1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-08 13:54:59 +02:00
openwrt-xburst/package/broadcom-wl/src/kmod/hnddma.c

1158 lines
29 KiB
C
Raw Normal View History

/*
* Generic Broadcom Home Networking Division (HND) DMA module.
* This supports the following chips: BCM42xx, 44xx, 47xx .
*
* Copyright 2006, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id: hnddma.c,v 1.11 2006/04/08 07:12:42 honor Exp $
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include "linux_osl.h"
#include <bcmendian.h>
#include <sbconfig.h>
#include <bcmutils.h>
#include <bcmdevs.h>
#include <sbutils.h>
#include "sbhnddma.h"
#include "hnddma.h"
/* debug/trace */
#define DMA_ERROR(args)
#define DMA_TRACE(args)
/* default dma message level (if input msg_level pointer is null in dma_attach()) */
static uint dma_msg_level =
0;
#define MAXNAMEL 8 /* 8 char names */
#define DI_INFO(dmah) (dma_info_t *)dmah
/* dma engine software state */
typedef struct dma_info {
struct hnddma_pub hnddma; /* exported structure, don't use hnddma_t,
* which could be const
*/
uint *msg_level; /* message level pointer */
char name[MAXNAMEL]; /* callers name for diag msgs */
void *osh; /* os handle */
sb_t *sbh; /* sb handle */
bool dma64; /* dma64 enabled */
bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
dma32regs_t *d32txregs; /* 32 bits dma tx engine registers */
dma32regs_t *d32rxregs; /* 32 bits dma rx engine registers */
dma64regs_t *d64txregs; /* 64 bits dma tx engine registers */
dma64regs_t *d64rxregs; /* 64 bits dma rx engine registers */
uint32 dma64align; /* either 8k or 4k depends on number of dd */
dma32dd_t *txd32; /* pointer to dma32 tx descriptor ring */
dma64dd_t *txd64; /* pointer to dma64 tx descriptor ring */
uint ntxd; /* # tx descriptors tunable */
uint txin; /* index of next descriptor to reclaim */
uint txout; /* index of next descriptor to post */
void **txp; /* pointer to parallel array of pointers to packets */
osldma_t *tx_dmah; /* DMA TX descriptor ring handle */
osldma_t **txp_dmah; /* DMA TX packet data handle */
ulong txdpa; /* physical address of descriptor ring */
uint txdalign; /* #bytes added to alloc'd mem to align txd */
uint txdalloc; /* #bytes allocated for the ring */
dma32dd_t *rxd32; /* pointer to dma32 rx descriptor ring */
dma64dd_t *rxd64; /* pointer to dma64 rx descriptor ring */
uint nrxd; /* # rx descriptors tunable */
uint rxin; /* index of next descriptor to reclaim */
uint rxout; /* index of next descriptor to post */
void **rxp; /* pointer to parallel array of pointers to packets */
osldma_t *rx_dmah; /* DMA RX descriptor ring handle */
osldma_t **rxp_dmah; /* DMA RX packet data handle */
ulong rxdpa; /* physical address of descriptor ring */
uint rxdalign; /* #bytes added to alloc'd mem to align rxd */
uint rxdalloc; /* #bytes allocated for the ring */
/* tunables */
uint rxbufsize; /* rx buffer size in bytes,
not including the extra headroom
*/
uint nrxpost; /* # rx buffers to keep posted */
uint rxoffset; /* rxcontrol offset */
uint ddoffsetlow; /* add to get dma address of descriptor ring, low 32 bits */
uint ddoffsethigh; /* high 32 bits */
uint dataoffsetlow; /* add to get dma address of data buffer, low 32 bits */
uint dataoffsethigh; /* high 32 bits */
} dma_info_t;
