mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2025-04-21 12:27:27 +03:00
[generic-2.6] update OCF framework to version 20100325
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@21356 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
@@ -1,11 +1,11 @@
|
||||
/***************************************************************************
|
||||
/*************************************************************************
|
||||
*
|
||||
* This file is provided under a dual BSD/GPLv2 license. When using or
|
||||
* redistributing this file, you may do so under either license.
|
||||
*
|
||||
* GPL LICENSE SUMMARY
|
||||
*
|
||||
* Copyright(c) 2007,2008 Intel Corporation. All rights reserved.
|
||||
* Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of version 2 of the GNU General Public License as
|
||||
@@ -27,7 +27,7 @@
|
||||
*
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2007,2008 Intel Corporation. All rights reserved.
|
||||
* Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
@@ -57,7 +57,7 @@
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
*
|
||||
* version: Security.L.1.0.130
|
||||
* version: Security.L.1.0.2-229
|
||||
*
|
||||
***************************************************************************/
|
||||
|
||||
@@ -71,38 +71,57 @@
|
||||
|
||||
#include "icp_ocf.h"
|
||||
|
||||
#define ICP_OCF_COMP_NAME "ICP_OCF"
|
||||
#define ICP_OCF_VER_MAIN (2)
|
||||
#define ICP_OCF_VER_MJR (0)
|
||||
#define ICP_OCF_VER_MNR (0)
|
||||
#define ICP_OCF_COMP_NAME "ICP_OCF"
|
||||
#define ICP_OCF_VER_MAIN (2)
|
||||
#define ICP_OCF_VER_MJR (1)
|
||||
#define ICP_OCF_VER_MNR (0)
|
||||
|
||||
#define MAX_DEREG_RETRIES (100)
|
||||
#define MAX_DEREG_RETRIES (100)
|
||||
#define DEFAULT_DEREG_RETRIES (10)
|
||||
#define DEFAULT_DEREG_DELAY_IN_JIFFIES (10)
|
||||
|
||||
/* This defines the maximum number of sessions possible between OCF
|
||||
and the OCF Tolapai Driver. If set to zero, there is no limit. */
|
||||
#define DEFAULT_OCF_TO_DRV_MAX_SESSION_COUNT (0)
|
||||
#define NUM_SUPPORTED_CAPABILITIES (21)
|
||||
and the OCF EP80579 Driver. If set to zero, there is no limit. */
|
||||
#define DEFAULT_OCF_TO_DRV_MAX_SESSION_COUNT (0)
|
||||
#define NUM_SUPPORTED_CAPABILITIES (21)
|
||||
|
||||
/*Slab zone names*/
|
||||
#define ICP_SESSION_DATA_NAME "icp_ocf.SesDat"
|
||||
#define ICP_OP_DATA_NAME "icp_ocf.OpDat"
|
||||
#define ICP_DH_NAME "icp_ocf.DH"
|
||||
#define ICP_MODEXP_NAME "icp_ocf.ModExp"
|
||||
#define ICP_RSA_DECRYPT_NAME "icp_ocf.RSAdec"
|
||||
#define ICP_RSA_PKEY_NAME "icp_ocf.RSApk"
|
||||
#define ICP_DSA_SIGN_NAME "icp_ocf.DSAsg"
|
||||
#define ICP_DSA_VER_NAME "icp_ocf.DSAver"
|
||||
#define ICP_RAND_VAL_NAME "icp_ocf.DSArnd"
|
||||
#define ICP_FLAT_BUFF_NAME "icp_ocf.FB"
|
||||
|
||||
/*Slabs zones*/
|
||||
struct kmem_cache *drvSessionData_zone = NULL;
|
||||
struct kmem_cache *drvOpData_zone = NULL;
|
||||
struct kmem_cache *drvDH_zone = NULL;
|
||||
struct kmem_cache *drvLnModExp_zone = NULL;
|
||||
struct kmem_cache *drvRSADecrypt_zone = NULL;
|
||||
struct kmem_cache *drvRSAPrivateKey_zone = NULL;
|
||||
struct kmem_cache *drvDSARSSign_zone = NULL;
|
||||
struct kmem_cache *drvDSARSSignKValue_zone = NULL;
|
||||
struct kmem_cache *drvDSAVerify_zone = NULL;
|
||||
icp_kmem_cache drvSessionData_zone = NULL;
|
||||
icp_kmem_cache drvOpData_zone = NULL;
|
||||
icp_kmem_cache drvDH_zone = NULL;
|
||||
icp_kmem_cache drvLnModExp_zone = NULL;
|
||||
icp_kmem_cache drvRSADecrypt_zone = NULL;
|
||||
icp_kmem_cache drvRSAPrivateKey_zone = NULL;
|
||||
icp_kmem_cache drvDSARSSign_zone = NULL;
|
||||
icp_kmem_cache drvDSARSSignKValue_zone = NULL;
|
||||
icp_kmem_cache drvDSAVerify_zone = NULL;
|
||||
|
||||
/*Slab zones for flatbuffers and bufferlist*/
|
||||
struct kmem_cache *drvFlatBuffer_zone = NULL;
|
||||
icp_kmem_cache drvFlatBuffer_zone = NULL;
|
||||
|
||||
static int icp_ocfDrvInit(void);
|
||||
static void icp_ocfDrvExit(void);
|
||||
static inline int icp_cache_null_check(void)
|
||||
{
|
||||
return (drvSessionData_zone && drvOpData_zone
|
||||
&& drvDH_zone && drvLnModExp_zone && drvRSADecrypt_zone
|
||||
&& drvRSAPrivateKey_zone && drvDSARSSign_zone
|
||||
&& drvDSARSSign_zone && drvDSARSSignKValue_zone
|
||||
&& drvDSAVerify_zone && drvFlatBuffer_zone);
|
||||
}
|
||||
|
||||
/*Function to free all allocated slab caches before exiting the module*/
|
||||
static void icp_ocfDrvFreeCaches(void);
|
||||
static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg);
|
||||
|
||||
int32_t icp_ocfDrvDriverId = INVALID_DRIVER_ID;
|
||||
|
||||
@@ -115,66 +134,42 @@ int num_dereg_retries = DEFAULT_DEREG_RETRIES;
|
||||
int dereg_retry_delay_in_jiffies = DEFAULT_DEREG_DELAY_IN_JIFFIES;
|
||||
|
||||
/* Module parameter - gives the maximum number of sessions possible between
|
||||
OCF and the OCF Tolapai Driver. If set to zero, there is no limit.*/
|
||||
OCF and the OCF EP80579 Driver. If set to zero, there is no limit.*/
|
||||
int max_sessions = DEFAULT_OCF_TO_DRV_MAX_SESSION_COUNT;
|
||||
|
||||
/* This is set when the module is removed from the system, no further
|
||||
processing can take place if this is set */
|
||||
atomic_t icp_ocfDrvIsExiting = ATOMIC_INIT(0);
|
||||
icp_atomic_t icp_ocfDrvIsExiting = ICP_ATOMIC_INIT(0);
|
||||
|
||||
/* This is used to show how many lac sessions were not deregistered*/
|
