1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-04-21 12:27:27 +03:00

[ubicom32]: move new files out from platform support patch

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
kaloz
2010-02-22 13:54:47 +00:00
parent fdcca1ea95
commit 1a29ef8e97
279 changed files with 56440 additions and 57274 deletions

View File

@@ -0,0 +1,36 @@
#
# arch/ubicom32/crypto/Makefile
# <TODO: Replace with short file description>
#
# (C) Copyright 2009, Ubicom, Inc.
#
# This file is part of the Ubicom32 Linux Kernel Port.
#
# The Ubicom32 Linux Kernel Port is free software: you can redistribute
# it and/or modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation, either version 2 of the
# License, or (at your option) any later version.
#
# The Ubicom32 Linux Kernel Port is distributed in the hope that it
# will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
# the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the Ubicom32 Linux Kernel Port. If not,
# see <http://www.gnu.org/licenses/>.
#
# Ubicom32 implementation derived from (with many thanks):
# arch/m68knommu
# arch/blackfin
# arch/parisc
#
obj-$(CONFIG_CRYPTO_UBICOM32) += crypto_ubicom32.o
obj-$(CONFIG_CRYPTO_AES_UBICOM32) += aes_ubicom32.o
obj-$(CONFIG_CRYPTO_DES_UBICOM32) += des.o
obj-$(CONFIG_CRYPTO_MD5_UBICOM32) += md5.o
obj-$(CONFIG_CRYPTO_SHA1_UBICOM32) += sha1.o
des-y := des_ubicom32.o des_check_key.o
md5-y := md5_ubicom32.o md5_ubicom32_asm.o
sha1-y := sha1_ubicom32.o

View File

@@ -0,0 +1,458 @@
/*
* arch/ubicom32/crypto/aes_ubicom32.c
* Ubicom32 implementation of the AES Cipher Algorithm.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include "crypto_ubicom32.h"
#include <asm/linkage.h>
struct ubicom32_aes_ctx {
u8 key[AES_MAX_KEY_SIZE];
u32 ctrl;
int key_len;
};
static inline void aes_hw_set_key(const u8 *key, u8 key_len)
{
/*
* switch case has more overhead than 4 move.4 instructions, so just copy 256 bits
*/
SEC_SET_KEY_256(key);
}
static inline void aes_hw_set_iv(const u8 *iv)
{
SEC_SET_IV_4W(iv);
}
static inline void aes_hw_cipher(u8 *out, const u8 *in)
{
SEC_SET_INPUT_4W(in);
asm volatile (
" ; start AES by writing 0x40(SECURITY_BASE) \n\t"
" move.4 0x40(%0), #0x01 \n\t"
" pipe_flush 0 \n\t"
" \n\t"
" ; wait for the module to calculate the output \n\t"
" btst 0x04(%0), #0 \n\t"
" jmpne.f .-4 \n\t"
:
: "a" (SEC_BASE)
: "cc"
);
SEC_GET_OUTPUT_4W(out);
}
static int __ocm_text aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct ubicom32_aes_ctx *uctx = crypto_tfm_ctx(tfm);
uctx->key_len = key_len;
memcpy(uctx->key, in_key, key_len);
/*
* leave out HASH_ALG (none = 0), CBC (no = 0), DIR (unknown) yet
*/
switch (uctx->key_len) {
case 16:
uctx->ctrl = SEC_KEY_128_BITS | SEC_ALG_AES;
break;
case 24:
uctx->ctrl = SEC_KEY_192_BITS | SEC_ALG_AES;
break;
case 32:
uctx->ctrl = SEC_KEY_256_BITS | SEC_ALG_AES;
break;
}
return 0;
}
static inline void aes_cipher(struct crypto_tfm *tfm, u8 *out, const u8 *in, u32 extra_flags)
{
const struct ubicom32_aes_ctx *uctx = crypto_tfm_ctx(tfm);
hw_crypto_lock();
hw_crypto_check();
hw_crypto_set_ctrl(uctx->ctrl | extra_flags);
aes_hw_set_key(uctx->key, uctx->key_len);
aes_hw_cipher(out, in);
hw_crypto_unlock();
}
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
aes_cipher(tfm, out, in, SEC_DIR_ENCRYPT);
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
aes_cipher(tfm, out, in, SEC_DIR_DECRYPT);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-ubicom32",
.cra_priority = CRYPTO_UBICOM32_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_aes_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt,
}
}
};
static void __ocm_text ecb_aes_crypt_loop(u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
aes_hw_cipher(out, in);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
n -= AES_BLOCK_SIZE;
}
}
static int __ocm_text ecb_aes_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes, u32 extra_flags)
{
const struct ubicom32_aes_ctx *uctx = crypto_blkcipher_ctx(desc->tfm);
int ret;
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
ret = blkcipher_walk_virt(desc, &walk);
if (ret) {
return ret;
}
hw_crypto_lock();
hw_crypto_check();
hw_crypto_set_ctrl(uctx->ctrl | extra_flags);
aes_hw_set_key(uctx->key, uctx->key_len);
while (likely((nbytes = walk.nbytes))) {
/* only use complete blocks */
unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
u8 *out = walk.dst.virt.addr;
u8 *in = walk.src.virt.addr;
/* finish n/16 blocks */
ecb_aes_crypt_loop(out, in, n);
nbytes &= AES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, &walk, nbytes);
}
hw_crypto_unlock();
return ret;
}
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return ecb_aes_crypt(desc, dst, src, nbytes, SEC_DIR_ENCRYPT);
}
static int ecb_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return ecb_aes_crypt(desc, dst, src, nbytes, SEC_DIR_DECRYPT);
}
static struct crypto_alg ecb_aes_alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_aes_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_aes_encrypt,
.decrypt = ecb_aes_decrypt,
}
}
};
#if CRYPTO_UBICOM32_LOOP_ASM
void __ocm_text cbc_aes_encrypt_loop(u8 *out, u8 *in, u8 *iv, unsigned int n)
{
asm volatile (
"; set init. iv 4w \n\t"
" move.4 0x50(%0), 0x0(%3) \n\t"
" move.4 0x54(%0), 0x4(%3) \n\t"
" move.4 0x58(%0), 0x8(%3) \n\t"
" move.4 0x5c(%0), 0xc(%3) \n\t"
" \n\t"
"; we know n > 0, so we can always \n\t"
"; load the first block \n\t"
"; set input 4w \n\t"
" move.4 0x30(%0), 0x0(%2) \n\t"
" move.4 0x34(%0), 0x4(%2) \n\t"
" move.4 0x38(%0), 0x8(%2) \n\t"
" move.4 0x3c(%0), 0xc(%2) \n\t"
" \n\t"
"; kickoff hw \n\t"
" move.4 0x40(%0), %2 \n\t"
" \n\t"
"; update n & flush \n\t"
" add.4 %4, #-16, %4 \n\t"
" pipe_flush 0 \n\t"
" \n\t"
"; while (n): work on 2nd block \n\t"
" 1: lsl.4 d15, %4, #0x0 \n\t"
" jmpeq.f 5f \n\t"
" \n\t"
"; set input 4w (2nd) \n\t"
" move.4 0x30(%0), 0x10(%2) \n\t"
" move.4 0x34(%0), 0x14(%2) \n\t"
" move.4 0x38(%0), 0x18(%2) \n\t"
" move.4 0x3c(%0), 0x1c(%2) \n\t"
" \n\t"
"; update n/in asap while waiting \n\t"
" add.4 %4, #-16, %4 \n\t"
" move.4 d15, 16(%2)++ \n\t"
" \n\t"
"; wait for the previous output \n\t"
" btst 0x04(%0), #0 \n\t"
" jmpne.f -4 \n\t"
" \n\t"
"; read previous output \n\t"
" move.4 0x0(%1), 0x50(%0) \n\t"
" move.4 0x4(%1), 0x54(%0) \n\t"
" move.4 0x8(%1), 0x58(%0) \n\t"
" move.4 0xc(%1), 0x5c(%0) \n\t"
" \n\t"
"; kick off hw for 2nd input \n\t"
" move.4 0x40(%0), %2 \n\t"
" \n\t"
"; update out asap \n\t"
" move.4 d15, 16(%1)++ \n\t"
" \n\t"
"; go back to loop \n\t"
" jmpt 1b \n\t"
" \n\t"
"; wait for last output \n\t"
" 5: btst 0x04(%0), #0 \n\t"
" jmpne.f -4 \n\t"
" \n\t"
"; read last output \n\t"
" move.4 0x0(%1), 0x50(%0) \n\t"
" move.4 0x4(%1), 0x54(%0) \n\t"
" move.4 0x8(%1), 0x58(%0) \n\t"
" move.4 0xc(%1), 0x5c(%0) \n\t"
" \n\t"
"; copy out iv \n\t"
" move.4 0x0(%3), 0x50(%0) \n\t"
" move.4 0x4(%3), 0x54(%0) \n\t"
" move.4 0x8(%3), 0x58(%0) \n\t"
" move.4 0xc(%3), 0x5c(%0) \n\t"
" \n\t"
:
: "a" (SEC_BASE), "a" (out), "a" (in), "a" (iv), "d" (n)
: "d15", "cc"
);
}
#else
static void __ocm_text cbc_aes_encrypt_loop(u8 *out, u8 *in, u8 *iv, unsigned int n)
{
aes_hw_set_iv(iv);
while (likely(n)) {
aes_hw_cipher(out, in);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
n -= AES_BLOCK_SIZE;
}
SEC_COPY_4W(iv, out - AES_BLOCK_SIZE);
}
#endif
static void __ocm_text cbc_aes_decrypt_loop(u8 *out, u8 *in, u8 *iv, unsigned int n)
{
while (likely(n)) {
aes_hw_set_iv(iv);
SEC_COPY_4W(iv, in);
aes_hw_cipher(out, in);
out += AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
n -= AES_BLOCK_SIZE;
}
}
static int __ocm_text cbc_aes_crypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes, u32 extra_flags)
{
struct ubicom32_aes_ctx *uctx = crypto_blkcipher_ctx(desc->tfm);
int ret;
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
ret = blkcipher_walk_virt(desc, &walk);
if (unlikely(ret)) {
return ret;
}
hw_crypto_lock();
hw_crypto_check();
hw_crypto_set_ctrl(uctx->ctrl | extra_flags);
aes_hw_set_key(uctx->key, uctx->key_len);
while (likely((nbytes = walk.nbytes))) {
/* only use complete blocks */
unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
if (likely(n)) {
u8 *out = walk.dst.virt.addr;
u8 *in = walk.src.virt.addr;
if (extra_flags & SEC_DIR_ENCRYPT) {
cbc_aes_encrypt_loop(out, in, walk.iv, n);
} else {
cbc_aes_decrypt_loop(out, in, walk.iv, n);
}
}
nbytes &= AES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, &walk, nbytes);
}
hw_crypto_unlock();
return ret;
}
static int __ocm_text cbc_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return cbc_aes_crypt(desc, dst, src, nbytes, SEC_DIR_ENCRYPT | SEC_CBC_SET);
}
static int __ocm_text cbc_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return cbc_aes_crypt(desc, dst, src, nbytes, SEC_DIR_DECRYPT | SEC_CBC_SET);
}
static struct crypto_alg cbc_aes_alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_aes_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_aes_encrypt,
.decrypt = cbc_aes_decrypt,
}
}
};
static int __init aes_init(void)
{
int ret;
hw_crypto_init();
ret = crypto_register_alg(&aes_alg);
if (ret)
goto aes_err;
ret = crypto_register_alg(&ecb_aes_alg);
if (ret)
goto ecb_aes_err;
ret = crypto_register_alg(&cbc_aes_alg);
if (ret)
goto cbc_aes_err;
out:
return ret;
cbc_aes_err:
crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
crypto_unregister_alg(&aes_alg);
aes_err:
goto out;
}
static void __exit aes_fini(void)
{
crypto_unregister_alg(&cbc_aes_alg);
crypto_unregister_alg(&ecb_aes_alg);
crypto_unregister_alg(&aes_alg);
}
module_init(aes_init);
module_exit(aes_fini);
MODULE_ALIAS("aes");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,34 @@
/*
* arch/ubicom32/crypto/crypto_des.h
* Function for checking keys for the DES and Triple DES Encryption
* algorithms.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#ifndef __CRYPTO_DES_H__
#define __CRYPTO_DES_H__
extern int crypto_des_check_key(const u8*, unsigned int, u32*);
#endif /* __CRYPTO_DES_H__ */

