1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-15 22:51:06 +02:00

1204 lines
30 KiB
C
Raw Normal View History

/*
* ADM5120 built-in ethernet switch driver
*
* Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org>
*
* This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken.
* Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005
* NAPI extension for the Jeroen's driver
* Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007
* Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007
* Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver.
* Copyright ADMtek Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/mipsregs.h>
#include <asm/mach-adm5120/adm5120_info.h>
#include <asm/mach-adm5120/adm5120_defs.h>
#include <asm/mach-adm5120/adm5120_switch.h>
#include "adm5120sw.h"
#define DRV_NAME "adm5120-switch"
#define DRV_DESC "ADM5120 built-in ethernet switch driver"
#define DRV_VERSION "0.1.1"
#define CONFIG_ADM5120_SWITCH_NAPI 1
#undef CONFIG_ADM5120_SWITCH_DEBUG
/* ------------------------------------------------------------------------ */
#ifdef CONFIG_ADM5120_SWITCH_DEBUG
#define SW_DBG(f, a...) printk(KERN_DBG "%s: " f, DRV_NAME , ## a)
#else
#define SW_DBG(f, a...) do {} while (0)
#endif
#define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a)
#define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a)
#define SWITCH_NUM_PORTS 6
#define ETH_CSUM_LEN 4
#define RX_MAX_PKTLEN 1550
#define RX_RING_SIZE 64
#define TX_RING_SIZE 32
#define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */
#define TX_TIMEOUT HZ*400
#define RX_DESCS_SIZE (RX_RING_SIZE * sizeof(struct dma_desc *))
#define RX_SKBS_SIZE (RX_RING_SIZE * sizeof(struct sk_buff *))
#define TX_DESCS_SIZE (TX_RING_SIZE * sizeof(struct dma_desc *))
#define TX_SKBS_SIZE (TX_RING_SIZE * sizeof(struct sk_buff *))
#define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32)
#define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD)
#define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF)
#define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF)
#define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH)
#define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \
SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \
SWITCH_INT_CPQF | SWITCH_INT_GQF)
#define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \
SWITCH_INTS_ERR | SWITCH_INTS_Q | \
SWITCH_INT_MD | SWITCH_INT_PSC)
#define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC)
#define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD)
/* ------------------------------------------------------------------------ */
struct adm5120_if_priv {
struct net_device *dev;
unsigned int vlan_no;
unsigned int port_mask;
#ifdef CONFIG_ADM5120_SWITCH_NAPI
struct napi_struct napi;
#endif
};
struct dma_desc {
__u32 buf1;
#define DESC_OWN (1UL << 31) /* Owned by the switch */
#define DESC_EOR (1UL << 28) /* End of Ring */
#define DESC_ADDR_MASK 0x1FFFFFF
#define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK)
__u32 buf2;
#define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */
__u32 buflen;
__u32 misc;
/* definitions for tx/rx descriptors */
#define DESC_PKTLEN_SHIFT 16
#define DESC_PKTLEN_MASK 0x7FF
/* tx descriptor specific part */
#define DESC_CSUM (1UL << 31) /* Append checksum */
#define DESC_DSTPORT_SHIFT 8
#define DESC_DSTPORT_MASK 0x3F
#define DESC_VLAN_MASK 0x3F
/* rx descriptor specific part */
#define DESC_SRCPORT_SHIFT 12
#define DESC_SRCPORT_MASK 0x7
#define DESC_DA_MASK 0x3
#define DESC_DA_SHIFT 4
