_dma_table[i].irq_dev = NULL;
jz_dma_table[i].dev_id = -1;
}
chan->dev_id = DMA_ID_RAW_SET;
chan->io = dmanr;
chan->fifo_addr = fifo_addr;
chan->mode = dma_mode;
chan->source = dma_source;
set_dma_mode(dmanr, dma_mode);
return dmanr;
}
void enable_dma(unsigned int dmanr)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
REG_DMAC_DCCSR(dmanr) &= ~(DMAC_DCCSR_HLT | DMAC_DCCSR_TT | DMAC_DCCSR_AR);
REG_DMAC_DCCSR(dmanr) |= DMAC_DCCSR_NDES; /* No-descriptor transfer */
__dmac_enable_channel(dmanr);
if (chan->irq)
__dmac_channel_enable_irq(dmanr);
}
#define DMA_DISABLE_POLL 0x10000
void disable_dma(unsigned int dmanr)
{
int i;
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
if (!__dmac_channel_enabled(dmanr))
return;
for (i = 0; i < DMA_DISABLE_POLL; i++)
if (__dmac_channel_transmit_end_detected(dmanr))
break;
#if 0
if (i == DMA_DISABLE_POLL)
printk(KERN_INFO "disable_dma: poll expired!\n");
#endif
__dmac_disable_channel(dmanr);
if (chan->irq)
__dmac_channel_disable_irq(dmanr);
}
/* Note: DMA_MODE_MASK is simulated by sw */
void set_dma_mode(unsigned int dmanr, unsigned int mode)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode |= mode & ~(DMAC_DCMD_SAI | DMAC_DCMD_DAI);
mode &= DMA_MODE_MASK;
if (mode == DMA_MODE_READ) {
chan->mode |= DMAC_DCMD_DAI;
chan->mode &= ~DMAC_DCMD_SAI;
} else if (mode == DMA_MODE_WRITE) {
chan->mode |= DMAC_DCMD_SAI;
chan->mode &= ~DMAC_DCMD_DAI;
} else {
printk(KERN_DEBUG "set_dma_mode() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n");
}
REG_DMAC_DCMD(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
}
void set_dma_addr(unsigned int dmanr, unsigned int phyaddr)
{
unsigned int mode;
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
mode = chan->mode & DMA_MODE_MASK;
if (mode == DMA_MODE_READ) {
REG_DMAC_DSAR(chan->io) = chan->fifo_addr;
REG_DMAC_DTAR(chan->io) = phyaddr;
} else if (mode == DMA_MODE_WRITE) {
REG_DMAC_DSAR(chan->io) = phyaddr;
REG_DMAC_DTAR(chan->io) = chan->fifo_addr;
} else
printk(KERN_DEBUG "Driver should call set_dma_mode() ahead set_dma_addr()!\n");
}
void set_dma_count(unsigned int dmanr, unsigned int bytecnt)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
int dma_ds[] = {4, 1, 2, 16, 32};
unsigned int ds;
if (!chan)
return;
ds = (chan->mode & DMAC_DCMD_DS_MASK) >> DMAC_DCMD_DS_BIT;
REG_DMAC_DTCR(chan->io) = bytecnt / dma_ds[ds]; // transfer count
}
unsigned int get_dma_residue(unsigned int dmanr)
{
unsigned int count, ds;
int dma_ds[] = {4, 1, 2, 16, 32};
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 0;
ds = (chan->mode & DMAC_DCMD_DS_MASK) >> DMAC_DCMD_DS_BIT;
count = REG_DMAC_DTCR(chan->io);
count = count * dma_ds[ds];
return count;
}
void jz_set_oss_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
switch (audio_fmt) {
case AFMT_U8:
/* burst mode : 32BIT */
break;
case AFMT_S16_LE:
/* burst mode : 16BYTE */
if (mode == DMA_MODE_READ) {
chan->mode = DMA_AIC_32_16BYTE_RX_CMD | DMA_MODE_READ;
chan->mode |= mode & ~(DMAC_DCMD_SAI | DMAC_DCMD_DAI);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCMD_DAI;
chan->mode &= ~DMAC_DCMD_SAI;
} else if (mode == DMA_MODE_WRITE) {
chan->mode = DMA_AIC_32_16BYTE_TX_CMD | DMA_MODE_WRITE;
//chan->mode = DMA_AIC_16BYTE_TX_CMD | DMA_MODE_WRITE;
chan->mode |= mode & ~(DMAC_DCMD_SAI | DMAC_DCMD_DAI);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCMD_SAI;