View File

@@ -0,0 +1,50 @@
/*
* arch/ubicom32/crypto/crypto_ubicom32.c
* Generic code to support ubicom32 hardware crypto accelerator
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include "crypto_ubicom32.h"
spinlock_t crypto_ubicom32_lock;
bool crypto_ubicom32_inited = false;
volatile bool crypto_ubicom32_on = false;
volatile unsigned long crypto_ubicom32_last_use;
struct timer_list crypto_ubicom32_ps_timer;
void crypto_ubicom32_ps_check(unsigned long data)
{
unsigned long idle_time = msecs_to_jiffies(HW_CRYPTO_PS_MAX_IDLE_MS);
BUG_ON(!crypto_ubicom32_on);
if (((jiffies - crypto_ubicom32_last_use) > idle_time) && spin_trylock_bh(&crypto_ubicom32_lock)) {
hw_crypto_turn_off();
spin_unlock_bh(&crypto_ubicom32_lock);
return;
}
/* keep monitoring */
hw_crypto_ps_start();
}

View File

@@ -0,0 +1,346 @@
/*
* arch/ubicom32/crypto/crypto_ubicom32.h
* Support for Ubicom32 cryptographic instructions.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#ifndef _CRYPTO_ARCH_UBICOM32_CRYPT_H
#define _CRYPTO_ARCH_UBICOM32_CRYPT_H
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/timer.h>
#include <linux/spinlock.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/ip5000.h>
#define CRYPTO_UBICOM32_LOOP_ASM 1
#define CRYPTO_UBICOM32_ALIGNMENT 4
#define SEC_ALIGNED(p) (((u32)p & 3) == 0)
#define SEC_BASE SECURITY_BASE
#define SEC_KEY_OFFSET SECURITY_KEY_VALUE(0)
#define SEC_INPUT_OFFSET SECURITY_KEY_IN(0)
#define SEC_OUTPUT_OFFSET SECURITY_KEY_OUT(0)
#define SEC_HASH_OFFSET SECURITY_KEY_HASH(0)
#define SEC_KEY_128_BITS SECURITY_CTRL_KEY_SIZE(0)
#define SEC_KEY_192_BITS SECURITY_CTRL_KEY_SIZE(1)
#define SEC_KEY_256_BITS SECURITY_CTRL_KEY_SIZE(2)
#define SEC_HASH_NONE SECURITY_CTRL_HASH_ALG_NONE
#define SEC_HASH_MD5 SECURITY_CTRL_HASH_ALG_MD5
#define SEC_HASH_SHA1 SECURITY_CTRL_HASH_ALG_SHA1
#define SEC_CBC_SET SECURITY_CTRL_CBC
#define SEC_CBC_NONE 0
#define SEC_ALG_AES SECURITY_CTRL_CIPHER_ALG_AES
#define SEC_ALG_NONE SECURITY_CTRL_CIPHER_ALG_NONE
#define SEC_ALG_DES SECURITY_CTRL_CIPHER_ALG_DES
#define SEC_ALG_3DES SECURITY_CTRL_CIPHER_ALG_3DES
#define SEC_DIR_ENCRYPT SECURITY_CTRL_ENCIPHER
#define SEC_DIR_DECRYPT 0
#define CRYPTO_UBICOM32_PRIORITY 300
#define CRYPTO_UBICOM32_COMPOSITE_PRIORITY 400
#define HW_CRYPTO_PS_MAX_IDLE_MS 100 /* idle time (ms) before shuting down sm */
extern spinlock_t crypto_ubicom32_lock;
extern bool crypto_ubicom32_inited;
extern volatile bool crypto_ubicom32_on;
extern volatile unsigned long crypto_ubicom32_last_use;
extern struct timer_list crypto_ubicom32_ps_timer;
extern void crypto_ubicom32_ps_check(unsigned long data);
#define SEC_COPY_2W(t, s) \
asm volatile ( \
" move.4 0(%0), 0(%1) \n\t" \
" move.4 4(%0), 4(%1) \n\t" \
\
: \
: "a" (t), "a" (s) \
)
#define SEC_COPY_4W(t, s) \
asm volatile ( \
" move.4 0(%0), 0(%1) \n\t" \
" move.4 4(%0), 4(%1) \n\t" \
" move.4 8(%0), 8(%1) \n\t" \
" move.4 12(%0), 12(%1) \n\t" \
: \
: "a" (t), "a" (s) \
)
#define SEC_COPY_5W(t, s) \
asm volatile ( \
" move.4 0(%0), 0(%1) \n\t" \
" move.4 4(%0), 4(%1) \n\t" \
" move.4 8(%0), 8(%1) \n\t" \
" move.4 12(%0), 12(%1) \n\t" \
" move.4 16(%0), 16(%1) \n\t" \
: \
: "a" (t), "a" (s) \
)
#define SEC_SET_KEY_2W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x10(%0), 0(%1) \n\t" \
" move.4 0x14(%0), 4(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_SET_KEY_4W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x10(%0), 0(%1) \n\t" \
" move.4 0x14(%0), 4(%1) \n\t" \
" move.4 0x18(%0), 8(%1) \n\t" \
" move.4 0x1c(%0), 12(%1) \n\t" \
: \
: "a"(SECURITY_BASE), "a"(x) \
)
#define SEC_SET_KEY_6W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x10(%0), 0(%1) \n\t" \
" move.4 0x14(%0), 4(%1) \n\t" \
" move.4 0x18(%0), 8(%1) \n\t" \
" move.4 0x1c(%0), 12(%1) \n\t" \
" move.4 0x20(%0), 16(%1) \n\t" \
" move.4 0x24(%0), 20(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_SET_KEY_8W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x10(%0), 0(%1) \n\t" \
" move.4 0x14(%0), 4(%1) \n\t" \
" move.4 0x18(%0), 8(%1) \n\t" \
" move.4 0x1c(%0), 12(%1) \n\t" \
" move.4 0x20(%0), 16(%1) \n\t" \
" move.4 0x24(%0), 20(%1) \n\t" \
" move.4 0x28(%0), 24(%1) \n\t" \
" move.4 0x2c(%0), 28(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_SET_KEY_64(k) SEC_SET_KEY_2W(k)
#define SEC_SET_KEY_128(k) SEC_SET_KEY_4W(k)
#define SEC_SET_KEY_192(k) SEC_SET_KEY_6W(k)
#define SEC_SET_KEY_256(k) SEC_SET_KEY_8W(k)
#define DES_SET_KEY(x) SEC_SET_KEY_64(x)
#define DES3_SET_KEY(x) SEC_SET_KEY_192(x)
#define SEC_SET_INPUT_2W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x30(%0), 0(%1) \n\t" \
" move.4 0x34(%0), 4(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_GET_OUTPUT_2W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0(%1), 0x50(%0) \n\t" \
" move.4 4(%1), 0x54(%0) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_SET_INPUT_4W(x) \
asm volatile ( \
" ; write key to Security Keyblock \n\t" \
" move.4 0x30(%0), 0(%1) \n\t" \
" move.4 0x34(%0), 4(%1) \n\t" \
" move.4 0x38(%0), 8(%1) \n\t" \
" move.4 0x3c(%0), 12(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_GET_OUTPUT_4W(x) \
asm volatile ( \
" ; read output from Security Keyblock \n\t" \
" move.4 0(%1), 0x50(%0) \n\t" \
" move.4 4(%1), 0x54(%0) \n\t" \
" move.4 8(%1), 0x58(%0) \n\t" \
" move.4 12(%1), 0x5c(%0) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_SET_IV_4W(x) \
asm volatile ( \
" ; write IV to Security Keyblock \n\t" \
" move.4 0x50(%0), 0(%1) \n\t" \
" move.4 0x54(%0), 4(%1) \n\t" \
" move.4 0x58(%0), 8(%1) \n\t" \
" move.4 0x5c(%0), 12(%1) \n\t" \
: \
: "a" (SECURITY_BASE), "a" (x) \
)
#define SEC_PIPE_FLUSH() asm volatile ( " pipe_flush 0 \n\t" )