||||
atomic_t lac_session_failed_dereg_count = ATOMIC_INIT(0);
|
||||
icp_atomic_t lac_session_failed_dereg_count = ICP_ATOMIC_INIT(0);
|
||||
|
||||
/* This is used to track the number of registered sessions between OCF and
|
||||
* and the OCF Tolapai driver, when max_session is set to value other than
|
||||
* and the OCF EP80579 driver, when max_session is set to value other than
|
||||
* zero. This ensures that the max_session set for the OCF and the driver
|
||||
* is equal to the LAC registered sessions */
|
||||
atomic_t num_ocf_to_drv_registered_sessions = ATOMIC_INIT(0);
|
||||
icp_atomic_t num_ocf_to_drv_registered_sessions = ICP_ATOMIC_INIT(0);
|
||||
|
||||
/* Head of linked list used to store session data */
|
||||
struct list_head icp_ocfDrvGlobalSymListHead;
|
||||
struct list_head icp_ocfDrvGlobalSymListHead_FreeMemList;
|
||||
icp_drvSessionListHead_t icp_ocfDrvGlobalSymListHead;
|
||||
icp_drvSessionListHead_t icp_ocfDrvGlobalSymListHead_FreeMemList;
|
||||
|
||||
spinlock_t icp_ocfDrvSymSessInfoListSpinlock = SPIN_LOCK_UNLOCKED;
|
||||
rwlock_t icp_kmem_cache_destroy_alloc_lock = RW_LOCK_UNLOCKED;
|
||||
icp_spinlock_t icp_ocfDrvSymSessInfoListSpinlock;
|
||||
|
||||
struct workqueue_struct *icp_ocfDrvFreeLacSessionWorkQ;
|
||||
/*Below pointer is only used in linux, FreeBSD uses the name to
|
||||
create its own variable name*/
|
||||
icp_workqueue *icp_ocfDrvFreeLacSessionWorkQ = NULL;
|
||||
ICP_WORKQUEUE_DEFINE_THREAD(icp_ocfDrvFreeLacSessionWorkQ);
|
||||
|
||||
struct icp_drvBuffListInfo defBuffListInfo;
|
||||
|
||||
static struct {
|
||||
softc_device_decl sc_dev;
|
||||
} icpDev;
|
||||
|
||||
static device_method_t icp_methods = {
|
||||
/* crypto device methods */
|
||||
DEVMETHOD(cryptodev_newsession, icp_ocfDrvNewSession),
|
||||
DEVMETHOD(cryptodev_freesession, icp_ocfDrvFreeLACSession),
|
||||
DEVMETHOD(cryptodev_process, icp_ocfDrvSymProcess),
|
||||
DEVMETHOD(cryptodev_kprocess, icp_ocfDrvPkeProcess),
|
||||
};
|
||||
|
||||
module_param(num_dereg_retries, int, S_IRUGO);
|
||||
module_param(dereg_retry_delay_in_jiffies, int, S_IRUGO);
|
||||
module_param(max_sessions, int, S_IRUGO);
|
||||
|
||||
MODULE_PARM_DESC(num_dereg_retries,
|
||||
"Number of times to retry LAC Sym Session Deregistration. "
|
||||
"Default 10, Max 100");
|
||||
MODULE_PARM_DESC(dereg_retry_delay_in_jiffies, "Delay in jiffies "
|
||||
"(added to a schedule() function call) before a LAC Sym "
|
||||
"Session Dereg is retried. Default 10");
|
||||
MODULE_PARM_DESC(max_sessions, "This sets the maximum number of sessions "
|
||||
"between OCF and this driver. If this value is set to zero, "
|
||||
"max session count checking is disabled. Default is zero(0)");
|
||||
|
||||
/* Name : icp_ocfDrvInit
|
||||
*
|
||||
* Description : This function will register all the symmetric and asymmetric
|
||||
* functionality that will be accelerated by the hardware. It will also
|
||||
* get a unique driver ID from the OCF and initialise all slab caches
|
||||
*/
|
||||
static int __init icp_ocfDrvInit(void)
|
||||
ICP_MODULE_INIT_FUNC(icp_ocfDrvInit)
|
||||
{
|
||||
int ocfStatus = 0;
|
||||
|
||||
@@ -184,7 +179,7 @@ static int __init icp_ocfDrvInit(void)
|
||||
if (MAX_DEREG_RETRIES < num_dereg_retries) {
|
||||
EPRINTK("Session deregistration retry count set to greater "
|
||||
"than %d", MAX_DEREG_RETRIES);
|
||||
return -1;
|
||||
icp_module_return_code(EINVAL);
|
||||
}
|
||||
|
||||
/* Initialize and Start the Cryptographic component */
|
||||
@@ -192,130 +187,133 @@ static int __init icp_ocfDrvInit(void)
|
||||
cpaCyStartInstance(CPA_INSTANCE_HANDLE_SINGLE)) {
|
||||
EPRINTK("Failed to initialize and start the instance "
|
||||
"of the Cryptographic component.\n");
|
||||
return -1;
|
||||
return icp_module_return_code(EINVAL);
|
||||
}
|
||||
|
||||
icp_spin_lock_init(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
|
||||
/* Set the default size of BufferList to allocate */
|
||||
memset(&defBuffListInfo, 0, sizeof(struct icp_drvBuffListInfo));
|
||||
if (ICP_OCF_DRV_STATUS_SUCCESS !=
|
||||
icp_ocfDrvBufferListMemInfo(ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS,
|
||||
&defBuffListInfo)) {
|
||||
EPRINTK("Failed to get bufferlist memory info.\n");
|
||||
return -1;
|
||||
return icp_module_return_code(ENOMEM);
|
||||
}
|
||||
|
||||
/*Register OCF Tolapai Driver with OCF */
|
||||
memset(&icpDev, 0, sizeof(icpDev));
|
||||
softc_device_init(&icpDev, "icp", 0, icp_methods);
|
||||
|
||||
icp_ocfDrvDriverId = crypto_get_driverid(softc_get_device(&icpDev),
|
||||
CRYPTOCAP_F_HARDWARE);
|
||||
/*Register OCF EP80579 Driver with OCF */
|
||||
icp_ocfDrvDriverId = ICP_CRYPTO_GET_DRIVERID();
|
||||
|
||||
if (icp_ocfDrvDriverId < 0) {
|
||||
EPRINTK("%s : ICP driver failed to register with OCF!\n",
|
||||
__FUNCTION__);
|
||||
return -ENODEV;
|
||||
return icp_module_return_code(ENODEV);
|
||||
}
|
||||
|
||||
/*Create all the slab caches used by the OCF Tolapai Driver */
|
||||
/*Create all the slab caches used by the OCF EP80579 Driver */
|
||||
drvSessionData_zone =
|
||||
ICP_CACHE_CREATE("ICP Session Data", struct icp_drvSessionData);
|
||||
ICP_CACHE_NULL_CHECK(drvSessionData_zone);
|
||||
ICP_CACHE_CREATE(ICP_SESSION_DATA_NAME, struct icp_drvSessionData);
|
||||
|
||||
/*
|
||||
* Allocation of the OpData includes the allocation space for meta data.
