1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-22 17:51:05 +02:00

899 lines
24 KiB
C
Raw Normal View History

/*
* An OCF module that uses the linux kernel cryptoapi, based on the
* original cryptosoft for BSD by Angelos D. Keromytis (angelos@cis.upenn.edu)
* but is mostly unrecognisable,
*
* Written by David McCullough <david_mccullough@securecomputing.com>
* Copyright (C) 2004-2007 David McCullough
* Copyright (C) 2004-2005 Intel Corporation.
*
* LICENSE TERMS
*
* The free distribution and use of this software in both source and binary
* form is allowed (with or without changes) provided that:
*
* 1. distributions of this source code include the above copyright
* notice, this list of conditions and the following disclaimer;
*
* 2. distributions in binary form include the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other associated materials;
*
* 3. the copyright holder's name is not used to endorse products
* built using this software without specific written permission.
*
* ALTERNATIVELY, provided that this notice is retained in full, this product
* may be distributed under the terms of the GNU General Public License (GPL),
* in which case the provisions of the GPL apply INSTEAD OF those given above.
*
* DISCLAIMER
*
* This software is provided 'as is' with no explicit or implied warranties
* in respect of its properties, including, but not limited to, correctness
* and/or fitness for purpose.
* ---------------------------------------------------------------------------
*/
#ifndef AUTOCONF_INCLUDED
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/crypto.h>
#include <linux/mm.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <asm/scatterlist.h>
#include <cryptodev.h>
#include <uio.h>
struct {
softc_device_decl sc_dev;
} swcr_softc;
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
/* Software session entry */
#define SW_TYPE_CIPHER 0
#define SW_TYPE_HMAC 1
#define SW_TYPE_AUTH2 2
#define SW_TYPE_HASH 3
#define SW_TYPE_COMP 4
#define SW_TYPE_BLKCIPHER 5
struct swcr_data {
int sw_type;
int sw_alg;
struct crypto_tfm *sw_tfm;
union {
struct {
char *sw_key;
int sw_klen;
int sw_mlen;
} hmac;
void *sw_comp_buf;
} u;
struct swcr_data *sw_next;
};
#ifndef CRYPTO_TFM_MODE_CBC
/*
* As of linux-2.6.21 this is no longer defined, and presumably no longer
* needed to be passed into the crypto core code.
*/
#define CRYPTO_TFM_MODE_CBC 0
#define CRYPTO_TFM_MODE_ECB 0
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
/*
* Linux 2.6.19 introduced a new Crypto API, setup macro's to convert new
* API into old API.
*/
/* Symmetric/Block Cipher */
struct blkcipher_desc
{
struct crypto_tfm *tfm;
void *info;
};
#define ecb(X) #X
#define cbc(X) #X
#define crypto_has_blkcipher(X, Y, Z) crypto_alg_available(X, 0)
#define crypto_blkcipher_cast(X) X
#define crypto_blkcipher_tfm(X) X
#define crypto_alloc_blkcipher(X, Y, Z) crypto_alloc_tfm(X, mode)
#define crypto_blkcipher_ivsize(X) crypto_tfm_alg_ivsize(X)
#define crypto_blkcipher_blocksize(X) crypto_tfm_alg_blocksize(X)
#define crypto_blkcipher_setkey(X, Y, Z) crypto_cipher_setkey(X, Y, Z)
#define crypto_blkcipher_encrypt_iv(W, X, Y, Z) \
crypto_cipher_encrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info))
#define crypto_blkcipher_decrypt_iv(W, X, Y, Z) \
crypto_cipher_decrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info))
/* Hash/HMAC/Digest */
struct hash_desc
{
struct crypto_tfm *tfm;
};
#define hmac(X) #X
#define crypto_has_hash(X, Y, Z) crypto_alg_available(X, 0)
#define crypto_hash_cast(X) X
#define crypto_hash_tfm(X) X
#define crypto_alloc_hash(X, Y, Z) crypto_alloc_tfm(X, mode)
#define crypto_hash_digestsize(X) crypto_tfm_alg_digestsize(X)
#define crypto_hash_digest(W, X, Y, Z) \
crypto_digest_digest((W)->tfm, X, sg_num, Z)
/* Asymmetric Cipher */
#define crypto_has_cipher(X, Y, Z) crypto_alg_available(X, 0)
/* Compression */
#define crypto_has_comp(X, Y, Z) crypto_alg_available(X, 0)
#define crypto_comp_tfm(X) X
#define crypto_comp_cast(X) X
#define crypto_alloc_comp(X, Y, Z) crypto_alloc_tfm(X, mode)
#else
#define ecb(X) "ecb(" #X ")"
#define cbc(X) "cbc(" #X ")"
#define hmac(X) "hmac(" #X ")"
#endif /* if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */
struct crypto_details
{
char *alg_name;
int mode;
int sw_type;
};
/*
* This needs to be kept updated with CRYPTO_xxx list (cryptodev.h).