static inline void hw_crypto_set_ctrl(uint32_t c)
{
asm volatile (
" move.4 0(%0), %1 \n\t"
:
: "a" (SECURITY_BASE + SECURITY_CTRL), "d" (c)
);
}
static inline void hw_crypto_ps_start(void)
{
crypto_ubicom32_ps_timer.expires = jiffies + msecs_to_jiffies(HW_CRYPTO_PS_MAX_IDLE_MS >> 1);
add_timer(&crypto_ubicom32_ps_timer);
}
static inline void hw_crypto_turn_on(void)
{
asm volatile (
" moveai A4, %0 \n\t"
" bset 0x0(A4), 0x0(A4), %1 \n\t"
" cycles 11 \n\t"
:
: "i" (OCP_BASE >> 7), "i" (GEN_CLK_PLL_SECURITY_BIT_NO)
: "a4", "cc"
);
crypto_ubicom32_on = true;
}
static inline void hw_crypto_turn_off(void)
{
asm volatile (
" moveai A4, %0 \n\t"
" bclr 0x0(A4), 0x0(A4), %1 \n\t"
:
: "i" (OCP_BASE >> 7), "i" (GEN_CLK_PLL_SECURITY_BIT_NO)
: "a4", "cc"
);
crypto_ubicom32_on = false;
}
/*
* hw_crypto_check
* Most probably hw crypto is called in clusters and it makes no sense to turn it off
* and on and waster 13 cycles every time.
*/
static inline void hw_crypto_check(void)
{
if (likely(crypto_ubicom32_on)) {
return;
}
crypto_ubicom32_last_use = jiffies;
hw_crypto_turn_on();
hw_crypto_ps_start();
}
/*
* hw_crypto_ps_init
* Init power save timer
*/
static inline void hw_crypto_ps_init(void)
{
init_timer_deferrable(&crypto_ubicom32_ps_timer);
crypto_ubicom32_ps_timer.function = crypto_ubicom32_ps_check;
crypto_ubicom32_ps_timer.data = 0;
}
/*
* hw_crypto_init()
* Initialize OCP security module lock and disables its clock.
*/
static inline void hw_crypto_init(void)
{
if (!crypto_ubicom32_inited) {
crypto_ubicom32_inited = true;
spin_lock_init(&crypto_ubicom32_lock);
hw_crypto_ps_init();
hw_crypto_turn_off();
}
}
/*
* hw_crypto_lock()
* Locks the OCP security module and enables its clock.
*/
static inline void hw_crypto_lock(void)
{
spin_lock_bh(&crypto_ubicom32_lock);
}
/*
* hw_crypto_unlock()
* Unlocks the OCP security module and disables its clock.
*/
static inline void hw_crypto_unlock(void)
{
crypto_ubicom32_last_use = jiffies;
spin_unlock_bh(&crypto_ubicom32_lock);
}
#define CONFIG_CRYPTO_UBICOM32_DEBUG 1
#ifdef CONFIG_CRYPTO_UBICOM32_DEBUG
static inline void hex_dump(void *buf, int b_size, const char *msg)
{
u8 *b = (u8 *)buf;
int i;
if (msg) {
printk("%s:\t", msg);
}
for (i=0; i < b_size; i++) {
printk("%02x ", b[i]);
if ((i & 3) == 3) {
printk(" ");
}
if ((i & 31) == 31) {
printk("\n");
}
}
printk("\n");
}
#define UBICOM32_SEC_DUMP(a, b, c) hex_dump(a, b, c)
#else
#define UBICOM32_SEC_DUMP(a, b, c)
#endif
#endif /* _CRYPTO_ARCH_UBICOM32_CRYPT_H */

View File

@@ -0,0 +1,148 @@
/*
* arch/ubicom32/crypto/des_check_key.c
* Ubicom32 architecture function for checking keys for the DES and
* Tripple DES Encryption algorithms.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* Originally released as descore by Dana L. How <how@isl.stanford.edu>.
* Modified by Raimar Falke <rf13@inf.tu-dresden.de> for the Linux-Kernel.
* Derived from Cryptoapi and Nettle implementations, adapted for in-place
* scatterlist interface. Changed LGPL to GPL per section 3 of the LGPL.
*
* s390 Version:
* Copyright IBM Corp. 2003
* Author(s): Thomas Spatzier
* Jan Glauber (jan.glauber@de.ibm.com)
*
* Derived from "crypto/des.c"
* Copyright (c) 1992 Dana L. How.
* Copyright (c) Raimar Falke <rf13@inf.tu-dresden.de>
* Copyright (c) Gisle Sflensminde <gisle@ii.uib.no>
* Copyright (C) 2001 Niels Mvller.
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include "crypto_des.h"
#define ROR(d,c,o) ((d) = (d) >> (c) | (d) << (o))
static const u8 parity[] = {
8,1,0,8,0,8,8,0,0,8,8,0,8,0,2,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,3,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
4,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,5,0,8,0,8,8,0,0,8,8,0,8,0,6,8,
};
/*
* RFC2451: Weak key checks SHOULD be performed.
*/
int
crypto_des_check_key(const u8 *key, unsigned int keylen, u32 *flags)
{
u32 n, w;
n = parity[key[0]]; n <<= 4;
n |= parity[key[1]]; n <<= 4;
n |= parity[key[2]]; n <<= 4;
n |= parity[key[3]]; n <<= 4;
n |= parity[key[4]]; n <<= 4;
n |= parity[key[5]]; n <<= 4;
n |= parity[key[6]]; n <<= 4;
n |= parity[key[7]];
w = 0x88888888L;
if ((*flags & CRYPTO_TFM_REQ_WEAK_KEY)
&& !((n - (w >> 3)) & w)) { /* 1 in 10^10 keys passes this test */
if (n < 0x41415151) {
if (n < 0x31312121) {
if (n < 0x14141515) {
/* 01 01 01 01 01 01 01 01 */
if (n == 0x11111111) goto weak;
/* 01 1F 01 1F 01 0E 01 0E */
if (n == 0x13131212) goto weak;
} else {
/* 01 E0 01 E0 01 F1 01 F1 */
if (n == 0x14141515) goto weak;
/* 01 FE 01 FE 01 FE 01 FE */
if (n == 0x16161616) goto weak;
}
} else {
if (n < 0x34342525) {
/* 1F 01 1F 01 0E 01 0E 01 */
if (n == 0x31312121) goto weak;
/* 1F 1F 1F 1F 0E 0E 0E 0E (?) */
if (n == 0x33332222) goto weak;
} else {
/* 1F E0 1F E0 0E F1 0E F1 */
if (n == 0x34342525) goto weak;
/* 1F FE 1F FE 0E FE 0E FE */
if (n == 0x36362626) goto weak;
}
}
} else {
if (n < 0x61616161) {
if (n < 0x44445555) {
/* E0 01 E0 01 F1 01 F1 01 */
if (n == 0x41415151) goto weak;
/* E0 1F E0 1F F1 0E F1 0E */
if (n == 0x43435252) goto weak;
} else {
/* E0 E0 E0 E0 F1 F1 F1 F1 (?) */
if (n == 0x44445555) goto weak;
/* E0 FE E0 FE F1 FE F1 FE */
if (n == 0x46465656) goto weak;
}
} else {
if (n < 0x64646565) {
/* FE 01 FE 01 FE 01 FE 01 */
if (n == 0x61616161) goto weak;
/* FE 1F FE 1F FE 0E FE 0E */
if (n == 0x63636262) goto weak;
} else {
/* FE E0 FE E0 FE F1 FE F1 */
if (n == 0x64646565) goto weak;
/* FE FE FE FE FE FE FE FE */
if (n == 0x66666666) goto weak;
}
}
}
}
return 0;
weak:
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
EXPORT_SYMBOL(crypto_des_check_key);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Key Check function for DES & DES3 Cipher Algorithms");