|
||||
* The memory after the opData structure is reserved for this meta data.
|
||||
*/
|
||||
drvOpData_zone =
|
||||
kmem_cache_create("ICP Op Data", sizeof(struct icp_drvOpData) +
|
||||
defBuffListInfo.metaSize ,0, SLAB_HWCACHE_ALIGN, NULL, NULL);
|
||||
icp_kmem_cache_create(ICP_OP_DATA_NAME,
|
||||
sizeof(struct icp_drvOpData) +
|
||||
defBuffListInfo.metaSize,
|
||||
ICP_KERNEL_CACHE_ALIGN,
|
||||
ICP_KERNEL_CACHE_NOINIT);
|
||||
|
||||
|
||||
ICP_CACHE_NULL_CHECK(drvOpData_zone);
|
||||
|
||||
drvDH_zone = ICP_CACHE_CREATE("ICP DH data", CpaCyDhPhase1KeyGenOpData);
|
||||
ICP_CACHE_NULL_CHECK(drvDH_zone);
|
||||
drvDH_zone = ICP_CACHE_CREATE(ICP_DH_NAME, CpaCyDhPhase1KeyGenOpData);
|
||||
|
||||
drvLnModExp_zone =
|
||||
ICP_CACHE_CREATE("ICP ModExp data", CpaCyLnModExpOpData);
|
||||
ICP_CACHE_NULL_CHECK(drvLnModExp_zone);
|
||||
ICP_CACHE_CREATE(ICP_MODEXP_NAME, CpaCyLnModExpOpData);
|
||||
|
||||
drvRSADecrypt_zone =
|
||||
ICP_CACHE_CREATE("ICP RSA decrypt data", CpaCyRsaDecryptOpData);
|
||||
ICP_CACHE_NULL_CHECK(drvRSADecrypt_zone);
|
||||
ICP_CACHE_CREATE(ICP_RSA_DECRYPT_NAME, CpaCyRsaDecryptOpData);
|
||||
|
||||
drvRSAPrivateKey_zone =
|
||||
ICP_CACHE_CREATE("ICP RSA private key data", CpaCyRsaPrivateKey);
|
||||
ICP_CACHE_NULL_CHECK(drvRSAPrivateKey_zone);
|
||||
ICP_CACHE_CREATE(ICP_RSA_PKEY_NAME, CpaCyRsaPrivateKey);
|
||||
|
||||
drvDSARSSign_zone =
|
||||
ICP_CACHE_CREATE("ICP DSA Sign", CpaCyDsaRSSignOpData);
|
||||
ICP_CACHE_NULL_CHECK(drvDSARSSign_zone);
|
||||
ICP_CACHE_CREATE(ICP_DSA_SIGN_NAME, CpaCyDsaRSSignOpData);
|
||||
|
||||
/*too awkward to use a macro here */
|
||||
drvDSARSSignKValue_zone =
|
||||
kmem_cache_create("ICP DSA Sign Rand Val",
|
||||
DSA_RS_SIGN_PRIMEQ_SIZE_IN_BYTES, 0,
|
||||
SLAB_HWCACHE_ALIGN, NULL, NULL);
|
||||
ICP_CACHE_NULL_CHECK(drvDSARSSignKValue_zone);
|
||||
ICP_CACHE_CREATE(ICP_RAND_VAL_NAME,
|
||||
DSA_RS_SIGN_PRIMEQ_SIZE_IN_BYTES);
|
||||
|
||||
drvDSAVerify_zone =
|
||||
ICP_CACHE_CREATE("ICP DSA Verify", CpaCyDsaVerifyOpData);
|
||||
ICP_CACHE_NULL_CHECK(drvDSAVerify_zone);
|
||||
ICP_CACHE_CREATE(ICP_DSA_VER_NAME, CpaCyDsaVerifyOpData);
|
||||
|
||||
drvFlatBuffer_zone =
|
||||
ICP_CACHE_CREATE("ICP Flat Buffers", CpaFlatBuffer);
|
||||
ICP_CACHE_NULL_CHECK(drvFlatBuffer_zone);
|
||||
ICP_CACHE_CREATE(ICP_FLAT_BUFF_NAME, CpaFlatBuffer);
|
||||
|
||||
if (0 == icp_cache_null_check()) {
|
||||
icp_ocfDrvFreeCaches();
|
||||
EPRINTK("%s() line %d: Not enough memory!\n",
|
||||
__FUNCTION__, __LINE__);
|
||||
return ENOMEM;
|
||||
}
|
||||
|
||||
/* Register the ICP symmetric crypto support. */
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_NULL_CBC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_DES_CBC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_3DES_CBC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_AES_CBC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_ARC4);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_MD5);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_MD5_HMAC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA1);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA1_HMAC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_256);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_256_HMAC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_384);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_384_HMAC);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_512);
|
||||