* If the Algorithm is not supported, then insert a {NULL, 0, 0} entry.
*
* IMPORTANT: The index to the array IS CRYPTO_xxx.
*/
static struct crypto_details crypto_details[CRYPTO_ALGORITHM_MAX + 1] = {
{ NULL, 0, 0 },
/* CRYPTO_xxx index starts at 1 */
{ cbc(des), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ cbc(des3_ede), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ cbc(blowfish), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ cbc(cast5), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ cbc(skipjack), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ hmac(md5), 0, SW_TYPE_HMAC },
{ hmac(sha1), 0, SW_TYPE_HMAC },
{ hmac(ripemd160), 0, SW_TYPE_HMAC },
{ "md5-kpdk??", 0, SW_TYPE_HASH },
{ "sha1-kpdk??", 0, SW_TYPE_HASH },
{ cbc(aes), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ ecb(arc4), CRYPTO_TFM_MODE_ECB, SW_TYPE_BLKCIPHER },
{ "md5", 0, SW_TYPE_HASH },
{ "sha1", 0, SW_TYPE_HASH },
{ hmac(digest_null), 0, SW_TYPE_HMAC },
{ cbc(cipher_null), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ "deflate", 0, SW_TYPE_COMP },
{ hmac(sha256), 0, SW_TYPE_HMAC },
{ hmac(sha384), 0, SW_TYPE_HMAC },
{ hmac(sha512), 0, SW_TYPE_HMAC },
{ cbc(camellia), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
{ "sha256", 0, SW_TYPE_HASH },
{ "sha384", 0, SW_TYPE_HASH },
{ "sha512", 0, SW_TYPE_HASH },
{ "ripemd160", 0, SW_TYPE_HASH },
};
int32_t swcr_id = -1;
module_param(swcr_id, int, 0444);
MODULE_PARM_DESC(swcr_id, "Read-Only OCF ID for cryptosoft driver");
int swcr_fail_if_compression_grows = 1;
module_param(swcr_fail_if_compression_grows, int, 0644);
MODULE_PARM_DESC(swcr_fail_if_compression_grows,
"Treat compression that results in more data as a failure");
static struct swcr_data **swcr_sessions = NULL;
static u_int32_t swcr_sesnum = 0;
static int swcr_process(device_t, struct cryptop *, int);
static int swcr_newsession(device_t, u_int32_t *, struct cryptoini *);
static int swcr_freesession(device_t, u_int64_t);
static device_method_t swcr_methods = {
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, swcr_newsession),
DEVMETHOD(cryptodev_freesession,swcr_freesession),
DEVMETHOD(cryptodev_process, swcr_process),
};
#define debug swcr_debug
int swcr_debug = 0;
module_param(swcr_debug, int, 0644);
MODULE_PARM_DESC(swcr_debug, "Enable debug");
/*
* Generate a new software session.