View File

@@ -0,0 +1,761 @@
/*
* arch/ubicom32/crypto/des_ubicom32.c
* Ubicom32 implementation of the DES Cipher Algorithm.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <crypto/algapi.h>
#include <linux/init.h>
#include <linux/module.h>
#include "crypto_ubicom32.h"
extern int crypto_des_check_key(const u8 *key, unsigned int keylen, u32 *flags);
#define DES_BLOCK_SIZE 8
#define DES_KEY_SIZE 8
#define DES3_192_KEY_SIZE (3 * DES_KEY_SIZE)
#define DES3_192_BLOCK_SIZE DES_BLOCK_SIZE
#define DES3_SUB_KEY(key, i) (((u8 *)key) + (i * DES_KEY_SIZE))
enum des_ops {
DES_ENCRYPT,
DES_DECRYPT,
DES3_EDE_ENCRYPT,
DES3_EDE_DECRYPT,
#ifdef DES3_EEE
DES3_EEE_ENCRYPT,
DES3_EEE_DECRYPT,
#endif
};
struct ubicom32_des_ctx {
u8 key[3 * DES_KEY_SIZE];
u32 ctrl;
int key_len;
};
static inline void des_hw_set_key(const u8 *key, u8 key_len)
{
/*
* HW 3DES is not tested yet, use DES just as ipOS
*/
DES_SET_KEY(key);
}
static inline void des_hw_cipher(u8 *out, const u8 *in)
{
SEC_SET_INPUT_2W(in);
asm volatile (
" ; start DES by writing 0x38(SECURITY_BASE) \n\t"
" move.4 0x38(%0), #0x01 \n\t"
" pipe_flush 0 \n\t"
" \n\t"
" ; wait for the module to calculate the output \n\t"
" btst 0x04(%0), #0 \n\t"
" jmpne.f .-4 \n\t"
:
: "a" (SEC_BASE)
: "cc"
);
SEC_GET_OUTPUT_2W(out);
}
static void inline des3_hw_ede_encrypt(u8 *keys, u8 *out, const u8 *in)
{
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 0), DES_KEY_SIZE);
des_hw_cipher(out, in);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 1), DES_KEY_SIZE);
des_hw_cipher(out, out);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 2), DES_KEY_SIZE);
des_hw_cipher(out, out);
}
static void inline des3_hw_ede_decrypt(u8 *keys, u8 *out, const u8 *in)
{
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 2), DES_KEY_SIZE);
des_hw_cipher(out, in);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 1), DES_KEY_SIZE);
des_hw_cipher(out, out);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 0), DES_KEY_SIZE);
des_hw_cipher(out, out);
}
#ifdef DES3_EEE
static void inline des3_hw_eee_encrypt(u8 *keys, u8 *out, const u8 *in)
{
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 0), 2);
des_hw_cipher(out, in);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 1), 2);
des_hw_cipher(out, out);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 2), 2);
des_hw_cipher(out, out);
}
static void inline des3_hw_eee_decrypt(u8 *keys, u8 *out, const u8 *in)
{
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 2), 2);
des_hw_cipher(out, in);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 1), 2);
des_hw_cipher(out, out);
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(DES3_SUB_KEY(keys, 0), 2);
des_hw_cipher(out, out);
}
#endif
static int des_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct ubicom32_des_ctx *dctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
int ret;
/* test if key is valid (not a weak key) */
ret = crypto_des_check_key(key, keylen, flags);
if (ret == 0) {
memcpy(dctx->key, key, keylen);
dctx->key_len = keylen;
//dctx->ctrl = (keylen == DES_KEY_SIZE) ? SEC_ALG_DES : SEC_ALG_3DES
/* 2DES and 3DES are both implemented with DES hw function */
dctx->ctrl = SEC_ALG_DES;
}
return ret;
}
static inline void des_cipher_1b(struct crypto_tfm *tfm, u8 *out, const u8 *in, u32 extra_flags)
{
const struct ubicom32_des_ctx *uctx = crypto_tfm_ctx(tfm);
hw_crypto_lock();
hw_crypto_check();
hw_crypto_set_ctrl(uctx->ctrl | extra_flags);
des_hw_set_key(uctx->key, uctx->key_len);
des_hw_cipher(out, in);
hw_crypto_unlock();
}
static void des_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
des_cipher_1b(tfm, out, in, SEC_DIR_ENCRYPT);
}
static void des_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
des_cipher_1b(tfm, out, in, SEC_DIR_DECRYPT);
}
static struct crypto_alg des_alg = {
.cra_name = "des",
.cra_driver_name = "des-ubicom32",
.cra_priority = CRYPTO_UBICOM32_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = DES_KEY_SIZE,
.cia_max_keysize = DES_KEY_SIZE,
.cia_setkey = des_setkey,
.cia_encrypt = des_encrypt,
.cia_decrypt = des_decrypt,
}
}
};
static void ecb_des_ciper_loop(u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
des_hw_cipher(out, in);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void ecb_des3_ede_encrypt_loop(u8 *keys, u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
des3_hw_ede_encrypt(keys, out, in);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void ecb_des3_ede_decrypt_loop(u8 *keys, u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
des3_hw_ede_decrypt(keys, out, in);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
#ifdef DES3_EEE
static void ecb_des3_eee_encrypt_loop(u8 *keys, u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
des3_hw_eee_encrypt(keys, out, in);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void ecb_des3_eee_decrypt_loop(u8 *keys, u8 *out, u8 *in, unsigned int n)
{
while (likely(n)) {
des3_hw_eee_decrypt(keys, out, in);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
#endif
static inline void ecb_des_cipher_n(struct ubicom32_des_ctx *uctx, enum des_ops op, u8 *out, u8 *in, unsigned int n)
{
switch (op) {
case DES_ENCRYPT:
case DES_DECRYPT:
/* set the right algo, direction and key once */
hw_crypto_set_ctrl(SEC_ALG_DES | (op == DES_ENCRYPT ? SEC_DIR_ENCRYPT : 0));
des_hw_set_key(uctx->key, uctx->key_len);
ecb_des_ciper_loop(out, in, n);
break;
case DES3_EDE_ENCRYPT:
ecb_des3_ede_encrypt_loop(uctx->key, out, in, n);
break;
case DES3_EDE_DECRYPT:
ecb_des3_ede_decrypt_loop(uctx->key, out, in, n);
break;
#ifdef DES3_EEE
case DES3_EEE_ENCRYPT:
ecb_des3_eee_encrypt_loop(uctx->key, out, in, n);
break;
case DES3_EEE_DECRYPT:
ecb_des3_eee_decrypt_loop(uctx->key, out, in, n);
break;
#endif
}
}
static inline void des_xor_2w(u32 *data, u32 *iv)
{
data[0] ^= iv[0];
data[1] ^= iv[1];
}
static void cbc_des_encrypt_loop(u8 *out, u8 *in, u8 *iv, unsigned int n)
{
while (likely(n)) {
des_xor_2w((u32 *)in, (u32 *)iv);
des_hw_cipher(out, in);
SEC_COPY_2W(iv, out);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void cbc_des_decrypt_loop(u8 *out, u8 *in, u8 *iv, unsigned int n)
{
u8 next_iv[DES_BLOCK_SIZE];
while (likely(n)) {
SEC_COPY_2W(next_iv, in);
des_hw_cipher(out, in);
des_xor_2w((u32 *)out, (u32 *)iv);
SEC_COPY_2W(iv, next_iv);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void cbc_des3_ede_encrypt_loop(u8 *keys, u8 *out, u8 *in, u8 *iv, unsigned int n)
{
while (likely(n)) {
des_xor_2w((u32 *)in, (u32 *)iv);
des3_hw_ede_encrypt(keys, out, in);
SEC_COPY_2W(iv, out);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void cbc_des3_ede_decrypt_loop(u8 *keys, u8 *out, u8 *in, u8 *iv, unsigned int n)
{
u8 next_iv[DES_BLOCK_SIZE];
while (likely(n)) {
SEC_COPY_2W(next_iv, in);
des3_hw_ede_decrypt(keys, out, in);
des_xor_2w((u32 *)out, (u32 *)iv);
SEC_COPY_2W(iv, next_iv);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
#ifdef DES3_EEE
static void cbc_des3_eee_encrypt_loop(u8 *keys, u8 *out, u8 *in, u8 *iv, unsigned int n)
{
while (likely(n)) {
des_xor_2w((u32 *)in, (u32 *)iv);
des3_hw_eee_encrypt(keys, out, in);
SEC_COPY_2W(iv, out);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
static void cbc_des3_eee_decrypt_loop(u8 *keys, u8 *out, u8 *in, u8 *iv, unsigned int n)