/* descriptor bumping macros */
#define XXD(x, n) ((x) & ((n) - 1)) /* faster than %, but n must be power of 2 */
#define TXD(x) XXD((x), di->ntxd)
#define RXD(x) XXD((x), di->nrxd)
#define NEXTTXD(i) TXD(i + 1)
#define PREVTXD(i) TXD(i - 1)
#define NEXTRXD(i) RXD(i + 1)
#define NTXDACTIVE(h, t) TXD(t - h)
#define NRXDACTIVE(h, t) RXD(t - h)
/* macros to convert between byte offsets and indexes */
#define B2I(bytes, type) ((bytes) / sizeof(type))
#define I2B(index, type) ((index) * sizeof(type))
#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
/* common prototypes */
static bool _dma_isaddrext(dma_info_t *di);
static bool dma32_alloc(dma_info_t *di, uint direction);
static void _dma_detach(dma_info_t *di);
static void _dma_ddtable_init(dma_info_t *di, uint direction, ulong pa);
static void _dma_rxinit(dma_info_t *di);
static void *_dma_rx(dma_info_t *di);
static void _dma_rxfill(dma_info_t *di);
static void _dma_rxreclaim(dma_info_t *di);
static void _dma_rxenable(dma_info_t *di);
static void * _dma_getnextrxp(dma_info_t *di, bool forceall);
static void _dma_txblock(dma_info_t *di);
static void _dma_txunblock(dma_info_t *di);
static uint _dma_txactive(dma_info_t *di);
static void* _dma_peeknexttxp(dma_info_t *di);
static uintptr _dma_getvar(dma_info_t *di, char *name);
static void _dma_counterreset(dma_info_t *di);
static void _dma_fifoloopbackenable(dma_info_t *di);
/* ** 32 bit DMA prototypes */
static bool dma32_alloc(dma_info_t *di, uint direction);
static bool dma32_txreset(dma_info_t *di);
static bool dma32_rxreset(dma_info_t *di);
static bool dma32_txsuspendedidle(dma_info_t *di);
static int dma32_txfast(dma_info_t *di, void *p0, bool commit);
static void *dma32_getnexttxp(dma_info_t *di, bool forceall);
static void *dma32_getnextrxp(dma_info_t *di, bool forceall);
static void dma32_txrotate(dma_info_t *di);
static bool dma32_rxidle(dma_info_t *di);
static void dma32_txinit(dma_info_t *di);
static bool dma32_txenabled(dma_info_t *di);
static void dma32_txsuspend(dma_info_t *di);
static void dma32_txresume(dma_info_t *di);
static bool dma32_txsuspended(dma_info_t *di);
static void dma32_txreclaim(dma_info_t *di, bool forceall);
static bool dma32_txstopped(dma_info_t *di);
static bool dma32_rxstopped(dma_info_t *di);
static bool dma32_rxenabled(dma_info_t *di);
static bool _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs);
static di_fcn_t dma32proc = {
(di_detach_t)_dma_detach,
(di_txinit_t)dma32_txinit,
(di_txreset_t)dma32_txreset,
(di_txenabled_t)dma32_txenabled,
(di_txsuspend_t)dma32_txsuspend,
(di_txresume_t)dma32_txresume,
(di_txsuspended_t)dma32_txsuspended,
(di_txsuspendedidle_t)dma32_txsuspendedidle,
(di_txfast_t)dma32_txfast,
(di_txstopped_t)dma32_txstopped,
(di_txreclaim_t)dma32_txreclaim,
(di_getnexttxp_t)dma32_getnexttxp,
(di_peeknexttxp_t)_dma_peeknexttxp,
(di_txblock_t)_dma_txblock,
(di_txunblock_t)_dma_txunblock,
(di_txactive_t)_dma_txactive,
(di_txrotate_t)dma32_txrotate,
(di_rxinit_t)_dma_rxinit,
(di_rxreset_t)dma32_rxreset,
(di_rxidle_t)dma32_rxidle,
(di_rxstopped_t)dma32_rxstopped,
(di_rxenable_t)_dma_rxenable,
(di_rxenabled_t)dma32_rxenabled,
(di_rx_t)_dma_rx,
(di_rxfill_t)_dma_rxfill,
(di_rxreclaim_t)_dma_rxreclaim,
(di_getnextrxp_t)_dma_getnextrxp,
(di_fifoloopbackenable_t)_dma_fifoloopbackenable,
