1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-07-04 23:22:22 +03:00

[ifxmips] uboot: support boards with tantos switch and small code and format cleanups

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@13308 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
thl 2008-11-21 18:47:33 +00:00
parent 79838c5f97
commit 73c767e1bc

View File

@ -27,7 +27,7 @@
#include <common.h> #include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \ #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
&& defined(CONFIG_DANUBE_SWITCH) && defined(CONFIG_DANUBE_SWITCH)
#include <malloc.h> #include <malloc.h>
#include <net.h> #include <net.h>
@ -41,37 +41,39 @@
#define TX_CHAN_NO 7 #define TX_CHAN_NO 7
#define RX_CHAN_NO 6 #define RX_CHAN_NO 6
#define NUM_RX_DESC PKTBUFSRX #define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 8 #define NUM_TX_DESC 8
#define MAX_PACKET_SIZE 1536 #define MAX_PACKET_SIZE 1536
#define TOUT_LOOP 100 #define TOUT_LOOP 100
#define PHY0_ADDR 1 /*fixme: set the correct value here*/ #define PHY0_ADDR 1 /*fixme: set the correct value here*/
#define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value #define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value
#define DMA_READ_REG(reg, value) value = (u32)*((volatile u32*)reg) #define DMA_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
#define SW_WRITE_REG(reg, value) *((volatile u32*)reg) = (u32)value #define SW_WRITE_REG(reg, value) *((volatile u32*)reg) = (u32)value
#define SW_READ_REG(reg, value) value = (u32)*((volatile u32*)reg) #define SW_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
#define TANTOS_CHIP_ID 0x2599
typedef struct typedef struct
{ {
union union
{ {
struct struct
{ {
volatile u32 OWN :1; volatile u32 OWN :1;
volatile u32 C :1; volatile u32 C :1;
volatile u32 Sop :1; volatile u32 Sop :1;
volatile u32 Eop :1; volatile u32 Eop :1;
volatile u32 reserved :3; volatile u32 reserved :3;
volatile u32 Byteoffset :2; volatile u32 Byteoffset :2;
volatile u32 reserve :7; volatile u32 reserve :7;
volatile u32 DataLen :16; volatile u32 DataLen :16;
}field; }field;
volatile u32 word; volatile u32 word;
}status; }status;
volatile u32 DataPtr; volatile u32 DataPtr;
} danube_rx_descriptor_t; } danube_rx_descriptor_t;
@ -81,18 +83,18 @@ typedef struct
{ {
struct struct
{ {
volatile u32 OWN :1; volatile u32 OWN :1;
volatile u32 C :1; volatile u32 C :1;
volatile u32 Sop :1; volatile u32 Sop :1;
volatile u32 Eop :1; volatile u32 Eop :1;
volatile u32 Byteoffset :5; volatile u32 Byteoffset :5;
volatile u32 reserved :7; volatile u32 reserved :7;
volatile u32 DataLen :16; volatile u32 DataLen :16;
}field; }field;
volatile u32 word; volatile u32 word;
}status; }status;
volatile u32 DataPtr; volatile u32 DataPtr;
} danube_tx_descriptor_t; } danube_tx_descriptor_t;
@ -115,7 +117,8 @@ static void danube_dma_init(void);
int danube_switch_initialize(bd_t * bis) int danube_switch_initialize(bd_t * bis)
{ {
struct eth_device *dev; struct eth_device *dev;
unsigned short chipid;
#if 0 #if 0
printf("Entered danube_switch_initialize()\n"); printf("Entered danube_switch_initialize()\n");
#endif #endif
@ -129,21 +132,21 @@ int danube_switch_initialize(bd_t * bis)
danube_dma_init(); danube_dma_init();
danube_init_switch_chip(REV_MII_MODE); danube_init_switch_chip(REV_MII_MODE);
#ifdef CLK_OUT2_25MHZ #ifdef CLK_OUT2_25MHZ
*DANUBE_GPIO_P0_DIR=0x0000ae78; *DANUBE_GPIO_P0_DIR=0x0000ae78;
*DANUBE_GPIO_P0_ALTSEL0=0x00008078; *DANUBE_GPIO_P0_ALTSEL0=0x00008078;
//joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080; //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
*DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
*DANUBE_CGU_IFCCR=0x00400010; *DANUBE_CGU_IFCCR=0x00400010;
*DANUBE_GPIO_P0_OD=0x0000ae78; *DANUBE_GPIO_P0_OD=0x0000ae78;
#endif #endif
/*patch for 6996*/ /*patch for 6996*/
*DANUBE_RCU_RST_REQ |=1; *DANUBE_RCU_RST_REQ |=1;
mdelay(200); mdelay(200);
*DANUBE_RCU_RST_REQ &=(unsigned long)~1; *DANUBE_RCU_RST_REQ &=(unsigned long)~1;
mdelay(1); mdelay(1);
/*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602; *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
@ -160,29 +163,76 @@ int danube_switch_initialize(bd_t * bis)
eth_register(dev); eth_register(dev);
#if 0 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
printf("Leaving danube_switch_initialize()\n"); *DANUBE_PPE_ETOP_MDIO_ACC =0xc1010000;
#endif while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); chipid = (unsigned short)(*DANUBE_PPE_ETOP_MDIO_ACC & 0xffff);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000); if (chipid != TANTOS_CHIP_ID) // not tantos switch.
*DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F; {
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F; *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
//while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000);
//*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F; *DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F; *DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); //while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F; //*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F; *DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602; *DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F;
#ifdef CLK_OUT2_25MHZ while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
*DANUBE_PPE_ETOP_MDIO_ACC =0x80334000; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
#ifdef CLK_OUT2_25MHZ
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80334000;
#endif #endif
}
else // Tantos switch chip
{
//printf("Tantos Switch detected!!\n\r");
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80a10004;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80c10004;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80f50773;
/* Software workaround. */
/* PHY reset from P0 to P4. */
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
*DANUBE_PPE_ETOP_MDIO_ACC =0x81218000;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
/* P0 */
*DANUBE_PPE_ETOP_MDIO_ACC =0x81200400;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
/* P1 */
*DANUBE_PPE_ETOP_MDIO_ACC =0x81200420;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
/* P2 */
*DANUBE_PPE_ETOP_MDIO_ACC =0x81200440;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
/* P3 */
*DANUBE_PPE_ETOP_MDIO_ACC =0x81200460;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
/* p4 */
*DANUBE_PPE_ETOP_MDIO_ACC =0x81200480;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
mdelay(1);
}
return 1; return 1;
} }
@ -193,34 +243,33 @@ int danube_switch_init(struct eth_device *dev, bd_t * bis)
tx_num=0; tx_num=0;
rx_num=0; rx_num=0;
/* Reset DMA /* Reset DMA */
*/
// serial_puts("i \n\0"); // serial_puts("i \n\0");
*DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CPOLL= 0x80000040;
/*set descriptor base*/ /*set descriptor base*/
*DANUBE_DMA_CDBA=(u32)rx_des_ring; *DANUBE_DMA_CDBA=(u32)rx_des_ring;
*DANUBE_DMA_CDLEN=NUM_RX_DESC; *DANUBE_DMA_CDLEN=NUM_RX_DESC;
*DANUBE_DMA_CIE = 0; *DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30000; *DANUBE_DMA_CCTRL=0x30000;
*DANUBE_DMA_CS=TX_CHAN_NO; *DANUBE_DMA_CS=TX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CPOLL= 0x80000040;
*DANUBE_DMA_CDBA=(u32)tx_des_ring; *DANUBE_DMA_CDBA=(u32)tx_des_ring;
*DANUBE_DMA_CDLEN=NUM_TX_DESC; *DANUBE_DMA_CDLEN=NUM_TX_DESC;
*DANUBE_DMA_CIE = 0; *DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30100; *DANUBE_DMA_CCTRL=0x30100;
for(i=0;i < NUM_RX_DESC; i++) for(i=0;i < NUM_RX_DESC; i++)
{ {
danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]); danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]);
rx_desc->status.word=0; rx_desc->status.word=0;
rx_desc->status.field.OWN=1; rx_desc->status.field.OWN=1;
rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */ rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */
rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]); rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]);
} }
@ -230,20 +279,20 @@ int danube_switch_init(struct eth_device *dev, bd_t * bis)
memset(tx_desc, 0, sizeof(tx_des_ring[0])); memset(tx_desc, 0, sizeof(tx_des_ring[0]));
} }
/* turn on DMA rx & tx channel /* turn on DMA rx & tx channel
*/ */
*DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/ *DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/
return 0; return 0;
} }
void danube_switch_halt(struct eth_device *dev) void danube_switch_halt(struct eth_device *dev)
{ {
int i; int i;
for(i=0;i<8;i++) for(i=0;i<8;i++)
{ {
*DANUBE_DMA_CS=i; *DANUBE_DMA_CS=i;
*DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/ *DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/
} }
// udelay(1000000); // udelay(1000000);
} }
@ -251,17 +300,17 @@ void danube_switch_halt(struct eth_device *dev)
int danube_switch_send(struct eth_device *dev, volatile void *packet,int length) int danube_switch_send(struct eth_device *dev, volatile void *packet,int length)
{ {
int i; int i;
int res = -1; int res = -1;
danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]); danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]);
if (length <= 0) if (length <= 0)
{ {
printf ("%s: bad packet size: %d\n", dev->name, length); printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done; goto Done;
} }
for(i=0; tx_desc->status.field.OWN==1; i++) for(i=0; tx_desc->status.field.OWN==1; i++)
{ {
