1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-04-21 12:27:27 +03:00

[ubicom32]: move new files out from platform support patch

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
kaloz
2010-02-22 13:54:47 +00:00
parent fdcca1ea95
commit 1a29ef8e97
279 changed files with 56440 additions and 57274 deletions

View File

@@ -0,0 +1,399 @@
/*
* drivers/video/backlight/ubicom32bl.c
* Backlight driver for the Ubicom32 platform
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/backlight.h>
#include <linux/fb.h>
#include <asm/ubicom32bl.h>
#include <asm/ip5000.h>
#define DRIVER_NAME "ubicom32bl"
#define UBICOM32BL_MAX_BRIGHTNESS 255
struct ubicom32bl_data {
/*
* Pointer to the platform data structure. Keep this around since we need values
* from it to set the backlight intensity.
*/
const struct ubicom32bl_platform_data *pdata;
/*
* Backlight device, we have to save this for use when we remove ourselves.
*/
struct backlight_device *bldev;
/*
* Current intensity, used for get_intensity.
*/
int cur_intensity;
/*
* Init function for PWM
*/
int (*init_fn)(struct ubicom32bl_data *);
/*
* Set intensity function depending on the backlight type
*/
int (*set_intensity_fn)(struct ubicom32bl_data *, int);
};
/*
* ubicom32bl_set_intensity_gpio
*/
static int ubicom32bl_set_intensity_gpio(struct ubicom32bl_data *ud, int intensity)
{
ud->cur_intensity = intensity ? 255 : 0;
if (intensity) {
// set gpio
return 0;
}
// clear gpio
return 0;
}
/*
* ubicom32bl_set_intensity_hw
*/
static int ubicom32bl_set_intensity_hw(struct ubicom32bl_data *ud, int intensity)
{
u16_t period = ud->pdata->pwm_period;
u16_t duty;
/*
* Calculate the new duty cycle
*/
duty = (period * intensity) / (UBICOM32BL_MAX_BRIGHTNESS + 1);
/*
* Set the new duty cycle
*/
switch (ud->pdata->pwm_channel) {
case 0:
/*
* Channel 0 is in the lower half of PORT C ctl0 and ctl1
*/
UBICOM32_IO_PORT(RC)->ctl1 = (ud->pdata->pwm_period << 16) | duty;
break;
case 1:
/*
* Channel 1 is in the upper half of PORT C ctl0 and ctl2
*/
UBICOM32_IO_PORT(RC)->ctl2 = (ud->pdata->pwm_period << 16) | duty;
break;
case 2:
/*
* Channel 2 is in PORT H ctl0 and ctl1
*/
UBICOM32_IO_PORT(RH)->ctl1 = (ud->pdata->pwm_period << 16) | duty;
break;
}
ud->cur_intensity = intensity;
return 0;
}
/*
* ubicom32bl_set_intensity
*/
static int ubicom32bl_set_intensity(struct backlight_device *bd)
{
struct ubicom32bl_data *ud = (struct ubicom32bl_data *)bl_get_data(bd);
int intensity = bd->props.brightness;
/*
* If we're blanked the the intensity doesn't matter.
*/
if ((bd->props.power != FB_BLANK_UNBLANK) || (bd->props.fb_blank != FB_BLANK_UNBLANK)) {
intensity = 0;
}
/*
* Check for inverted backlight.
*/
if (ud->pdata->invert) {
intensity = UBICOM32BL_MAX_BRIGHTNESS - intensity;
}
if (ud->set_intensity_fn) {
return ud->set_intensity_fn(ud, intensity);
}
return -ENXIO;
}
/*
* ubicom32bl_get_intensity
* Return the current intensity of the backlight.
*/
static int ubicom32bl_get_intensity(struct backlight_device *bd)
{
struct ubicom32bl_data *ud = (struct ubicom32bl_data *)bl_get_data(bd);
return ud->cur_intensity;
}
/*
* ubicom32bl_init_hw_pwm
* Set the appropriate PWM registers
*/
static int ubicom32bl_init_hw_pwm(struct ubicom32bl_data *ud)
{
/*
* bit 13: enable
*/
u16_t pwm_cfg = (1 << 13) | (ud->pdata->pwm_prescale << 8) ;
switch (ud->pdata->pwm_channel) {
case 0:
/*
* Channel 0 is in the lower half of PORT C ctl0 and ctl1 (PA5)
*/
UBICOM32_IO_PORT(RC)->ctl0 &= ~0xFFFF;
UBICOM32_IO_PORT(RC)->ctl0 |= pwm_cfg;
UBICOM32_IO_PORT(RC)->ctl1 = ud->pdata->pwm_period << 16;
/*
* If the port function is not set, set it to GPIO/PWM
*/
if (!UBICOM32_IO_PORT(RA)->function) {
UBICOM32_IO_PORT(RA)->function = 3;
}
break;
case 1:
/*
* Channel 1 is in the upper half of PORT C ctl0 and ctl2 (PE4)
*/
UBICOM32_IO_PORT(RC)->ctl0 &= ~0xFFFF0000;
UBICOM32_IO_PORT(RC)->ctl0 |= (pwm_cfg << 16);
UBICOM32_IO_PORT(RC)->ctl2 = ud->pdata->pwm_period << 16;
/*
* If the port function is not set, set it to GPIO/ExtIOInt
*/
if (!UBICOM32_IO_PORT(RE)->function) {
UBICOM32_IO_PORT(RE)->function = 3;
}
break;
case 2:
/*
* Channel 2 is in PORT H ctl0 and ctl1 (PD0)
*/
UBICOM32_IO_PORT(RH)->ctl0 &= ~0xFFFF0000;
UBICOM32_IO_PORT(RH)->ctl0 = pwm_cfg;
UBICOM32_IO_PORT(RH)->ctl1 = ud->pdata->pwm_period << 16;
/*
* If the port function is not set, set it to GPIO
*/
if (!UBICOM32_IO_PORT(RD)->function) {
UBICOM32_IO_PORT(RD)->function = 3;
}
break;
}
return 0;
}
/*
* ubicom32bl_init_gpio
* Allocate the appropriate GPIO
*/
static int ubicom32bl_init_gpio(struct ubicom32bl_data *ud)
{
return 0;
}
static struct backlight_ops ubicom32bl_ops = {
.get_brightness = ubicom32bl_get_intensity,
.update_status = ubicom32bl_set_intensity,
};
/*
* ubicom32bl_probe
*/
static int ubicom32bl_probe(struct platform_device *pdev)
{
const struct ubicom32bl_platform_data *pdata = pdev->dev.platform_data;
struct ubicom32bl_data *ud;
struct backlight_device *bldev;
int retval;
/*
* Check to see if we have any platform data, if we don't then the backlight is not
* configured on this device.
*/
if (!pdata) {
return -ENODEV;
}
/*
* Allocate our private data
*/
ud = kzalloc(sizeof(struct ubicom32bl_data), GFP_KERNEL);
if (!ud) {
return -ENOMEM;
}
ud->pdata = pdata;
/*
* Check to see that the platform data is valid for this driver
*/
switch (pdata->type) {
case UBICOM32BL_TYPE_PWM:
{
/*
* Make sure we have a PWM peripheral
*/
u32_t chipid;
asm volatile (
"move.4 %0, CHIP_ID \n\t"
: "=r" (chipid)
);
if (chipid != 0x00030001) {
retval = -ENODEV;
goto fail;
}
if (pdata->pwm_channel > 3) {
retval = -ENODEV;
goto fail;
}
if (pdata->pwm_prescale > 16) {
retval = -EINVAL;
goto fail;
}
ud->init_fn = ubicom32bl_init_hw_pwm;
ud->set_intensity_fn = ubicom32bl_set_intensity_hw;
break;
}
case UBICOM32BL_TYPE_PWM_HRT:
// For now, PWM HRT devices are treated as binary lights.
case UBICOM32BL_TYPE_BINARY:
ud->init_fn = ubicom32bl_init_gpio;
ud->set_intensity_fn = ubicom32bl_set_intensity_gpio;
break;
}
/*
* Register our backlight device
*/
bldev = backlight_device_register(DRIVER_NAME, &pdev->dev, ud, &ubicom32bl_ops);
if (IS_ERR(bldev)) {
retval = PTR_ERR(bldev);
goto fail;
}
ud->bldev = bldev;
ud->cur_intensity = pdata->default_intensity;
platform_set_drvdata(pdev, ud);
/*
* Start up the backlight at the prescribed default intensity
*/
bldev->props.power = FB_BLANK_UNBLANK;
bldev->props.max_brightness = UBICOM32BL_MAX_BRIGHTNESS;
bldev->props.brightness = pdata->default_intensity;
if (ud->init_fn) {
if (ud->init_fn(ud) != 0) {
retval = -ENODEV;
backlight_device_unregister(ud->bldev);
goto fail;
}
}
ubicom32bl_set_intensity(bldev);
printk(KERN_INFO DRIVER_NAME ": Backlight driver started\n");
return 0;
fail:
platform_set_drvdata(pdev, NULL);
kfree(ud);
return retval;
}
/*
* ubicom32bl_remove
*/
static int __exit ubicom32bl_remove(struct platform_device *pdev)
{
struct ubicom32bl_data *ud = platform_get_drvdata(pdev);
backlight_device_unregister(ud->bldev);
platform_set_drvdata(pdev, NULL);
kfree(ud);
return 0;
}
static struct platform_driver ubicom32bl_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.remove = __exit_p(ubicom32bl_remove),
};
/*
* ubicom32bl_init
*/
static int __init ubicom32bl_init(void)
{
return platform_driver_probe(&ubicom32bl_driver, ubicom32bl_probe);
}
module_init(ubicom32bl_init);
/*
* ubicom32bl_exit
*/
static void __exit ubicom32bl_exit(void)
{
platform_driver_unregister(&ubicom32bl_driver);
}
module_exit(ubicom32bl_exit);
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION("Ubicom32 backlight driver");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,372 @@
/*
* drivers/video/ubicom32lcd.c
* LCD initilization code
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <asm/ip5000.h>
#include <asm/gpio.h>
#include <asm/ubicom32lcd.h>
#include "ubicom32lcd.h"
#define DRIVER_NAME "ubicom32lcd"
struct ubicom32lcd_data {
const struct ubicom32lcd_panel *panel;
int pin_cs;
int pin_rd;
int pin_rs;
int pin_wr;
int pin_reset;
struct ubicom32_io_port *port_data;
int data_shift;
};
/*
* ubicom32lcd_write
* Performs a write cycle on the bus (assumes CS asserted, RD & WR set)
*/
static void ubicom32lcd_write(struct ubicom32lcd_data *ud, int command, u16 data)
{
if (command) {
UBICOM32_GPIO_SET_PIN_LOW(ud->pin_rs);
} else {
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rs);
}
asm volatile (
"or.4 4(%[port]), 4(%[port]), %[mask] \n\t"
"not.4 %[mask], %[mask] \n\t"
"and.4 8(%[port]), 8(%[port]), %[mask] \n\t"
"or.4 8(%[port]), 8(%[port]), %[cmd] \n\t"
:
: [port] "a" (ud->port_data),
[mask] "d" (0xFFFF << ud->data_shift),
[cmd] "d" (data << ud->data_shift)
: "cc"
);
UBICOM32_GPIO_SET_PIN_LOW(ud->pin_wr);
//ndelay(50);
udelay(1);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_wr);
udelay(1);
//ndelay(50);
}
/*
* ubicom32lcd_read_data
* Performs a read cycle on the bus (assumes CS asserted, RD & WR set)
*/
static u16 ubicom32lcd_read_data(struct ubicom32lcd_data *ud)
{
u32_t data;
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rs);
asm volatile (
"and.4 4(%[port]), 4(%[port]), %[mask]\n\t"
:
: [port] "a" (ud->port_data),
[mask] "d" (~(0xFFFF << ud->data_shift))
: "cc"
);
UBICOM32_GPIO_SET_PIN_LOW(ud->pin_rd);
ndelay(300);
asm volatile (
"lsr.4 %[data], 12(%[port]), %[shamt] \n\t"
"and.4 %[data], %[data], %[mask] \n\t"
: [data] "=d" (data)
: [port] "a" (ud->port_data),
[mask] "d" (0xFFFF),
[shamt] "d" (ud->data_shift)
: "cc"
);
ndelay(200);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rd);
ndelay(500);
return data;
}
/*
* ubicom32lcd_execute
* Executes a script for performing operations on the LCD (assumes CS set)
*/
static void ubicom32lcd_execute(struct ubicom32lcd_data *ud, const struct ubicom32lcd_step *script)
{
while (1) {
switch (script->op) {
case LCD_STEP_CMD:
ubicom32lcd_write(ud, 1, script->cmd);
break;
case LCD_STEP_DATA:
ubicom32lcd_write(ud, 0, script->data);
break;
case LCD_STEP_CMD_DATA:
ubicom32lcd_write(ud, 1, script->cmd);
ubicom32lcd_write(ud, 0, script->data);
break;
case LCD_STEP_SLEEP:
udelay(script->data);
break;
case LCD_STEP_DONE:
return;
}
script++;
}
}
/*
* ubicom32lcd_goto
* Places the gram pointer at a specific X, Y address
*/
static void ubicom32lcd_goto(struct ubicom32lcd_data *ud, int x, int y)
{
ubicom32lcd_write(ud, 1, ud->panel->horz_reg);
ubicom32lcd_write(ud, 0, x);
ubicom32lcd_write(ud, 1, ud->panel->vert_reg);
ubicom32lcd_write(ud, 0, y);
ubicom32lcd_write(ud, 1, ud->panel->gram_reg);
}
/*
* ubicom32lcd_panel_init
* Initializes the lcd panel.