(di_getvar_t)_dma_getvar,
(di_counterreset_t)_dma_counterreset,
NULL,
NULL,
NULL,
34
};
hnddma_t *
dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
uint ntxd, uint nrxd, uint rxbufsize, uint nrxpost, uint rxoffset, uint *msg_level)
{
dma_info_t *di;
uint size;
/* allocate private info structure */
if ((di = MALLOC(osh, sizeof (dma_info_t))) == NULL) {
return (NULL);
}
bzero((char *)di, sizeof(dma_info_t));
di->msg_level = msg_level ? msg_level : &dma_msg_level;
/* old chips w/o sb is no longer supported */
ASSERT(sbh != NULL);
/* check arguments */
ASSERT(ISPOWEROF2(ntxd));
ASSERT(ISPOWEROF2(nrxd));
if (nrxd == 0)
ASSERT(dmaregsrx == NULL);
if (ntxd == 0)
ASSERT(dmaregstx == NULL);
/* init dma reg pointer */
ASSERT(ntxd <= D32MAXDD);
ASSERT(nrxd <= D32MAXDD);
di->d32txregs = (dma32regs_t *)dmaregstx;
di->d32rxregs = (dma32regs_t *)dmaregsrx;
DMA_TRACE(("%s: dma_attach: %s osh %p ntxd %d nrxd %d rxbufsize %d nrxpost %d "
"rxoffset %d dmaregstx %p dmaregsrx %p\n",
name, "DMA32", osh, ntxd, nrxd, rxbufsize,
nrxpost, rxoffset, dmaregstx, dmaregsrx));
/* make a private copy of our callers name */
strncpy(di->name, name, MAXNAMEL);
di->name[MAXNAMEL-1] = '\0';
di->osh = osh;
di->sbh = sbh;
/* save tunables */
di->ntxd = ntxd;
di->nrxd = nrxd;
/* the actual dma size doesn't include the extra headroom */
if (rxbufsize > BCMEXTRAHDROOM)
di->rxbufsize = rxbufsize - BCMEXTRAHDROOM;
else
di->rxbufsize = rxbufsize;
di->nrxpost = nrxpost;
di->rxoffset = rxoffset;
/*
* figure out the DMA physical address offset for dd and data
* for old chips w/o sb, use zero
* for new chips w sb,
* PCI/PCIE: they map silicon backplace address to zero based memory, need offset
* Other bus: use zero
* SB_BUS BIGENDIAN kludge: use sdram swapped region for data buffer, not descriptor
*/
di->ddoffsetlow = 0;
di->dataoffsetlow = 0;
/* for pci bus, add offset */
if (sbh->bustype == PCI_BUS) {
di->ddoffsetlow = SB_PCI_DMA;
di->ddoffsethigh = 0;
di->dataoffsetlow = di->ddoffsetlow;
di->dataoffsethigh = di->ddoffsethigh;
}
#if defined(__mips__) && defined(IL_BIGENDIAN)
di->dataoffsetlow = di->dataoffsetlow + SB_SDRAM_SWAPPED;
#endif
di->addrext = _dma_isaddrext(di);
/* allocate tx packet pointer vector */
if (ntxd) {
size = ntxd * sizeof(void *);
if ((di->txp = MALLOC(osh, size)) == NULL) {
DMA_ERROR(("%s: dma_attach: out of tx memory, malloced %d bytes\n",
di->name, MALLOCED(osh)));
goto fail;
}
bzero((char *)di->txp, size);
}
/* allocate rx packet pointer vector */
if (nrxd) {
size = nrxd * sizeof(void *);
if ((di->rxp = MALLOC(osh, size)) == NULL) {
DMA_ERROR(("%s: dma_attach: out of rx memory, malloced %d bytes\n",
di->name, MALLOCED(osh)));
goto fail;
}
bzero((char *)di->rxp, size);
}
/* allocate transmit descriptor ring, only need ntxd descriptors but it must be aligned */
if (ntxd) {
if (!dma32_alloc(di, DMA_TX))
goto fail;
}
/* allocate receive descriptor ring, only need nrxd descriptors but it must be aligned */
if (nrxd) {
if (!dma32_alloc(di, DMA_RX))
goto fail;
}
if ((di->ddoffsetlow == SB_PCI_DMA) && (di->txdpa > SB_PCI_DMA_SZ) && !di->addrext) {
DMA_ERROR(("%s: dma_attach: txdpa 0x%lx: addrext not supported\n",
di->name, di->txdpa));
goto fail;
}
if ((di->ddoffsetlow == SB_PCI_DMA) && (di->rxdpa > SB_PCI_DMA_SZ) && !di->addrext) {