{
u8 next_iv[DES_BLOCK_SIZE];
while (likely(n)) {
SEC_COPY_2W(next_iv, in);
des3_hw_eee_decrypt(keys, out, in);
des_xor_2w((u32 *)out, (u32 *)iv);
SEC_COPY_2W(iv, next_iv);
out += DES_BLOCK_SIZE;
in += DES_BLOCK_SIZE;
n -= DES_BLOCK_SIZE;
}
}
#endif
static inline void cbc_des_cipher_n(struct ubicom32_des_ctx *uctx, enum des_ops op, u8 *out, u8 *in, u8 *iv, unsigned int n)
{
switch (op) {
case DES_ENCRYPT:
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_ENCRYPT);
des_hw_set_key(uctx->key, uctx->key_len);
cbc_des_encrypt_loop(out, in, iv, n);
break;
case DES_DECRYPT:
/* set the right algo, direction and key once */
hw_crypto_set_ctrl(SEC_ALG_DES | SEC_DIR_DECRYPT);
des_hw_set_key(uctx->key, uctx->key_len);
cbc_des_decrypt_loop(out, in, iv, n);
break;
case DES3_EDE_ENCRYPT:
cbc_des3_ede_encrypt_loop(uctx->key, out, in, iv, n);
break;
case DES3_EDE_DECRYPT:
cbc_des3_ede_decrypt_loop(uctx->key, out, in, iv, n);
break;
#ifdef DES3_EEE
case DES3_EEE_ENCRYPT:
cbc_des3_eee_encrypt_loop(uctx->key, out, in, iv, n);
break;
case DES3_EEE_DECRYPT:
cbc_des3_eee_decrypt_loop(uctx->key, out, in, iv, n);
break;
#endif
}
}
static int des_cipher(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes, u32 extra_flags, enum des_ops op)
{
struct ubicom32_des_ctx *uctx = crypto_blkcipher_ctx(desc->tfm);
int ret;
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
ret = blkcipher_walk_virt(desc, &walk);
if (ret) {
return ret;
}
hw_crypto_lock();
hw_crypto_check();
while ((nbytes = walk.nbytes)) {
/* only use complete blocks */
unsigned int n = nbytes & ~(DES_BLOCK_SIZE - 1);
u8 *out = walk.dst.virt.addr;
u8 *in = walk.src.virt.addr;
/* finish n/16 blocks */
if (extra_flags & SEC_CBC_SET) {
cbc_des_cipher_n(uctx, op, out, in, walk.iv, n);
} else {
ecb_des_cipher_n(uctx, op, out, in, n);
}
nbytes &= DES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, &walk, nbytes);
}
hw_crypto_unlock();
return ret;
}
static int ecb_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_NONE, DES_ENCRYPT);
}
static int ecb_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_NONE, DES_DECRYPT);
}
static struct crypto_alg ecb_des_alg = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_setkey,
.encrypt = ecb_des_encrypt,
.decrypt = ecb_des_decrypt,
}
}
};
static int cbc_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_SET, DES_ENCRYPT);
}
static int cbc_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_SET, DES_DECRYPT);
}
static struct crypto_alg cbc_des_alg = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des_setkey,
.encrypt = cbc_des_encrypt,
.decrypt = cbc_des_decrypt,
}
}
};
/*
* RFC2451:
*
* For DES-EDE3, there is no known need to reject weak or
* complementation keys. Any weakness is obviated by the use of
* multiple keys.
*
* However, if the first two or last two independent 64-bit keys are
* equal (k1 == k2 or k2 == k3), then the DES3 operation is simply the
* same as DES. Implementers MUST reject keys that exhibit this
* property.
*
*/
static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
int i, ret;
struct ubicom32_des_ctx *dctx = crypto_tfm_ctx(tfm);
const u8 *temp_key = key;
u32 *flags = &tfm->crt_flags;
if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) &&
memcmp(&key[DES_KEY_SIZE], &key[DES_KEY_SIZE * 2],
DES_KEY_SIZE))) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
return -EINVAL;
}
for (i = 0; i < 3; i++, temp_key += DES_KEY_SIZE) {
ret = crypto_des_check_key(temp_key, DES_KEY_SIZE, flags);
if (ret < 0)
return ret;
}
memcpy(dctx->key, key, keylen);
dctx->ctrl = SEC_ALG_DES; //hw 3DES not working yet
dctx->key_len = keylen;
return 0;
}
static void des3_192_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct ubicom32_des_ctx *uctx = crypto_tfm_ctx(tfm);
hw_crypto_lock();
hw_crypto_check();
des3_hw_ede_encrypt(uctx->key, dst, src);
hw_crypto_unlock();
}
static void des3_192_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct ubicom32_des_ctx *uctx = crypto_tfm_ctx(tfm);
hw_crypto_lock();
hw_crypto_check();
des3_hw_ede_decrypt(uctx->key, dst, src);
hw_crypto_unlock();
}
static struct crypto_alg des3_192_alg = {
.cra_name = "des3_ede",
.cra_driver_name = "des3_ede-ubicom32",
.cra_priority = CRYPTO_UBICOM32_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES3_192_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des3_192_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = DES3_192_KEY_SIZE,
.cia_max_keysize = DES3_192_KEY_SIZE,
.cia_setkey = des3_192_setkey,
.cia_encrypt = des3_192_encrypt,
.cia_decrypt = des3_192_decrypt,
}
}
};
static int ecb_des3_192_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_NONE, DES3_EDE_ENCRYPT);
}
static int ecb_des3_192_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_NONE, DES3_EDE_DECRYPT);
}
static struct crypto_alg ecb_des3_192_alg = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES3_192_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(
ecb_des3_192_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_192_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE,
.setkey = des3_192_setkey,
.encrypt = ecb_des3_192_encrypt,
.decrypt = ecb_des3_192_decrypt,
}
}
};
static int cbc_des3_192_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_SET, DES3_EDE_ENCRYPT);
}
static int cbc_des3_192_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return des_cipher(desc, dst, src, nbytes, SEC_CBC_SET, DES3_EDE_DECRYPT);
}
static struct crypto_alg cbc_des3_192_alg = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-ubicom32",
.cra_priority = CRYPTO_UBICOM32_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES3_192_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_des_ctx),
.cra_alignmask = CRYPTO_UBICOM32_ALIGNMENT - 1,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(
cbc_des3_192_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_192_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE,
.ivsize = DES3_192_BLOCK_SIZE,
.setkey = des3_192_setkey,
.encrypt = cbc_des3_192_encrypt,
.decrypt = cbc_des3_192_decrypt,
}
}
};
static int init(void)
{
int ret = 0;
hw_crypto_init();
ret = crypto_register_alg(&des_alg);
if (ret)
goto des_err;
ret = crypto_register_alg(&ecb_des_alg);
if (ret)
goto ecb_des_err;
ret = crypto_register_alg(&cbc_des_alg);
if (ret)
goto cbc_des_err;
ret = crypto_register_alg(&des3_192_alg);
if (ret)
goto des3_192_err;
ret = crypto_register_alg(&ecb_des3_192_alg);
if (ret)
goto ecb_des3_192_err;
ret = crypto_register_alg(&cbc_des3_192_alg);
if (ret)
goto cbc_des3_192_err;
out:
return ret;
cbc_des3_192_err:
crypto_unregister_alg(&ecb_des3_192_alg);
ecb_des3_192_err:
crypto_unregister_alg(&des3_192_alg);
des3_192_err:
crypto_unregister_alg(&cbc_des_alg);
cbc_des_err:
crypto_unregister_alg(&ecb_des_alg);
ecb_des_err:
crypto_unregister_alg(&des_alg);
des_err:
goto out;
}
static void __exit fini(void)
{
crypto_unregister_alg(&cbc_des3_192_alg);
crypto_unregister_alg(&ecb_des3_192_alg);
crypto_unregister_alg(&des3_192_alg);
crypto_unregister_alg(&cbc_des_alg);
crypto_unregister_alg(&ecb_des_alg);
crypto_unregister_alg(&des_alg);
}
module_init(init);
module_exit(fini);
MODULE_ALIAS("des");
MODULE_ALIAS("des3_ede");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("DES & Triple DES EDE Cipher Algorithms");