#define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */
#define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */
#define DESC_TYPE_MASK 0x3 /* mask for Packet type */
#define DESC_TYPE_IP 0x0 /* IP packet */
#define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */
} __attribute__ ((aligned(16)));
/* ------------------------------------------------------------------------ */
static int adm5120_nrdevs;
static struct net_device *adm5120_devs[SWITCH_NUM_PORTS];
/* Lookup table port -> device */
static struct net_device *adm5120_port[SWITCH_NUM_PORTS];
static struct dma_desc *txl_descs;
static struct dma_desc *rxl_descs;
static dma_addr_t txl_descs_dma;
static dma_addr_t rxl_descs_dma;
static struct sk_buff **txl_skbuff;
static struct sk_buff **rxl_skbuff;
static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */
static unsigned int cur_txl, dirty_txl;
static unsigned int sw_used;
static spinlock_t tx_lock = SPIN_LOCK_UNLOCKED;
/* ------------------------------------------------------------------------ */
static inline u32 sw_read_reg(u32 reg)
{
return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
}
static inline void sw_write_reg(u32 reg, u32 val)
{
__raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
}
static inline void sw_int_mask(u32 mask)
{
u32 t;
t = sw_read_reg(SWITCH_REG_INT_MASK);
t |= mask;
sw_write_reg(SWITCH_REG_INT_MASK, t);
}
static inline void sw_int_unmask(u32 mask)
{
u32 t;
t = sw_read_reg(SWITCH_REG_INT_MASK);
t &= ~mask;
sw_write_reg(SWITCH_REG_INT_MASK, t);
}
static inline void sw_int_ack(u32 mask)
{
sw_write_reg(SWITCH_REG_INT_STATUS, mask);
}
static inline u32 sw_int_status(void)
{
u32 t;
t = sw_read_reg(SWITCH_REG_INT_STATUS);
t &= ~sw_read_reg(SWITCH_REG_INT_MASK);
return t;
}
static inline u32 desc_get_srcport(struct dma_desc *desc)
{
return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK;
}
static inline u32 desc_get_pktlen(struct dma_desc *desc)
{
return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK;
}
static inline int desc_ipcsum_fail(struct dma_desc *desc)
{
return ((desc->misc & DESC_IPCSUM_FAIL) != 0);
}
/* ------------------------------------------------------------------------ */
static void sw_dump_desc(char *label, struct dma_desc *desc, int tx)
{
u32 t;
SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc);
t = desc->buf1;
SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t,
t & DESC_ADDR_MASK,
desc->buflen,
(t & DESC_OWN) ? "SWITCH" : "CPU",
(t & DESC_EOR) ? " RE" : "");
t = desc->buf2;
SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2,
t & DESC_ADDR_MASK,
(t & DESC_BUF2_EN) ? " EN" : "" );
t = desc->misc;
if (tx)
SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t,
(t & DESC_CSUM) ? " CSUM" : "",
(t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
(t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK,
t & DESC_VLAN_MASK);
else
SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n",
t,
(t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
(t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK,
(t >> DESC_DA_SHIFT) & DESC_DA_MASK,
(t & DESC_IPCSUM_FAIL) ? " IPCF" : "",
(t & DESC_VLAN_TAG) ? " VLAN" : "",
(t & DESC_TYPE_MASK));
}
static void sw_dump_intr_mask(char *label, u32 mask)
{
SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
label, mask,
(mask & SWITCH_INT_SHD) ? " SHD" : "",
(mask & SWITCH_INT_SLD) ? " SLD" : "",
(mask & SWITCH_INT_RHD) ? " RHD" : "",
(mask & SWITCH_INT_RLD) ? " RLD" : "",
(mask & SWITCH_INT_HDF) ? " HDF" : "",