DMA_ERROR(("%s: dma_attach: rxdpa 0x%lx: addrext not supported\n",
di->name, di->rxdpa));
goto fail;
}
DMA_TRACE(("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh "
"0x%x addrext %d\n", di->ddoffsetlow, di->ddoffsethigh, di->dataoffsetlow,
di->dataoffsethigh, di->addrext));
/* allocate tx packet pointer vector and DMA mapping vectors */
if (ntxd) {
size = ntxd * sizeof(osldma_t **);
if ((di->txp_dmah = (osldma_t **)MALLOC(osh, size)) == NULL)
goto fail;
bzero((char*)di->txp_dmah, size);
}else
di->txp_dmah = NULL;
/* allocate rx packet pointer vector and DMA mapping vectors */
if (nrxd) {
size = nrxd * sizeof(osldma_t **);
if ((di->rxp_dmah = (osldma_t **)MALLOC(osh, size)) == NULL)
goto fail;
bzero((char*)di->rxp_dmah, size);
} else
di->rxp_dmah = NULL;
/* initialize opsvec of function pointers */
di->hnddma.di_fn = dma32proc;
return ((hnddma_t *)di);
fail:
_dma_detach(di);
return (NULL);
}
/* init the tx or rx descriptor */
static INLINE void
dma32_dd_upd(dma_info_t *di, dma32dd_t *ddring, ulong pa, uint outidx, uint32 *flags,
uint32 bufcount)
{
/* dma32 uses 32 bits control to fit both flags and bufcounter */
*flags = *flags | (bufcount & CTRL_BC_MASK);
if ((di->dataoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) {
W_SM(&ddring[outidx].addr, BUS_SWAP32(pa + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
} else {
/* address extension */
uint32 ae;
ASSERT(di->addrext);
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
*flags |= (ae << CTRL_AE_SHIFT);
W_SM(&ddring[outidx].addr, BUS_SWAP32(pa + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
}
}
static bool
_dma32_addrext(osl_t *osh, dma32regs_t *dma32regs)
{
uint32 w;
OR_REG(osh, &dma32regs->control, XC_AE);
w = R_REG(osh, &dma32regs->control);
AND_REG(osh, &dma32regs->control, ~XC_AE);
return ((w & XC_AE) == XC_AE);
}
/* !! may be called with core in reset */
static void
_dma_detach(dma_info_t *di)
{
if (di == NULL)
return;
DMA_TRACE(("%s: dma_detach\n", di->name));
/* shouldn't be here if descriptors are unreclaimed */
ASSERT(di->txin == di->txout);
ASSERT(di->rxin == di->rxout);
/* free dma descriptor rings */
if (di->txd32)
DMA_FREE_CONSISTENT(di->osh, ((int8*)di->txd32 - di->txdalign),
di->txdalloc, (di->txdpa - di->txdalign), &di->tx_dmah);
if (di->rxd32)
DMA_FREE_CONSISTENT(di->osh, ((int8*)di->rxd32 - di->rxdalign),
di->rxdalloc, (di->rxdpa - di->rxdalign), &di->rx_dmah);
/* free packet pointer vectors */
if (di->txp)
MFREE(di->osh, (void *)di->txp, (di->ntxd * sizeof(void *)));
if (di->rxp)
MFREE(di->osh, (void *)di->rxp, (di->nrxd * sizeof(void *)));
/* free tx packet DMA handles */
if (di->txp_dmah)
MFREE(di->osh, (void *)di->txp_dmah, di->ntxd * sizeof(osldma_t **));
/* free rx packet DMA handles */
if (di->rxp_dmah)
MFREE(di->osh, (void *)di->rxp_dmah, di->nrxd * sizeof(osldma_t **));
/* free our private info structure */
MFREE(di->osh, (void *)di, sizeof(dma_info_t));
}
/* return TRUE if this dma engine supports DmaExtendedAddrChanges, otherwise FALSE */
static bool
_dma_isaddrext(dma_info_t *di)
{
if (di->d32txregs)
return (_dma32_addrext(di->osh, di->d32txregs));
else if (di->d32rxregs)
return (_dma32_addrext(di->osh, di->d32rxregs));
return FALSE;
}
/* initialize descriptor table base address */
