1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-04-21 12:27:27 +03:00

change the way ./files* and the generic kernel files are applied. ./files now applies to *ALL* kernel versions, and is copied along with ./files-* - this gets rid of quite a bit of redundancy in the extra kernel drivers.

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@13010 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
nbd
2008-10-18 21:43:30 +00:00
parent a662d5b130
commit 79670e1e13
125 changed files with 4 additions and 8971 deletions

View File

@@ -0,0 +1,201 @@
/*
* character device wrapper for generic gpio layer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA02111-1307USA
*
* Feedback, Bugs... blogic@openwrt.org
*
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/atomic.h>
#include <linux/init.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/gpio_dev.h>
#define DRVNAME "gpiodev"
#define DEVNAME "gpio"
static int dev_major;
static unsigned int gpio_access_mask;
static struct class *gpiodev_class;
/* Counter is 1, if the device is not opened and zero (or less) if opened. */
static atomic_t gpio_open_cnt = ATOMIC_INIT(1);
static int
gpio_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg)
{
int retval = 0;
if (((1 << arg) & gpio_access_mask) != (1 << arg))
{
retval = -EINVAL;
goto out;
}
switch (cmd)
{
case GPIO_GET:
retval = gpio_get_value(arg);
break;
case GPIO_SET:
gpio_set_value(arg, 1);
break;
case GPIO_CLEAR:
gpio_set_value(arg, 0);
break;
case GPIO_DIR_IN:
gpio_direction_input(arg);
break;
case GPIO_DIR_OUT:
gpio_direction_output(arg, 0);
break;
default:
retval = -EINVAL;
break;
}
out:
return retval;
}
static int
gpio_open(struct inode *inode, struct file *file)
{
int result = 0;
unsigned int dev_minor = MINOR(inode->i_rdev);
if (dev_minor != 0)
{
printk(KERN_ERR DRVNAME ": trying to access unknown minor device -> %d\n", dev_minor);
result = -ENODEV;
goto out;
}
/* FIXME: We should really allow multiple applications to open the device
* at the same time, as long as the apps access different IO pins.
* The generic gpio-registration functions can be used for that.
* Two new IOCTLs have to be introduced for that. Need to check userspace
* compatibility first. --mb */
if (!atomic_dec_and_test(&gpio_open_cnt)) {
atomic_inc(&gpio_open_cnt);
printk(KERN_ERR DRVNAME ": Device with minor ID %d already in use\n", dev_minor);
result = -EBUSY;
goto out;
}
out:
return result;
}
static int
gpio_close(struct inode * inode, struct file * file)
{
smp_mb__before_atomic_inc();
atomic_inc(&gpio_open_cnt);
return 0;
}
struct file_operations gpio_fops = {
ioctl: gpio_ioctl,
open: gpio_open,
release: gpio_close
};
static int
gpio_probe(struct platform_device *dev)
{
int result = 0;
dev_major = register_chrdev(0, DEVNAME, &gpio_fops);
if (!dev_major)
{
printk(KERN_ERR DRVNAME ": Error whilst opening %s \n", DEVNAME);
result = -ENODEV;
goto out;
}
gpiodev_class = class_create(THIS_MODULE, DRVNAME);
class_device_create(gpiodev_class, NULL, MKDEV(dev_major, 0), NULL, DEVNAME);
printk(KERN_INFO DRVNAME ": gpio device registered with major %d\n", dev_major);
if (dev->num_resources != 1)
{
printk(KERN_ERR DRVNAME ": device may only have 1 resource\n");
result = -ENODEV;
goto out;
}
gpio_access_mask = dev->resource[0].start;
printk(KERN_INFO DRVNAME ": gpio platform device registered with access mask %08X\n", gpio_access_mask);
out:
return result;
}
static int
gpio_remove(struct platform_device *dev)
{
unregister_chrdev(dev_major, DEVNAME);
return 0;
}
static struct
platform_driver gpio_driver = {
.probe = gpio_probe,
.remove = gpio_remove,
.driver = {
.name = "GPIODEV",
.owner = THIS_MODULE,
},
};
static int __init
gpio_mod_init(void)
{
int ret = platform_driver_register(&gpio_driver);
if (ret)
printk(KERN_INFO DRVNAME ": Error registering platfom driver!");
return ret;
}
static void __exit
gpio_mod_exit(void)
{
platform_driver_unregister(&gpio_driver);
}
module_init (gpio_mod_init);
module_exit (gpio_mod_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin / OpenWrt");
MODULE_DESCRIPTION("Character device for for generic gpio api");