(mask & SWITCH_INT_LDF) ? " LDF" : "",
(mask & SWITCH_INT_P0QF) ? " P0QF" : "",
(mask & SWITCH_INT_P1QF) ? " P1QF" : "",
(mask & SWITCH_INT_P2QF) ? " P2QF" : "",
(mask & SWITCH_INT_P3QF) ? " P3QF" : "",
(mask & SWITCH_INT_P4QF) ? " P4QF" : "",
(mask & SWITCH_INT_CPQF) ? " CPQF" : "",
(mask & SWITCH_INT_GQF) ? " GQF" : "",
(mask & SWITCH_INT_MD) ? " MD" : "",
(mask & SWITCH_INT_BCS) ? " BCS" : "",
(mask & SWITCH_INT_PSC) ? " PSC" : "",
(mask & SWITCH_INT_ID) ? " ID" : "",
(mask & SWITCH_INT_W0TE) ? " W0TE" : "",
(mask & SWITCH_INT_W1TE) ? " W1TE" : "",
(mask & SWITCH_INT_RDE) ? " RDE" : "",
(mask & SWITCH_INT_SDE) ? " SDE" : "",
(mask & SWITCH_INT_CPUH) ? " CPUH" : "");
}
static void sw_dump_regs(void)
{
u32 t;
t = sw_read_reg(SWITCH_REG_PHY_STATUS);
SW_DBG("phy_status: %08X\n", t);
t = sw_read_reg(SWITCH_REG_CPUP_CONF);
SW_DBG("cpup_conf: %08X%s%s%s\n", t,
(t & CPUP_CONF_DCPUP) ? " DCPUP" : "",
(t & CPUP_CONF_CRCP) ? " CRCP" : "",
(t & CPUP_CONF_BTM) ? " BTM" : "");
t = sw_read_reg(SWITCH_REG_PORT_CONF0);
SW_DBG("port_conf0: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PORT_CONF1);
SW_DBG("port_conf1: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PORT_CONF2);
SW_DBG("port_conf2: %08X\n", t);
t = sw_read_reg(SWITCH_REG_VLAN_G1);
SW_DBG("vlan g1: %08X\n", t);
t = sw_read_reg(SWITCH_REG_VLAN_G2);
SW_DBG("vlan g2: %08X\n", t);
t = sw_read_reg(SWITCH_REG_BW_CNTL0);
SW_DBG("bw_cntl0: %08X\n", t);
t = sw_read_reg(SWITCH_REG_BW_CNTL1);
SW_DBG("bw_cntl1: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL0);
SW_DBG("phy_cntl0: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL1);
SW_DBG("phy_cntl1: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL2);
SW_DBG("phy_cntl2: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
SW_DBG("phy_cntl3: %08X\n", t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL4);
SW_DBG("phy_cntl4: %08X\n", t);
t = sw_read_reg(SWITCH_REG_INT_STATUS);
sw_dump_intr_mask("int_status: ", t);
t = sw_read_reg(SWITCH_REG_INT_MASK);
sw_dump_intr_mask("int_mask: ", t);
t = sw_read_reg(SWITCH_REG_SHDA);
SW_DBG("shda: %08X\n", t);
t = sw_read_reg(SWITCH_REG_SLDA);
SW_DBG("slda: %08X\n", t);
t = sw_read_reg(SWITCH_REG_RHDA);
SW_DBG("rhda: %08X\n", t);
t = sw_read_reg(SWITCH_REG_RLDA);
SW_DBG("rlda: %08X\n", t);
}
/* ------------------------------------------------------------------------ */
static inline void adm5120_rx_dma_update(struct dma_desc *desc,
struct sk_buff *skb, int end)
{
desc->misc = 0;
desc->buf2 = 0;
desc->buflen = RX_MAX_PKTLEN;
desc->buf1 = DESC_ADDR(skb->data) |
DESC_OWN | (end ? DESC_EOR : 0);
}
static void adm5120_switch_rx_refill(void)
{
unsigned int entry;
for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) {
struct dma_desc *desc;
struct sk_buff *skb;
entry = dirty_rxl % RX_RING_SIZE;
desc = &rxl_descs[entry];
skb = rxl_skbuff[entry];
if (skb == NULL) {
skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
if (skb) {
skb_reserve(skb, SKB_RESERVE_LEN);
rxl_skbuff[entry] = skb;
} else {
SW_ERR("no memory for skb\n");
desc->buflen = 0;
desc->buf2 = 0;
desc->misc = 0;
desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN;
break;
}
}
desc->buf2 = 0;
desc->buflen = RX_MAX_PKTLEN;
desc->misc = 0;
desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN |
DESC_ADDR(skb->data);
}
}
static int adm5120_switch_rx(int limit)
{
unsigned int done = 0;
SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n",
limit, cur_rxl, dirty_rxl);
while (done < limit) {
int entry = cur_rxl % RX_RING_SIZE;
struct dma_desc *desc = &rxl_descs[entry];