static void
_dma_ddtable_init(dma_info_t *di, uint direction, ulong pa)
{
if ((di->ddoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) {
if (direction == DMA_TX)
W_REG(di->osh, &di->d32txregs->addr, (pa + di->ddoffsetlow));
else
W_REG(di->osh, &di->d32rxregs->addr, (pa + di->ddoffsetlow));
} else {
/* dma32 address extension */
uint32 ae;
ASSERT(di->addrext);
/* shift the high bit(s) from pa to ae */
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
W_REG(di->osh, &di->d32txregs->addr, (pa + di->ddoffsetlow));
SET_REG(di->osh, &di->d32txregs->control, XC_AE, ae <<XC_AE_SHIFT);
} else {
W_REG(di->osh, &di->d32rxregs->addr, (pa + di->ddoffsetlow));
SET_REG(di->osh, &di->d32rxregs->control, RC_AE, ae <<RC_AE_SHIFT);
}
}
}
static void
_dma_fifoloopbackenable(dma_info_t *di)
{
DMA_TRACE(("%s: dma_fifoloopbackenable\n", di->name));
OR_REG(di->osh, &di->d32txregs->control, XC_LE);
}
static void
_dma_rxinit(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxinit\n", di->name));
if (di->nrxd == 0)
return;
di->rxin = di->rxout = 0;
/* clear rx descriptor ring */
BZERO_SM((void *)di->rxd32, (di->nrxd * sizeof(dma32dd_t)));
_dma_rxenable(di);
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
}
static void
_dma_rxenable(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxenable\n", di->name));
W_REG(di->osh, &di->d32rxregs->control, ((di->rxoffset << RC_RO_SHIFT) | RC_RE));
}
/* !! rx entry routine, returns a pointer to the next frame received,
* or NULL if there are no more
*/
static void *
_dma_rx(dma_info_t *di)
{
void *p;
uint len;
int skiplen = 0;
while ((p = _dma_getnextrxp(di, FALSE))) {
/* skip giant packets which span multiple rx descriptors */
if (skiplen > 0) {
skiplen -= di->rxbufsize;
if (skiplen < 0)
skiplen = 0;
PKTFREE(di->osh, p, FALSE);
continue;
}
len = ltoh16(*(uint16*)(PKTDATA(di->osh, p)));
DMA_TRACE(("%s: dma_rx len %d\n", di->name, len));
/* bad frame length check */
if (len > (di->rxbufsize - di->rxoffset)) {
DMA_ERROR(("%s: dma_rx: bad frame length (%d)\n", di->name, len));
if (len > 0)
skiplen = len - (di->rxbufsize - di->rxoffset);
PKTFREE(di->osh, p, FALSE);
di->hnddma.rxgiants++;
continue;
}
/* set actual length */
PKTSETLEN(di->osh, p, (di->rxoffset + len));
break;
}
return (p);
}
/* post receive buffers */
static void
_dma_rxfill(dma_info_t *di)
{
void *p;
uint rxin, rxout;
uint32 flags = 0;
uint n;
uint i;
uint32 pa;
uint extra_offset = 0;
/*
* Determine how many receive buffers we're lacking
* from the full complement, allocate, initialize,
* and post them, then update the chip rx lastdscr.
*/
rxin = di->rxin;
rxout = di->rxout;
n = di->nrxpost - NRXDACTIVE(rxin, rxout);
DMA_TRACE(("%s: dma_rxfill: post %d\n", di->name, n));
if (di->rxbufsize > BCMEXTRAHDROOM)
extra_offset = BCMEXTRAHDROOM;
for (i = 0; i < n; i++) {
/* the di->rxbufsize doesn't include the extra headroom, we need to add it to the
size to be allocated
*/
if ((p = PKTGET(di->osh, di->rxbufsize + extra_offset,
FALSE)) == NULL) {
DMA_ERROR(("%s: dma_rxfill: out of rxbufs\n", di->name));
di->hnddma.rxnobuf++;
break;
}
/* reserve an extra headroom, if applicable */
if (extra_offset)
PKTPULL(di->osh, p, extra_offset);
/* Do a cached write instead of uncached write since DMA_MAP
* will flush the cache.