chan->mode &= ~DMAC_DCMD_DAI;
} else
printk("oss_dma_burst_mode() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n");
REG_DMAC_DCMD(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
break;
}
}
void jz_set_alsa_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
switch (audio_fmt) {
case 8:
/* SNDRV_PCM_FORMAT_S8 burst mode : 32BIT */
break;
case 16:
/* SNDRV_PCM_FORMAT_S16_LE burst mode : 16BYTE */
if (mode == DMA_MODE_READ) {
chan->mode = DMA_AIC_16BYTE_RX_CMD | DMA_MODE_READ;
chan->mode |= mode & ~(DMAC_DCMD_SAI | DMAC_DCMD_DAI);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCMD_DAI;
chan->mode &= ~DMAC_DCMD_SAI;
} else if (mode == DMA_MODE_WRITE) {
chan->mode = DMA_AIC_16BYTE_TX_CMD | DMA_MODE_WRITE;
chan->mode |= mode & ~(DMAC_DCMD_SAI | DMAC_DCMD_DAI);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCMD_SAI;
chan->mode &= ~DMAC_DCMD_DAI;
} else
printk("alsa_dma_burst_mode() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n");
REG_DMAC_DCMD(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
break;
}
}
//#define JZ4750D_DMAC_TEST_ENABLE
#undef JZ4750D_DMAC_TEST_ENABLE
#ifdef JZ4750D_DMAC_TEST_ENABLE
/*
* DMA test: external address <--> external address
*/
#define TEST_DMA_SIZE 16*1024
static jz_dma_desc *dma_desc;
static int dma_chan;
static dma_addr_t dma_desc_phys_addr;
static unsigned int dma_src_addr, dma_src_phys_addr, dma_dst_addr, dma_dst_phys_addr;
static int dma_check_result(void *src, void *dst, int size)
{
unsigned int addr1, addr2, i, err = 0;
addr1 = (unsigned int)src;
addr2 = (unsigned int)dst;
for (i = 0; i < size; i += 4) {
if (*(volatile unsigned int *)addr1 != *(volatile unsigned int *)addr2) {
err++;
printk("wrong data at 0x%08x: src 0x%08x dst 0x%08x\n", addr2, *(volatile unsigned int *)addr1, *(volatile unsigned int *)addr2);
}
addr1 += 4;
addr2 += 4;
}
printk("check DMA result err=%d\n", err);
return err;
}
static irqreturn_t jz4750d_dma_irq(int irq, void *dev_id)
{
printk("jz4750d_dma_irq %d\n", irq);
if (__dmac_channel_transmit_halt_detected(dma_chan)) {
printk("DMA HALT\n");
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
__dmac_channel_clear_transmit_halt(dma_chan);
}
if (__dmac_channel_address_error_detected(dma_chan)) {
printk("DMA ADDR ERROR\n");
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
REG_DMAC_DSAR(dma_chan) = 0; /* clear source address register */
REG_DMAC_DTAR(dma_chan) = 0; /* clear target address register */
__dmac_channel_clear_address_error(dma_chan);
}
if (__dmac_channel_descriptor_invalid_detected(dma_chan)) {
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
printk("DMA DESC INVALID\n");
__dmac_channel_clear_descriptor_invalid(dma_chan);
}
if (__dmac_channel_count_terminated_detected(dma_chan)) {
printk("DMA CT\n");
__dmac_channel_clear_count_terminated(dma_chan);
}
if (__dmac_channel_transmit_end_detected(dma_chan)) {
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
printk("DMA TT\n");
__dmac_channel_clear_transmit_end(dma_chan);
dump_jz_dma_channel(dma_chan);
dma_check_result((void *)dma_src_addr, (void *)dma_dst_addr, TEST_DMA_SIZE);
}
return IRQ_HANDLED;
}
void dma_nodesc_test(void)
{
unsigned int addr, i;
printk("dma_nodesc_test\n");
/* Request DMA channel and setup irq handler */