*/
static int ubicom32lcd_panel_init(struct ubicom32lcd_data *ud)
{
u16 id;
UBICOM32_GPIO_SET_PIN_LOW(ud->pin_reset);
UBICOM32_GPIO_SET_PIN_OUTPUT(ud->pin_reset);
UBICOM32_GPIO_ENABLE(ud->pin_reset);
asm volatile (
"or.4 0x50(%[port]), 0x50(%[port]), %[mask] \n\t"
"not.4 %[mask], %[mask] \n\t"
"and.4 0x04(%[port]), 0x04(%[port]), %[mask] \n\t"
:
: [port] "a" (ud->port_data),
[mask] "d" (0xFFFF << ud->data_shift)
: "cc"
);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rs);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rd);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_wr);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_cs);
UBICOM32_GPIO_SET_PIN_OUTPUT(ud->pin_rs);
UBICOM32_GPIO_SET_PIN_OUTPUT(ud->pin_rd);
UBICOM32_GPIO_SET_PIN_OUTPUT(ud->pin_wr);
UBICOM32_GPIO_SET_PIN_OUTPUT(ud->pin_cs);
UBICOM32_GPIO_ENABLE(ud->pin_rs);
UBICOM32_GPIO_ENABLE(ud->pin_rd);
UBICOM32_GPIO_ENABLE(ud->pin_wr);
UBICOM32_GPIO_ENABLE(ud->pin_cs);
udelay(20);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_reset);
udelay(20);
UBICOM32_GPIO_SET_PIN_LOW(ud->pin_cs);
id = ubicom32lcd_read_data(ud);
/*
* We will try to figure out what kind of panel we have if we were not told.
*/
if (!ud->panel) {
const struct ubicom32lcd_panel **p = ubicom32lcd_panels;
while (*p) {
if ((*p)->id && ((*p)->id == id)) {
break;
}
p++;
}
if (!*p) {
printk(KERN_WARNING DRIVER_NAME ":Could not find compatible panel, id=%x\n", id);
return -ENODEV;
}
ud->panel = *p;
}
/*
* Make sure panel ID matches if we were supplied a panel type
*/
if (ud->panel->id && (ud->panel->id != id)) {
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_cs);
return -ENODEV;
}
ubicom32lcd_execute(ud, ud->panel->init_seq);
ubicom32lcd_goto(ud, 0, 0);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_cs);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rd);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_wr);
UBICOM32_GPIO_SET_PIN_HIGH(ud->pin_rs);
printk(KERN_INFO DRIVER_NAME ": Initialized panel %s\n", ud->panel->desc);
return 0;
}
/*
* ubicom32lcd_probe
*/
static int ubicom32lcd_probe(struct platform_device *pdev)
{
const struct ubicom32lcd_platform_data *pdata = pdev->dev.platform_data;
struct ubicom32lcd_data *ud;
int retval;
/*
* Allocate our private data
*/
ud = kzalloc(sizeof(struct ubicom32lcd_data), GFP_KERNEL);
if (!ud) {
return -ENOMEM;
}
if (pdata) {
ud->pin_cs = pdata->pin_cs;
ud->pin_rd = pdata->pin_rd;
ud->pin_wr = pdata->pin_wr;
ud->pin_rs = pdata->pin_rs;
ud->pin_reset = pdata->pin_reset;
ud->port_data = pdata->port_data;
ud->data_shift = pdata->data_shift;
} else {
/*
* Defaults
*/
ud->pin_cs = GPIO_RD_4;
ud->pin_rd = GPIO_RD_5;
ud->pin_rs = GPIO_RD_3;
ud->pin_wr = GPIO_RD_2;
ud->pin_reset = GPIO_RD_7;
ud->port_data = (struct ubicom32_io_port *)RI;
ud->data_shift = 0;
}
/*
* Initialize the display
*/
retval = ubicom32lcd_panel_init(ud);
if (retval) {
kfree(ud);
return retval;
}
printk(KERN_INFO DRIVER_NAME ": LCD initialized\n");
return 0;
}
/*
* ubicom32lcd_remove
*/
static int __exit ubicom32lcd_remove(struct platform_device *pdev)
{
struct ubicom32lcd_data *ud = platform_get_drvdata(pdev);
kfree(ud);
return 0;
}
static struct platform_driver ubicom32lcd_driver = {
.probe = ubicom32lcd_probe,
.remove = ubicom32lcd_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.remove = __exit_p(ubicom32lcd_remove),
};
static struct platform_device *ubicom32lcd_device;
/*
* ubicom32lcd_init
*/
static int __init ubicom32lcd_init(void)
{
int res;
res = platform_driver_register(&ubicom32lcd_driver);
if (res == 0) {
ubicom32lcd_device = platform_device_alloc(DRIVER_NAME, 0);
if (ubicom32lcd_device) {
res = platform_device_add(ubicom32lcd_device);
} else {
res = -ENOMEM;
}
if (res) {
platform_device_put(ubicom32lcd_device);
platform_driver_unregister(&ubicom32lcd_driver);
}
}
return res;
}
module_init(ubicom32lcd_init);
/*
* ubicom32lcd_exit
*/
static void __exit ubicom32lcd_exit(void)
{
platform_device_unregister(ubicom32lcd_device);
platform_driver_unregister(&ubicom32lcd_driver);
}
module_exit(ubicom32lcd_exit);
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION("Ubicom32 LCD driver");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,546 @@
/*
* ubicom32lcd.h
* Ubicom32 lcd panel drivers
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* This Ubicom32 library is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* This Ubicom32 library is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
#ifndef _UBICOM32LCD_H_
#define _UBICOM32LCD_H_
enum ubicom32lcd_op {
/*
* Sleep for (data) ms
*/
LCD_STEP_SLEEP,
/*
* Execute write of command
*/
LCD_STEP_CMD,
/*
* Execute write of data
*/
LCD_STEP_DATA,
/*
* Execute write of command/data
*/
LCD_STEP_CMD_DATA,
/*
* Script done
*/
LCD_STEP_DONE,
};
struct ubicom32lcd_step {
enum ubicom32lcd_op op;
u16 cmd;
u16 data;
};
struct ubicom32lcd_panel {
const struct ubicom32lcd_step *init_seq;
const char *desc;
u32 xres;
u32 yres;
u32 stride;
u32 flags;
u16 id;
u16 horz_reg;
u16 vert_reg;
u16 gram_reg;
};
#ifdef CONFIG_LCD_UBICOM32_CFAF240320KTTS
static const struct ubicom32lcd_step cfaf240320ktts_init_0[] = {
{LCD_STEP_CMD_DATA, 0x0001, 0x0000,}, // Driver Output Control Register (R01h) Page 14, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0002, 0x0700,}, // LCD Driving Waveform Control (R02h) Page 15, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0003, 0x50A0,}, // Entry Mode (R03h) 0 degrees
{LCD_STEP_CMD_DATA, 0x0004, 0x0000,}, // Scaling Control register (R04h) Page 16, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0008, 0x0207,}, // Display Control 2 (R08h) Page 17, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0009, 0x0000,}, // Display Control 3 (R09h) Page 18, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000A, 0x0000,}, // Frame Cycle Control (R0Ah) Page 19, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000C, 0x0000,}, // External Display Interface Control 1 (R0Ch) Page 20, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000D, 0x0000,}, // Frame Maker Position (R0Dh) Page 21, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000F, 0x0000,}, // External Display Interface Control 2 (R0Fh) Page 21, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0010, 0x0000,}, // Power Control 1 (R10h) Page 22, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x0007,}, // Power Control 2 (R11h) Page 23, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x0000,}, // Power Control 3 (R12h) Page 24, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0013, 0x0000,}, // Power Control 4 (R13h) Page 25, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 200},
{LCD_STEP_CMD_DATA, 0x0007, 0x0101,}, // Display Control (R07h) Page 16, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0010, 0x12B0,}, // Power Control 1 (R10h) Page 22, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x0007,}, // Power Control 2 (R11h) Page 23, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x01BB,}, // Power Control 3 (R12h) Page 24, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0013, 0x1300,}, // Power Control 4 (R13h) Page 25, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0029, 0x0010,}, // NVM read data 2 (R29h) Page 30, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0030, 0x000A,}, // Gamma Control 1 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0031, 0x1326,}, // Gamma Control 2 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0032, 0x0A29,}, // Gamma Control 3 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0033, 0x290A,}, // Gamma Control 4 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0034, 0x2613,}, // Gamma Control 5 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0035, 0x0A0A,}, // Gamma Control 6 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0036, 0x1E03,}, // Gamma Control 7 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0037, 0x031E,}, // Gamma Control 8 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0038, 0x0706,}, // Gamma Control 9 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0039, 0x0303,}, // Gamma Control 10 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003A, 0x0E04,}, // Gamma Control 11 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003B, 0x0E01,}, // Gamma Control 12 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003C, 0x010E,}, // Gamma Control 13 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003D, 0x040E,}, // Gamma Control 14 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003E, 0x0303,}, // Gamma Control 15 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003F, 0x0607,}, // Gamma Control 16 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0050, 0x0000,}, // Window Horizontal RAM Address Start (R50h) Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0051, 0x00EF,}, // Window Horizontal RAM Address End (R51h) Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0052, 0x0000,}, // Window Vertical RAM Address Start (R52h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0053, 0x013F,}, // Window Vertical RAM Address End (R53h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0060, 0x2700,}, // Driver Output Control (R60h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0061, 0x0001,}, // Driver Output Control (R61h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x006A, 0x0000,}, // Vertical Scroll Control (R6Ah) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0080, 0x0000,}, // Display Position - Partial Display 1 (R80h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0081, 0x0000,}, // RAM Address Start - Partial Display 1 (R81h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0082, 0x0000,}, // RAM Address End - Partial Display 1 (R82h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0083, 0x0000,}, // Display Position - Partial Display 2 (R83h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0084, 0x0000,}, // RAM Address Start - Partial Display 2 (R84h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0085, 0x0000,}, // RAM Address End - Partial Display 2 (R85h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0090, 0x0010,}, // Panel Interface Control 1 (R90h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0092, 0x0000,}, // Panel Interface Control 2 (R92h) Page 37, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0093, 0x0103,}, // Panel Interface control 3 (R93h) Page 38, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0095, 0x0210,}, // Panel Interface control 4 (R95h) Page 38, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0097, 0x0000,}, // Panel Interface Control 5 (R97h) Page 40, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0098, 0x0000,}, // Panel Interface Control 6 (R98h) Page 41, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0007, 0x0173,}, // Display Control (R07h) Page 16, SPFD5408B Datasheet
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel cfaf240320ktts_0 = {
.desc = "CFAF240320KTTS",
.init_seq = cfaf240320ktts_init_0,
.horz_reg = 0x20,
.vert_reg = 0x21,
.gram_reg = 0x22,
.xres = 240,
.yres = 320,
.stride = 240,
.id = 0x5408,
};
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240320KTTS_180
static const struct ubicom32lcd_step cfaf240320ktts_init_180[] = {
{LCD_STEP_CMD_DATA, 0x0001, 0x0000,}, // Driver Output Control Register (R01h) Page 14, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0002, 0x0700,}, // LCD Driving Waveform Control (R02h) Page 15, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0003, 0x5000,}, // Entry Mode (R03h) 180 degrees
{LCD_STEP_CMD_DATA, 0x0004, 0x0000,}, // Scaling Control register (R04h) Page 16, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0008, 0x0207,}, // Display Control 2 (R08h) Page 17, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0009, 0x0000,}, // Display Control 3 (R09h) Page 18, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000A, 0x0000,}, // Frame Cycle Control (R0Ah) Page 19, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000C, 0x0000,}, // External Display Interface Control 1 (R0Ch) Page 20, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000D, 0x0000,}, // Frame Maker Position (R0Dh) Page 21, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x000F, 0x0000,}, // External Display Interface Control 2 (R0Fh) Page 21, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0010, 0x0000,}, // Power Control 1 (R10h) Page 22, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x0007,}, // Power Control 2 (R11h) Page 23, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x0000,}, // Power Control 3 (R12h) Page 24, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0013, 0x0000,}, // Power Control 4 (R13h) Page 25, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 200},