struct net_device *rdev;
unsigned int port;
if (desc->buf1 & DESC_OWN)
break;
if (dirty_rxl + RX_RING_SIZE == cur_rxl)
break;
port = desc_get_srcport(desc);
rdev = adm5120_port[port];
SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc,
rxl_skbuff[entry]);
if ((rdev) && netif_running(rdev)) {
struct sk_buff *skb = rxl_skbuff[entry];
int pktlen;
pktlen = desc_get_pktlen(desc);
pktlen -= ETH_CSUM_LEN;
if ((pktlen == 0) || desc_ipcsum_fail(desc)) {
rdev->stats.rx_errors++;
if (pktlen == 0)
rdev->stats.rx_length_errors++;
if (desc_ipcsum_fail(desc))
rdev->stats.rx_crc_errors++;
SW_DBG("rx error, recycling skb %u\n", entry);
} else {
skb_put(skb, pktlen);
skb->dev = rdev;
skb->protocol = eth_type_trans(skb, rdev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
dma_cache_wback_inv((unsigned long)skb->data,
skb->len);
#ifdef CONFIG_ADM5120_SWITCH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
rdev->last_rx = jiffies;
rdev->stats.rx_packets++;
rdev->stats.rx_bytes += pktlen;
rxl_skbuff[entry] = NULL;
done++;
}
} else {
SW_DBG("no rx device, recycling skb %u\n", entry);
}
cur_rxl++;
if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4)
adm5120_switch_rx_refill();
}
adm5120_switch_rx_refill();
SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n",
cur_rxl, dirty_rxl, done);
return done;
}
static void adm5120_switch_tx(void)
{
unsigned int entry;
spin_lock(&tx_lock);
entry = dirty_txl % TX_RING_SIZE;
while (dirty_txl != cur_txl) {
struct dma_desc *desc = &txl_descs[entry];
struct sk_buff *skb = txl_skbuff[entry];
if (desc->buf1 & DESC_OWN)
break;
if (netif_running(skb->dev)) {
skb->dev->stats.tx_bytes += skb->len;
skb->dev->stats.tx_packets++;
}
dev_kfree_skb_irq(skb);
txl_skbuff[entry] = NULL;
entry = (++dirty_txl) % TX_RING_SIZE;
}
if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) {
int i;
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
if (!adm5120_devs[i])
continue;
netif_wake_queue(adm5120_devs[i]);
}
}
spin_unlock(&tx_lock);
}
#ifdef CONFIG_ADM5120_SWITCH_NAPI
static int adm5120_if_poll(struct napi_struct *napi, int limit)
{
struct adm5120_if_priv *priv = container_of(napi,
struct adm5120_if_priv, napi);
struct net_device *dev = priv->dev;
int done;
u32 status;
sw_int_ack(SWITCH_INTS_POLL);
SW_DBG("%s: processing TX ring\n", dev->name);
adm5120_switch_tx();
SW_DBG("%s: processing RX ring\n", dev->name);
done = adm5120_switch_rx(limit);
status = sw_int_status() & SWITCH_INTS_POLL;
if ((done < limit) && (!status)) {
SW_DBG("disable polling mode for %s\n", dev->name);
netif_rx_complete(dev, napi);
sw_int_unmask(SWITCH_INTS_POLL);
return 0;
}
SW_DBG("%s still in polling mode, done=%d, status=%x\n",
dev->name, done, status);
return 1;
}
#endif /* CONFIG_ADM5120_SWITCH_NAPI */
static irqreturn_t adm5120_switch_irq(int irq, void *dev_id)
{
u32 status;
status = sw_int_status();
status &= SWITCH_INTS_ALL;
if (!status)
return IRQ_NONE;
#ifdef CONFIG_ADM5120_SWITCH_NAPI
sw_int_ack(status & ~SWITCH_INTS_POLL);
if (status & SWITCH_INTS_POLL) {
struct net_device *dev = dev_id;
struct adm5120_if_priv *priv = netdev_priv(dev);
sw_dump_intr_mask("poll ints", status);
SW_DBG("enable polling mode for %s\n", dev->name);
sw_int_mask(SWITCH_INTS_POLL);
netif_rx_schedule(dev, &priv->napi);
}
#else
sw_int_ack(status);
if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF)) {
adm5120_switch_rx(RX_RING_SIZE);
}
if (status & SWITCH_INT_SLD) {
adm5120_switch_tx();
}
#endif
return IRQ_HANDLED;
}
static void adm5120_set_bw(char *matrix)
{