if(i>=TOUT_LOOP) if(i>=TOUT_LOOP)
@ -280,44 +329,40 @@ int danube_switch_send(struct eth_device *dev, volatile void *packet,int length)
if(length<60) if(length<60)
tx_desc->status.field.DataLen = 60; tx_desc->status.field.DataLen = 60;
else else
tx_desc->status.field.DataLen = (u32)length; tx_desc->status.field.DataLen = (u32)length;
asm("SYNC"); asm("SYNC");
tx_desc->status.field.OWN=1; tx_desc->status.field.OWN=1;
res=length; res=length;
tx_num++; tx_num++;
if(tx_num==NUM_TX_DESC) tx_num=0; if(tx_num==NUM_TX_DESC) tx_num=0;
*DANUBE_DMA_CS=TX_CHAN_NO; *DANUBE_DMA_CS=TX_CHAN_NO;
if(!(*DANUBE_DMA_CCTRL & 1)) if(!(*DANUBE_DMA_CCTRL & 1))
*DANUBE_DMA_CCTRL|=1; *DANUBE_DMA_CCTRL|=1;
Done: Done:
return res; return res;
} }
int danube_switch_recv(struct eth_device *dev) int danube_switch_recv(struct eth_device *dev)
{ {
int length = 0;
int length = 0;
danube_rx_descriptor_t * rx_desc; danube_rx_descriptor_t * rx_desc;
int anchor_num=0;
int i;
for (;;) for (;;)
{ {
rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]); rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]);
if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1)) if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1))
{ {
break; break;
} }
length = rx_desc->status.field.DataLen; length = rx_desc->status.field.DataLen;
if (length) if (length)
{ {
NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4); NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4);
// serial_putc('*'); // serial_putc('*');
} }
@ -342,10 +387,8 @@ int danube_switch_recv(struct eth_device *dev)
static void danube_init_switch_chip(int mode) static void danube_init_switch_chip(int mode)
{ {
int i; /*get and set mac address for MAC*/
/*get and set mac address for MAC*/ char *tmp;
static unsigned char addr[6];
char *tmp,*end;
tmp = getenv ("ethaddr"); tmp = getenv ("ethaddr");
if (NULL == tmp) { if (NULL == tmp) {
printf("Can't get environment ethaddr!!!\n"); printf("Can't get environment ethaddr!!!\n");
@ -353,58 +396,55 @@ static void danube_init_switch_chip(int mode)
} else { } else {
printf("ethaddr=%s\n", tmp); printf("ethaddr=%s\n", tmp);
} }
*DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF; *DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF;
*DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6; *DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6;
*DANUBE_PPE32_ENET_MAC_CFG = 0x187; *DANUBE_PPE32_ENET_MAC_CFG = 0x187;
// turn on port0, set to rmii and turn off port1. // turn on port0, set to rmii and turn off port1.
if(mode==REV_MII_MODE) if (mode==REV_MII_MODE)
{ {
*DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a; *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a;
} }
else if (mode == MII_MODE) else if (mode == MII_MODE)
{ {
*DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008; *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008;
} }
*DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen. *DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen.
*ENET_MAC_CFG|=1<<11;/*enable the crc*/ *ENET_MAC_CFG |= 1<<11; /*enable the crc*/
return; return;
} }
static void danube_dma_init(void) static void danube_dma_init(void)
{ {
int i;
// serial_puts("d \n\0"); // serial_puts("d \n\0");
*DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/ *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
/* Reset DMA /* Reset DMA */
*/ *DANUBE_DMA_CTRL|=1;
*DANUBE_DMA_CTRL|=1; *DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/
*DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/
/* Clear Interrupt Status Register /* Clear Interrupt Status Register */
*/
*DANUBE_DMA_IRNCR=0xfffff; *DANUBE_DMA_IRNCR=0xfffff;
/*disable all the dma interrupts*/ /*disable all the dma interrupts*/
*DANUBE_DMA_IRNEN=0; *DANUBE_DMA_IRNEN=0;
/*disable channel 0 and channel 1 interrupts*/ /*disable channel 0 and channel 1 interrupts*/
*DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CPOLL= 0x80000040;
/*set descriptor base*/ /*set descriptor base*/
*DANUBE_DMA_CDBA=(u32)rx_des_ring; *DANUBE_DMA_CDBA=(u32)rx_des_ring;
*DANUBE_DMA_CDLEN=NUM_RX_DESC; *DANUBE_DMA_CDLEN=NUM_RX_DESC;
*DANUBE_DMA_CIE = 0; *DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30000; *DANUBE_DMA_CCTRL=0x30000;
*DANUBE_DMA_CS=TX_CHAN_NO; *DANUBE_DMA_CS=TX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CPOLL= 0x80000040;
*DANUBE_DMA_CDBA=(u32)tx_des_ring; *DANUBE_DMA_CDBA=(u32)tx_des_ring;
*DANUBE_DMA_CDLEN=NUM_TX_DESC; *DANUBE_DMA_CDLEN=NUM_TX_DESC;
*DANUBE_DMA_CIE = 0; *DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30100; *DANUBE_DMA_CCTRL=0x30100;
/*enable the poll function and set the poll counter*/ /*enable the poll function and set the poll counter*/
@ -416,8 +456,4 @@ static void danube_dma_init(void)
return; return;
} }
#endif #endif