{LCD_STEP_CMD_DATA, 0x0007, 0x0101,}, // Display Control (R07h) Page 16, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0010, 0x12B0,}, // Power Control 1 (R10h) Page 22, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x0007,}, // Power Control 2 (R11h) Page 23, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x01BB,}, // Power Control 3 (R12h) Page 24, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0013, 0x1300,}, // Power Control 4 (R13h) Page 25, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0029, 0x0010,}, // NVM read data 2 (R29h) Page 30, SPFD5408B Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0030, 0x000A,}, // Gamma Control 1 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0031, 0x1326,}, // Gamma Control 2 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0032, 0x0A29,}, // Gamma Control 3 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0033, 0x290A,}, // Gamma Control 4 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0034, 0x2613,}, // Gamma Control 5 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0035, 0x0A0A,}, // Gamma Control 6 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0036, 0x1E03,}, // Gamma Control 7 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0037, 0x031E,}, // Gamma Control 8 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0038, 0x0706,}, // Gamma Control 9 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0039, 0x0303,}, // Gamma Control 10 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003A, 0x0E04,}, // Gamma Control 11 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003B, 0x0E01,}, // Gamma Control 12 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003C, 0x010E,}, // Gamma Control 13 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003D, 0x040E,}, // Gamma Control 14 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003E, 0x0303,}, // Gamma Control 15 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x003F, 0x0607,}, // Gamma Control 16 Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0050, 0x0000,}, // Window Horizontal RAM Address Start (R50h) Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0051, 0x00EF,}, // Window Horizontal RAM Address End (R51h) Page 32, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0052, 0x0000,}, // Window Vertical RAM Address Start (R52h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0053, 0x013F,}, // Window Vertical RAM Address End (R53h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0060, 0x2700,}, // Driver Output Control (R60h) Page 33, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0061, 0x0001,}, // Driver Output Control (R61h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x006A, 0x0000,}, // Vertical Scroll Control (R6Ah) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0080, 0x0000,}, // Display Position - Partial Display 1 (R80h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0081, 0x0000,}, // RAM Address Start - Partial Display 1 (R81h) Page 35, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0082, 0x0000,}, // RAM Address End - Partial Display 1 (R82h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0083, 0x0000,}, // Display Position - Partial Display 2 (R83h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0084, 0x0000,}, // RAM Address Start - Partial Display 2 (R84h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0085, 0x0000,}, // RAM Address End - Partial Display 2 (R85h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0090, 0x0010,}, // Panel Interface Control 1 (R90h) Page 36, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0092, 0x0000,}, // Panel Interface Control 2 (R92h) Page 37, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0093, 0x0103,}, // Panel Interface control 3 (R93h) Page 38, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0095, 0x0210,}, // Panel Interface control 4 (R95h) Page 38, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0097, 0x0000,}, // Panel Interface Control 5 (R97h) Page 40, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0098, 0x0000,}, // Panel Interface Control 6 (R98h) Page 41, SPFD5408B Datasheet
{LCD_STEP_CMD_DATA, 0x0007, 0x0173,}, // Display Control (R07h) Page 16, SPFD5408B Datasheet
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel cfaf240320ktts_180 = {
.desc = "CFAF240320KTTS 180",
.init_seq = cfaf240320ktts_init_180,
.horz_reg = 0x20,
.vert_reg = 0x21,
.gram_reg = 0x22,
.xres = 240,
.yres = 320,
.stride = 240,
.id = 0x5408,
};
#endif
#ifdef CONFIG_LCD_UBICOM32_TFT2N0369E_P
static const struct ubicom32lcd_step tft2n0369ep_init[] = {
{LCD_STEP_CMD_DATA, 0x0028, 0x0006},
{LCD_STEP_CMD_DATA, 0x0000, 0x0001},
{LCD_STEP_SLEEP, 0, 15},
{LCD_STEP_CMD_DATA, 0x002B, 0x9532},
{LCD_STEP_CMD_DATA, 0x0003, 0xAAAC},
{LCD_STEP_CMD_DATA, 0x000C, 0x0002},
{LCD_STEP_CMD_DATA, 0x000D, 0x000A},
{LCD_STEP_CMD_DATA, 0x000E, 0x2C00},
{LCD_STEP_CMD_DATA, 0x001E, 0x00AA},
{LCD_STEP_CMD_DATA, 0x0025, 0x8000},
{LCD_STEP_SLEEP, 0, 15},
{LCD_STEP_CMD_DATA, 0x0001, 0x2B3F},
{LCD_STEP_CMD_DATA, 0x0002, 0x0600},
{LCD_STEP_CMD_DATA, 0x0010, 0x0000},
{LCD_STEP_CMD_DATA, 0x0011, 0x6030},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0005, 0x0000},
{LCD_STEP_CMD_DATA, 0x0006, 0x0000},
{LCD_STEP_CMD_DATA, 0x0016, 0xEF1C},
{LCD_STEP_CMD_DATA, 0x0017, 0x0003},
{LCD_STEP_CMD_DATA, 0x0007, 0x0233},
{LCD_STEP_CMD_DATA, 0x000B, 0x5312},
{LCD_STEP_CMD_DATA, 0x000F, 0x0000},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0041, 0x0000},
{LCD_STEP_CMD_DATA, 0x0042, 0x0000},
{LCD_STEP_CMD_DATA, 0x0048, 0x0000},
{LCD_STEP_CMD_DATA, 0x0049, 0x013F},
{LCD_STEP_CMD_DATA, 0x0044, 0xEF00},
{LCD_STEP_CMD_DATA, 0x0045, 0x0000},
{LCD_STEP_CMD_DATA, 0x0046, 0x013F},
{LCD_STEP_CMD_DATA, 0x004A, 0x0000},
{LCD_STEP_CMD_DATA, 0x004B, 0x0000},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0030, 0x0707},
{LCD_STEP_CMD_DATA, 0x0031, 0x0704},
{LCD_STEP_CMD_DATA, 0x0032, 0x0204},
{LCD_STEP_CMD_DATA, 0x0033, 0x0201},
{LCD_STEP_CMD_DATA, 0x0034, 0x0203},
{LCD_STEP_CMD_DATA, 0x0035, 0x0204},
{LCD_STEP_CMD_DATA, 0x0036, 0x0204},
{LCD_STEP_CMD_DATA, 0x0037, 0x0502},
{LCD_STEP_CMD_DATA, 0x003A, 0x0302},
{LCD_STEP_CMD_DATA, 0x003B, 0x0500},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0044, 239 << 8 | 0},
{LCD_STEP_CMD_DATA, 0x0045, 0x0000},
{LCD_STEP_CMD_DATA, 0x0046, 319},
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel tft2n0369ep = {
.desc = "TFT2N0369E-Portrait",
.init_seq = tft2n0369ep_init,
.horz_reg = 0x4e,
.vert_reg = 0x4f,
.gram_reg = 0x22,
.xres = 240,
.yres = 320,
.stride = 240,
.id = 0x8989,
};
#endif
#ifdef CONFIG_LCD_UBICOM32_TFT2N0369E_L
static const struct ubicom32lcd_step tft2n0369e_init[] = {
{LCD_STEP_CMD_DATA, 0x0028, 0x0006},
{LCD_STEP_CMD_DATA, 0x0000, 0x0001},
{LCD_STEP_SLEEP, 0, 15},
{LCD_STEP_CMD_DATA, 0x002B, 0x9532},
{LCD_STEP_CMD_DATA, 0x0003, 0xAAAC},
{LCD_STEP_CMD_DATA, 0x000C, 0x0002},
{LCD_STEP_CMD_DATA, 0x000D, 0x000A},
{LCD_STEP_CMD_DATA, 0x000E, 0x2C00},
{LCD_STEP_CMD_DATA, 0x001E, 0x00AA},
{LCD_STEP_CMD_DATA, 0x0025, 0x8000},
{LCD_STEP_SLEEP, 0, 15},
{LCD_STEP_CMD_DATA, 0x0001, 0x2B3F},
{LCD_STEP_CMD_DATA, 0x0002, 0x0600},
{LCD_STEP_CMD_DATA, 0x0010, 0x0000},
{LCD_STEP_CMD_DATA, 0x0011, 0x60A8},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0005, 0x0000},
{LCD_STEP_CMD_DATA, 0x0006, 0x0000},
{LCD_STEP_CMD_DATA, 0x0016, 0xEF1C},
{LCD_STEP_CMD_DATA, 0x0017, 0x0003},
{LCD_STEP_CMD_DATA, 0x0007, 0x0233},
{LCD_STEP_CMD_DATA, 0x000B, 0x5312},
{LCD_STEP_CMD_DATA, 0x000F, 0x0000},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0041, 0x0000},
{LCD_STEP_CMD_DATA, 0x0042, 0x0000},
{LCD_STEP_CMD_DATA, 0x0048, 0x0000},
{LCD_STEP_CMD_DATA, 0x0049, 0x013F},
{LCD_STEP_CMD_DATA, 0x0044, 0xEF00},
{LCD_STEP_CMD_DATA, 0x0045, 0x0000},
{LCD_STEP_CMD_DATA, 0x0046, 0x013F},
{LCD_STEP_CMD_DATA, 0x004A, 0x0000},
{LCD_STEP_CMD_DATA, 0x004B, 0x0000},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0030, 0x0707},
{LCD_STEP_CMD_DATA, 0x0031, 0x0704},
{LCD_STEP_CMD_DATA, 0x0032, 0x0204},
{LCD_STEP_CMD_DATA, 0x0033, 0x0201},
{LCD_STEP_CMD_DATA, 0x0034, 0x0203},
{LCD_STEP_CMD_DATA, 0x0035, 0x0204},
{LCD_STEP_CMD_DATA, 0x0036, 0x0204},
{LCD_STEP_CMD_DATA, 0x0037, 0x0502},
{LCD_STEP_CMD_DATA, 0x003A, 0x0302},
{LCD_STEP_CMD_DATA, 0x003B, 0x0500},
{LCD_STEP_SLEEP, 0, 20},
{LCD_STEP_CMD_DATA, 0x0044, 239 << 8 | 0},
{LCD_STEP_CMD_DATA, 0x0045, 0x0000},
{LCD_STEP_CMD_DATA, 0x0046, 319},
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel tft2n0369e = {
.desc = "TFT2N0369E-Landscape",
.init_seq = tft2n0369e_init,
.horz_reg = 0x4e,
.vert_reg = 0x4f,
.gram_reg = 0x22,
.xres = 320,
.yres = 240,
.stride = 320,
.id = 0x8989,
};
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240400D
static const struct ubicom32lcd_step cfaf240400d_init[] = {
{LCD_STEP_CMD_DATA, 0x0606, 0x0000}, // Pin Control (R606h) // Page 41 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0007, 0x0001}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0110, 0x0001}, // Power Control 6(R110h) // Page 30 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0100, 0x17B0}, // Power Control 1 (R100h) // Page 26 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0101, 0x0147}, // Power Control 2 (R101h) // Page 27 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0102, 0x019D}, // Power Control 3 (R102h) // Page 28 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0103, 0x3600}, // Power Control 4 (R103h) // Page 29 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0281, 0x0010}, // NVM read data 2 (R281h) // Page 34 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0102, 0x01BD}, // Power Control 3 (R102h) // Page 28 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
//--------------- Power control 1~6 ---------------//
{LCD_STEP_CMD_DATA, 0x0100, 0x16B0}, // Power Control 1 (R100h) // Page 26 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0101, 0x0147}, // Power Control 2 (R101h) // Page 27 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0102, 0x01BD}, // Power Control 3 (R102h) // Page 28 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0103, 0x2d00}, // Power Control 4 (R103h) // Page 29 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0107, 0x0000}, // Power Control 5 (R107h) // Page 30 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0110, 0x0001}, // Power Control 6(R110h) // Page 30 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0280, 0x0000}, // NVM read data 1 (R280h) // Page 33 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0281, 0x0006}, // NVM read data 2 (R281h) // Page 34 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0282, 0x0000}, // NVM read data 3 (R282h) // Page 34 of SPFD5420A Datasheet
//------- Gamma 2.2 control (R300h to R30Fh) ------//
{LCD_STEP_CMD_DATA, 0x0300, 0x0101},
{LCD_STEP_CMD_DATA, 0x0301, 0x0b27},
{LCD_STEP_CMD_DATA, 0x0302, 0x132a},
{LCD_STEP_CMD_DATA, 0x0303, 0x2a13},
{LCD_STEP_CMD_DATA, 0x0304, 0x270b},
{LCD_STEP_CMD_DATA, 0x0305, 0x0101},
{LCD_STEP_CMD_DATA, 0x0306, 0x1205},
{LCD_STEP_CMD_DATA, 0x0307, 0x0512},
{LCD_STEP_CMD_DATA, 0x0308, 0x0005},
{LCD_STEP_CMD_DATA, 0x0309, 0x0003},
{LCD_STEP_CMD_DATA, 0x030A, 0x0f04},
{LCD_STEP_CMD_DATA, 0x030B, 0x0f00},
{LCD_STEP_CMD_DATA, 0x030C, 0x000f},
{LCD_STEP_CMD_DATA, 0x030D, 0x040f},
{LCD_STEP_CMD_DATA, 0x030E, 0x0300},
{LCD_STEP_CMD_DATA, 0x030F, 0x0500},
{LCD_STEP_CMD_DATA, 0x0400, 0x3500}, // Base Image Number of Line (R400h) // Page 36 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0401, 0x0001}, // Base Image Display Control (R401h) // Page 39 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0404, 0x0000}, // Based Image Vertical Scroll Control (R404h) // Page 40 of SPFD5420A Datasheet
//--------------- Normal set ---------------//