unsigned long val;
/* Port 0 to 3 are set using the bandwidth control 0 register */
val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
sw_write_reg(SWITCH_REG_BW_CNTL0, val);
/* Port 4 and 5 are set using the bandwidth control 1 register */
val = matrix[4];
if (matrix[5] == 1)
sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000);
else
sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000);
SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0),
sw_read_reg(SWITCH_REG_BW_CNTL1));
}
static void adm5120_switch_tx_ring_reset(struct dma_desc *desc,
struct sk_buff **skbl, int num)
{
memset(desc, 0, num * sizeof(*desc));
desc[num-1].buf1 |= DESC_EOR;
memset(skbl, 0, sizeof(struct skb*)*num);
cur_txl = 0;
dirty_txl = 0;
}
static void adm5120_switch_rx_ring_reset(struct dma_desc *desc,
struct sk_buff **skbl, int num)
{
int i;
memset(desc, 0, num * sizeof(*desc));
for (i = 0; i < num; i++) {
skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN);
if (!skbl[i]) {
i = num;
break;
}
skb_reserve(skbl[i], SKB_RESERVE_LEN);
adm5120_rx_dma_update(&desc[i], skbl[i], (num-1==i));
}
cur_rxl = 0;
dirty_rxl = 0;
}
static int adm5120_switch_tx_ring_alloc(void)
{
int err;
txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma,
GFP_ATOMIC);
if (!txl_descs) {
err = -ENOMEM;
goto err;
}
txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL);
if (!txl_skbuff) {
err = -ENOMEM;
goto err;
}
return 0;
err:
return err;
}
static void adm5120_switch_tx_ring_free(void)
{
int i;
if (txl_skbuff) {
for (i = 0; i < TX_RING_SIZE; i++)
if (txl_skbuff[i])
kfree_skb(txl_skbuff[i]);
kfree(txl_skbuff);
}
if (txl_descs)
dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs,
txl_descs_dma);
}
static int adm5120_switch_rx_ring_alloc(void)
{
int err;
int i;
/* init RX ring */
rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma,
GFP_ATOMIC);
if (!rxl_descs) {
err = -ENOMEM;
goto err;
}
rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL);
if (!rxl_skbuff) {
err = -ENOMEM;
goto err;
}
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb;
skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
goto err;
}
rxl_skbuff[i] = skb;
skb_reserve(skb, SKB_RESERVE_LEN);
}
return 0;
err:
return err;
}
static void adm5120_switch_rx_ring_free(void)
{
int i;
if (rxl_skbuff) {
for (i = 0; i < RX_RING_SIZE; i++)
if (rxl_skbuff[i])
kfree_skb(rxl_skbuff[i]);
kfree(rxl_skbuff);
}
if (rxl_descs)
dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs,
rxl_descs_dma);
}
static void adm5120_write_mac(struct net_device *dev)
{
struct adm5120_if_priv *priv = netdev_priv(dev);
unsigned char *mac = dev->dev_addr;
u32 t;
t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) |
(mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT);
sw_write_reg(SWITCH_REG_MAC_WT1, t);
t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3);
sw_write_reg(SWITCH_REG_MAC_WT0, t);
while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD));
}
static void adm5120_set_vlan(char *matrix)
{
unsigned long val;
int vlan_port, port;
val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
sw_write_reg(SWITCH_REG_VLAN_G1, val);
val = matrix[4] + (matrix[5]<<8);
sw_write_reg(SWITCH_REG_VLAN_G2, val);
/* Now set/update the port vs. device lookup table */
for (port=0; port<SWITCH_NUM_PORTS; port++) {
for (vlan_port=0; vlan_port<SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++);
if (vlan_port <SWITCH_NUM_PORTS)
adm5120_port[port] = adm5120_devs[vlan_port];
else
adm5120_port[port] = NULL;
}
}
static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac)