View File

@@ -0,0 +1,200 @@
/*
* arch/ubicom32/crypto/md5_ubicom32.c
* Ubicom32 implementation of the MD5 Secure Hash Algorithm
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include "crypto_ubicom32.h"
#define MD5_DIGEST_SIZE 16
#define MD5_BLOCK_SIZE 64
#define MD5_HASH_WORDS 4
extern void _md5_ip5k_init_digest(u32_t *digest);
extern void _md5_ip5k_transform(u32_t *data_input);
extern void _md5_ip5k_get_digest(u32_t *digest);
struct ubicom32_md5_ctx {
u64 count; /* message length */
u32 state[MD5_HASH_WORDS];
u8 buf[2 * MD5_BLOCK_SIZE];
};
static void md5_init(struct crypto_tfm *tfm)
{
struct ubicom32_md5_ctx *mctx = crypto_tfm_ctx(tfm);
mctx->state[0] = 0x01234567;
mctx->state[1] = 0x89abcdef;
mctx->state[2] = 0xfedcba98;
mctx->state[3] = 0x76543210;
mctx->count = 0;
}
static inline void _md5_process(u32 *digest, const u8 *data)
{
_md5_ip5k_transform((u32 *)data);
}
static void md5_update(struct crypto_tfm *tfm, const u8 *data,
unsigned int len)
{
struct ubicom32_md5_ctx *mctx = crypto_tfm_ctx(tfm);
int index, clen;
/* how much is already in the buffer? */
index = mctx->count & 0x3f;
mctx->count += len;
if (index + len < MD5_BLOCK_SIZE) {
goto store_only;
}
hw_crypto_lock();
hw_crypto_check();
/* init digest set ctrl register too */
_md5_ip5k_init_digest(mctx->state);
if (unlikely(index == 0 && SEC_ALIGNED(data))) {
fast_process:
while (len >= MD5_BLOCK_SIZE) {
_md5_process(mctx->state, data);
data += MD5_BLOCK_SIZE;
len -= MD5_BLOCK_SIZE;
}
goto store;
}
/* process one stored block */
if (index) {
clen = MD5_BLOCK_SIZE - index;
memcpy(mctx->buf + index, data, clen);
_md5_process(mctx->state, mctx->buf);
data += clen;
len -= clen;
index = 0;
}
if (likely(SEC_ALIGNED(data))) {
goto fast_process;
}
/* process as many blocks as possible */
while (len >= MD5_BLOCK_SIZE) {
memcpy(mctx->buf, data, MD5_BLOCK_SIZE);
_md5_process(mctx->state, mctx->buf);
data += MD5_BLOCK_SIZE;
len -= MD5_BLOCK_SIZE;
}
store:
_md5_ip5k_get_digest(mctx->state);
hw_crypto_unlock();
store_only:
/* anything left? */
if (len)
memcpy(mctx->buf + index , data, len);
}
/* Add padding and return the message digest. */
static void md5_final(struct crypto_tfm *tfm, u8 *out)
{
struct ubicom32_md5_ctx *mctx = crypto_tfm_ctx(tfm);
u32 bits[2];
unsigned int index, end;
/* must perform manual padding */
index = mctx->count & 0x3f;
end = (index < 56) ? MD5_BLOCK_SIZE : (2 * MD5_BLOCK_SIZE);
/* start pad with 1 */
mctx->buf[index] = 0x80;
/* pad with zeros */
index++;
memset(mctx->buf + index, 0x00, end - index - 8);
/* append message length */
bits[0] = mctx->count << 3;
bits[1] = mctx->count >> 29;
__cpu_to_le32s(bits);
__cpu_to_le32s(bits + 1);
memcpy(mctx->buf + end - 8, &bits, sizeof(bits));
/* force to use the mctx->buf and ignore the partial buf */
mctx->count = mctx->count & ~0x3f;
md5_update(tfm, mctx->buf, end);
/* copy digest to out */
memcpy(out, mctx->state, MD5_DIGEST_SIZE);
/* wipe context */
memset(mctx, 0, sizeof *mctx);
}
static struct crypto_alg alg = {
.cra_name = "md5",
.cra_driver_name= "md5-ubicom32",
.cra_priority = CRYPTO_UBICOM32_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_DIGEST,
.cra_blocksize = MD5_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_md5_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(alg.cra_list),
.cra_u = {
.digest = {
.dia_digestsize = MD5_DIGEST_SIZE,
.dia_init = md5_init,
.dia_update = md5_update,
.dia_final = md5_final,
}
}
};
static int __init init(void)
{
hw_crypto_init();
return crypto_register_alg(&alg);
}
static void __exit fini(void)
{
crypto_unregister_alg(&alg);
}
module_init(init);
module_exit(fini);
MODULE_ALIAS("md5");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MD5 Secure Hash Algorithm");

View File

@@ -0,0 +1,234 @@
/*
* arch/ubicom32/crypto/md5_ubicom32_asm.S
* MD5 (Message Digest 5) support for Ubicom32 v3 architecture
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#define __ASM__
#include <asm/ip5000.h>
#ifndef RP
#define RP A5
#endif
;*****************************************************************************************
; The function prototypes
;*****************************************************************************************
; void md5_ip5k_init(void)
; void md5_ip5k_transform(u32_t *data_input)
; void md5_get_digest(u32_t *digest)
;*****************************************************************************************
; Inputs
;*****************************************************************************************;
; data_input is the pointer to the block of data over which the digest will be calculated.
; It should be word aligned.
;
; digest is the pointer to the block of data into which the digest (the output) will be written.
; It should be word aligned.
;
;*****************************************************************************************
; Outputs
;*****************************************************************************************
; None
;*****************************************************************************************
; An: Address Registers
;*****************************************************************************************
#define an_digest A3
#define an_data_input A3
#define an_security_block A4
;*****************************************************************************************
; Hash Constants
;*****************************************************************************************
#define HASH_MD5_IN0 0x01234567
#define HASH_MD5_IN1 0x89abcdef
#define HASH_MD5_IN2 0xfedcba98
#define HASH_MD5_IN3 0x76543210
#define HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION 2
#define HASH_SECURITY_BLOCK_CONTROL_INIT_MD5 ((1 << 4) | HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION)
;*****************************************************************************************
; Hash related defines
;*****************************************************************************************
#define hash_control 0x00(an_security_block)
#define hash_control_low 0x02(an_security_block)
#define hash_status 0x04(an_security_block)
#define hash_input_0 0x30(an_security_block)
#define hash_input_1 0x34(an_security_block)
#define hash_input_2 0x38(an_security_block)
#define hash_input_3 0x3c(an_security_block)
#define hash_input_4 0x40(an_security_block)
#define hash_output_0 0x70(an_security_block)
#define hash_output_0_low 0x72(an_security_block)
#define hash_output_1 0x74(an_security_block)
#define hash_output_1_low 0x76(an_security_block)
#define hash_output_2 0x78(an_security_block)
#define hash_output_2_low 0x7a(an_security_block)
#define hash_output_3 0x7c(an_security_block)
#define hash_output_3_low 0x7e(an_security_block)
;*****************************************************************************************
; Assembly macros
;*****************************************************************************************
; C compiler reserves RP (A5) for return address during subroutine call.
; Use RP to return to caller
.macro call_return_macro
calli RP, 0(RP)
.endm
#if 0
;*****************************************************************************************
; void md5_ip5k_init(void)
; initialize the output registers of the hash module
;
;.section .text.md5_ip5k_init,"ax",@progbits
.section .text
.global _md5_ip5k_init
.func md5_ip5k_init, _md5_ip5k_init
_md5_ip5k_init:
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
movei hash_control, #%hi(HASH_SECURITY_BLOCK_CONTROL_INIT_MD5)
movei hash_control_low, #%lo(HASH_SECURITY_BLOCK_CONTROL_INIT_MD5)
movei hash_output_0, #%hi(HASH_MD5_IN0)
movei hash_output_0_low, #%lo(HASH_MD5_IN0)
movei hash_output_1, #%hi(HASH_MD5_IN1)
movei hash_output_1_low, #%lo(HASH_MD5_IN1)
movei hash_output_2, #%hi(HASH_MD5_IN2)
movei hash_output_2_low, #%lo(HASH_MD5_IN2)
movei hash_output_3, #%hi(HASH_MD5_IN3)
movei hash_output_3_low, #%lo(HASH_MD5_IN3)
call_return_macro
.endfunc
#endif
;*****************************************************************************************
; void md5_ip5k_init_digest(u32_t *hash_input)
; initialize the output registers of the hash module
;.section .text.md5_ip5k_init_digest,"ax",@progbits
.section .text
.global _md5_ip5k_init_digest
.func md5_ip5k_init_digest, _md5_ip5k_init_digest
_md5_ip5k_init_digest:
movea an_data_input, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
movei hash_control, #%hi(HASH_SECURITY_BLOCK_CONTROL_INIT_MD5)
movei hash_control_low, #%lo(HASH_SECURITY_BLOCK_CONTROL_INIT_MD5)
move.4 hash_output_0, (an_data_input)4++
move.4 hash_output_1, (an_data_input)4++
move.4 hash_output_2, (an_data_input)4++
move.4 hash_output_3, (an_data_input)4++
call_return_macro
.endfunc
;*****************************************************************************************
; void md5_ip5k_transform(u32_t *data_input)
; performs intermediate transformation step for the hash calculation
;
;.sect .text.md5_ip5k_transform,"ax",@progbits
.section .text
.global _md5_ip5k_transform
.func md5_ip5k_transform, _md5_ip5k_transform
_md5_ip5k_transform:
movea an_data_input, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
; Write the first 128bits (16 bytes)
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
pipe_flush 0
md5_ip5k_transform_wait:
; wait for the module to calculate the output hash
btst hash_status, #0
jmpne.f md5_ip5k_transform_wait
call_return_macro
.endfunc
;*****************************************************************************************
; void md5_ip5k_get_digest(u32_t *digest)
; Return the hash of the input data
;
;.sect .text.md5_get_digest,"ax",@progbits
.section .text
.global _md5_ip5k_get_digest
.func md5_ip5k_get_digest, _md5_ip5k_get_digest
_md5_ip5k_get_digest:
movea an_digest, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
; we have finished
move.4 0(an_digest), hash_output_0
move.4 4(an_digest), hash_output_1
move.4 8(an_digest), hash_output_2
move.4 12(an_digest), hash_output_3
call_return_macro
.endfunc