{LCD_STEP_CMD_DATA, 0x0000, 0x0000}, // ID Read Register (R000h) // Page 13 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0001, 0x0100}, // Driver Output Control Register (R001h) // Page 14 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0002, 0x0100}, // LCD Driving Waveform Control (R002h) // Page 14 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0003, 0x1030}, // Entry Mode (R003h) // Page 15 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0006, 0x0000}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0008, 0x0808}, // Display Control 2 (R008h) // Page 17 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0009, 0x0001}, // Display Control 3 (R009h) // Page 18 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x000B, 0x0010}, // Low Power Control (R00Bh) // Page 19 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x000C, 0x0000}, // External Display Interface Control 1 (R00Ch) // Page 19 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x000F, 0x0000}, // External Display Interface Control 2 (R00Fh) // Page 20 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0007, 0x0001}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
//--------------- Panel interface control 1~6 ---------------//
{LCD_STEP_CMD_DATA, 0x0010, 0x0012}, // Panel Interface Control 1 (R010h) // Page 20 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x0202}, // Panel Interface Control 2 (R011h) // Page 21 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x0300}, // Panel Interface control 3 (R012h) // Page 22 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0020, 0x021E}, // Panel Interface control 4 (R020h) // Page 22 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0021, 0x0202}, // Panel Interface Control 5 (021Rh) // Page 24 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0022, 0x0100}, // Panel Interface Control 6 (R022h) // Page 25 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0090, 0x8000}, // Frame Marker Control (R090h) // Page 25 of SPFD5420A Datasheet
//--------------- Partial display ---------------//
{LCD_STEP_CMD_DATA, 0x0210, 0x0000}, // Window Horizontal RAM Address Start (R210h) // Page 35 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0211, 0x00EF}, // Window Horziontal RAM Address End (R211h) // Page 35 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0212, 0x0000}, // Window Vertical RAM Address Start (R212h) // Page 35 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0213, 0x018F}, // Window Vertical RAM Address End (R213h) // Page 35 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0500, 0x0000}, // Display Position - Partial Display 1 (R500h) // Page 40 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0501, 0x0000}, // RAM Address Start - Partial Display 1 (R501h)// Page 40 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0502, 0x0000}, // RAM Address End - Partail Display 1 (R502h) // Page 40 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0503, 0x0000}, // Display Position - Partial Display 2 (R503h) // Page 40 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0504, 0x0000}, // RAM Address Start . Partial Display 2 (R504h)// Page 41 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0505, 0x0000}, // RAM Address End . Partial Display 2 (R505h) // Page 41 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0606, 0x0000}, // Pin Control (R606h) // Page 41 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x06F0, 0x0000}, // NVM Access Control (R6F0h) // Page 41 of SPFD5420A Datasheet
{LCD_STEP_CMD_DATA, 0x0007, 0x0173}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 50},
{LCD_STEP_CMD_DATA, 0x0007, 0x0171}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
{LCD_STEP_SLEEP, 0, 10},
{LCD_STEP_CMD_DATA, 0x0007, 0x0173}, // Display Control 1 (R007h) // Page 16 of SPFD5420A Datasheet
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel cfaf240400d = {
.desc = "CFAF240400D",
.init_seq = cfaf240400d_init,
.horz_reg = 0x0200,
.vert_reg = 0x0201,
.gram_reg = 0x0202,
.xres = 240,
.yres = 400,
.stride = 240,
.id = 0x5420,
};
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240400F
static const struct ubicom32lcd_step cfaf320240f_init[] = {
{LCD_STEP_CMD_DATA, 0x0028, 0x0006}, // VCOM OTP Page 55-56 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0000, 0x0001}, // start Oscillator Page 36 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0010, 0x0000}, // Sleep mode Page 49 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0001, 0x32EF}, // Driver Output Control Page 36-39 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0002, 0x0600}, // LCD Driving Waveform Control Page 40-42 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0003, 0x6A38}, // Power Control 1 Page 43-44 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0011, 0x6870}, // Entry Mode Page 50-52 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0X000F, 0x0000}, // Gate Scan Position Page 49 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0X000B, 0x5308}, // Frame Cycle Control Page 45 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x000C, 0x0003}, // Power Control 2 Page 47 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x000D, 0x000A}, // Power Control 3 Page 48 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x000E, 0x2E00}, // Power Control 4 Page 48 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x001E, 0x00BE}, // Power Control 5 Page 53 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0025, 0x8000}, // Frame Frequency Control Page 53 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0026, 0x7800}, // Analog setting Page 54 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x004E, 0x0000}, // Ram Address Set Page 58 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x004F, 0x0000}, // Ram Address Set Page 58 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0012, 0x08D9}, // Sleep mode Page 49 of SSD2119 datasheet
// Gamma Control (R30h to R3Bh) -- Page 56 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0030, 0x0000},
{LCD_STEP_CMD_DATA, 0x0031, 0x0104},
{LCD_STEP_CMD_DATA, 0x0032, 0x0100},
{LCD_STEP_CMD_DATA, 0x0033, 0x0305},
{LCD_STEP_CMD_DATA, 0x0034, 0x0505},
{LCD_STEP_CMD_DATA, 0x0035, 0x0305},
{LCD_STEP_CMD_DATA, 0x0036, 0x0707},
{LCD_STEP_CMD_DATA, 0x0037, 0x0300},
{LCD_STEP_CMD_DATA, 0x003A, 0x1200},
{LCD_STEP_CMD_DATA, 0x003B, 0x0800},
{LCD_STEP_CMD_DATA, 0x0007, 0x0033}, // Display Control Page 45 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0044, 0xEF00}, // Vertical RAM address position Page 57 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0045, 0x0000}, // Horizontal RAM address position Page 57 of SSD2119 datasheet
{LCD_STEP_CMD_DATA, 0x0046, 0x013F}, // Horizontal RAM address position Page 57 of SSD2119 datasheet
{LCD_STEP_SLEEP, 0, 150},
{LCD_STEP_DONE, 0, 0},
};
const struct ubicom32lcd_panel cfaf320240f = {
.desc = "CFAF320240F",
.init_seq = cfaf320240f_init,
.horz_reg = 0x4e,
.vert_reg = 0x4f,
.gram_reg = 0x22,
.xres = 320,
.yres = 240,
.stride = 320,
.id = 0x9919,
};
#endif
const struct ubicom32lcd_panel *ubicom32lcd_panels[] = {
#ifdef CONFIG_LCD_UBICOM32_CFAF240400KTTS_180
&cfaf240320ktts_180,
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240400KTTS
&cfaf240320ktts_0,
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240400D
&cfaf240400d,
#endif
#ifdef CONFIG_LCD_UBICOM32_TFT2N0369E_P
&tft2n0369ep,
#endif
#ifdef CONFIG_LCD_UBICOM32_TFT2N0369E_L
&tft2n0369e,
#endif
#ifdef CONFIG_LCD_UBICOM32_CFAF240400F
&cfaf320240f,
#endif
NULL,
};
#endif

View File

@@ -0,0 +1,194 @@
/*
* drivers/video/backlight/ubicom32lcdpowerpower.c
* LCD power driver for the Ubicom32 platform
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/lcd.h>
#include <linux/fb.h>
#include <linux/gpio.h>
#include <asm/ubicom32lcdpower.h>
#include <asm/ip5000.h>
#define DRIVER_NAME "ubicom32lcdpower"
struct ubicom32lcdpower_data {
/*
* Pointer to the platform data structure. Keep this around since we need values
* from it to set the backlight intensity.
*/
const struct ubicom32lcdpower_platform_data *pdata;
/*
* LCD device, we have to save this for use when we remove ourselves.
*/
struct lcd_device *lcddev;
};
/*
* ubicom32lcdpower_set_power
*/
static int ubicom32lcdpower_set_power(struct lcd_device *ld, int power)
{
struct ubicom32lcdpower_data *ud = (struct ubicom32lcdpower_data *)lcd_get_data(ld);
if (power == FB_BLANK_UNBLANK) {
gpio_direction_output(ud->pdata->vgh_gpio, ud->pdata->vgh_polarity);
return 0;
}
gpio_direction_output(ud->pdata->vgh_gpio, !ud->pdata->vgh_polarity);
return 0;
}
/*
* ubicom32lcdpower_get_power
*/
static int ubicom32lcdpower_get_power(struct lcd_device *ld)
{
struct ubicom32lcdpower_data *ud = (struct ubicom32lcdpower_data *)lcd_get_data(ld);
int vgh = gpio_get_value(ud->pdata->vgh_gpio);
if ((vgh && ud->pdata->vgh_polarity) || (!vgh && !ud->pdata->vgh_polarity)) {
return 1;
}
return 0;
}
static struct lcd_ops ubicom32lcdpower_ops = {
.get_power = ubicom32lcdpower_get_power,
.set_power = ubicom32lcdpower_set_power,
};
/*
* ubicom32lcdpower_probe
*/
static int ubicom32lcdpower_probe(struct platform_device *pdev)
{
const struct ubicom32lcdpower_platform_data *pdata = pdev->dev.platform_data;
struct ubicom32lcdpower_data *ud;
struct lcd_device *lcddev;
int retval;
/*
* Check to see if we have any platform data, if we don't have a LCD to control
*/
if (!pdata) {
return -ENODEV;
}
/*
* Allocate our private data
*/
ud = kzalloc(sizeof(struct ubicom32lcdpower_data), GFP_KERNEL);
if (!ud) {
return -ENOMEM;
}
ud->pdata = pdata;
/*
* Request our GPIOs
*/
retval = gpio_request(pdata->vgh_gpio, "vgh");
if (retval) {
dev_err(&pdev->dev, "Failed to allocate vgh GPIO\n");
goto fail_gpio;
}
/*
* Register our lcd device
*/
lcddev = lcd_device_register(DRIVER_NAME, &pdev->dev, ud, &ubicom32lcdpower_ops);
if (IS_ERR(lcddev)) {
retval = PTR_ERR(lcddev);
goto fail;
}
ud->lcddev = lcddev;
platform_set_drvdata(pdev, ud);
ubicom32lcdpower_set_power(lcddev, FB_BLANK_UNBLANK);
printk(KERN_INFO DRIVER_NAME ": LCD driver started\n");
return 0;
fail:
gpio_free(pdata->vgh_gpio);
fail_gpio:
platform_set_drvdata(pdev, NULL);
kfree(ud);
return retval;
}
/*
* ubicom32lcdpower_remove
*/
static int __exit ubicom32lcdpower_remove(struct platform_device *pdev)
{
struct ubicom32lcdpower_data *ud = platform_get_drvdata(pdev);
lcd_device_unregister(ud->lcddev);
platform_set_drvdata(pdev, NULL);
kfree(ud);
return 0;
}
static struct platform_driver ubicom32lcdpower_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.remove = __exit_p(ubicom32lcdpower_remove),
};
/*
* ubicom32lcdpower_init
*/
static int __init ubicom32lcdpower_init(void)
{
return platform_driver_probe(&ubicom32lcdpower_driver, ubicom32lcdpower_probe);
}
module_init(ubicom32lcdpower_init);
/*
* ubicom32lcdpower_exit
*/
static void __exit ubicom32lcdpower_exit(void)
{
platform_driver_unregister(&ubicom32lcdpower_driver);
}
module_exit(ubicom32lcdpower_exit);
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION("Ubicom32 lcd power driver");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,779 @@
/*
* drivers/video/ubicom32fb.c
* Ubicom32 frame buffer driver
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
/*
* This driver was based on skeletonfb.c, Skeleton for a frame buffer device by
* Geert Uytterhoeven.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/ip5000.h>
#include <asm/vdc_tio.h>
#include <asm/ubicom32fb.h>
#define DRIVER_NAME "ubicom32fb"
#define DRIVER_DESCRIPTION "Ubicom32 frame buffer driver"
#define PALETTE_ENTRIES_NO 16
/*
* Option variables
*
* vram_size: VRAM size in kilobytes, subject to alignment
*/
static int vram_size = 0;
module_param(vram_size, int, 0);
MODULE_PARM_DESC(vram, "VRAM size, in kilobytes to allocate, should be at least the size of one screen, subject to alignment");
static int init_value = 0;
module_param(init_value, int, 0);
MODULE_PARM_DESC(init, "Initial value of the framebuffer (16-bit number).");
/*
* fb_fix_screeninfo defines the non-changeable properties of the VDC, depending on what mode it is in.
*/
static struct fb_fix_screeninfo ubicom32fb_fix = {
.id = "Ubicom32",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.accel = FB_ACCEL_UBICOM32,
};
/*
* Filled in at probe time when we find out what the hardware supports
*/
static struct fb_var_screeninfo ubicom32fb_var;
/*
* Private data structure
*/
struct ubicom32fb_drvdata {
struct fb_info *fbinfo;
bool cmap_alloc;
/*
* The address of the framebuffer in memory
*/
void *fb;
void *fb_aligned;
/*
* Total size of vram including alignment allowance
*/
u32 total_vram_size;
/*
* Interrupt to set when changing registers
*/
u32 vp_int;
/*
* Optional: Interrupt used by TIO to signal us
*/
u32 rx_int;
/*
* Base address of the regs for VDC_TIO
*/
volatile struct vdc_tio_vp_regs *regs;
/*
* non-zero if we are in yuv mode
*/
u8_t is_yuv;
/*
* Fake palette of 16 colors
*/
u32 pseudo_palette[PALETTE_ENTRIES_NO];
/*
* Wait queue and lock used to block when we need to wait
* for something to happen.