*/
*(uint32*)(PKTDATA(di->osh, p)) = 0;
pa = (uint32) DMA_MAP(di->osh, PKTDATA(di->osh, p),
di->rxbufsize, DMA_RX, p);
ASSERT(ISALIGNED(pa, 4));
/* save the free packet pointer */
ASSERT(di->rxp[rxout] == NULL);
di->rxp[rxout] = p;
/* reset flags for each descriptor */
flags = 0;
if (rxout == (di->nrxd - 1))
flags = CTRL_EOT;
dma32_dd_upd(di, di->rxd32, pa, rxout, &flags, di->rxbufsize);
rxout = NEXTRXD(rxout);
}
di->rxout = rxout;
/* update the chip lastdscr pointer */
W_REG(di->osh, &di->d32rxregs->ptr, I2B(rxout, dma32dd_t));
}
/* like getnexttxp but no reclaim */
static void *
_dma_peeknexttxp(dma_info_t *di)
{
uint end, i;
if (di->ntxd == 0)
return (NULL);
end = B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK, dma32dd_t);
for (i = di->txin; i != end; i = NEXTTXD(i))
if (di->txp[i])
return (di->txp[i]);
return (NULL);
}
static void
_dma_rxreclaim(dma_info_t *di)
{
void *p;
/* "unused local" warning suppression for OSLs that
* define PKTFREE() without using the di->osh arg
*/
di = di;
DMA_TRACE(("%s: dma_rxreclaim\n", di->name));
while ((p = _dma_getnextrxp(di, TRUE)))
PKTFREE(di->osh, p, FALSE);
}
static void *
_dma_getnextrxp(dma_info_t *di, bool forceall)
{
if (di->nrxd == 0)
return (NULL);
return dma32_getnextrxp(di, forceall);
}
static void
_dma_txblock(dma_info_t *di)
{
di->hnddma.txavail = 0;
}
static void
_dma_txunblock(dma_info_t *di)
{
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
}
static uint
_dma_txactive(dma_info_t *di)
{
return (NTXDACTIVE(di->txin, di->txout));
}
static void
_dma_counterreset(dma_info_t *di)
{
/* reset all software counter */
di->hnddma.rxgiants = 0;
di->hnddma.rxnobuf = 0;
di->hnddma.txnobuf = 0;
}
/* get the address of the var in order to change later */
static uintptr
_dma_getvar(dma_info_t *di, char *name)
{
if (!strcmp(name, "&txavail"))
return ((uintptr) &(di->hnddma.txavail));
else {
ASSERT(0);
}
return (0);
}
void
dma_txpioloopback(osl_t *osh, dma32regs_t *regs)
{
OR_REG(osh, &regs->control, XC_LE);
}
/* 32 bits DMA functions */
static void
dma32_txinit(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txinit\n", di->name));
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
BZERO_SM((void *)di->txd32, (di->ntxd * sizeof(dma32dd_t)));
W_REG(di->osh, &di->d32txregs->control, XC_XE);
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
static bool
dma32_txenabled(dma_info_t *di)
{
uint32 xc;
/* If the chip is dead, it is not enabled :-) */
xc = R_REG(di->osh, &di->d32txregs->control);
return ((xc != 0xffffffff) && (xc & XC_XE));
}
static void
dma32_txsuspend(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txsuspend\n", di->name));
if (di->ntxd == 0)
return;
OR_REG(di->osh, &di->d32txregs->control, XC_SE);
}
static void
dma32_txresume(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txresume\n", di->name));
if (di->ntxd == 0)
return;
AND_REG(di->osh, &di->d32txregs->control, ~XC_SE);
}
static bool
dma32_txsuspended(dma_info_t *di)
{
return (di->ntxd == 0) || ((R_REG(di->osh, &di->d32txregs->control) & XC_SE) == XC_SE);
}
static void
dma32_txreclaim(dma_info_t *di, bool forceall)
{
void *p;
DMA_TRACE(("%s: dma_txreclaim %s\n", di->name, forceall ? "all" : ""));
while ((p = dma32_getnexttxp(di, forceall)))
PKTFREE(di->osh, p, TRUE);
}
static bool
dma32_txstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) == XS_XS_STOPPED);
}
static bool
dma32_rxstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_RS_MASK) == RS_RS_STOPPED);
}
static bool
dma32_alloc(dma_info_t *di, uint direction)
{
uint size;
uint ddlen;
void *va;
ddlen = sizeof(dma32dd_t);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
if (!ISALIGNED(DMA_CONSISTENT_ALIGN, D32RINGALIGN))
size += D32RINGALIGN;
if (direction == DMA_TX) {
if ((va = DMA_ALLOC_CONSISTENT(di->osh, size, &di->txdpa, &di->tx_dmah)) == NULL) {
DMA_ERROR(("%s: dma_attach: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
di->name));