View File

@@ -0,0 +1,354 @@
/*
* arch/ubicom32/crypto/sha1_ubicom32.c
* Ubicom32 implementation of the SHA1 Secure Hash Algorithm.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <crypto/sha.h>
#include <asm/linkage.h>
#include "crypto_ubicom32.h"
#define HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION 2
#define HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1 ((1 << 5) | HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION)
struct ubicom32_sha1_ctx {
u64 count; /* message length */
u32 state[5];
u8 buf[2 * SHA1_BLOCK_SIZE];
};
static inline void sha1_clear_2ws(u8 *buf, int wc)
{
asm volatile (
"1: move.4 (%0)4++, #0 \n\t"
" move.4 (%0)4++, #0 \n\t"
" sub.4 %1, #2, %1 \n\t"
" jmple.f 1b \n\t"
:
: "a" (buf), "d" (wc)
: "cc"
);
}
/* only wipe out count, state, and 1st half of buf - 9 bytes at most */
#define sha1_wipe_out(sctx) sha1_clear_2ws((u8 *)sctx, 2 + 5 + 16 - 2)
static inline void sha1_init_digest(u32 *digest)
{
hw_crypto_set_ctrl(HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1);
asm volatile (
" ; move digests to hash_output regs \n\t"
" move.4 0x70(%0), 0x0(%1) \n\t"
" move.4 0x74(%0), 0x4(%1) \n\t"
" move.4 0x78(%0), 0x8(%1) \n\t"
" move.4 0x7c(%0), 0xc(%1) \n\t"
" move.4 0x80(%0), 0x10(%1) \n\t"
:
: "a" (SEC_BASE), "a" (digest)
);
}
static inline void sha1_transform_feed(const u8 *in)
{
asm volatile (
" ; write the 1st 16 bytes \n\t"
" move.4 0x30(%0), 0x0(%1) \n\t"
" move.4 0x34(%0), 0x4(%1) \n\t"
" move.4 0x38(%0), 0x8(%1) \n\t"
" move.4 0x3c(%0), 0xc(%1) \n\t"
" move.4 0x40(%0), %1 \n\t"
" ; write the 2nd 16 bytes \n\t"
" move.4 0x30(%0), 0x10(%1) \n\t"
" move.4 0x34(%0), 0x14(%1) \n\t"
" move.4 0x38(%0), 0x18(%1) \n\t"
" move.4 0x3c(%0), 0x1c(%1) \n\t"
" move.4 0x40(%0), %1 \n\t"
" ; write the 3rd 16 bytes \n\t"
" move.4 0x30(%0), 0x20(%1) \n\t"
" move.4 0x34(%0), 0x24(%1) \n\t"
" move.4 0x38(%0), 0x28(%1) \n\t"
" move.4 0x3c(%0), 0x2c(%1) \n\t"
" move.4 0x40(%0), %1 \n\t"
" ; write the 4th 16 bytes \n\t"
" move.4 0x30(%0), 0x30(%1) \n\t"
" move.4 0x34(%0), 0x34(%1) \n\t"
" move.4 0x38(%0), 0x38(%1) \n\t"
" move.4 0x3c(%0), 0x3c(%1) \n\t"
" move.4 0x40(%0), %1 \n\t"
" pipe_flush 0 \n\t"
:
: "a"(SEC_BASE), "a"(in)
);
}
static inline void sha1_transform_wait(void)
{
asm volatile (
" btst 0x04(%0), #0 \n\t"
" jmpne.f -4 \n\t"
:
: "a"(SEC_BASE)
: "cc"
);
}
static inline void sha1_output_digest(u32 *digest)
{
asm volatile (
" move.4 0x0(%1), 0x70(%0) \n\t"
" move.4 0x4(%1), 0x74(%0) \n\t"
" move.4 0x8(%1), 0x78(%0) \n\t"
" move.4 0xc(%1), 0x7c(%0) \n\t"
" move.4 0x10(%1), 0x80(%0) \n\t"
:
: "a" (SEC_BASE), "a" (digest)
);
}
static __ocm_text void sha1_init(struct crypto_tfm *tfm)
{
struct ubicom32_sha1_ctx *sctx = crypto_tfm_ctx(tfm);
sctx->state[0] = SHA1_H0;
sctx->state[1] = SHA1_H1;
sctx->state[2] = SHA1_H2;
sctx->state[3] = SHA1_H3;
sctx->state[4] = SHA1_H4;
sctx->count = 0;
}
static void __ocm_text sha1_update(struct crypto_tfm *tfm, const u8 *data,
unsigned int len)
{
struct ubicom32_sha1_ctx *sctx = crypto_tfm_ctx(tfm);
int index, clen;
/* how much is already in the buffer? */
index = sctx->count & 0x3f;
sctx->count += len;
if (index + len < SHA1_BLOCK_SIZE) {
goto store_only;
}
hw_crypto_lock();
hw_crypto_check();
/* init digest set ctrl register too */
sha1_init_digest(sctx->state);
if (unlikely(index == 0 && SEC_ALIGNED(data))) {
fast_process:
#if CRYPTO_UBICOM32_LOOP_ASM
if (likely(len >= SHA1_BLOCK_SIZE)) {
register unsigned int cnt = len >> 6; // loop = len / 64;
sha1_transform_feed(data);
data += SHA1_BLOCK_SIZE;
/* cnt is pre-decremented in the loop */
asm volatile (
"; while (--loop): work on 2nd block \n\t"
"1: add.4 %2, #-1, %2 \n\t"
" jmpeq.f 5f \n\t"
" \n\t"
" ; write the 1st 16 bytes \n\t"
" move.4 0x30(%1), (%0)4++ \n\t"
" move.4 0x34(%1), (%0)4++ \n\t"
" move.4 0x38(%1), (%0)4++ \n\t"
" move.4 0x3c(%1), (%0)4++ \n\t"
" ; can not kick off hw before it \n\t"
" ; is done with the prev block \n\t"
" \n\t"
" btst 0x04(%1), #0 \n\t"
" jmpne.f -4 \n\t"
" \n\t"
" ; tell hw to load 1st 16 bytes \n\t"
" move.4 0x40(%1), %2 \n\t"
" \n\t"
" ; write the 2nd 16 bytes \n\t"
" move.4 0x30(%1), (%0)4++ \n\t"
" move.4 0x34(%1), (%0)4++ \n\t"
" move.4 0x38(%1), (%0)4++ \n\t"
" move.4 0x3c(%1), (%0)4++ \n\t"
" move.4 0x40(%1), %2 \n\t"
" \n\t"
" ; write the 3rd 16 bytes \n\t"
" move.4 0x30(%1), (%0)4++ \n\t"
" move.4 0x34(%1), (%0)4++ \n\t"
" move.4 0x38(%1), (%0)4++ \n\t"
" move.4 0x3c(%1), (%0)4++ \n\t"
" move.4 0x40(%1), %2 \n\t"
" \n\t"
" ; write the 4th 16 bytes \n\t"
" move.4 0x30(%1), (%0)4++ \n\t"
" move.4 0x34(%1), (%0)4++ \n\t"
" move.4 0x38(%1), (%0)4++ \n\t"
" move.4 0x3c(%1), (%0)4++ \n\t"
" move.4 0x40(%1), %2 \n\t"
" \n\t"
"; no need flush, enough insts \n\t"
"; before next hw wait \n\t"
" \n\t"
"; go back to loop \n\t"
" jmpt 1b \n\t"
" \n\t"
"; wait hw for last block \n\t"
"5: btst 0x04(%1), #0 \n\t"
" jmpne.f -4 \n\t"
" \n\t"
: "+a" (data)
: "a"( SEC_BASE), "d" (cnt)
: "cc"
);
len = len & (64 - 1);
}
#else
while (likely(len >= SHA1_BLOCK_SIZE)) {
sha1_transform_feed(data);
data += SHA1_BLOCK_SIZE;
len -= SHA1_BLOCK_SIZE;
sha1_transform_wait();
}
#endif
goto store;
}
/* process one stored block */
if (index) {
clen = SHA1_BLOCK_SIZE - index;
memcpy(sctx->buf + index, data, clen);
sha1_transform_feed(sctx->buf);
data += clen;
len -= clen;
index = 0;
sha1_transform_wait();
}
if (likely(SEC_ALIGNED(data))) {
goto fast_process;
}
/* process as many blocks as possible */
if (likely(len >= SHA1_BLOCK_SIZE)) {
memcpy(sctx->buf, data, SHA1_BLOCK_SIZE);
do {
sha1_transform_feed(sctx->buf);
data += SHA1_BLOCK_SIZE;
len -= SHA1_BLOCK_SIZE;
if (likely(len >= SHA1_BLOCK_SIZE)) {
memcpy(sctx->buf, data, SHA1_BLOCK_SIZE);
sha1_transform_wait();
continue;
}
/* it is the last block */
sha1_transform_wait();
break;
} while (1);
}
store:
sha1_output_digest(sctx->state);
hw_crypto_unlock();
store_only:
/* anything left? */
if (len)
memcpy(sctx->buf + index , data, len);
}
/* Add padding and return the message digest. */
static void __ocm_text sha1_final(struct crypto_tfm *tfm, u8 *out)
{
struct ubicom32_sha1_ctx *sctx = crypto_tfm_ctx(tfm);
u64 bits;
unsigned int index, end;
/* must perform manual padding */
index = sctx->count & 0x3f;
end = (index < 56) ? SHA1_BLOCK_SIZE : (2 * SHA1_BLOCK_SIZE);
/* start pad with 1 */
sctx->buf[index] = 0x80;
/* pad with zeros */
index++;
memset(sctx->buf + index, 0x00, end - index - 8);
/* append message length */
bits = sctx->count << 3 ;
SEC_COPY_2W(sctx->buf + end - 8, &bits);
/* force to use the sctx->buf and ignore the partial buf */
sctx->count = sctx->count & ~0x3f;
sha1_update(tfm, sctx->buf, end);
/* copy digest to out */
SEC_COPY_5W(out, sctx->state);
/* wipe context */
sha1_wipe_out(sctx);
}
static struct crypto_alg alg = {
.cra_name = "sha1",
.cra_driver_name= "sha1-ubicom32",
.cra_priority = CRYPTO_UBICOM32_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_DIGEST,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ubicom32_sha1_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(alg.cra_list),
.cra_u = {
.digest = {
.dia_digestsize = SHA1_DIGEST_SIZE,
.dia_init = sha1_init,
.dia_update = sha1_update,
.dia_final = sha1_final,
}
}
};
static int __init init(void)
{
hw_crypto_init();
return crypto_register_alg(&alg);
}
static void __exit fini(void)
{
crypto_unregister_alg(&alg);
}
module_init(init);
module_exit(fini);
MODULE_ALIAS("sha1");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm");