*/
wait_queue_head_t waitq;
struct mutex lock;
};
/*
* ubicom32fb_set_next_frame
* Sets the next frame buffer to display
*
* if sync is TRUE then this function will block until the hardware
* acknowledges the change
*/
static inline void ubicom32fb_set_next_frame(struct ubicom32fb_drvdata *ud, void *fb, u8_t sync)
{
ud->regs->next_frame_flags = ud->is_yuv ? VDCTIO_NEXT_FRAME_FLAG_YUV : 0;
ud->regs->next_frame = (void *)((u32_t)fb | 1);
/*
* If we have interrupts, then we can wait on it
*/
if (ud->rx_int != -1) {
DEFINE_WAIT(wait);
unsigned long flags;
spin_lock_irqsave(&ud->lock, flags);
prepare_to_wait(&ud->waitq, &wait, TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&ud->lock, flags);
schedule();
finish_wait(&ud->waitq, &wait);
return;
}
/*
* No interrupt, we will just spin here
*/
while (sync && ((u32_t)ud->regs->next_frame & 1));
}
/*
* ubicom32fb_send_command
* Sends a command/data pair to the VDC
*/
static inline void ubicom32fb_send_command(struct ubicom32fb_drvdata *ud, u16 command, u8_t block)
{
ud->regs->command = command;
ubicom32_set_interrupt(ud->vp_int);
while (block && ud->regs->command);
}
/*
* ubicom32fb_ioctl
* Handles any ioctls sent to us
*/
static int ubicom32fb_ioctl(struct fb_info *fbi, unsigned int cmd,
unsigned long arg)
{
struct ubicom32fb_drvdata *ud = (struct ubicom32fb_drvdata *)fbi->par;
void __user *argp = (void __user *)arg;
int retval = -EFAULT;
switch (cmd) {
case UBICOM32FB_IOCTL_SET_NEXT_FRAME_SYNC:
// check alignment, return -EINVAL if necessary
ubicom32fb_set_next_frame(ud, argp, 1);
retval = 0;
break;
case UBICOM32FB_IOCTL_SET_NEXT_FRAME:
// check alignment, return -EINVAL if necessary
ubicom32fb_set_next_frame(ud, argp, 0);
retval = 0;
break;
case UBICOM32FB_IOCTL_SET_MODE:
if (!(ud->regs->caps & VDCTIO_CAPS_SUPPORTS_SCALING)) {
break;
} else {
struct ubicom32fb_mode mode;
volatile struct vdc_tio_vp_regs *regs = ud->regs;
u32_t flags = 0;
if (copy_from_user(&mode, argp, sizeof(mode))) {
break;
}
regs->x_in = mode.width;
regs->y_in = mode.height;
regs->x_out = regs->xres;
regs->y_out = regs->yres;
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_YUV_SCAN_ORDER) {
flags |= VDCTIO_SCALE_FLAG_YUV_SCAN_ORDER;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_YUV_BLOCK_ORDER) {
flags |= VDCTIO_SCALE_FLAG_YUV_BLOCK_ORDER;
}
ud->is_yuv = mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_YUV;
if (ud->is_yuv) {
flags |= VDCTIO_SCALE_FLAG_YUV;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_VRANGE_16_255) {
flags |= VDCTIO_SCALE_FLAG_VRANGE_16_255;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_VRANGE_0_255) {
flags |= VDCTIO_SCALE_FLAG_VRANGE_0_255;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_VSUB) {
flags |= VDCTIO_SCALE_FLAG_VSUB;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_HSUB_2_1) {
flags |= VDCTIO_SCALE_FLAG_HSUB_2_1;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_HSUB_1_1) {
flags |= VDCTIO_SCALE_FLAG_HSUB_1_1;
}
if (mode.flags & UBICOM32FB_IOCTL_SET_MODE_FLAG_SCALE_ENABLE) {
flags |= VDCTIO_SCALE_FLAG_ENABLE;
}
if (mode.next_frame) {
flags |= VDCTIO_SCALE_FLAG_SET_FRAME_BUFFER;
regs->next_frame = mode.next_frame;
}
regs->scale_flags = flags;
ubicom32fb_send_command(ud, VDCTIO_COMMAND_SET_SCALE_MODE, 1);
retval = 0;
break;
}
default:
retval = -ENOIOCTLCMD;
break;
}
return retval;
}
/*
* ubicom32fb_interrupt
* Called by the OS when the TIO has set the rx_int
*/
static irqreturn_t ubicom32fb_interrupt(int vec, void *appdata)
{
struct ubicom32fb_drvdata *ud = (struct ubicom32fb_drvdata *)appdata;
spin_lock(&ud->lock);
if (waitqueue_active(&ud->waitq)) {
wake_up(&ud->waitq);
}
spin_unlock(&ud->lock);
return IRQ_HANDLED;
}
/*
* ubicom32fb_pan_display
* Pans the display to a given location. Supports only y direction panning.
*/
static int ubicom32fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi)
{
struct ubicom32fb_drvdata *ud = (struct ubicom32fb_drvdata *)fbi->par;
void *new_addr;
/*
* Get the last y line that would be displayed. Since we don't support YWRAP,
* it must be less than our virtual y size.
*/
u32 lasty = var->yoffset + var->yres;
if (lasty > fbi->var.yres_virtual) {
/*
* We would fall off the end of our frame buffer if we panned here.
*/
return -EINVAL;
}
if (var->xoffset) {
/*
* We don't support panning in the x direction
*/
return -EINVAL;
}
/*
* Everything looks sane, go ahead and pan
*
* We have to calculate a new address for the VDC to look at
*/
new_addr = ud->fb_aligned + (var->yoffset * fbi->fix.line_length);
/*
* Send down the command. The buffer will switch at the next vertical blank
*/
ubicom32fb_set_next_frame(ud, (void *)new_addr, 0);
return 0;
}
/*
* ubicom32fb_setcolreg
* Sets a color in our virtual palette
*/
static int ubicom32fb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *fbi)
{
u32 *palette = fbi->pseudo_palette;
if (regno >= PALETTE_ENTRIES_NO) {
return -EINVAL;
}
/*
* We only use 8 bits from each color
*/
red >>= 8;
green >>= 8;
blue >>= 8;
/*
* Convert any grayscale values
*/
if (fbi->var.grayscale) {
u16 gray = red + green + blue;
gray += (gray >> 2) + (gray >> 3) - (gray >> 7);
gray >>= 2;
if (gray > 255) {
gray = 255;
}
red = gray;
blue = gray;
green = gray;
}
palette[regno] = (red << fbi->var.red.offset) | (green << fbi->var.green.offset) |
(blue << fbi->var.blue.offset);
return 0;
}
/*
* ubicom32fb_mmap
*/
static int ubicom32fb_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct ubicom32fb_drvdata *drvdata = (struct ubicom32fb_drvdata *)info->par;
vma->vm_start = (unsigned long)(drvdata->fb_aligned);
vma->vm_end = vma->vm_start + info->fix.smem_len;
/* For those who don't understand how mmap works, go read
* Documentation/nommu-mmap.txt.
* For those that do, you will know that the VM_MAYSHARE flag
* must be set in the vma->vm_flags structure on noMMU
* Other flags can be set, and are documented in
* include/linux/mm.h
*/
vma->vm_flags |= VM_MAYSHARE | VM_SHARED;
return 0;
}
/*
* ubicom32fb_blank
*/
static int ubicom32fb_blank(int blank_mode, struct fb_info *fbi)
{
return 0;
#if 0
struct ubicom32fb_drvdata *drvdata = to_ubicom32fb_drvdata(fbi);
switch (blank_mode) {
case FB_BLANK_UNBLANK:
/* turn on panel */
ubicom32fb_out_be32(drvdata, REG_CTRL, drvdata->reg_ctrl_default);
break;
case FB_BLANK_NORMAL:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_POWERDOWN:
/* turn off panel */
ubicom32fb_out_be32(drvdata, REG_CTRL, 0);
default:
break;
}
return 0; /* success */
#endif
}
static struct fb_ops ubicom32fb_ops =
{
.owner = THIS_MODULE,
.fb_pan_display = ubicom32fb_pan_display,
.fb_setcolreg = ubicom32fb_setcolreg,
.fb_blank = ubicom32fb_blank,
.fb_mmap = ubicom32fb_mmap,
.fb_ioctl = ubicom32fb_ioctl,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* ubicom32fb_release
*/
static int ubicom32fb_release(struct device *dev)
{
struct ubicom32fb_drvdata *ud = dev_get_drvdata(dev);
#if !defined(CONFIG_FRAMEBUFFER_CONSOLE) && defined(CONFIG_LOGO)
//ubicom32fb_blank(VESA_POWERDOWN, &drvdata->info);
#endif
unregister_framebuffer(ud->fbinfo);
if (ud->cmap_alloc) {
fb_dealloc_cmap(&ud->fbinfo->cmap);
}
if (ud->fb) {
kfree(ud->fb);
}
if (ud->rx_int != -1) {
free_irq(ud->rx_int, ud);
}
/*
* Turn off the display
*/
//ubicom32fb_out_be32(drvdata, REG_CTRL, 0);
//iounmap(drvdata->regs);
framebuffer_release(ud->fbinfo);
dev_set_drvdata(dev, NULL);
return 0;
}
/*
* ubicom32fb_platform_probe
*/
static int __init ubicom32fb_platform_probe(struct platform_device *pdev)
{
struct ubicom32fb_drvdata *ud;
struct resource *irq_resource_rx;
struct resource *irq_resource_tx;
struct resource *mem_resource;
struct fb_info *fbinfo;
int rc;
size_t fbsize;
struct device *dev = &pdev->dev;
int offset;
struct vdc_tio_vp_regs *regs;
/*
* Get our resources
*/
irq_resource_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq_resource_tx) {
dev_err(dev, "No tx IRQ resource assigned\n");
return -ENODEV;
}
irq_resource_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
if (!irq_resource_rx) {
dev_err(dev, "No rx IRQ resource assigned\n");
return -ENODEV;
}
mem_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem_resource || !mem_resource->start) {
dev_err(dev, "No mem resource assigned\n");
return -ENODEV;
}
regs = (struct vdc_tio_vp_regs *)mem_resource->start;
if (regs->version != VDCTIO_VP_VERSION) {
dev_err(dev, "VDCTIO is not compatible with this driver tio:%x drv:%x\n",
regs->version, VDCTIO_VP_VERSION);
return -ENODEV;
}
/*
* This is the minimum VRAM size
*/
fbsize = regs->xres * regs->yres * (regs->bpp / 8);
if (!vram_size) {
vram_size = (fbsize + 1023) / 1024;
} else {
if (fbsize > (vram_size * 1024)) {
dev_err(dev, "Not enough VRAM for display, need >= %u bytes\n", fbsize);
return -ENOMEM; // should be ebadparam?
}
}
/*
* Allocate the framebuffer instance + our private data
*/
fbinfo = framebuffer_alloc(sizeof(struct ubicom32fb_drvdata), &pdev->dev);
if (!fbinfo) {
dev_err(dev, "Not enough memory to allocate instance.\n");
return -ENOMEM;
}
/*
* Fill in our private data.
*/
ud = (struct ubicom32fb_drvdata *)fbinfo->par;
ud->fbinfo = fbinfo;
ud->regs = (struct vdc_tio_vp_regs *)(mem_resource->start);
dev_set_drvdata(dev, ud);
ud->vp_int = irq_resource_tx->start;
/*
* If we were provided an rx_irq then we need to init the appropriate
* queues, locks, and functions.