*/
static int
swcr_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri)
{
struct swcr_data **swd;
u_int32_t i;
int error;
char *algo;
int mode, sw_type;
dprintk("%s()\n", __FUNCTION__);
if (sid == NULL || cri == NULL) {
dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
if (swcr_sessions) {
for (i = 1; i < swcr_sesnum; i++)
if (swcr_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (swcr_sessions == NULL || i == swcr_sesnum) {
if (swcr_sessions == NULL) {
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
} else
swcr_sesnum *= 2;
swd = kmalloc(swcr_sesnum * sizeof(struct swcr_data *), SLAB_ATOMIC);
if (swd == NULL) {
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
swcr_sesnum = 0;
else
swcr_sesnum /= 2;
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
/* Copy existing sessions */
if (swcr_sessions) {
memcpy(swd, swcr_sessions,
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
kfree(swcr_sessions);
}
swcr_sessions = swd;
}
swd = &swcr_sessions[i];
*sid = i;
while (cri) {
*swd = (struct swcr_data *) kmalloc(sizeof(struct swcr_data),
SLAB_ATOMIC);
if (*swd == NULL) {
swcr_freesession(NULL, i);
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
memset(*swd, 0, sizeof(struct swcr_data));
if (cri->cri_alg > CRYPTO_ALGORITHM_MAX) {
printk("cryptosoft: Unknown algorithm 0x%x\n", cri->cri_alg);
swcr_freesession(NULL, i);
return EINVAL;
}
algo = crypto_details[cri->cri_alg].alg_name;
if (!algo || !*algo) {
printk("cryptosoft: Unsupported algorithm 0x%x\n", cri->cri_alg);
swcr_freesession(NULL, i);
return EINVAL;
}
mode = crypto_details[cri->cri_alg].mode;
sw_type = crypto_details[cri->cri_alg].sw_type;
/* Algorithm specific configuration */
switch (cri->cri_alg) {
case CRYPTO_NULL_CBC:
cri->cri_klen = 0; /* make it work with crypto API */
break;
default:
break;
}
if (sw_type == SW_TYPE_BLKCIPHER) {
dprintk("%s crypto_alloc_blkcipher(%s, 0x%x)\n", __FUNCTION__,
algo, mode);
(*swd)->sw_tfm = crypto_blkcipher_tfm(
crypto_alloc_blkcipher(algo, 0,
CRYPTO_ALG_ASYNC));
if (!(*swd)->sw_tfm) {
dprintk("cryptosoft: crypto_alloc_blkcipher failed(%s,0x%x)\n",
algo,mode);
swcr_freesession(NULL, i);
return EINVAL;
}
if (debug) {
dprintk("%s key:cri->cri_klen=%d,(cri->cri_klen + 7)/8=%d",
__FUNCTION__,cri->cri_klen,(cri->cri_klen + 7)/8);
for (i = 0; i < (cri->cri_klen + 7) / 8; i++)
{
dprintk("%s0x%x", (i % 8) ? " " : "\n ",cri->cri_key[i]);
}
dprintk("\n");
}
error = crypto_blkcipher_setkey(
crypto_blkcipher_cast((*swd)->sw_tfm), cri->cri_key,
(cri->cri_klen + 7) / 8);
if (error) {
printk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n", error,
(*swd)->sw_tfm->crt_flags);
swcr_freesession(NULL, i);
return error;
}
} else if (sw_type == SW_TYPE_HMAC || sw_type == SW_TYPE_HASH) {
dprintk("%s crypto_alloc_hash(%s, 0x%x)\n", __FUNCTION__,
algo, mode);
(*swd)->sw_tfm = crypto_hash_tfm(
crypto_alloc_hash(algo, 0, CRYPTO_ALG_ASYNC));
if (!(*swd)->sw_tfm) {
dprintk("cryptosoft: crypto_alloc_hash failed(%s,0x%x)\n",
algo, mode);
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->u.hmac.sw_klen = (cri->cri_klen + 7) / 8;
(*swd)->u.hmac.sw_key = (char *)kmalloc((*swd)->u.hmac.sw_klen,
SLAB_ATOMIC);
if ((*swd)->u.hmac.sw_key == NULL) {
swcr_freesession(NULL, i);
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
memcpy((*swd)->u.hmac.sw_key, cri->cri_key, (*swd)->u.hmac.sw_klen);
if (cri->cri_mlen) {
(*swd)->u.hmac.sw_mlen = cri->cri_mlen;
} else {
(*swd)->u.hmac.sw_mlen =
crypto_hash_digestsize(
crypto_hash_cast((*swd)->sw_tfm));
}
} else if (sw_type == SW_TYPE_COMP) {
(*swd)->sw_tfm = crypto_comp_tfm(
crypto_alloc_comp(algo, 0, CRYPTO_ALG_ASYNC));
if (!(*swd)->sw_tfm) {
dprintk("cryptosoft: crypto_alloc_comp failed(%s,0x%x)\n",
algo, mode);
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->u.sw_comp_buf = kmalloc(CRYPTO_MAX_DATA_LEN, SLAB_ATOMIC);
if ((*swd)->u.sw_comp_buf == NULL) {
swcr_freesession(NULL, i);
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
} else {
printk("cryptosoft: Unhandled sw_type %d\n", sw_type);
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->sw_alg = cri->cri_alg;
(*swd)->sw_type = sw_type;
cri = cri->cri_next;
swd = &((*swd)->sw_next);
}
return 0;
}
/*
* Free a session.