dma_chan = jz_request_dma(DMA_ID_AUTO, "auto", jz4750d_dma_irq,
IRQF_DISABLED, NULL);
if (dma_chan < 0) {
printk("Setup irq failed\n");
return;
}
printk("Requested DMA channel = %d\n", dma_chan);
/* Allocate DMA buffers */
dma_src_addr = __get_free_pages(GFP_KERNEL, 2); /* 16KB */
dma_dst_addr = __get_free_pages(GFP_KERNEL, 2); /* 16KB */
dma_src_phys_addr = CPHYSADDR(dma_src_addr);
dma_dst_phys_addr = CPHYSADDR(dma_dst_addr);
printk("Buffer addresses: 0x%08x 0x%08x 0x%08x 0x%08x\n",
dma_src_addr, dma_src_phys_addr, dma_dst_addr, dma_dst_phys_addr);
/* Prepare data for source buffer */
addr = (unsigned int)dma_src_addr;
for (i = 0; i < TEST_DMA_SIZE; i += 4) {
*(volatile unsigned int *)addr = addr;
addr += 4;
}
dma_cache_wback((unsigned long)dma_src_addr, TEST_DMA_SIZE);
/* Init target buffer */
memset((void *)dma_dst_addr, 0, TEST_DMA_SIZE);
dma_cache_wback((unsigned long)dma_dst_addr, TEST_DMA_SIZE);
/* Init DMA module */
printk("Starting DMA\n");
REG_DMAC_DMACR(dma_chan/HALF_DMA_NUM) = 0;
REG_DMAC_DCCSR(dma_chan) = 0;
REG_DMAC_DRSR(dma_chan) = DMAC_DRSR_RS_AUTO;
REG_DMAC_DSAR(dma_chan) = dma_src_phys_addr;
REG_DMAC_DTAR(dma_chan) = dma_dst_phys_addr;
REG_DMAC_DTCR(dma_chan) = 512;
REG_DMAC_DCMD(dma_chan) = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BYTE | DMAC_DCMD_TIE;
REG_DMAC_DCCSR(dma_chan) = DMAC_DCCSR_NDES | DMAC_DCCSR_EN;
REG_DMAC_DMACR(dma_chan/HALF_DMA_NUM) = DMAC_DMACR_DMAE; /* global DMA enable bit */
printk("DMA started. IMR=%08x\n", REG_INTC_IMR);
/* wait a long time, ensure transfer end */
printk("wait 3s...\n");
mdelay(3000); /* wait 3s */
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
/* free buffers */
printk("free DMA buffers\n");
free_pages(dma_src_addr, 2);
free_pages(dma_dst_addr, 2);
if (dma_desc)
free_pages((unsigned int)dma_desc, 0);
/* free dma */
jz_free_dma(dma_chan);
}
void dma_desc_test(void)
{
unsigned int next, addr, i;
static jz_dma_desc *desc;
printk("dma_desc_test\n");
/* Request DMA channel and setup irq handler */
dma_chan = jz_request_dma(DMA_ID_AUTO, "auto", jz4750d_dma_irq,
IRQF_DISABLED, NULL);
if (dma_chan < 0) {
printk("Setup irq failed\n");
return;
}
printk("Requested DMA channel = %d\n", dma_chan);
/* Allocate DMA buffers */
dma_src_addr = __get_free_pages(GFP_KERNEL, 2); /* 16KB */
dma_dst_addr = __get_free_pages(GFP_KERNEL, 2); /* 16KB */
dma_src_phys_addr = CPHYSADDR(dma_src_addr);
dma_dst_phys_addr = CPHYSADDR(dma_dst_addr);
printk("Buffer addresses: 0x%08x 0x%08x 0x%08x 0x%08x\n",
dma_src_addr, dma_src_phys_addr, dma_dst_addr, dma_dst_phys_addr);
/* Prepare data for source buffer */
addr = (unsigned int)dma_src_addr;
for (i = 0; i < TEST_DMA_SIZE; i += 4) {
*(volatile unsigned int *)addr = addr;
addr += 4;
}
dma_cache_wback((unsigned long)dma_src_addr, TEST_DMA_SIZE);
/* Init target buffer */
memset((void *)dma_dst_addr, 0, TEST_DMA_SIZE);
dma_cache_wback((unsigned long)dma_dst_addr, TEST_DMA_SIZE);
/* Allocate DMA descriptors */
dma_desc = (jz_dma_desc *)__get_free_pages(GFP_KERNEL, 0);
dma_desc_phys_addr = CPHYSADDR((unsigned long)dma_desc);
printk("DMA descriptor address: 0x%08x 0x%08x\n", (u32)dma_desc, dma_desc_phys_addr);
/* Setup DMA descriptors */
desc = dma_desc;
next = (dma_desc_phys_addr + (sizeof(jz_dma_desc))) >> 4;