{
u32 t;
t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT)
| (mac[4] << MAC_WT1_MAC4_SHIFT)
| (mac[5] << MAC_WT1_MAC5_SHIFT);
sw_write_reg(SWITCH_REG_MAC_WT1, t);
t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) |
(MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT);
sw_write_reg(SWITCH_REG_MAC_WT0, t);
do {
t = sw_read_reg(SWITCH_REG_MAC_WT0);
} while ((t & MAC_WT0_MWD) == 0);
}
static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports)
{
unsigned int reg;
u32 t;
if (vlan < 4)
reg = SWITCH_REG_VLAN_G1;
else {
vlan -= 4;
reg = SWITCH_REG_VLAN_G2;
}
t = sw_read_reg(reg);
t &= ~(0xFF << (vlan*8));
t |= (ports << (vlan*8));
sw_write_reg(reg, t);
}
/* ------------------------------------------------------------------------ */
#ifdef CONFIG_ADM5120_SWITCH_NAPI
static inline void adm5120_if_napi_enable(struct net_device *dev)
{
struct adm5120_if_priv *priv = netdev_priv(dev);
napi_enable(&priv->napi);
}
static inline void adm5120_if_napi_disable(struct net_device *dev)
{
struct adm5120_if_priv *priv = netdev_priv(dev);
napi_disable(&priv->napi);
}
#else
static inline void adm5120_if_napi_enable(struct net_device *dev) {}
static inline void adm5120_if_napi_disable(struct net_device *dev) {}
#endif /* CONFIG_ADM5120_SWITCH_NAPI */
static int adm5120_if_open(struct net_device *dev)
{
u32 t;
int err;
int i;
adm5120_if_napi_enable(dev);
err = request_irq(dev->irq, adm5120_switch_irq,
(IRQF_SHARED | IRQF_DISABLED), dev->name, dev);
if (err) {
SW_ERR("unable to get irq for %s\n", dev->name);
goto err;
}
if (!sw_used++)
/* enable interrupts on first open */
sw_int_unmask(SWITCH_INTS_USED);
/* enable (additional) port */
t = sw_read_reg(SWITCH_REG_PORT_CONF0);
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
if (dev == adm5120_devs[i])
t &= ~adm5120_eth_vlans[i];
}
sw_write_reg(SWITCH_REG_PORT_CONF0, t);
netif_start_queue(dev);
return 0;
err:
adm5120_if_napi_disable(dev);
return err;
}
static int adm5120_if_stop(struct net_device *dev)
{
u32 t;
int i;
netif_stop_queue(dev);
adm5120_if_napi_disable(dev);
/* disable port if not assigned to other devices */
t = sw_read_reg(SWITCH_REG_PORT_CONF0);
t |= SWITCH_PORTS_NOCPU;
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i]))
t &= ~adm5120_eth_vlans[i];
}
sw_write_reg(SWITCH_REG_PORT_CONF0, t);
if (!--sw_used)
sw_int_mask(SWITCH_INTS_USED);
free_irq(dev->irq, dev);
return 0;
}
static int adm5120_if_hard_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct dma_desc *desc;
struct adm5120_if_priv *priv = netdev_priv(dev);
unsigned int entry;
unsigned long data;
int i;
/* lock switch irq */
spin_lock_irq(&tx_lock);
/* calculate the next TX descriptor entry. */
entry = cur_txl % TX_RING_SIZE;
desc = &txl_descs[entry];
if (desc->buf1 & DESC_OWN) {
/* We want to write a packet but the TX queue is still
* occupied by the DMA. We are faster than the DMA... */
SW_DBG("%s unable to transmit, packet dopped\n", dev->name);
dev_kfree_skb(skb);
dev->stats.tx_dropped++;
return 0;
}
txl_skbuff[entry] = skb;
data = (desc->buf1 & DESC_EOR);
data |= DESC_ADDR(skb->data);
desc->misc =
((skb->len<ETH_ZLEN?ETH_ZLEN:skb->len) << DESC_PKTLEN_SHIFT) |
(0x1 << priv->vlan_no);
desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
desc->buf1 = data | DESC_OWN;
sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL);
cur_txl++;
if (cur_txl == dirty_txl + TX_QUEUE_LEN) {
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
if (!adm5120_devs[i])
continue;
netif_stop_queue(adm5120_devs[i]);
}