ICP_REGISTER_SYM_FUNCTIONALITY_WITH_OCF(CRYPTO_SHA2_512_HMAC);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_NULL_CBC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_DES_CBC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_3DES_CBC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_AES_CBC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_ARC4, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_MD5, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_MD5_HMAC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA1, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA1_HMAC, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_256, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_256_HMAC,
|
||||
ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_384, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_384_HMAC,
|
||||
ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_512, ocfStatus);
|
||||
ICP_REG_SYM_WITH_OCF(icp_ocfDrvDriverId, CRYPTO_SHA2_512_HMAC,
|
||||
ocfStatus);
|
||||
|
||||
/* Register the ICP asymmetric algorithm support */
|
||||
ICP_REGISTER_ASYM_FUNCTIONALITY_WITH_OCF(CRK_DH_COMPUTE_KEY);
|
||||
ICP_REGISTER_ASYM_FUNCTIONALITY_WITH_OCF(CRK_MOD_EXP);
|
||||
ICP_REGISTER_ASYM_FUNCTIONALITY_WITH_OCF(CRK_MOD_EXP_CRT);
|
||||
ICP_REGISTER_ASYM_FUNCTIONALITY_WITH_OCF(CRK_DSA_SIGN);
|
||||
ICP_REGISTER_ASYM_FUNCTIONALITY_WITH_OCF(CRK_DSA_VERIFY);
|
||||
ICP_REG_ASYM_WITH_OCF(icp_ocfDrvDriverId, CRK_DH_COMPUTE_KEY,
|
||||
ocfStatus);
|
||||
ICP_REG_ASYM_WITH_OCF(icp_ocfDrvDriverId, CRK_MOD_EXP, ocfStatus);
|
||||
ICP_REG_ASYM_WITH_OCF(icp_ocfDrvDriverId, CRK_MOD_EXP_CRT, ocfStatus);
|
||||
ICP_REG_ASYM_WITH_OCF(icp_ocfDrvDriverId, CRK_DSA_SIGN, ocfStatus);
|
||||
ICP_REG_ASYM_WITH_OCF(icp_ocfDrvDriverId, CRK_DSA_VERIFY, ocfStatus);
|
||||
|
||||
/* Register the ICP random number generator support */
|
||||
if (OCF_REGISTRATION_STATUS_SUCCESS ==
|
||||
crypto_rregister(icp_ocfDrvDriverId, icp_ocfDrvReadRandom, NULL)) {
|
||||
ocfStatus++;
|
||||
}
|
||||
ICP_REG_RAND_WITH_OCF(icp_ocfDrvDriverId,
|
||||
icp_ocfDrvReadRandom, NULL, ocfStatus);
|
||||
|
||||
if (OCF_ZERO_FUNCTIONALITY_REGISTERED == ocfStatus) {
|
||||
DPRINTK("%s: Failed to register any device capabilities\n",
|
||||
__FUNCTION__);
|
||||
icp_ocfDrvFreeCaches();
|
||||
icp_ocfDrvDriverId = INVALID_DRIVER_ID;
|
||||
return -ECANCELED;
|
||||
return icp_module_return_code(ECANCELED);
|
||||
}
|
||||
|
||||
DPRINTK("%s: Registered %d of %d device capabilities\n",
|
||||
__FUNCTION__, ocfStatus, NUM_SUPPORTED_CAPABILITIES);
|
||||
|
||||
/*Session data linked list used during module exit*/
|
||||
INIT_LIST_HEAD(&icp_ocfDrvGlobalSymListHead);
|
||||
INIT_LIST_HEAD(&icp_ocfDrvGlobalSymListHead_FreeMemList);
|
||||
/*Session data linked list used during module exit */
|
||||
ICP_INIT_LIST_HEAD(&icp_ocfDrvGlobalSymListHead);
|
||||
ICP_INIT_LIST_HEAD(&icp_ocfDrvGlobalSymListHead_FreeMemList);
|
||||
|
||||
icp_ocfDrvFreeLacSessionWorkQ =
|
||||
create_singlethread_workqueue("ocfLacDeregWorkQueue");
|
||||
ICP_WORKQUEUE_CREATE(icp_ocfDrvFreeLacSessionWorkQ, "icpwq");
|
||||
if (ICP_WORKQUEUE_NULL_CHECK(icp_ocfDrvFreeLacSessionWorkQ)) {
|
||||
EPRINTK("%s: Failed to create single "
|
||||
"thread workqueue\n", __FUNCTION__);
|
||||
icp_ocfDrvFreeCaches();
|
||||
icp_ocfDrvDriverId = INVALID_DRIVER_ID;
|
||||
return icp_module_return_code(ENOMEM);
|
||||
}
|
||||
|
||||
return 0;
|
||||
return icp_module_return_code(0);
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvExit
|
||||
@@ -325,31 +323,46 @@ static int __init icp_ocfDrvInit(void)
|
||||
* and asymmetric functionality that can be accelerated by the hardware via OCF
|
||||
* and random number generation if it is enabled.