desc->dcmd = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_RDIL_IGN | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BYTE | DMAC_DCMD_DES_V | DMAC_DCMD_DES_VM | DMAC_DCMD_DES_VIE | DMAC_DCMD_TIE | DMAC_DCMD_LINK;
desc->dsadr = dma_src_phys_addr; /* DMA source address */
desc->dtadr = dma_dst_phys_addr; /* DMA target address */
desc->ddadr = (next << 24) + 128; /* size: 128*32 bytes = 4096 bytes */
desc++;
next = (dma_desc_phys_addr + 2*(sizeof(jz_dma_desc))) >> 4;
desc->dcmd = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_RDIL_IGN | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_16BYTE | DMAC_DCMD_DES_V | DMAC_DCMD_DES_VM | DMAC_DCMD_DES_VIE | DMAC_DCMD_TIE | DMAC_DCMD_LINK;
desc->dsadr = dma_src_phys_addr + 4096; /* DMA source address */
desc->dtadr = dma_dst_phys_addr + 4096; /* DMA target address */
desc->ddadr = (next << 24) + 256; /* size: 256*16 bytes = 4096 bytes */
desc++;
next = (dma_desc_phys_addr + 3*(sizeof(jz_dma_desc))) >> 4;
desc->dcmd = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_RDIL_IGN | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_16BYTE | DMAC_DCMD_DES_V | DMAC_DCMD_DES_VM | DMAC_DCMD_DES_VIE | DMAC_DCMD_TIE | DMAC_DCMD_LINK;
desc->dsadr = dma_src_phys_addr + 8192; /* DMA source address */
desc->dtadr = dma_dst_phys_addr + 8192; /* DMA target address */
desc->ddadr = (next << 24) + 256; /* size: 256*16 bytes = 4096 bytes */
desc++;
next = (dma_desc_phys_addr + 4*(sizeof(jz_dma_desc))) >> 4;
desc->dcmd = DMAC_DCMD_SAI | DMAC_DCMD_DAI | DMAC_DCMD_RDIL_IGN | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BIT | DMAC_DCMD_DES_V | DMAC_DCMD_DES_VM | DMAC_DCMD_DES_VIE | DMAC_DCMD_TIE;
desc->dsadr = dma_src_phys_addr + 12*1024; /* DMA source address */
desc->dtadr = dma_dst_phys_addr + 12*1024; /* DMA target address */
desc->ddadr = (next << 24) + 1024; /* size: 1024*4 bytes = 4096 bytes */
dma_cache_wback((unsigned long)dma_desc, 4*(sizeof(jz_dma_desc)));
/* Setup DMA descriptor address */
REG_DMAC_DDA(dma_chan) = dma_desc_phys_addr;
/* Setup request source */
REG_DMAC_DRSR(dma_chan) = DMAC_DRSR_RS_AUTO;
/* Setup DMA channel control/status register */
REG_DMAC_DCCSR(dma_chan) = DMAC_DCCSR_EN; /* descriptor transfer, clear status, start channel */
/* Enable DMA */
REG_DMAC_DMACR(dma_chan/HALF_DMA_NUM) = DMAC_DMACR_DMAE;
/* DMA doorbell set -- start DMA now ... */
REG_DMAC_DMADBSR(dma_chan/HALF_DMA_NUM) = 1 << dma_chan;
printk("DMA started. IMR=%08x\n", REG_INTC_IMR);
/* wait a long time, ensure transfer end */
printk("wait 3s...\n");
mdelay(3000); /* wait 3s */
REG_DMAC_DCCSR(dma_chan) &= ~DMAC_DCCSR_EN; /* disable DMA */
/* free buffers */
printk("free DMA buffers\n");
free_pages(dma_src_addr, 2);
free_pages(dma_dst_addr, 2);
if (dma_desc)
free_pages((unsigned int)dma_desc, 0);
/* free dma */
jz_free_dma(dma_chan);
}
#endif
//EXPORT_SYMBOL_NOVERS(jz_dma_table);
EXPORT_SYMBOL(jz_dma_table);
EXPORT_SYMBOL(jz_request_dma);
EXPORT_SYMBOL(jz_free_dma);
EXPORT_SYMBOL(jz_set_dma_src_width);
EXPORT_SYMBOL(jz_set_dma_dest_width);
EXPORT_SYMBOL(jz_set_dma_block_size);
EXPORT_SYMBOL(jz_set_dma_mode);
EXPORT_SYMBOL(set_dma_mode);
EXPORT_SYMBOL(jz_set_oss_dma);
EXPORT_SYMBOL(jz_set_alsa_dma);
EXPORT_SYMBOL(set_dma_addr);
EXPORT_SYMBOL(set_dma_count);
EXPORT_SYMBOL(get_dma_residue);
EXPORT_SYMBOL(enable_dma);
EXPORT_SYMBOL(disable_dma);
EXPORT_SYMBOL(dump_jz_dma_channel);