View File

@@ -0,0 +1,209 @@
/*
* Driver for buttons on GPIO lines not capable of generating interrupts
*
* Copyright (C) 2007,2008 Gabor Juhos <juhosg at openwrt.org>
*
* This file was based on: /drivers/input/misc/cobalt_btns.c
* Copyright (C) 2007 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
*
* also was based on: /drivers/input/keyboard/gpio_keys.c
* Copyright 2005 Phil Blundell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input-polldev.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/gpio_buttons.h>
#include <asm/gpio.h>
#define DRV_NAME "gpio-buttons"
#define DRV_VERSION "0.1.1"
#define PFX DRV_NAME ": "
struct gpio_buttons_dev {
struct input_polled_dev *poll_dev;
struct gpio_buttons_platform_data *pdata;
};
static void gpio_buttons_poll(struct input_polled_dev *dev)
{
struct gpio_buttons_dev *bdev = dev->private;
struct gpio_buttons_platform_data *pdata = bdev->pdata;
struct input_dev *input = dev->input;
int i;
for (i = 0; i < bdev->pdata->nbuttons; i++) {
struct gpio_button *button = &pdata->buttons[i];
unsigned int type = button->type ?: EV_KEY;
int state;
state = gpio_get_value(button->gpio) ? 1 : 0;
state ^= button->active_low;
if (state) {
button->count++;
} else {
if (button->count >= button->threshold) {
input_event(input, type, button->code, 1);
input_sync(input);
}
button->count = 0;
}
if (button->count == button->threshold) {
input_event(input, type, button->code, 0);
input_sync(input);
}
}
}
static int __devinit gpio_buttons_probe(struct platform_device *pdev)
{
struct gpio_buttons_platform_data *pdata = pdev->dev.platform_data;
struct gpio_buttons_dev *bdev;
struct input_polled_dev *poll_dev;
struct input_dev *input;
int error, i;
if (!pdata)
return -ENXIO;
bdev = kzalloc(sizeof(*bdev), GFP_KERNEL);
if (!bdev) {
printk(KERN_ERR DRV_NAME "no memory for device\n");
return -ENOMEM;
}
poll_dev = input_allocate_polled_device();
if (!poll_dev) {
printk(KERN_ERR DRV_NAME "no memory for polled device\n");
error = -ENOMEM;
goto err_free_bdev;
}
poll_dev->private = bdev;
poll_dev->poll = gpio_buttons_poll;
poll_dev->poll_interval = pdata->poll_interval;
input = poll_dev->input;
input->evbit[0] = BIT(EV_KEY);
input->name = pdev->name;
input->phys = "gpio-buttons/input0";
input->dev.parent = &pdev->dev;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_button *button = &pdata->buttons[i];
unsigned int gpio = button->gpio;
unsigned int type = button->type ?: EV_KEY;
error = gpio_request(gpio, button->desc ?
button->desc : DRV_NAME);
if (error) {
printk(KERN_ERR PFX "unable to claim gpio %u, "
"error %d\n", gpio, error);
goto err_free_gpio;
}
error = gpio_direction_input(gpio);
if (error) {
printk(KERN_ERR PFX "unable to set direction on "
"gpio %u, error %d\n", gpio, error);
goto err_free_gpio;
}
input_set_capability(input, type, button->code);
button->count = 0;
}
bdev->poll_dev = poll_dev;
bdev->pdata = pdata;
platform_set_drvdata(pdev, bdev);
error = input_register_polled_device(poll_dev);
if (error) {
printk(KERN_ERR PFX "unable to register polled device, "
"error %d\n", error);
goto err_free_gpio;
}
return 0;
err_free_gpio:
for (i = i - 1; i >= 0; i--)
gpio_free(pdata->buttons[i].gpio);
input_free_polled_device(poll_dev);
err_free_bdev:
kfree(bdev);
platform_set_drvdata(pdev, NULL);
return error;
}
static int __devexit gpio_buttons_remove(struct platform_device *pdev)
{
struct gpio_buttons_dev *bdev = platform_get_drvdata(pdev);
struct gpio_buttons_platform_data *pdata = bdev->pdata;
int i;
input_unregister_polled_device(bdev->poll_dev);
for (i = 0; i < pdata->nbuttons; i++)
gpio_free(pdata->buttons[i].gpio);
input_free_polled_device(bdev->poll_dev);
kfree(bdev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver gpio_buttons_driver = {
.probe = gpio_buttons_probe,
.remove = __devexit_p(gpio_buttons_remove),
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init gpio_buttons_init(void)
{
printk(KERN_INFO DRV_NAME " driver version " DRV_VERSION "\n");
return platform_driver_register(&gpio_buttons_driver);
}
static void __exit gpio_buttons_exit(void)
{
platform_driver_unregister(&gpio_buttons_driver);
}
module_init(gpio_buttons_init);
module_exit(gpio_buttons_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Gabor Juhos <juhosg at openwrt.org>");
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Polled buttons driver for CPU GPIOs");