|
||||
*/
|
||||
static void icp_ocfDrvExit(void)
|
||||
ICP_MODULE_EXIT_FUNC(icp_ocfDrvExit)
|
||||
{
|
||||
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
||||
struct icp_drvSessionData *sessionData = NULL;
|
||||
struct icp_drvSessionData *tempSessionData = NULL;
|
||||
int i, remaining_delay_time_in_jiffies = 0;
|
||||
|
||||
/* For FreeBSD the invariant macro below makes function to return */
|
||||
/* with EBUSY value in the case of any session which has been regi- */
|
||||
/* stered with LAC not being deregistered. */
|
||||
/* The Linux implementation is empty since it is purely to compensate */
|
||||
/* for a limitation of the FreeBSD 7.1 Opencrypto framework. */
|
||||
|
||||
ICP_MODULE_EXIT_INV();
|
||||
|
||||
/* There is a possibility of a process or new session command being */
|
||||
/* sent before this variable is incremented. The aim of this variable */
|
||||
/* is to stop a loop of calls creating a deadlock situation which */
|
||||
/* would prevent the driver from exiting. */
|
||||
|
||||
atomic_inc(&icp_ocfDrvIsExiting);
|
||||
icp_atomic_set(&icp_ocfDrvIsExiting, 1);
|
||||
|
||||
/*Existing sessions will be routed to another driver after these calls */
|
||||
crypto_unregister_all(icp_ocfDrvDriverId);
|
||||
crypto_runregister_all(icp_ocfDrvDriverId);
|
||||
|
||||
if (ICP_WORKQUEUE_NULL_CHECK(icp_ocfDrvFreeLacSessionWorkQ)) {
|
||||
DPRINTK("%s: workqueue already "
|
||||
"destroyed, therefore module exit "
|
||||
" function already called. Exiting.\n", __FUNCTION__);
|
||||
return ICP_MODULE_EXIT_FUNC_RETURN_VAL;
|
||||
}
|
||||
/*If any sessions are waiting to be deregistered, do that. This also
|
||||
flushes the work queue */
|
||||
destroy_workqueue(icp_ocfDrvFreeLacSessionWorkQ);
|
||||
ICP_WORKQUEUE_DESTROY(icp_ocfDrvFreeLacSessionWorkQ);
|
||||
|
||||
/*ENTER CRITICAL SECTION */
|
||||
spin_lock_bh(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
list_for_each_entry_safe(tempSessionData, sessionData,
|
||||
&icp_ocfDrvGlobalSymListHead, listNode) {
|
||||
icp_spin_lockbh_lock(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
|
||||
ICP_LIST_FOR_EACH_ENTRY_SAFE(tempSessionData, sessionData,
|
||||
&icp_ocfDrvGlobalSymListHead, listNode) {
|
||||
for (i = 0; i < num_dereg_retries; i++) {
|
||||
/*No harm if bad input - LAC will handle error cases */
|
||||
if (ICP_SESSION_RUNNING == tempSessionData->inUse) {
|
||||
@@ -361,7 +374,7 @@ static void icp_ocfDrvExit(void)
|
||||
/* Succesfully deregistered */
|
||||
break;
|
||||
} else if (CPA_STATUS_RETRY != lacStatus) {
|
||||
atomic_inc
|
||||
icp_atomic_inc
|
||||
(&lac_session_failed_dereg_count);
|
||||
break;
|
||||
}
|
||||
@@ -372,8 +385,9 @@ static void icp_ocfDrvExit(void)
|
||||
dereg_retry_delay_in_jiffies;
|
||||
while (0 > remaining_delay_time_in_jiffies) {
|
||||
remaining_delay_time_in_jiffies =
|
||||
schedule_timeout
|
||||
(remaining_delay_time_in_jiffies);
|
||||
icp_schedule_timeout
|
||||
(&icp_ocfDrvSymSessInfoListSpinlock,
|
||||
remaining_delay_time_in_jiffies);
|
||||
}
|
||||
|
||||
DPRINTK
|
||||
@@ -383,44 +397,48 @@ static void icp_ocfDrvExit(void)
|
||||
}
|
||||
|
||||
/*remove from current list */
|
||||
list_del(&(tempSessionData->listNode));
|
||||
ICP_LIST_DEL(tempSessionData, listNode);
|
||||
/*add to free mem linked list */
|
||||
list_add(&(tempSessionData->listNode),
|
||||
&icp_ocfDrvGlobalSymListHead_FreeMemList);
|
||||
ICP_LIST_ADD(tempSessionData,
|
||||
&icp_ocfDrvGlobalSymListHead_FreeMemList,
|
||||
listNode);
|
||||
|
||||
}
|
||||
|
||||
/*EXIT CRITICAL SECTION */
|
||||
spin_unlock_bh(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
|
||||
/*set back to initial values */
|
||||
sessionData = NULL;
|
||||
/*still have a reference in our list! */
|
||||
tempSessionData = NULL;
|
||||
/*free memory */
|
||||
list_for_each_entry_safe(tempSessionData, sessionData,
|
||||
&icp_ocfDrvGlobalSymListHead_FreeMemList,
|
||||
listNode) {
|
||||
|
||||
list_del(&(tempSessionData->listNode));
|
||||
ICP_LIST_FOR_EACH_ENTRY_SAFE(tempSessionData, sessionData,
|
||||
&icp_ocfDrvGlobalSymListHead_FreeMemList,
|
||||
listNode) {
|
||||
|
||||
ICP_LIST_DEL(tempSessionData, listNode);
|
||||
/* Free allocated CpaCySymSessionCtx */
|
||||
if (NULL != tempSessionData->sessHandle) {
|
||||
kfree(tempSessionData->sessHandle);
|
||||
icp_kfree(tempSessionData->sessHandle);
|
||||
}
|
||||
memset(tempSessionData, 0, sizeof(struct icp_drvSessionData));
|
||||
kmem_cache_free(drvSessionData_zone, tempSessionData);
|
||||
ICP_CACHE_FREE(drvSessionData_zone, tempSessionData);
|
||||
}
|
||||
|
||||
if (0 != atomic_read(&lac_session_failed_dereg_count)) {
|
||||
if (0 != icp_atomic_read(&lac_session_failed_dereg_count)) {
|
||||
DPRINTK("%s(): %d LAC sessions were not deregistered "
|
||||
"correctly. This is not a clean exit! \n",
|
||||
__FUNCTION__,
|
||||
atomic_read(&lac_session_failed_dereg_count));
|
||||
icp_atomic_read(&lac_session_failed_dereg_count));
|
||||
}
|
||||
|
||||
icp_ocfDrvFreeCaches();
|
||||
icp_ocfDrvDriverId = INVALID_DRIVER_ID;
|
||||
|
||||
icp_spin_lock_destroy(&icp_ocfDrvSymSessInfoListSpinlock);
|
||||
|
||||
/* Shutdown the Cryptographic component */
|
||||
lacStatus = cpaCyStopInstance(CPA_INSTANCE_HANDLE_SINGLE);
|
||||
if (CPA_STATUS_SUCCESS != lacStatus) {
|
||||
@@ -429,6 +447,7 @@ static void icp_ocfDrvExit(void)
|
||||
__FUNCTION__, lacStatus);
|
||||
}
|
||||
|
||||