return FALSE;
}
di->txd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN);
di->txdalign = (uint)((int8*)di->txd32 - (int8*)va);
di->txdpa += di->txdalign;
di->txdalloc = size;
ASSERT(ISALIGNED((uintptr)di->txd32, D32RINGALIGN));
} else {
if ((va = DMA_ALLOC_CONSISTENT(di->osh, size, &di->rxdpa, &di->rx_dmah)) == NULL) {
DMA_ERROR(("%s: dma_attach: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
di->name));
return FALSE;
}
di->rxd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN);
di->rxdalign = (uint)((int8*)di->rxd32 - (int8*)va);
di->rxdpa += di->rxdalign;
di->rxdalloc = size;
ASSERT(ISALIGNED((uintptr)di->rxd32, D32RINGALIGN));
}
return TRUE;
}
static bool
dma32_txreset(dma_info_t *di)
{
uint32 status;
if (di->ntxd == 0)
return TRUE;
/* suspend tx DMA first */
W_REG(di->osh, &di->d32txregs->control, XC_SE);
SPINWAIT(((status = (R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK))
!= XS_XS_DISABLED) &&
(status != XS_XS_IDLE) &&
(status != XS_XS_STOPPED),
(10000));
W_REG(di->osh, &di->d32txregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32txregs->status) & XS_XS_MASK)) != XS_XS_DISABLED),
10000);
/* wait for the last transaction to complete */
OSL_DELAY(300);
return (status == XS_XS_DISABLED);
}
static bool
dma32_rxidle(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxidle\n", di->name));
if (di->nrxd == 0)
return TRUE;
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK) ==
R_REG(di->osh, &di->d32rxregs->ptr));
}
static bool
dma32_rxreset(dma_info_t *di)
{
uint32 status;
if (di->nrxd == 0)
return TRUE;
W_REG(di->osh, &di->d32rxregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32rxregs->status) & RS_RS_MASK)) != RS_RS_DISABLED),
10000);
return (status == RS_RS_DISABLED);
}
static bool
dma32_rxenabled(dma_info_t *di)
{
uint32 rc;
rc = R_REG(di->osh, &di->d32rxregs->control);
return ((rc != 0xffffffff) && (rc & RC_RE));
}
static bool
dma32_txsuspendedidle(dma_info_t *di)
{
if (di->ntxd == 0)
return TRUE;
if (!(R_REG(di->osh, &di->d32txregs->control) & XC_SE))
return 0;
if ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) != XS_XS_IDLE)
return 0;
OSL_DELAY(2);
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) == XS_XS_IDLE);
}
/* !! tx entry routine
* supports full 32bit dma engine buffer addressing so
* dma buffers can cross 4 Kbyte page boundaries.
*/
static int
dma32_txfast(dma_info_t *di, void *p0, bool commit)
{
void *p, *next;
uchar *data;
uint len;
uint txout;
uint32 flags = 0;
uint32 pa;
DMA_TRACE(("%s: dma_txfast\n", di->name));
txout = di->txout;
/*
* Walk the chain of packet buffers
* allocating and initializing transmit descriptor entries.
*/
for (p = p0; p; p = next) {
data = PKTDATA(di->osh, p);
len = PKTLEN(di->osh, p);
next = PKTNEXT(di->osh, p);
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
continue;
/* get physical address of buffer start */
pa = (uint32) DMA_MAP(di->osh, data, len, DMA_TX, p);
flags = 0;
if (p == p0)
flags |= CTRL_SOF;
if (next == NULL)
flags |= (CTRL_IOC | CTRL_EOF);
if (txout == (di->ntxd - 1))
flags |= CTRL_EOT;
dma32_dd_upd(di, di->txd32, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
txout = NEXTTXD(txout);
}
/* if last txd eof not set, fix it */
if (!(flags & CTRL_EOF))
W_SM(&di->txd32[PREVTXD(txout)].ctrl, BUS_SWAP32(flags | CTRL_IOC | CTRL_EOF));
/* save the packet */
di->txp[PREVTXD(txout)] = p0;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
W_REG(di->osh, &di->d32txregs->ptr, I2B(txout, dma32dd_t));
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return (0);
outoftxd:
DMA_ERROR(("%s: dma_txfast: out of txds\n", di->name));
PKTFREE(di->osh, p0, TRUE);
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return (-1);
}
/*
* Reclaim next completed txd (txds if using chained buffers) and
* return associated packet.
* If 'force' is true, reclaim txd(s) and return associated packet
* regardless of the value of the hardware "curr" pointer.