View File

@@ -0,0 +1,244 @@
/*
* arch/ubicom32/crypto/sha1_ubicom32_asm.S
* SHA1 hash support for Ubicom32 architecture V3.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#define __ASM__
#include <asm/ip5000.h>
#ifndef RP
#define RP A5
#endif
;*****************************************************************************************
; The function prototype
;*****************************************************************************************
; void sha1_ip5k_init(void)
; void sha1_ip5k_transform(u32_t *data_input)
; void sha1_ip5k_output(u32_t *digest)
;*****************************************************************************************
; Inputs
;*****************************************************************************************
; data_input is the pointer to the block of data over which the digest will be calculated.
; It should be word aligned.
;
; digest is the pointer to the block of data into which the digest (the output) will be written.
; It should be word aligned.
;
;*****************************************************************************************
; Outputs
;*****************************************************************************************
; None
;*****************************************************************************************
; Hash Constants
;*****************************************************************************************
#define HASH_SHA1_IN0 0x67452301
#define HASH_SHA1_IN1 0xefcdab89
#define HASH_SHA1_IN2 0x98badcfe
#define HASH_SHA1_IN3 0x10325476
#define HASH_SHA1_IN4 0xc3d2e1f0
#define HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION 2
#define HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1 ((1 << 5) | HASH_SECURITY_BLOCK_CONTROL_INIT_NO_ENCYPTION)
;*****************************************************************************************
; An: Address Registers
;*****************************************************************************************
#define an_digest a4
#define an_data_input a4
#define an_security_block a3
;*****************************************************************************************
; Hash related defines
;*****************************************************************************************
#define hash_control 0x00(an_security_block)
#define hash_control_low 0x02(an_security_block)
#define hash_status 0x04(an_security_block)
#define hash_input_0 0x30(an_security_block)
#define hash_input_1 0x34(an_security_block)
#define hash_input_2 0x38(an_security_block)
#define hash_input_3 0x3c(an_security_block)
#define hash_input_4 0x40(an_security_block)
#define hash_output_0 0x70(an_security_block)
#define hash_output_0_low 0x72(an_security_block)
#define hash_output_1 0x74(an_security_block)
#define hash_output_1_low 0x76(an_security_block)
#define hash_output_2 0x78(an_security_block)
#define hash_output_2_low 0x7a(an_security_block)
#define hash_output_3 0x7c(an_security_block)
#define hash_output_3_low 0x7e(an_security_block)
#define hash_output_4 0x80(an_security_block)
#define hash_output_4_low 0x82(an_security_block)
;*****************************************************************************************
; Assembly macros
;*****************************************************************************************
; C compiler reserves RP (A5) for return address during subroutine call.
; Use RP to return to caller
.macro call_return_macro
calli RP, 0(RP)
.endm
;*****************************************************************************************
; void sha1_ip5k_init(void)
; initialize the output registers of the hash module
;.section .text.sha1_ip5k_init,"ax",@progbits
.section .ocm_text,"ax",@progbits
.global _sha1_ip5k_init
.func sha1_ip5k_init, _sha1_ip5k_init
_sha1_ip5k_init:
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
movei hash_control, #%hi(HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1)
movei hash_control_low, #%lo(HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1)
movei hash_output_0, #%hi(HASH_SHA1_IN0)
movei hash_output_0_low, #%lo(HASH_SHA1_IN0)
movei hash_output_1, #%hi(HASH_SHA1_IN1)
movei hash_output_1_low, #%lo(HASH_SHA1_IN1)
movei hash_output_2, #%hi(HASH_SHA1_IN2)
movei hash_output_2_low, #%lo(HASH_SHA1_IN2)
movei hash_output_3, #%hi(HASH_SHA1_IN3)
movei hash_output_3_low, #%lo(HASH_SHA1_IN3)
movei hash_output_4, #%hi(HASH_SHA1_IN4)
movei hash_output_4_low, #%lo(HASH_SHA1_IN4)
call_return_macro
.endfunc
;*****************************************************************************************
; void sha1_ip5k_init_digest(u32_t *hash_input)
; initialize the output registers of the hash module
;.section .text.sha1_ip5k_init_digest,"ax",@progbits
.section .ocm_text,"ax",@progbits
.global _sha1_ip5k_init_digest
.func sha1_ip5k_init_digest, _sha1_ip5k_init_digest
_sha1_ip5k_init_digest:
movea an_data_input, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
movei hash_control, #%hi(HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1)
movei hash_control_low, #%lo(HASH_SECURITY_BLOCK_CONTROL_INIT_SHA1)
move.4 hash_output_0, (an_data_input)4++
move.4 hash_output_1, (an_data_input)4++
move.4 hash_output_2, (an_data_input)4++
move.4 hash_output_3, (an_data_input)4++
move.4 hash_output_4, (an_data_input)4++
call_return_macro
.endfunc
;*****************************************************************************************
; void sha1_ip5k_transform(u32_t *data_input)
; performs intermediate transformation step for the hash calculation
;.section .text.sha1_ip5k_transform,"ax",@progbits
.section .ocm_text,"ax",@progbits
.global _sha1_ip5k_transform
.func sha1_ip5k_transform, _sha1_ip5k_transform
_sha1_ip5k_transform:
movea an_data_input, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
; Write the first 128bits (16 bytes)
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
move.4 hash_input_0, (an_data_input)4++
move.4 hash_input_1, (an_data_input)4++
move.4 hash_input_2, (an_data_input)4++
move.4 hash_input_3, (an_data_input)4++
move.4 hash_input_4, D0
pipe_flush 0
sha1_ip5k_transform_wait:
; wait for the module to calculate the output hash
btst hash_status, #0
jmpne.f sha1_ip5k_transform_wait
call_return_macro
.endfunc
;*****************************************************************************************
; void sha1_ip5k_output(u32_t *digest)
; Return the hash of the input data
;.section .text.sha1_ip5k_output,"ax",@progbits
.section .ocm_text,"ax",@progbits
.global _sha1_ip5k_output
.func sha1_ip5k_output, _sha1_ip5k_output
_sha1_ip5k_output:
movea an_digest, D0
moveai an_security_block, #SECURITY_BASE_EFFECTIVE_ADDRESS
; we have finished
move.4 0(an_digest), hash_output_0
move.4 4(an_digest), hash_output_1
move.4 8(an_digest), hash_output_2
move.4 12(an_digest), hash_output_3
move.4 16(an_digest), hash_output_4
call_return_macro
.endfunc
;*****************************************************************************************
;END ;End of program code
;*****************************************************************************************