*/
static int
swcr_freesession(device_t dev, u_int64_t tid)
{
struct swcr_data *swd;
u_int32_t sid = CRYPTO_SESID2LID(tid);
dprintk("%s()\n", __FUNCTION__);
if (sid > swcr_sesnum || swcr_sessions == NULL ||
swcr_sessions[sid] == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return(EINVAL);
}
/* Silently accept and return */
if (sid == 0)
return(0);
while ((swd = swcr_sessions[sid]) != NULL) {
swcr_sessions[sid] = swd->sw_next;
if (swd->sw_tfm)
crypto_free_tfm(swd->sw_tfm);
if (swd->sw_type == SW_TYPE_COMP) {
if (swd->u.sw_comp_buf)
kfree(swd->u.sw_comp_buf);
} else {
if (swd->u.hmac.sw_key)
kfree(swd->u.hmac.sw_key);
}
kfree(swd);
}
return 0;
}
/*
* Process a software request.
*/
static int
swcr_process(device_t dev, struct cryptop *crp, int hint)
{
struct cryptodesc *crd;
struct swcr_data *sw;
u_int32_t lid;
#define SCATTERLIST_MAX 16
struct scatterlist sg[SCATTERLIST_MAX];
int sg_num, sg_len, skip;
struct sk_buff *skb = NULL;
struct uio *uiop = NULL;
dprintk("%s()\n", __FUNCTION__);
/* Sanity check */
if (crp == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
crp->crp_etype = 0;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
crp->crp_etype = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions == NULL ||
swcr_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
goto done;
}
/*
* do some error checking outside of the loop for SKB and IOV processing
* this leaves us with valid skb or uiop pointers for later
*/
if (crp->crp_flags & CRYPTO_F_SKBUF) {
skb = (struct sk_buff *) crp->crp_buf;
if (skb_shinfo(skb)->nr_frags >= SCATTERLIST_MAX) {
printk("%s,%d: %d nr_frags > SCATTERLIST_MAX", __FILE__, __LINE__,
skb_shinfo(skb)->nr_frags);
goto done;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
uiop = (struct uio *) crp->crp_buf;
if (uiop->uio_iovcnt > SCATTERLIST_MAX) {
printk("%s,%d: %d uio_iovcnt > SCATTERLIST_MAX", __FILE__, __LINE__,
uiop->uio_iovcnt);
goto done;
}
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
/* No such context ? */
if (sw == NULL) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
goto done;
}
skip = crd->crd_skip;
/*
* setup the SG list skip from the start of the buffer
*/
memset(sg, 0, sizeof(sg));
if (crp->crp_flags & CRYPTO_F_SKBUF) {
int i, len;
sg_num = 0;
sg_len = 0;
if (skip < skb_headlen(skb)) {
len = skb_headlen(skb) - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
sg_set_page(&sg[sg_num],
virt_to_page(skb->data + skip), len,
offset_in_page(skb->data + skip));
sg_len += len;
sg_num++;
skip = 0;
} else
skip -= skb_headlen(skb);
for (i = 0; sg_len < crd->crd_len &&
i < skb_shinfo(skb)->nr_frags &&
sg_num < SCATTERLIST_MAX; i++) {
if (skip < skb_shinfo(skb)->frags[i].size) {
len = skb_shinfo(skb)->frags[i].size - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
sg_set_page(&sg[sg_num],
skb_shinfo(skb)->frags[i].page,
len,
skb_shinfo(skb)->frags[i].page_offset + skip);
sg_len += len;
sg_num++;
skip = 0;
} else
skip -= skb_shinfo(skb)->frags[i].size;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
int len;
sg_len = 0;
for (sg_num = 0; sg_len <= crd->crd_len &&
sg_num < uiop->uio_iovcnt &&
sg_num < SCATTERLIST_MAX; sg_num++) {
if (skip <= uiop->uio_iov[sg_num].iov_len) {
len = uiop->uio_iov[sg_num].iov_len - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
sg_set_page(&sg[sg_num],
virt_to_page(uiop->uio_iov[sg_num].iov_base+skip),
len,
offset_in_page(uiop->uio_iov[sg_num].iov_base+skip));
sg_len += len;
skip = 0;
} else