return ICP_MODULE_EXIT_FUNC_RETURN_VAL;
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvFreeCaches
|
||||
@@ -437,9 +456,7 @@ static void icp_ocfDrvExit(void)
|
||||
*/
|
||||
static void icp_ocfDrvFreeCaches(void)
|
||||
{
|
||||
if (atomic_read(&icp_ocfDrvIsExiting) != CPA_TRUE) {
|
||||
atomic_set(&icp_ocfDrvIsExiting, 1);
|
||||
}
|
||||
icp_atomic_set(&icp_ocfDrvIsExiting, 1);
|
||||
|
||||
/*Sym Zones */
|
||||
ICP_CACHE_DESTROY(drvSessionData_zone);
|
||||
@@ -465,7 +482,6 @@ static void icp_ocfDrvFreeCaches(void)
|
||||
* off to a work queue. If it fails, nothing more can be done and it
|
||||
* returns an error
|
||||
*/
|
||||
|
||||
int icp_ocfDrvDeregRetry(CpaCySymSessionCtx sessionToDeregister)
|
||||
{
|
||||
struct icp_ocfDrvFreeLacSession *workstore = NULL;
|
||||
@@ -475,11 +491,11 @@ int icp_ocfDrvDeregRetry(CpaCySymSessionCtx sessionToDeregister)
|
||||
|
||||
/*make sure the session is not available to be allocated during this
|
||||
process */
|
||||
atomic_inc(&lac_session_failed_dereg_count);
|
||||
icp_atomic_inc(&lac_session_failed_dereg_count);
|
||||
|
||||
/*Farm off to work queue */
|
||||
workstore =
|
||||
kmalloc(sizeof(struct icp_ocfDrvFreeLacSession), GFP_ATOMIC);
|
||||
icp_kmalloc(sizeof(struct icp_ocfDrvFreeLacSession), ICP_M_NOWAIT);
|
||||
if (NULL == workstore) {
|
||||
DPRINTK("%s(): unable to free session - no memory available "
|
||||
"for work queue\n", __FUNCTION__);
|
||||
@@ -488,9 +504,11 @@ int icp_ocfDrvDeregRetry(CpaCySymSessionCtx sessionToDeregister)
|
||||
|
||||
workstore->sessionToDeregister = sessionToDeregister;
|
||||
|
||||
INIT_WORK(&(workstore->work), icp_ocfDrvDeferedFreeLacSessionProcess,
|
||||
workstore);
|
||||
queue_work(icp_ocfDrvFreeLacSessionWorkQ, &(workstore->work));
|
||||
icp_init_work(&(workstore->work),
|
||||
icp_ocfDrvDeferedFreeLacSessionTaskFn, workstore);
|
||||
|
||||
ICP_WORKQUEUE_ENQUEUE(icp_ocfDrvFreeLacSessionWorkQ,
|
||||
&(workstore->work));
|
||||
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
|
||||
@@ -503,7 +521,7 @@ int icp_ocfDrvDeregRetry(CpaCySymSessionCtx sessionToDeregister)
|
||||
* CPA_STATUS_RETRY message from the LAC component. This function is run in
|
||||
* Thread context because it is called from a worker thread
|
||||
*/
|
||||
static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
{
|
||||
struct icp_ocfDrvFreeLacSession *workstore = NULL;
|
||||
CpaCySymSessionCtx sessionToDeregister = NULL;
|
||||
@@ -519,10 +537,10 @@ static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
}
|
||||
|
||||
sessionToDeregister = workstore->sessionToDeregister;
|
||||
kfree(workstore);
|
||||
icp_kfree(workstore);
|
||||
|
||||
/*if exiting, give deregistration one more blast only */
|
||||
if (atomic_read(&icp_ocfDrvIsExiting) == CPA_TRUE) {
|
||||
if (icp_atomic_read(&icp_ocfDrvIsExiting) == CPA_TRUE) {
|
||||
lacStatus = cpaCySymRemoveSession(CPA_INSTANCE_HANDLE_SINGLE,
|
||||
sessionToDeregister);
|
||||
|
||||
@@ -533,7 +551,7 @@ static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
return;
|
||||
}
|
||||
|
||||
atomic_dec(&lac_session_failed_dereg_count);
|
||||
icp_atomic_dec(&lac_session_failed_dereg_count);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -542,7 +560,7 @@ static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
sessionToDeregister);
|
||||
|
||||
if (lacStatus == CPA_STATUS_SUCCESS) {
|
||||
atomic_dec(&lac_session_failed_dereg_count);
|
||||
icp_atomic_dec(&lac_session_failed_dereg_count);
|
||||
return;
|
||||
}
|
||||
if (lacStatus != CPA_STATUS_RETRY) {
|
||||
@@ -554,16 +572,17 @@ static void icp_ocfDrvDeferedFreeLacSessionProcess(void *arg)
|
||||
/*schedule_timout returns the time left for completion if this
|
||||
task is set to TASK_INTERRUPTIBLE */
|
||||
remaining_delay_time_in_jiffies = dereg_retry_delay_in_jiffies;
|
||||
while (0 > remaining_delay_time_in_jiffies) {
|
||||
while (0 < remaining_delay_time_in_jiffies) {
|
||||
remaining_delay_time_in_jiffies =
|
||||
schedule_timeout(remaining_delay_time_in_jiffies);
|
||||
icp_schedule_timeout(NULL,
|
||||
remaining_delay_time_in_jiffies);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
DPRINTK("%s(): Unable to deregister session\n", __FUNCTION__);
|
||||
DPRINTK("%s(): Number of unavailable LAC sessions = %d\n", __FUNCTION__,
|
||||
atomic_read(&lac_session_failed_dereg_count));
|
||||
icp_atomic_read(&lac_session_failed_dereg_count));
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvPtrAndLenToFlatBuffer
|
||||
@@ -581,131 +600,6 @@ icp_ocfDrvPtrAndLenToFlatBuffer(void *pData, uint32_t len,
|
||||
pFlatBuffer->dataLenInBytes = len;
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvSingleSkBuffToFlatBuffer
|
||||
*
|
||||
* Description : This function converts a single socket buffer (sk_buff)
|
||||
* structure to a Fredericksburg Flat Buffer (CpaFlatBuffer) format.
|
||||
*
|
||||
* This function assumes that the data passed in are valid.
|
||||
*/
|
||||
static inline void
|
||||
icp_ocfDrvSingleSkBuffToFlatBuffer(struct sk_buff *pSkb,
|
||||
CpaFlatBuffer * pFlatBuffer)
|
||||
{
|
||||
pFlatBuffer->pData = pSkb->data;
|
||||
pFlatBuffer->dataLenInBytes = skb_headlen(pSkb);
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvSkBuffToBufferList
|
||||
*
|
||||
* Description : This function converts a socket buffer (sk_buff) structure to
|
||||
* Fredericksburg Scatter/Gather (CpaBufferList) buffer format.