*/
static void *
dma32_getnexttxp(dma_info_t *di, bool forceall)
{
uint start, end, i;
void *txp;
DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name, forceall ? "all" : ""));
if (di->ntxd == 0)
return (NULL);
txp = NULL;
start = di->txin;
if (forceall)
end = di->txout;
else
end = B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK, dma32dd_t);
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = NEXTTXD(i)) {
DMA_UNMAP(di->osh, (BUS_SWAP32(R_SM(&di->txd32[i].addr)) - di->dataoffsetlow),
(BUS_SWAP32(R_SM(&di->txd32[i].ctrl)) & CTRL_BC_MASK),
DMA_TX, di->txp[i]);
W_SM(&di->txd32[i].addr, 0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
}
di->txin = i;
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return (txp);
bogus:
/*
DMA_ERROR(("dma_getnexttxp: bogus curr: start %d end %d txout %d force %d\n",
start, end, di->txout, forceall));
*/
return (NULL);
}
static void *
dma32_getnextrxp(dma_info_t *di, bool forceall)
{
uint i;
void *rxp;
/* if forcing, dma engine must be disabled */
ASSERT(!forceall || !dma32_rxenabled(di));
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return (NULL);
/* ignore curr if forceall */
if (!forceall && (i == B2I(R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK, dma32dd_t)))
return (NULL);
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
ASSERT(rxp);
di->rxp[i] = NULL;
/* clear this packet from the descriptor ring */
DMA_UNMAP(di->osh, (BUS_SWAP32(R_SM(&di->rxd32[i].addr)) - di->dataoffsetlow),
di->rxbufsize, DMA_RX, rxp);
W_SM(&di->rxd32[i].addr, 0xdeadbeef);
di->rxin = NEXTRXD(i);
return (rxp);
}
/*
* Rotate all active tx dma ring entries "forward" by (ActiveDescriptor - txin).
*/
static void
dma32_txrotate(dma_info_t *di)
{
uint ad;
uint nactive;
uint rot;
uint old, new;
uint32 w;
uint first, last;
ASSERT(dma32_txsuspendedidle(di));
nactive = _dma_txactive(di);
ad = B2I(((R_REG(di->osh, &di->d32txregs->status) & XS_AD_MASK) >> XS_AD_SHIFT), dma32dd_t);
rot = TXD(ad - di->txin);
ASSERT(rot < di->ntxd);
/* full-ring case is a lot harder - don't worry about this */
if (rot >= (di->ntxd - nactive)) {
DMA_ERROR(("%s: dma_txrotate: ring full - punt\n", di->name));
return;
}
first = di->txin;
last = PREVTXD(di->txout);
/* move entries starting at last and moving backwards to first */
for (old = last; old != PREVTXD(first); old = PREVTXD(old)) {
new = TXD(old + rot);
/*
* Move the tx dma descriptor.
* EOT is set only in the last entry in the ring.
*/
w = BUS_SWAP32(R_SM(&di->txd32[old].ctrl)) & ~CTRL_EOT;
if (new == (di->ntxd - 1))
w |= CTRL_EOT;
W_SM(&di->txd32[new].ctrl, BUS_SWAP32(w));
W_SM(&di->txd32[new].addr, R_SM(&di->txd32[old].addr));
/* zap the old tx dma descriptor address field */
W_SM(&di->txd32[old].addr, BUS_SWAP32(0xdeadbeef));
/* move the corresponding txp[] entry */
ASSERT(di->txp[new] == NULL);
di->txp[new] = di->txp[old];
di->txp[old] = NULL;
}
/* update txin and txout */
di->txin = ad;
di->txout = TXD(di->txout + rot);
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
/* kick the chip */
W_REG(di->osh, &di->d32txregs->ptr, I2B(di->txout, dma32dd_t));
}
uint
dma_addrwidth(sb_t *sbh, void *dmaregs)
{
dma32regs_t *dma32regs;
osl_t *osh;
osh = sb_osh(sbh);
/* Start checking for 32-bit / 30-bit addressing */
dma32regs = (dma32regs_t *)dmaregs;
/* For System Backplane, PCIE bus or addrext feature, 32-bits ok */
if ((BUSTYPE(sbh->bustype) == SB_BUS) ||
((BUSTYPE(sbh->bustype) == PCI_BUS) && sbh->buscoretype == SB_PCIE) ||
(_dma32_addrext(osh, dma32regs)))
return (DMADDRWIDTH_32);
/* Fallthru */
return (DMADDRWIDTH_30);
}