}
dev->trans_start = jiffies;
spin_unlock_irq(&tx_lock);
return 0;
}
static void adm5120_if_tx_timeout(struct net_device *dev)
{
SW_INFO("TX timeout on %s\n",dev->name);
}
static void adm5120_if_set_multicast_list(struct net_device *dev)
{
struct adm5120_if_priv *priv = netdev_priv(dev);
u32 ports;
u32 t;
ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU;
t = sw_read_reg(SWITCH_REG_CPUP_CONF);
if (dev->flags & IFF_PROMISC)
/* enable unknown packets */
t &= ~(ports << CPUP_CONF_DUNP_SHIFT);
else
/* disable unknown packets */
t |= (ports << CPUP_CONF_DUNP_SHIFT);
if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI ||
dev->mc_count)
/* enable multicast packets */
t &= ~(ports << CPUP_CONF_DMCP_SHIFT);
else
/* disable multicast packets */
t |= (ports << CPUP_CONF_DMCP_SHIFT);
/* If there is any port configured to be in promiscuous mode, then the */
/* Bridge Test Mode has to be activated. This will result in */
/* transporting also packets learned in another VLAN to be forwarded */
/* to the CPU. */
/* The difficult scenario is when we want to build a bridge on the CPU.*/
/* Assume we have port0 and the CPU port in VLAN0 and port1 and the */
/* CPU port in VLAN1. Now we build a bridge on the CPU between */
/* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */
/* Now assume a packet with ethernet source address 99 enters port 0 */
/* It will be forwarded to the CPU because it is unknown. Then the */
/* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */
/* When now a packet with ethernet destination address 99 comes in at */
/* port 1 in VLAN1, then the switch has learned that this address is */
/* located at port 0 in VLAN0. Therefore the switch will drop */
/* this packet. In order to avoid this and to send the packet still */
/* to the CPU, the Bridge Test Mode has to be activated. */
/* Check if there is any vlan in promisc mode. */
if (t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT))
t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */
else
t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */
sw_write_reg(SWITCH_REG_CPUP_CONF, t);
}
static int adm5120_if_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
adm5120_write_mac(dev);
return 0;
}
static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq,
int cmd)
{
int err;
struct adm5120_sw_info info;
struct adm5120_if_priv *priv = netdev_priv(dev);
switch(cmd) {
case SIOCGADMINFO:
info.magic = 0x5120;
info.ports = adm5120_nrdevs;
info.vlan = priv->vlan_no;
err = copy_to_user(rq->ifr_data, &info, sizeof(info));
if (err)
return -EFAULT;
break;
case SIOCSMATRIX:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
err = copy_from_user(adm5120_eth_vlans, rq->ifr_data,
sizeof(adm5120_eth_vlans));
if (err)
return -EFAULT;
adm5120_set_vlan(adm5120_eth_vlans);
break;
case SIOCGMATRIX:
err = copy_to_user(rq->ifr_data, adm5120_eth_vlans,
sizeof(adm5120_eth_vlans));
if (err)
return -EFAULT;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct net_device *adm5120_if_alloc(void)
{
struct net_device *dev;
struct adm5120_if_priv *priv;
dev = alloc_etherdev(sizeof(*priv));
if (!dev)
return NULL;
priv = netdev_priv(dev);
priv->dev = dev;
dev->irq = ADM5120_IRQ_SWITCH;
dev->open = adm5120_if_open;
dev->hard_start_xmit = adm5120_if_hard_start_xmit;
dev->stop = adm5120_if_stop;
dev->set_multicast_list = adm5120_if_set_multicast_list;
dev->do_ioctl = adm5120_if_do_ioctl;
dev->tx_timeout = adm5120_if_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->set_mac_address = adm5120_if_set_mac_address;