skip -= uiop->uio_iov[sg_num].iov_len;
}
} else {
sg_len = (crp->crp_ilen - skip);
if (sg_len > crd->crd_len)
sg_len = crd->crd_len;
sg_set_page(&sg[0], virt_to_page(crp->crp_buf + skip),
sg_len, offset_in_page(crp->crp_buf + skip));
sg_num = 1;
}
switch (sw->sw_type) {
case SW_TYPE_BLKCIPHER: {
unsigned char iv[EALG_MAX_BLOCK_LEN];
unsigned char *ivp = iv;
int ivsize =
crypto_blkcipher_ivsize(crypto_blkcipher_cast(sw->sw_tfm));
struct blkcipher_desc desc;
if (sg_len < crypto_blkcipher_blocksize(
crypto_blkcipher_cast(sw->sw_tfm))) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL len %d < %d\n", __FILE__, __LINE__,
sg_len, crypto_blkcipher_blocksize(
crypto_blkcipher_cast(sw->sw_tfm)));
goto done;
}
if (ivsize > sizeof(iv)) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
goto done;
}
if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
int i, error;
if (debug) {
dprintk("%s key:", __FUNCTION__);
for (i = 0; i < (crd->crd_klen + 7) / 8; i++)
dprintk("%s0x%x", (i % 8) ? " " : "\n ",
crd->crd_key[i]);
dprintk("\n");
}
error = crypto_blkcipher_setkey(
crypto_blkcipher_cast(sw->sw_tfm), crd->crd_key,
(crd->crd_klen + 7) / 8);
if (error) {
dprintk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n",
error, sw->sw_tfm->crt_flags);
crp->crp_etype = -error;
}
}
memset(&desc, 0, sizeof(desc));
desc.tfm = crypto_blkcipher_cast(sw->sw_tfm);
if (crd->crd_flags & CRD_F_ENCRYPT) { /* encrypt */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
ivp = crd->crd_iv;
} else {
get_random_bytes(ivp, ivsize);
}
/*
* do we have to copy the IV back to the buffer ?
*/
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, ivsize, (caddr_t)ivp);
}
desc.info = ivp;
crypto_blkcipher_encrypt_iv(&desc, sg, sg, sg_len);
} else { /*decrypt */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
ivp = crd->crd_iv;
} else {
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_inject, ivsize, (caddr_t)ivp);
}
desc.info = ivp;
crypto_blkcipher_decrypt_iv(&desc, sg, sg, sg_len);
}
} break;
case SW_TYPE_HMAC:
case SW_TYPE_HASH:
{
char result[HASH_MAX_LEN];
struct hash_desc desc;
/* check we have room for the result */
if (crp->crp_ilen - crd->crd_inject < sw->u.hmac.sw_mlen) {
dprintk(
"cryptosoft: EINVAL crp_ilen=%d, len=%d, inject=%d digestsize=%d\n",
crp->crp_ilen, crd->crd_skip + sg_len, crd->crd_inject,
sw->u.hmac.sw_mlen);
crp->crp_etype = EINVAL;
goto done;
}
memset(&desc, 0, sizeof(desc));
desc.tfm = crypto_hash_cast(sw->sw_tfm);
memset(result, 0, sizeof(result));
if (sw->sw_type == SW_TYPE_HMAC) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
crypto_hmac(sw->sw_tfm, sw->u.hmac.sw_key, &sw->u.hmac.sw_klen,
sg, sg_num, result);
#else
crypto_hash_setkey(desc.tfm, sw->u.hmac.sw_key,
sw->u.hmac.sw_klen);
crypto_hash_digest(&desc, sg, sg_len, result);
#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */
} else { /* SW_TYPE_HASH */
crypto_hash_digest(&desc, sg, sg_len, result);
}
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, sw->u.hmac.sw_mlen, result);
}
break;
case SW_TYPE_COMP: {
void *ibuf = NULL;
void *obuf = sw->u.sw_comp_buf;
int ilen = sg_len, olen = CRYPTO_MAX_DATA_LEN;
int ret = 0;
/*
* we need to use an additional copy if there is more than one
* input chunk since the kernel comp routines do not handle
* SG yet. Otherwise we just use the input buffer as is.
* Rather than allocate another buffer we just split the tmp
* buffer we already have.
* Perhaps we should just use zlib directly ?