*/
ud->rx_int = -1;
if (irq_resource_rx->start != DEVTREE_IRQ_NONE) {
init_waitqueue_head(&ud->waitq);
mutex_init(&ud->lock);
if (request_irq(ud->rx_int, ubicom32fb_interrupt, IRQF_SHARED, "ubicom32fb_rx", ud)) {
dev_err(dev, "Couldn't request rx IRQ\n");
rc = -ENOMEM;
goto fail;
}
ud->rx_int = irq_resource_rx->start;
}
/*
* Allocate and align the requested amount of VRAM
*/
ud->total_vram_size = (vram_size * 1024) + regs->fb_align;
ud->fb = kmalloc(ud->total_vram_size, GFP_KERNEL);
if (ud->fb == NULL) {
dev_err(dev, "Couldn't allocate VRAM\n");
rc = -ENOMEM;
goto fail;
}
offset = (u32_t)ud->fb & (regs->fb_align - 1);
if (!offset) {
ud->fb_aligned = ud->fb;
} else {
offset = regs->fb_align - offset;
ud->fb_aligned = ud->fb + offset;
}
/*
* Clear the entire frame buffer
*/
if (!init_value) {
memset(ud->fb_aligned, 0, vram_size * 1024);
} else {
unsigned short *p = ud->fb_aligned;
int i;
for (i = 0; i < ((vram_size * 1024) / sizeof(u16_t)); i++) {
*p++ = init_value;
}
}
/*
* Fill in the fb_var_screeninfo structure
*/
memset(&ubicom32fb_var, 0, sizeof(ubicom32fb_var));
ubicom32fb_var.bits_per_pixel = regs->bpp;
ubicom32fb_var.red.offset = regs->rshift;
ubicom32fb_var.green.offset = regs->gshift;
ubicom32fb_var.blue.offset = regs->bshift;
ubicom32fb_var.red.length = regs->rbits;
ubicom32fb_var.green.length = regs->gbits;
ubicom32fb_var.blue.length = regs->bbits;
ubicom32fb_var.activate = FB_ACTIVATE_NOW;
#if 0
/*
* Turn on the display
*/
ud->reg_ctrl_default = REG_CTRL_ENABLE;
if (regs->rotate_screen)
ud->reg_ctrl_default |= REG_CTRL_ROTATE;
ubicom32fb_out_be32(ud, REG_CTRL, ud->reg_ctrl_default);
#endif
/*
* Fill in the fb_info structure
*/
ud->fbinfo->device = dev;
ud->fbinfo->screen_base = (void *)ud->fb_aligned;
ud->fbinfo->fbops = &ubicom32fb_ops;
ud->fbinfo->fix = ubicom32fb_fix;
ud->fbinfo->fix.smem_start = (u32)ud->fb_aligned;
ud->fbinfo->fix.smem_len = vram_size * 1024;
ud->fbinfo->fix.line_length = regs->xres * (regs->bpp / 8);
ud->fbinfo->fix.mmio_start = (u32)regs;
ud->fbinfo->fix.mmio_len = sizeof(struct vdc_tio_vp_regs);
/*
* We support panning in the y direction only
*/
ud->fbinfo->fix.xpanstep = 0;
ud->fbinfo->fix.ypanstep = 1;
ud->fbinfo->pseudo_palette = ud->pseudo_palette;
ud->fbinfo->flags = FBINFO_DEFAULT;
ud->fbinfo->var = ubicom32fb_var;
ud->fbinfo->var.xres = regs->xres;
ud->fbinfo->var.yres = regs->yres;
/*
* We cannot pan in the X direction, so xres_virtual is regs->xres
* We can pan in the Y direction, so yres_virtual is vram_size / ud->fbinfo->fix.line_length
*/
ud->fbinfo->var.xres_virtual = regs->xres;
ud->fbinfo->var.yres_virtual = (vram_size * 1024) / ud->fbinfo->fix.line_length;
//ud->fbinfo->var.height = regs->height_mm;
//ud->fbinfo->var.width = regs->width_mm;
/*
* Allocate a color map
*/
rc = fb_alloc_cmap(&ud->fbinfo->cmap, PALETTE_ENTRIES_NO, 0);
if (rc) {
dev_err(dev, "Fail to allocate colormap (%d entries)\n",
PALETTE_ENTRIES_NO);
goto fail;
}
ud->cmap_alloc = true;
/*
* Register new frame buffer
*/
rc = register_framebuffer(ud->fbinfo);
if (rc) {
dev_err(dev, "Could not register frame buffer\n");
goto fail;
}
/*
* Start up the VDC
*/
ud->regs->next_frame = ud->fb;
ubicom32fb_send_command(ud, VDCTIO_COMMAND_START, 0);
/*
* Tell the log we are here
*/
dev_info(dev, "fbaddr=%p align=%p, size=%uKB screen(%ux%u) virt(%ux%u), regs=%p irqtx=%u irqrx=%u\n",
ud->fb, ud->fb_aligned, vram_size, ud->fbinfo->var.xres, ud->fbinfo->var.yres,
ud->fbinfo->var.xres_virtual, ud->fbinfo->var.yres_virtual, ud->regs,
irq_resource_tx->start, irq_resource_rx->start);
/*
* Success
*/
return 0;
fail:
ubicom32fb_release(dev);
return rc;
}
/*
* ubicom32fb_platform_remove
*/
static int ubicom32fb_platform_remove(struct platform_device *pdev)
{
dev_info(&(pdev->dev), "Ubicom32 FB Driver Remove\n");
return ubicom32fb_release(&pdev->dev);
}
static struct platform_driver ubicom32fb_platform_driver = {
.probe = ubicom32fb_platform_probe,
.remove = ubicom32fb_platform_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
#ifndef MODULE
/*
* ubicom32fb_setup
* Process kernel boot options
*/
static int __init ubicom32fb_setup(char *options)
{
char *this_opt;
if (!options || !*options) {
return 0;
}
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!*this_opt) {
continue;
}
if (!strncmp(this_opt, "init_value=", 10)) {
init_value = simple_strtoul(this_opt + 11, NULL, 0);
continue;
}
if (!strncmp(this_opt, "vram_size=", 10)) {
vram_size = simple_strtoul(this_opt + 10, NULL, 0);
continue;
}
}
return 0;
}
#endif /* MODULE */
/*
* ubicom32fb_init
*/
static int __devinit ubicom32fb_init(void)
{
#ifndef MODULE
/*
* Get kernel boot options (in 'video=ubicom32fb:<options>')
*/
char *option = NULL;
if (fb_get_options(DRIVER_NAME, &option)) {
return -ENODEV;
}
ubicom32fb_setup(option);
#endif /* MODULE */
return platform_driver_register(&ubicom32fb_platform_driver);
}
module_init(ubicom32fb_init);
/*
* ubicom32fb_exit
*/
static void __exit ubicom32fb_exit(void)
{
platform_driver_unregister(&ubicom32fb_platform_driver);
}
module_exit(ubicom32fb_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);

View File

@@ -0,0 +1,780 @@
/*
* drivers/video/ubicom32plio80.c
* Ubicom32 80 bus PLIO buffer driver
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
/*
* This driver was based on skeletonfb.c, Skeleton for a frame buffer device by
* Geert Uytterhoeven.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <asm/plio.h>
#define DRIVER_NAME "ubicom32plio80"
#define DRIVER_DESCRIPTION "Ubicom32 80 bus PLIO frame buffer driver"
#define PALETTE_ENTRIES_NO 16
/*
* Option variables
*
* vram_size: VRAM size in kilobytes, subject to alignment
*/
static int vram_size = 0;
module_param(vram_size, int, 0);
MODULE_PARM_DESC(vram_size, "VRAM size, in kilobytes to allocate, should be at least the size of one screen, subject to alignment");
static int xres = 240;
module_param(xres, int, 0);
MODULE_PARM_DESC(xres, "x (horizontal) resolution");
static int yres = 320;
module_param(yres, int, 0);
MODULE_PARM_DESC(yres, "y (vertical) resolution");
static int bgr = 0;
module_param(bgr, int, 0);
MODULE_PARM_DESC(bgr, "display is BGR (Blue is MSB)");
#define BITS_PER_PIXEL 16
/*
* Buffer alignment, must not be 0
*/
#define UBICOM32PLIO80_ALIGNMENT 4
/*
* PLIO FSM
* 16-bit data bus on port I
* CS on EXTCTL[6]
* WR on EXTCTL[4]
*/
static const plio_fctl_t plio_fctl = {
.fctl0 = {
.ptif_port_mode = PLIO_PORT_MODE_DI,
.ptif_portd_cfg = 0,
.ptif_porti_cfg = 3,
.edif_ds = 6,
.edif_cmp_mode = 1,
.ecif_extclk_ena = 0, // enable clock output on PD7 table 2.65/p111 says extctl[0]?
.icif_clk_src_sel = PLIO_CLK_IO,
},
.fctl2 = {
.icif_eclk_div = 10,
.icif_iclk_div = 10,
},
};
static const plio_config_t plio_config = {
.pfsm = {
/*
* Table 12.63
*/
.grpsel[0] = {1,1,1,1,1,1,1,1,1,1},
/*
* Table 12.66 Counter load value
*/
.cs_lut[0] = {0,0,0,0,0,0,0,0},
/*
* Table 2.75 PLIO PFSM Configuration Registers
*/
// 3 2 1 0
.extctl_o_lut[0] = {0x3f, 0x2f, 0x3f, 0x3f},
// 7 6 5 4
.extctl_o_lut[1] = {0x3f, 0x3f, 0x3f, 0x2f},
},
.edif = {
.odr_oe = 0xffff,
},
.ecif = {
.output_ena = (1 << 6) | (1 << 4),
},
};
static const u32_t ubicom32plio80_plio_fsm[] = {
// 0-F
0x00070007, 0x00070007,
0x00070007, 0x00070007,
0x00070007, 0x00070007,
0x00070007, 0x00070007,
0x16260806, 0x16260806,
0x16260806, 0x16260806,
0x16260806, 0x16260806,
0x16260806, 0x16260806,
// 10 - 1f
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
0x22061806, 0x22061806,
// 20 - 2f
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
0x00070806, 0x00070806,
};
/*
* fb_fix_screeninfo defines the non-changeable properties of the VDC, depending on what mode it is in.
*/
static struct fb_fix_screeninfo ubicom32plio80_fix = {
.id = "Ubicom32",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.accel = FB_ACCEL_UBICOM32_PLIO80,
};
/*
* Filled in at probe time when we find out what the hardware supports
*/
static struct fb_var_screeninfo ubicom32plio80_var;
/*
* Private data structure
*/
struct ubicom32plio80_drvdata {
struct fb_info *fbinfo;
bool cmap_alloc;
/*
* The address of the framebuffer in memory
*/
void *fb;
void *fb_aligned;
/*
* Total size of vram including alignment allowance
*/
u32 total_vram_size;
/*
* Fake palette of 16 colors
*/
u32 pseudo_palette[PALETTE_ENTRIES_NO];
int irq_req;
/*
* Current pointer and bytes left to transfer with the PLIO
*/
void *xfer_ptr;
u32 bytes_to_xfer;
u32 busy;
};
static struct platform_device *ubicom32plio80_platform_device;
/*
* ubicom32plio80_isr
*/
static int ubicom32plio80_isr(int irq, void *appdata)
{
struct ubicom32plio80_drvdata *ud = (struct ubicom32plio80_drvdata *)appdata;
if (!ud->bytes_to_xfer) {
ubicom32_disable_interrupt(TX_FIFO_INT(PLIO_PORT));
PLIO_NBR->intmask.txfifo_wm = 0;
ud->busy = 0;
return IRQ_HANDLED;
}
asm volatile (
".rept 8 \n\t"
"move.4 (%[fifo]), (%[data])4++ \n\t"
".endr \n\t"
: [data] "+a" (ud->xfer_ptr)
: [fifo] "a" (&PLIO_NBR->tx_lo)
);
ud->bytes_to_xfer -= 32;
return IRQ_HANDLED;
}
/*
* ubicom32plio80_update
*/
static void ubicom32plio80_update(struct ubicom32plio80_drvdata *ud, u32 *fb)
{
struct ubicom32_io_port *ri = (struct ubicom32_io_port *)RI;
struct ubicom32_io_port *rd = (struct ubicom32_io_port *)RD;
ud->xfer_ptr = fb;
ud->bytes_to_xfer = (xres * yres * 2) - 64;
ud->busy = 1;
ri->gpio_mask = 0;
rd->gpio_mask &= ~((1 << 4) | (1 << 2));
*(u32 *)(&PLIO_NBR->intclr) = ~0;
PLIO_NBR->intmask.txfifo_wm = 1;
PLIO_NBR->fifo_wm.tx = 8;
ubicom32_enable_interrupt(TX_FIFO_INT(PLIO_PORT));
asm volatile (
".rept 16 \n\t"
"move.4 (%[fifo]), (%[data])4++ \n\t"
".endr \n\t"
: [data] "+a" (ud->xfer_ptr)
: [fifo] "a" (&PLIO_NBR->tx_lo)
);
}
/*
* ubicom32plio80_pan_display
* Pans the display to a given location. Supports only y direction panning.
*/
static int ubicom32plio80_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi)
{
struct ubicom32plio80_drvdata *ud = (struct ubicom32plio80_drvdata *)fbi->par;
void *new_addr;
/*
* Get the last y line that would be displayed. Since we don't support YWRAP,
* it must be less than our virtual y size.
*/
u32 lasty = var->yoffset + var->yres;
if (lasty > fbi->var.yres_virtual) {
/*
* We would fall off the end of our frame buffer if we panned here.
*/
return -EINVAL;
}
if (var->xoffset) {
/*
* We don't support panning in the x direction
*/
return -EINVAL;
}
/*
* Everything looks sane, go ahead and pan
*
* We have to calculate a new address for the VDC to look at
*/
new_addr = ud->fb_aligned + (var->yoffset * fbi->fix.line_length);
return 0;
}
/*
* ubicom32plio80_setcolreg
* Sets a color in our virtual palette
*/
static int ubicom32plio80_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *fbi)
{
u32 *palette = fbi->pseudo_palette;
if (regno >= PALETTE_ENTRIES_NO) {
return -EINVAL;
}
/*
* We only use 8 bits from each color
*/
red >>= 8;
green >>= 8;
blue >>= 8;
/*
* Convert any grayscale values
*/
if (fbi->var.grayscale) {
u16 gray = red + green + blue;
gray += (gray >> 2) + (gray >> 3) - (gray >> 7);
gray >>= 2;
if (gray > 255) {
gray = 255;
}
red = gray;
blue = gray;
green = gray;
}
palette[regno] = (red << fbi->var.red.offset) | (green << fbi->var.green.offset) |
(blue << fbi->var.blue.offset);
return 0;
}
/*
* ubicom32plio80_mmap
*/
static int ubicom32plio80_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct ubicom32plio80_drvdata *ud = (struct ubicom32plio80_drvdata *)info->par;
vma->vm_start = (unsigned long)(ud->fb_aligned);
vma->vm_end = vma->vm_start + info->fix.smem_len;
/* For those who don't understand how mmap works, go read
* Documentation/nommu-mmap.txt.