|
||||
*
|
||||
* This function assumes that the bufferlist has been allocated with the correct
|
||||
* number of buffer arrays.
|
||||
*
|
||||
*/
|
||||
inline int
|
||||
icp_ocfDrvSkBuffToBufferList(struct sk_buff *pSkb, CpaBufferList * bufferList)
|
||||
{
|
||||
CpaFlatBuffer *curFlatBuffer = NULL;
|
||||
char *skbuffPageAddr = NULL;
|
||||
struct sk_buff *pCurFrag = NULL;
|
||||
struct skb_shared_info *pShInfo = NULL;
|
||||
uint32_t page_offset = 0, i = 0;
|
||||
|
||||
DPRINTK("%s(): Entry Point\n", __FUNCTION__);
|
||||
|
||||
/*
|
||||
* In all cases, the first skb needs to be translated to FlatBuffer.
|
||||
* Perform a buffer translation for the first skbuff
|
||||
*/
|
||||
curFlatBuffer = bufferList->pBuffers;
|
||||
icp_ocfDrvSingleSkBuffToFlatBuffer(pSkb, curFlatBuffer);
|
||||
|
||||
/* Set the userData to point to the original sk_buff */
|
||||
bufferList->pUserData = (void *)pSkb;
|
||||
|
||||
/* We now know we'll have at least one element in the SGL */
|
||||
bufferList->numBuffers = 1;
|
||||
|
||||
if (0 == skb_is_nonlinear(pSkb)) {
|
||||
/* Is a linear buffer - therefore it's a single skbuff */
|
||||
DPRINTK("%s(): Exit Point\n", __FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
curFlatBuffer++;
|
||||
pShInfo = skb_shinfo(pSkb);
|
||||
if (pShInfo->frag_list != NULL && pShInfo->nr_frags != 0) {
|
||||
EPRINTK("%s():"
|
||||
"Translation for a combination of frag_list "
|
||||
"and frags[] array not supported!\n", __FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_FAIL;
|
||||
} else if (pShInfo->frag_list != NULL) {
|
||||
/*
|
||||
* Non linear skbuff supported through frag_list
|
||||
* Perform translation for each fragment (sk_buff)
|
||||
* in the frag_list of the first sk_buff.
|
||||
*/
|
||||
for (pCurFrag = pShInfo->frag_list;
|
||||
pCurFrag != NULL; pCurFrag = pCurFrag->next) {
|
||||
icp_ocfDrvSingleSkBuffToFlatBuffer(pCurFrag,
|
||||
curFlatBuffer);
|
||||
curFlatBuffer++;
|
||||
bufferList->numBuffers++;
|
||||
}
|
||||
} else if (pShInfo->nr_frags != 0) {
|
||||
/*
|
||||
* Perform translation for each fragment in frags array
|
||||
* and add to the BufferList
|
||||
*/
|
||||
for (i = 0; i < pShInfo->nr_frags; i++) {
|
||||
/* Get the page address and offset of this frag */
|
||||
skbuffPageAddr = (char *)pShInfo->frags[i].page;
|
||||
page_offset = pShInfo->frags[i].page_offset;
|
||||
|
||||
/* Convert a pointer and length to a flat buffer */
|
||||
icp_ocfDrvPtrAndLenToFlatBuffer(skbuffPageAddr +
|
||||
page_offset,
|
||||
pShInfo->frags[i].size,
|
||||
curFlatBuffer);
|
||||
curFlatBuffer++;
|
||||
bufferList->numBuffers++;
|
||||
}
|
||||
} else {
|
||||
EPRINTK("%s():" "Could not recognize skbuff fragments!\n",
|
||||
__FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_FAIL;
|
||||
}
|
||||
|
||||
DPRINTK("%s(): Exit Point\n", __FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvBufferListToSkBuff
|
||||
*
|
||||
* Description : This function converts a Fredericksburg Scatter/Gather
|
||||
* (CpaBufferList) buffer format to socket buffer structure.
|
||||
*/
|
||||
inline int
|
||||
icp_ocfDrvBufferListToSkBuff(CpaBufferList * bufferList, struct sk_buff **skb)
|
||||
{
|
||||
DPRINTK("%s(): Entry Point\n", __FUNCTION__);
|
||||
|
||||
/* Retrieve the orignal skbuff */
|
||||
*skb = (struct sk_buff *)bufferList->pUserData;
|
||||
if (NULL == *skb) {
|
||||
EPRINTK("%s():"
|
||||
"Error on converting from a BufferList. "
|
||||
"The BufferList does not contain an sk_buff.\n",
|
||||
__FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_FAIL;
|
||||
}
|
||||
DPRINTK("%s(): Exit Point\n", __FUNCTION__);
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvPtrAndLenToBufferList
|
||||
*
|
||||
* Description : This function converts a "pointer and length" buffer
|
||||
@@ -761,45 +655,6 @@ icp_ocfDrvBufferListMemInfo(uint16_t numBuffers,
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvGetSkBuffFrags
|
||||
*
|
||||
* Description : This function will determine the number of
|
||||
* fragments in a socket buffer(sk_buff).
|
||||
*/
|
||||
inline uint16_t icp_ocfDrvGetSkBuffFrags(struct sk_buff * pSkb)
|
||||
{
|
||||
uint16_t numFrags = 0;
|
||||
struct sk_buff *pCurFrag = NULL;
|
||||
struct skb_shared_info *pShInfo = NULL;
|
||||
|
||||
if (NULL == pSkb)
|
||||
return 0;
|
||||
|
||||
numFrags = 1;
|
||||
if (0 == skb_is_nonlinear(pSkb)) {
|
||||
/* Linear buffer - it's a single skbuff */
|
||||
return numFrags;
|
||||
}
|
||||
|
||||
pShInfo = skb_shinfo(pSkb);
|
||||
if (NULL != pShInfo->frag_list && 0 != pShInfo->nr_frags) {
|
||||
EPRINTK("%s(): Combination of frag_list "
|
||||
"and frags[] array not supported!\n", __FUNCTION__);
|
||||
return 0;
|
||||
} else if (0 != pShInfo->nr_frags) {
|
||||
numFrags += pShInfo->nr_frags;
|
||||
return numFrags;
|
||||
} else if (NULL != pShInfo->frag_list) {
|
||||
for (pCurFrag = pShInfo->frag_list;
|
||||
pCurFrag != NULL; pCurFrag = pCurFrag->next) {
|
||||
numFrags++;
|
||||
}
|
||||
return numFrags;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Name : icp_ocfDrvFreeFlatBuffer
|
||||
*
|
||||
* Description : This function will deallocate flat buffer.