#ifdef CONFIG_ADM5120_SWITCH_NAPI
netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64);
#endif
return dev;
}
/* ------------------------------------------------------------------------ */
static void adm5120_switch_cleanup(void)
{
int i;
/* disable interrupts */
sw_int_mask(SWITCH_INTS_ALL);
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
struct net_device *dev = adm5120_devs[i];
if (dev) {
unregister_netdev(dev);
free_netdev(dev);
}
}
adm5120_switch_tx_ring_free();
adm5120_switch_rx_ring_free();
}
static int __init adm5120_switch_probe(struct platform_device *pdev)
{
u32 t;
int i, err;
adm5120_nrdevs = adm5120_eth_num_ports;
t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT |
SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ;
sw_write_reg(SWITCH_REG_CPUP_CONF, t);
t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) |
(SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) |
(SWITCH_PORTS_NOCPU);
sw_write_reg(SWITCH_REG_PORT_CONF0, t);
/* setup ports to Autoneg/100M/Full duplex/Auto MDIX */
t = SWITCH_PORTS_PHY |
(SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) |
(SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) |
(SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) |
(SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) |
PHY_CNTL2_RMAE;
sw_write_reg(SWITCH_REG_PHY_CNTL2, t);
t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
t |= PHY_CNTL3_RNT;
sw_write_reg(SWITCH_REG_PHY_CNTL3, t);
/* Force all the packets from all ports are low priority */
sw_write_reg(SWITCH_REG_PRI_CNTL, 0);
sw_int_mask(SWITCH_INTS_ALL);
sw_int_ack(SWITCH_INTS_ALL);
err = adm5120_switch_rx_ring_alloc();
if (err)
goto err;
err = adm5120_switch_tx_ring_alloc();
if (err)
goto err;
adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE);
adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE);
sw_write_reg(SWITCH_REG_SHDA, 0);
sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs));
sw_write_reg(SWITCH_REG_RHDA, 0);
sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs));
for (i = 0; i < SWITCH_NUM_PORTS; i++) {
struct net_device *dev;
struct adm5120_if_priv *priv;
dev = adm5120_if_alloc();
if (!dev) {
err = -ENOMEM;
goto err;
}
adm5120_devs[i] = dev;
priv = netdev_priv(dev);
priv->vlan_no = i;
priv->port_mask = adm5120_eth_vlans[i];
memcpy(dev->dev_addr, adm5120_eth_macs[i], 6);
adm5120_write_mac(dev);
err = register_netdev(dev);
if (err) {
SW_INFO("%s register failed, error=%d\n",
dev->name, err);
goto err;
}
}
/* setup vlan/port mapping after devs are filled up */
adm5120_set_vlan(adm5120_eth_vlans);
/* enable CPU port */
t = sw_read_reg(SWITCH_REG_CPUP_CONF);
t &= ~CPUP_CONF_DCPUP;
sw_write_reg(SWITCH_REG_CPUP_CONF, t);
return 0;
err:
adm5120_switch_cleanup();
SW_ERR("init failed\n");
return err;
}
static int adm5120_switch_remove(struct platform_device *dev)
{
adm5120_switch_cleanup();
return 0;
}
static struct platform_driver adm5120_switch_driver = {
.probe = adm5120_switch_probe,
.remove = adm5120_switch_remove,
.driver = {
.name = DRV_NAME,
},
};
/* -------------------------------------------------------------------------- */
static int __init adm5120_switch_mod_init(void)
{
int err;
pr_info(DRV_DESC " version " DRV_VERSION "\n");
err = platform_driver_register(&adm5120_switch_driver);
return err;
}
static void __exit adm5120_switch_mod_exit(void)
{
platform_driver_unregister(&adm5120_switch_driver);
}
module_init(adm5120_switch_mod_init);
module_exit(adm5120_switch_mod_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);