* For those that do, you will know that the VM_MAYSHARE flag
* must be set in the vma->vm_flags structure on noMMU
* Other flags can be set, and are documented in
* include/linux/mm.h
*/
vma->vm_flags |= VM_MAYSHARE | VM_SHARED;
return 0;
}
/*
* ubicom32plio80_check_var
* Check the var, tweak it but don't change operational parameters.
*/
static int ubicom32plio80_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct ubicom32plio80_drvdata *ud = (struct ubicom32plio80_drvdata *)info->par;
u32 line_size = var->xres * (BITS_PER_PIXEL / 8);
/*
* See if we can handle this bpp
*/
if (var->bits_per_pixel > BITS_PER_PIXEL) {
return -EINVAL;
}
var->bits_per_pixel = BITS_PER_PIXEL;
/*
* See if we have enough memory to handle this resolution
*/
if ((line_size * var->yres * BITS_PER_PIXEL / 8) > ud->total_vram_size) {
return -EINVAL;
}
var->xres_virtual = var->xres;
var->yres_virtual = ud->total_vram_size / line_size;
var->red.length = 5;
var->green.length = 6;
var->green.offset = 5;
var->blue.length = 5;
var->transp.offset = var->transp.length = 0;
if (bgr) {
var->red.offset = 0;
var->blue.offset = 11;
} else {
var->red.offset = 11;
var->blue.offset = 0;
}
var->nonstd = 0;
var->height = -1;
var->width = -1;
var->vmode = FB_VMODE_NONINTERLACED;
var->sync = 0;
return 0;
}
/*
* ubicom32plio80_set_par
* Set the video mode according to info->var
*/
static int ubicom32plio80_set_par(struct fb_info *info)
{
/*
* Anything changed?
*/
if ((xres == info->var.xres) && (yres == info->var.yres)) {
return 0;
}
/*
* Implement changes
*/
xres = info->var.xres;
yres = info->var.yres;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.xpanstep = 0;
info->fix.ypanstep = 1;
info->fix.line_length = xres * (BITS_PER_PIXEL / 8);
return 0;
}
/*
* ubicom32plio80_ops
* List of supported operations
*/
static struct fb_ops ubicom32plio80_ops =
{
.owner = THIS_MODULE,
.fb_pan_display = ubicom32plio80_pan_display,
.fb_setcolreg = ubicom32plio80_setcolreg,
.fb_mmap = ubicom32plio80_mmap,
.fb_check_var = ubicom32plio80_check_var,
.fb_set_par = ubicom32plio80_set_par,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* ubicom32plio80_release
*/
static int ubicom32plio80_release(struct device *dev)
{
struct ubicom32plio80_drvdata *ud = dev_get_drvdata(dev);
unregister_framebuffer(ud->fbinfo);
if (ud->irq_req) {
free_irq(TX_FIFO_INT(PLIO_PORT), ud);
}
if (ud->cmap_alloc) {
fb_dealloc_cmap(&ud->fbinfo->cmap);
}
if (ud->fb) {
kfree(ud->fb);
}
framebuffer_release(ud->fbinfo);
dev_set_drvdata(dev, NULL);
return 0;
}
/*
* ubicom32plio80_platform_probe
*/
static int __init ubicom32plio80_platform_probe(struct platform_device *pdev)
{
struct ubicom32plio80_drvdata *ud;
struct fb_info *fbinfo;
int rc;
size_t fbsize;
struct device *dev = &pdev->dev;
int offset;
/*
* This is the minimum VRAM size
*/
fbsize = xres * yres * 2;
if (!vram_size) {
vram_size = (fbsize + 1023) / 1024;
} else {
if (fbsize > (vram_size * 1024)) {
dev_err(dev, "Not enough VRAM for display, need >= %u bytes\n", fbsize);
return -ENOMEM; // should be ebadparam?
}
}
/*
* Allocate the framebuffer instance + our private data
*/
fbinfo = framebuffer_alloc(sizeof(struct ubicom32plio80_drvdata), &pdev->dev);
if (!fbinfo) {
dev_err(dev, "Not enough memory to allocate instance.\n");
return -ENOMEM;
}
/*
* Fill in our private data.
*/
ud = (struct ubicom32plio80_drvdata *)fbinfo->par;
ud->fbinfo = fbinfo;
dev_set_drvdata(dev, ud);
/*
* Allocate and align the requested amount of VRAM
*/
ud->total_vram_size = (vram_size * 1024) + UBICOM32PLIO80_ALIGNMENT;
ud->fb = kmalloc(ud->total_vram_size, GFP_KERNEL);
if (ud->fb == NULL) {
dev_err(dev, "Couldn't allocate VRAM\n");
rc = -ENOMEM;
goto fail;
}
offset = (u32_t)ud->fb & (UBICOM32PLIO80_ALIGNMENT - 1);
if (!offset) {
ud->fb_aligned = ud->fb;
} else {
offset = UBICOM32PLIO80_ALIGNMENT - offset;
ud->fb_aligned = ud->fb + offset;
}
/*
* Clear the entire frame buffer
*/
memset(ud->fb_aligned, 0, vram_size * 1024);
/*
* Fill in the fb_var_screeninfo structure
*/
memset(&ubicom32plio80_var, 0, sizeof(ubicom32plio80_var));
ubicom32plio80_var.bits_per_pixel = BITS_PER_PIXEL;
ubicom32plio80_var.red.length = 5;
ubicom32plio80_var.green.length = 6;
ubicom32plio80_var.green.offset = 5;
ubicom32plio80_var.blue.length = 5;
ubicom32plio80_var.activate = FB_ACTIVATE_NOW;
if (bgr) {
ubicom32plio80_var.red.offset = 0;
ubicom32plio80_var.blue.offset = 11;
} else {
ubicom32plio80_var.red.offset = 11;
ubicom32plio80_var.blue.offset = 0;
}
/*
* Fill in the fb_info structure
*/
ud->fbinfo->device = dev;
ud->fbinfo->screen_base = (void *)ud->fb_aligned;
ud->fbinfo->fbops = &ubicom32plio80_ops;
ud->fbinfo->fix = ubicom32plio80_fix;
ud->fbinfo->fix.smem_start = (u32)ud->fb_aligned;
ud->fbinfo->fix.smem_len = vram_size * 1024;
ud->fbinfo->fix.line_length = xres * 2;
ud->fbinfo->fix.mmio_start = (u32)ud;
ud->fbinfo->fix.mmio_len = sizeof(struct ubicom32plio80_drvdata);
/*
* We support panning in the y direction only
*/
ud->fbinfo->fix.xpanstep = 0;
ud->fbinfo->fix.ypanstep = 1;
ud->fbinfo->pseudo_palette = ud->pseudo_palette;
ud->fbinfo->flags = FBINFO_DEFAULT;
ud->fbinfo->var = ubicom32plio80_var;
ud->fbinfo->var.xres = xres;
ud->fbinfo->var.yres = yres;
/*
* We cannot pan in the X direction, so xres_virtual is xres
* We can pan in the Y direction, so yres_virtual is vram_size / ud->fbinfo->fix.line_length
*/
ud->fbinfo->var.xres_virtual = xres;
ud->fbinfo->var.yres_virtual = (vram_size * 1024) / ud->fbinfo->fix.line_length;
/*
* Allocate a color map
*/
rc = fb_alloc_cmap(&ud->fbinfo->cmap, PALETTE_ENTRIES_NO, 0);
if (rc) {
dev_err(dev, "Fail to allocate colormap (%d entries)\n",
PALETTE_ENTRIES_NO);
goto fail;
}
ud->cmap_alloc = true;
/*
* Register new frame buffer
*/
rc = register_framebuffer(ud->fbinfo);
if (rc) {
dev_err(dev, "Could not register frame buffer\n");
goto fail;
}
/*
* request the PLIO IRQ
*/
rc = request_irq(TX_FIFO_INT(PLIO_PORT), ubicom32plio80_isr, IRQF_DISABLED, "ubicom32plio80", ud);
if (rc) {
dev_err(dev, "Could not request IRQ\n");
goto fail;
}
ud->irq_req = 1;
/*
* Clear any garbage out of the TX FIFOs (idif_txfifo_flush)
*
* cast through ubicom32_io_port to make sure the compiler does a word write
*/
((struct ubicom32_io_port *)PLIO_NBR)->int_set = (1 << 18);
/*
* Start up the state machine
*/
plio_init(&plio_fctl, &plio_config, (plio_sram_t *)ubicom32plio80_plio_fsm, sizeof(ubicom32plio80_plio_fsm));
PLIO_NBR->fctl0.pfsm_cmd = 0;
ubicom32plio80_update(ud, ud->fb_aligned);
/*
* Tell the log we are here
*/
dev_info(dev, "fbaddr=%p align=%p, size=%uKB screen(%ux%u) virt(%ux%u)\n",
ud->fb, ud->fb_aligned, vram_size, ud->fbinfo->var.xres, ud->fbinfo->var.yres,
ud->fbinfo->var.xres_virtual, ud->fbinfo->var.yres_virtual);
/*
* Success
*/
return 0;
fail:
ubicom32plio80_release(dev);
return rc;
}
/*
* ubicom32plio80_platform_remove
*/
static int ubicom32plio80_platform_remove(struct platform_device *pdev)
{
dev_info(&(pdev->dev), "Ubicom32 FB Driver Remove\n");
return ubicom32plio80_release(&pdev->dev);
}
static struct platform_driver ubicom32plio80_platform_driver = {
.probe = ubicom32plio80_platform_probe,
.remove = ubicom32plio80_platform_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
#ifndef MODULE
/*
* ubicom32plio80_setup
* Process kernel boot options
*/
static int __init ubicom32plio80_setup(char *options)
{
char *this_opt;
if (!options || !*options) {
return 0;
}
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!*this_opt) {
continue;
}
if (!strncmp(this_opt, "vram_size=", 10)) {
vram_size = simple_strtoul(this_opt + 10, NULL, 0);
continue;
}
if (!strncmp(this_opt, "bgr=", 4)) {
bgr = simple_strtoul(this_opt + 4, NULL, 0);
continue;
}
if (!strncmp(this_opt, "xres=", 5)) {
xres = simple_strtoul(this_opt + 5, NULL, 0);
continue;
}
if (!strncmp(this_opt, "yres=", 5)) {
yres = simple_strtoul(this_opt + 5, NULL, 0);
continue;
}
}
return 0;
}
#endif /* MODULE */
/*
* ubicom32plio80_init
*/
static int __devinit ubicom32plio80_init(void)
{
int ret;
#ifndef MODULE
/*
* Get kernel boot options (in 'video=ubicom32plio80:<options>')
*/
char *option = NULL;
if (fb_get_options(DRIVER_NAME, &option)) {
return -ENODEV;
}
ubicom32plio80_setup(option);
#endif /* MODULE */
ret = platform_driver_register(&ubicom32plio80_platform_driver);
if (!ret) {
ubicom32plio80_platform_device = platform_device_alloc(DRIVER_NAME, 0);
if (ubicom32plio80_platform_device)
ret = platform_device_add(ubicom32plio80_platform_device);
else
ret = -ENOMEM;
if (ret) {
platform_device_put(ubicom32plio80_platform_device);
platform_driver_unregister(&ubicom32plio80_platform_driver);
}
}
return ret;
}
module_init(ubicom32plio80_init);
/*
* ubicom32plio80_exit
*/
static void __exit ubicom32plio80_exit(void)
{
platform_device_unregister(ubicom32plio80_platform_device);
platform_driver_unregister(&ubicom32plio80_platform_driver);
}
module_exit(ubicom32plio80_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);

View File

@@ -0,0 +1,603 @@
/*
* drivers/video/ubicom32vfb.c
* Ubicom32 virtual frame buffer driver
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
/*
* This driver was based on skeletonfb.c, Skeleton for a frame buffer device by
* Geert Uytterhoeven.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#define DRIVER_NAME "ubicom32vfb"
#define DRIVER_DESCRIPTION "Ubicom32 virtual frame buffer driver"
#define PALETTE_ENTRIES_NO 16
/*
* Option variables
*
* vram_size: VRAM size in kilobytes, subject to alignment
*/
static int vram_size = 0;
module_param(vram_size, int, 0);
MODULE_PARM_DESC(vram_size, "VRAM size, in kilobytes to allocate, should be at least the size of one screen, subject to alignment");
static int xres = 320;
module_param(xres, int, 0);
MODULE_PARM_DESC(xres, "x (horizontal) resolution");
static int yres = 240;
module_param(yres, int, 0);
MODULE_PARM_DESC(yres, "y (vertical) resolution");
static int bgr = 0;
module_param(bgr, int, 0);
MODULE_PARM_DESC(bgr, "display is BGR (Blue is MSB)");
#define BITS_PER_PIXEL 16
/*
* Buffer alignment, must not be 0
*/
#define UBICOM32VFB_ALIGNMENT 4
/*
* fb_fix_screeninfo defines the non-changeable properties of the VDC, depending on what mode it is in.