|
||||
@@ -808,7 +663,7 @@ inline void icp_ocfDrvFreeFlatBuffer(CpaFlatBuffer * pFlatBuffer)
|
||||
{
|
||||
if (pFlatBuffer != NULL) {
|
||||
memset(pFlatBuffer, 0, sizeof(CpaFlatBuffer));
|
||||
kmem_cache_free(drvFlatBuffer_zone, pFlatBuffer);
|
||||
ICP_CACHE_FREE(drvFlatBuffer_zone, pFlatBuffer);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -819,14 +674,14 @@ inline void icp_ocfDrvFreeFlatBuffer(CpaFlatBuffer * pFlatBuffer)
|
||||
*/
|
||||
inline int
|
||||
icp_ocfDrvAllocMetaData(CpaBufferList * pBufferList,
|
||||
const struct icp_drvOpData *pOpData)
|
||||
struct icp_drvOpData *pOpData)
|
||||
{
|
||||
Cpa32U metaSize = 0;
|
||||
|
||||
if (pBufferList->numBuffers <= ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS){
|
||||
void *pOpDataStartAddr = (void *)pOpData;
|
||||
if (pBufferList->numBuffers <= ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) {
|
||||
uint8_t *pOpDataStartAddr = (uint8_t *) pOpData;
|
||||
|
||||
if (0 == defBuffListInfo.metaSize) {
|
||||
if (0 == defBuffListInfo.metaSize) {
|
||||
pBufferList->pPrivateMetaData = NULL;
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
@@ -835,8 +690,9 @@ icp_ocfDrvAllocMetaData(CpaBufferList * pBufferList,
|
||||
* op data. It has been pre-allocated in memory just after the
|
||||
* icp_drvOpData structure.
|
||||
*/
|
||||
pBufferList->pPrivateMetaData = pOpDataStartAddr +
|
||||
sizeof(struct icp_drvOpData);
|
||||
pBufferList->pPrivateMetaData = (void *)(pOpDataStartAddr +
|
||||
sizeof(struct
|
||||
icp_drvOpData));
|
||||
} else {
|
||||
if (CPA_STATUS_SUCCESS !=
|
||||
cpaCyBufferListGetMetaSize(CPA_INSTANCE_HANDLE_SINGLE,
|
||||
@@ -852,7 +708,8 @@ icp_ocfDrvAllocMetaData(CpaBufferList * pBufferList,
|
||||
return ICP_OCF_DRV_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
pBufferList->pPrivateMetaData = kmalloc(metaSize, GFP_ATOMIC);
|
||||
pBufferList->pPrivateMetaData =
|
||||
icp_kmalloc(metaSize, ICP_M_NOWAIT);
|
||||
}
|
||||
if (NULL == pBufferList->pPrivateMetaData) {
|
||||
EPRINTK("%s() Failed to allocate pPrivateMetaData.\n",
|
||||
@@ -879,13 +736,38 @@ inline void icp_ocfDrvFreeMetaData(CpaBufferList * pBufferList)
|
||||
* Otherwise, the meta data shall be freed when the icp_drvOpData is
|
||||
* freed.
|
||||
*/
|
||||
if (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS < pBufferList->numBuffers){
|
||||
kfree(pBufferList->pPrivateMetaData);
|
||||
if (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS < pBufferList->numBuffers) {
|
||||
icp_kfree(pBufferList->pPrivateMetaData);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(icp_ocfDrvInit);
|
||||
module_exit(icp_ocfDrvExit);
|
||||
MODULE_LICENSE("Dual BSD/GPL");
|
||||
MODULE_AUTHOR("Intel");
|
||||
MODULE_DESCRIPTION("OCF Driver for Intel Quick Assist crypto acceleration");
|
||||
/* Module declaration, init and exit functions */
|
||||
ICP_DECLARE_MODULE(icp_ocf, icp_ocfDrvInit, icp_ocfDrvExit);
|
||||
ICP_MODULE_DESCRIPTION("OCF Driver for Intel Quick Assist crypto acceleration");
|
||||
ICP_MODULE_VERSION(icp_ocf, ICP_OCF_VER_MJR);
|
||||
ICP_MODULE_LICENSE("Dual BSD/GPL");
|
||||
ICP_MODULE_AUTHOR("Intel");
|
||||
|
||||
/* Module parameters */
|
||||
ICP_MODULE_PARAM_INT(icp_ocf, num_dereg_retries,
|
||||
"Number of times to retry LAC Sym Session Deregistration. "
|
||||
"Default 10, Max 100");
|
||||
ICP_MODULE_PARAM_INT(icp_ocf, dereg_retry_delay_in_jiffies, "Delay in jiffies "
|
||||
"(added to a schedule() function call) before a LAC Sym "
|
||||
"Session Dereg is retried. Default 10");
|
||||
ICP_MODULE_PARAM_INT(icp_ocf, max_sessions,
|
||||
"This sets the maximum number of sessions "
|
||||
"between OCF and this driver. If this value is set to zero,"
|
||||
"max session count checking is disabled. Default is zero(0)");
|
||||
|
||||
/* Module dependencies */
|
||||
#define MODULE_MIN_VER 1
|
||||
#define CRYPTO_MAX_VER 3
|
||||
#define LAC_MAX_VER 2
|
||||
|
||||
ICP_MODULE_DEPEND(icp_ocf, crypto, MODULE_MIN_VER, MODULE_MIN_VER,
|
||||
CRYPTO_MAX_VER);
|
||||
ICP_MODULE_DEPEND(icp_ocf, cryptodev, MODULE_MIN_VER, MODULE_MIN_VER,
|
||||
CRYPTO_MAX_VER);
|
||||
ICP_MODULE_DEPEND(icp_ocf, icp_crypto, MODULE_MIN_VER, MODULE_MIN_VER,
|
||||
LAC_MAX_VER);
|
||||
|
||||
Reference in New Issue
Block a user