*/
if (sg_num > 1) {
int blk;
ibuf = obuf;
for (blk = 0; blk < sg_num; blk++) {
memcpy(obuf, sg_virt(&sg[blk]),
sg[blk].length);
obuf += sg[blk].length;
}
olen -= sg_len;
} else
ibuf = sg_virt(&sg[0]);
if (crd->crd_flags & CRD_F_ENCRYPT) { /* compress */
ret = crypto_comp_compress(crypto_comp_cast(sw->sw_tfm),
ibuf, ilen, obuf, &olen);
if (!ret && olen > crd->crd_len) {
dprintk("cryptosoft: ERANGE compress %d into %d\n",
crd->crd_len, olen);
if (swcr_fail_if_compression_grows)
ret = ERANGE;
}
} else { /* decompress */
ret = crypto_comp_decompress(crypto_comp_cast(sw->sw_tfm),
ibuf, ilen, obuf, &olen);
if (!ret && (olen + crd->crd_inject) > crp->crp_olen) {
dprintk("cryptosoft: ETOOSMALL decompress %d into %d, "
"space for %d,at offset %d\n",
crd->crd_len, olen, crp->crp_olen, crd->crd_inject);
ret = ETOOSMALL;
}
}
if (ret)
dprintk("%s,%d: ret = %d\n", __FILE__, __LINE__, ret);
/*
* on success copy result back,
* linux crpyto API returns -errno, we need to fix that
*/
crp->crp_etype = ret < 0 ? -ret : ret;
if (ret == 0) {
/* copy back the result and return it's size */
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, olen, obuf);
crp->crp_olen = olen;
}
} break;
default:
/* Unknown/unsupported algorithm */
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
crp->crp_etype = EINVAL;
goto done;
}
}
done:
crypto_done(crp);
return 0;
}
static int
cryptosoft_init(void)
{
int i, sw_type, mode;
char *algo;
dprintk("%s(%p)\n", __FUNCTION__, cryptosoft_init);
softc_device_init(&swcr_softc, "cryptosoft", 0, swcr_methods);
swcr_id = crypto_get_driverid(softc_get_device(&swcr_softc),
CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC);
if (swcr_id < 0) {
printk("Software crypto device cannot initialize!");
return -ENODEV;
}
#define REGISTER(alg) \
crypto_register(swcr_id, alg, 0,0);
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; ++i)
{
algo = crypto_details[i].alg_name;
if (!algo || !*algo)
{
dprintk("%s:Algorithm %d not supported\n", __FUNCTION__, i);
continue;
}
mode = crypto_details[i].mode;
sw_type = crypto_details[i].sw_type;
switch (sw_type)
{
case SW_TYPE_CIPHER:
if (crypto_has_cipher(algo, 0, CRYPTO_ALG_ASYNC))
{
REGISTER(i);
}
else
{
dprintk("%s:CIPHER algorithm %d:'%s' not supported\n",
__FUNCTION__, i, algo);
}
break;
case SW_TYPE_HMAC:
if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC))
{
REGISTER(i);
}
else
{
dprintk("%s:HMAC algorithm %d:'%s' not supported\n",
__FUNCTION__, i, algo);
}
break;
case SW_TYPE_HASH:
if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC))
{
REGISTER(i);
}
else
{
dprintk("%s:HASH algorithm %d:'%s' not supported\n",
__FUNCTION__, i, algo);
}
break;
case SW_TYPE_COMP:
if (crypto_has_comp(algo, 0, CRYPTO_ALG_ASYNC))
{
REGISTER(i);
}
else
{
dprintk("%s:COMP algorithm %d:'%s' not supported\n",
__FUNCTION__, i, algo);
}
break;
case SW_TYPE_BLKCIPHER:
if (crypto_has_blkcipher(algo, 0, CRYPTO_ALG_ASYNC))
{
REGISTER(i);
}
else
{
dprintk("%s:BLKCIPHER algorithm %d:'%s' not supported\n",
__FUNCTION__, i, algo);
}
break;
default:
dprintk(
"%s:Algorithm Type %d not supported (algorithm %d:'%s')\n",
__FUNCTION__, sw_type, i, algo);
break;
}
}
return(0);
}
static void
cryptosoft_exit(void)
{
dprintk("%s()\n", __FUNCTION__);
crypto_unregister_all(swcr_id);
swcr_id = -1;
}
module_init(cryptosoft_init);
module_exit(cryptosoft_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
MODULE_DESCRIPTION("Cryptosoft (OCF module for kernel crypto)");