*/
static struct fb_fix_screeninfo ubicom32vfb_fix = {
.id = "Ubicom32",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.accel = FB_ACCEL_UBICOM32_VFB,
};
/*
* Filled in at probe time when we find out what the hardware supports
*/
static struct fb_var_screeninfo ubicom32vfb_var;
/*
* Private data structure
*/
struct ubicom32vfb_drvdata {
struct fb_info *fbinfo;
bool cmap_alloc;
/*
* The address of the framebuffer in memory
*/
void *fb;
void *fb_aligned;
/*
* Total size of vram including alignment allowance
*/
u32 total_vram_size;
/*
* Fake palette of 16 colors
*/
u32 pseudo_palette[PALETTE_ENTRIES_NO];
};
static struct platform_device *ubicom32vfb_platform_device;
/*
* ubicom32vfb_pan_display
* Pans the display to a given location. Supports only y direction panning.
*/
static int ubicom32vfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi)
{
struct ubicom32vfb_drvdata *ud = (struct ubicom32vfb_drvdata *)fbi->par;
void *new_addr;
/*
* Get the last y line that would be displayed. Since we don't support YWRAP,
* it must be less than our virtual y size.
*/
u32 lasty = var->yoffset + var->yres;
if (lasty > fbi->var.yres_virtual) {
/*
* We would fall off the end of our frame buffer if we panned here.
*/
return -EINVAL;
}
if (var->xoffset) {
/*
* We don't support panning in the x direction
*/
return -EINVAL;
}
/*
* Everything looks sane, go ahead and pan
*
* We have to calculate a new address for the VDC to look at
*/
new_addr = ud->fb_aligned + (var->yoffset * fbi->fix.line_length);
return 0;
}
/*
* ubicom32vfb_setcolreg
* Sets a color in our virtual palette
*/
static int ubicom32vfb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *fbi)
{
u32 *palette = fbi->pseudo_palette;
if (regno >= PALETTE_ENTRIES_NO) {
return -EINVAL;
}
/*
* We only use 8 bits from each color
*/
red >>= 8;
green >>= 8;
blue >>= 8;
/*
* Convert any grayscale values
*/
if (fbi->var.grayscale) {
u16 gray = red + green + blue;
gray += (gray >> 2) + (gray >> 3) - (gray >> 7);
gray >>= 2;
if (gray > 255) {
gray = 255;
}
red = gray;
blue = gray;
green = gray;
}
palette[regno] = (red << fbi->var.red.offset) | (green << fbi->var.green.offset) |
(blue << fbi->var.blue.offset);
return 0;
}
/*
* ubicom32vfb_mmap
*/
static int ubicom32vfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct ubicom32vfb_drvdata *ud = (struct ubicom32vfb_drvdata *)info->par;
vma->vm_start = (unsigned long)(ud->fb_aligned);
vma->vm_end = vma->vm_start + info->fix.smem_len;
/* For those who don't understand how mmap works, go read
* Documentation/nommu-mmap.txt.
* For those that do, you will know that the VM_MAYSHARE flag
* must be set in the vma->vm_flags structure on noMMU
* Other flags can be set, and are documented in
* include/linux/mm.h
*/
vma->vm_flags |= VM_MAYSHARE | VM_SHARED;
return 0;
}
/*
* ubicom32vfb_check_var
* Check the var, tweak it but don't change operational parameters.
*/
static int ubicom32vfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct ubicom32vfb_drvdata *ud = (struct ubicom32vfb_drvdata *)info->par;
u32 line_size = var->xres * (BITS_PER_PIXEL / 8);
/*
* See if we can handle this bpp
*/
if (var->bits_per_pixel > BITS_PER_PIXEL) {
return -EINVAL;
}
var->bits_per_pixel = BITS_PER_PIXEL;
/*
* See if we have enough memory to handle this resolution
*/
if ((line_size * var->yres * BITS_PER_PIXEL / 8) > ud->total_vram_size) {
return -EINVAL;
}
var->xres_virtual = var->xres;
var->yres_virtual = ud->total_vram_size / line_size;
var->red.length = 5;
var->green.length = 6;
var->green.offset = 5;
var->blue.length = 5;
var->transp.offset = var->transp.length = 0;
if (bgr) {
var->red.offset = 0;
var->blue.offset = 11;
} else {
var->red.offset = 11;
var->blue.offset = 0;
}
var->nonstd = 0;
var->height = -1;
var->width = -1;
var->vmode = FB_VMODE_NONINTERLACED;
var->sync = 0;
return 0;
}
/*
* ubicom32vfb_set_par
* Set the video mode according to info->var
*/
static int ubicom32vfb_set_par(struct fb_info *info)
{
/*
* Anything changed?
*/
if ((xres == info->var.xres) && (yres == info->var.yres)) {
return 0;
}
/*
* Implement changes
*/
xres = info->var.xres;
yres = info->var.yres;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.xpanstep = 0;
info->fix.ypanstep = 1;
info->fix.line_length = xres * (BITS_PER_PIXEL / 8);
return 0;
}
/*
* ubicom32vfb_ops
* List of supported operations
*/
static struct fb_ops ubicom32vfb_ops =
{
.owner = THIS_MODULE,
.fb_pan_display = ubicom32vfb_pan_display,
.fb_setcolreg = ubicom32vfb_setcolreg,
.fb_mmap = ubicom32vfb_mmap,
.fb_check_var = ubicom32vfb_check_var,
.fb_set_par = ubicom32vfb_set_par,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* ubicom32vfb_release
*/
static int ubicom32vfb_release(struct device *dev)
{
struct ubicom32vfb_drvdata *ud = dev_get_drvdata(dev);
unregister_framebuffer(ud->fbinfo);
if (ud->cmap_alloc) {
fb_dealloc_cmap(&ud->fbinfo->cmap);
}
if (ud->fb) {
kfree(ud->fb);
}
framebuffer_release(ud->fbinfo);
dev_set_drvdata(dev, NULL);
return 0;
}
/*
* ubicom32vfb_platform_probe
*/
static int __init ubicom32vfb_platform_probe(struct platform_device *pdev)
{
struct ubicom32vfb_drvdata *ud;
struct fb_info *fbinfo;
int rc;
size_t fbsize;
struct device *dev = &pdev->dev;
int offset;
/*
* This is the minimum VRAM size
*/
fbsize = xres * yres * 2;
if (!vram_size) {
vram_size = (fbsize + 1023) / 1024;
} else {
if (fbsize > (vram_size * 1024)) {
dev_err(dev, "Not enough VRAM for display, need >= %u bytes\n", fbsize);
return -ENOMEM; // should be ebadparam?
}
}
/*
* Allocate the framebuffer instance + our private data
*/
fbinfo = framebuffer_alloc(sizeof(struct ubicom32vfb_drvdata), &pdev->dev);
if (!fbinfo) {
dev_err(dev, "Not enough memory to allocate instance.\n");
return -ENOMEM;
}
/*
* Fill in our private data.
*/
ud = (struct ubicom32vfb_drvdata *)fbinfo->par;
ud->fbinfo = fbinfo;
dev_set_drvdata(dev, ud);
/*
* Allocate and align the requested amount of VRAM
*/
ud->total_vram_size = (vram_size * 1024) + UBICOM32VFB_ALIGNMENT;
ud->fb = kmalloc(ud->total_vram_size, GFP_KERNEL);
if (ud->fb == NULL) {
dev_err(dev, "Couldn't allocate VRAM\n");
rc = -ENOMEM;
goto fail;
}
offset = (u32_t)ud->fb & (UBICOM32VFB_ALIGNMENT - 1);
if (!offset) {
ud->fb_aligned = ud->fb;
} else {
offset = UBICOM32VFB_ALIGNMENT - offset;
ud->fb_aligned = ud->fb + offset;
}
/*
* Clear the entire frame buffer
*/
memset(ud->fb_aligned, 0, vram_size * 1024);
/*
* Fill in the fb_var_screeninfo structure
*/
memset(&ubicom32vfb_var, 0, sizeof(ubicom32vfb_var));
ubicom32vfb_var.bits_per_pixel = BITS_PER_PIXEL;
ubicom32vfb_var.red.length = 5;
ubicom32vfb_var.green.length = 6;
ubicom32vfb_var.green.offset = 5;
ubicom32vfb_var.blue.length = 5;
ubicom32vfb_var.activate = FB_ACTIVATE_NOW;
if (bgr) {
ubicom32vfb_var.red.offset = 0;
ubicom32vfb_var.blue.offset = 11;
} else {
ubicom32vfb_var.red.offset = 11;
ubicom32vfb_var.blue.offset = 0;
}
/*
* Fill in the fb_info structure
*/
ud->fbinfo->device = dev;
ud->fbinfo->screen_base = (void *)ud->fb_aligned;
ud->fbinfo->fbops = &ubicom32vfb_ops;
ud->fbinfo->fix = ubicom32vfb_fix;
ud->fbinfo->fix.smem_start = (u32)ud->fb_aligned;
ud->fbinfo->fix.smem_len = vram_size * 1024;
ud->fbinfo->fix.line_length = xres * 2;
ud->fbinfo->fix.mmio_start = (u32)ud;
ud->fbinfo->fix.mmio_len = sizeof(struct ubicom32vfb_drvdata);
/*
* We support panning in the y direction only
*/
ud->fbinfo->fix.xpanstep = 0;
ud->fbinfo->fix.ypanstep = 1;
ud->fbinfo->pseudo_palette = ud->pseudo_palette;
ud->fbinfo->flags = FBINFO_DEFAULT;
ud->fbinfo->var = ubicom32vfb_var;
ud->fbinfo->var.xres = xres;
ud->fbinfo->var.yres = yres;
/*
* We cannot pan in the X direction, so xres_virtual is xres
* We can pan in the Y direction, so yres_virtual is vram_size / ud->fbinfo->fix.line_length
*/
ud->fbinfo->var.xres_virtual = xres;
ud->fbinfo->var.yres_virtual = (vram_size * 1024) / ud->fbinfo->fix.line_length;
/*
* Allocate a color map
*/
rc = fb_alloc_cmap(&ud->fbinfo->cmap, PALETTE_ENTRIES_NO, 0);
if (rc) {
dev_err(dev, "Fail to allocate colormap (%d entries)\n",
PALETTE_ENTRIES_NO);
goto fail;
}
ud->cmap_alloc = true;
/*
* Register new frame buffer
*/
rc = register_framebuffer(ud->fbinfo);
if (rc) {
dev_err(dev, "Could not register frame buffer\n");
goto fail;
}
/*
* Tell the log we are here
*/
dev_info(dev, "fbaddr=%p align=%p, size=%uKB screen(%ux%u) virt(%ux%u)\n",
ud->fb, ud->fb_aligned, vram_size, ud->fbinfo->var.xres, ud->fbinfo->var.yres,
ud->fbinfo->var.xres_virtual, ud->fbinfo->var.yres_virtual);
/*
* Success
*/
return 0;
fail:
ubicom32vfb_release(dev);
return rc;
}
/*
* ubicom32vfb_platform_remove
*/
static int ubicom32vfb_platform_remove(struct platform_device *pdev)
{
dev_info(&(pdev->dev), "Ubicom32 FB Driver Remove\n");
return ubicom32vfb_release(&pdev->dev);
}
static struct platform_driver ubicom32vfb_platform_driver = {
.probe = ubicom32vfb_platform_probe,
.remove = ubicom32vfb_platform_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
#ifndef MODULE
/*
* ubicom32vfb_setup
* Process kernel boot options
*/
static int __init ubicom32vfb_setup(char *options)
{
char *this_opt;
if (!options || !*options) {
return 0;
}
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!*this_opt) {
continue;
}
if (!strncmp(this_opt, "vram_size=", 10)) {
vram_size = simple_strtoul(this_opt + 10, NULL, 0);
continue;
}
if (!strncmp(this_opt, "bgr=", 4)) {
bgr = simple_strtoul(this_opt + 4, NULL, 0);
continue;
}
if (!strncmp(this_opt, "xres=", 5)) {
xres = simple_strtoul(this_opt + 5, NULL, 0);
continue;
}
if (!strncmp(this_opt, "yres=", 5)) {
yres = simple_strtoul(this_opt + 5, NULL, 0);
continue;
}
}
return 0;
}
#endif /* MODULE */
/*
* ubicom32vfb_init
*/
static int __devinit ubicom32vfb_init(void)
{
int ret;
#ifndef MODULE
/*
* Get kernel boot options (in 'video=ubicom32vfb:<options>')
*/
char *option = NULL;
if (fb_get_options(DRIVER_NAME, &option)) {
return -ENODEV;
}
ubicom32vfb_setup(option);
#endif /* MODULE */
ret = platform_driver_register(&ubicom32vfb_platform_driver);
#ifdef CONFIG_FB_UBICOM32_VIRTUAL_NOAUTO
return ret;
#else
if (!ret) {
ubicom32vfb_platform_device = platform_device_alloc(DRIVER_NAME, 0);
if (ubicom32vfb_platform_device)
ret = platform_device_add(ubicom32vfb_platform_device);
else
ret = -ENOMEM;
if (ret) {
platform_device_put(ubicom32vfb_platform_device);
platform_driver_unregister(&ubicom32vfb_platform_driver);
}
}
return ret;
#endif
}
module_init(ubicom32vfb_init);
/*
* ubicom32vfb_exit
*/
static void __exit ubicom32vfb_exit(void)
{
platform_device_unregister(ubicom32vfb_platform_device);
platform_driver_unregister(&ubicom32vfb_platform_driver);
}
module_exit(ubicom32vfb_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Tjin <@ubicom.com>");
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);