View File

@@ -0,0 +1,172 @@
/*
* LEDs driver for PCEngines ALIX 2/3 series
*
* Copyright (C) 2007 Petr Liebman
*
* Based on leds-wrap.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
#include <linux/err.h>
#include <asm/io.h>
#define DRVNAME "alix-led"
#define ALIX_LED1_PORT (0x6100)
#define ALIX_LED1_ON (1<<22)
#define ALIX_LED1_OFF (1<<6)
#define ALIX_LED2_PORT (0x6180)
#define ALIX_LED2_ON (1<<25)
#define ALIX_LED2_OFF (1<<9)
#define ALIX_LED3_PORT (0x6180)
#define ALIX_LED3_ON (1<<27)
#define ALIX_LED3_OFF (1<<11)
static struct platform_device *pdev;
static void alix_led_set_1(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED1_ON, ALIX_LED1_PORT);
else
outl(ALIX_LED1_OFF, ALIX_LED1_PORT);
}
static void alix_led_set_2(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED2_ON, ALIX_LED2_PORT);
else
outl(ALIX_LED2_OFF, ALIX_LED2_PORT);
}
static void alix_led_set_3(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED3_ON, ALIX_LED3_PORT);
else
outl(ALIX_LED3_OFF, ALIX_LED3_PORT);
}
static struct led_classdev alix_led_1 = {
.name = "alix:1",
.brightness_set = alix_led_set_1,
};
static struct led_classdev alix_led_2 = {
.name = "alix:2",
.brightness_set = alix_led_set_2,
};
static struct led_classdev alix_led_3 = {
.name = "alix:3",
.brightness_set = alix_led_set_3,
};
#ifdef CONFIG_PM
static int alix_led_suspend(struct platform_device *dev,
pm_message_t state)
{
led_classdev_suspend(&alix_led_1);
led_classdev_suspend(&alix_led_2);
led_classdev_suspend(&alix_led_3);
return 0;
}
static int alix_led_resume(struct platform_device *dev)
{
led_classdev_resume(&alix_led_1);
led_classdev_resume(&alix_led_2);
led_classdev_resume(&alix_led_3);
return 0;
}
#else
#define alix_led_suspend NULL
#define alix_led_resume NULL
#endif
static int alix_led_probe(struct platform_device *pdev)
{
int ret;
ret = led_classdev_register(&pdev->dev, &alix_led_1);
if (ret >= 0)
{
ret = led_classdev_register(&pdev->dev, &alix_led_2);
if (ret >= 0)
{
ret = led_classdev_register(&pdev->dev, &alix_led_3);
if (ret < 0)
led_classdev_unregister(&alix_led_2);
}
if (ret < 0)
led_classdev_unregister(&alix_led_1);
}
return ret;
}
static int alix_led_remove(struct platform_device *pdev)
{
led_classdev_unregister(&alix_led_1);
led_classdev_unregister(&alix_led_2);
led_classdev_unregister(&alix_led_3);
return 0;
}
static struct platform_driver alix_led_driver = {
.probe = alix_led_probe,
.remove = alix_led_remove,
.suspend = alix_led_suspend,
.resume = alix_led_resume,
.driver = {
.name = DRVNAME,
.owner = THIS_MODULE,
},
};
static int __init alix_led_init(void)
{
int ret;
ret = platform_driver_register(&alix_led_driver);
if (ret < 0)
goto out;
pdev = platform_device_register_simple(DRVNAME, -1, NULL, 0);
if (IS_ERR(pdev)) {
ret = PTR_ERR(pdev);
platform_driver_unregister(&alix_led_driver);
goto out;
}
out:
return ret;
}
static void __exit alix_led_exit(void)
{
platform_device_unregister(pdev);
platform_driver_unregister(&alix_led_driver);
}
module_init(alix_led_init);
module_exit(alix_led_exit);
MODULE_AUTHOR("Petr Liebman");
MODULE_DESCRIPTION("PCEngines ALIX LED driver");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,45 @@
/*
* LED Kernel Default ON Trigger
*
* Copyright 2008 Nick Forbes <nick.forbes@incepta.com>
*
* Based on Richard Purdie's ledtrig-timer.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/leds.h>
#include "leds.h"
static void defon_trig_activate(struct led_classdev *led_cdev)
{
led_set_brightness(led_cdev, LED_FULL);
}
static struct led_trigger defon_led_trigger = {
.name = "default-on",
.activate = defon_trig_activate,
};
static int __init defon_trig_init(void)
{
return led_trigger_register(&defon_led_trigger);
}
static void __exit defon_trig_exit(void)
{
led_trigger_unregister(&defon_led_trigger);
}
module_init(defon_trig_init);
module_exit(defon_trig_exit);
MODULE_AUTHOR("Nick Forbes <nick.forbes@incepta.com>");
MODULE_DESCRIPTION("Default-ON LED trigger");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,365 @@
/*
* LED Morse Trigger
*
* Copyright (C) 2007 Gabor Juhos <juhosg at openwrt.org>
*
* This file was based on: drivers/led/ledtrig-timer.c
* Copyright 2005-2006 Openedhand Ltd.
* Author: Richard Purdie <rpurdie@openedhand.com>
*
* also based on the patch '[PATCH] 2.5.59 morse code panics' posted
* in the LKML by Tomas Szepe at Thu, 30 Jan 2003
* Copyright (C) 2002 Andrew Rodland <arodland@noln.com>
* Copyright (C) 2003 Tomas Szepe <szepe@pinerecords.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/leds.h>
#include "leds.h"
#define MORSE_DELAY_BASE (HZ/2)
#define MORSE_STATE_BLINK_START 0
#define MORSE_STATE_BLINK_STOP 1
#define MORSE_DIT_LEN 1
#define MORSE_DAH_LEN 3
#define MORSE_SPACE_LEN 7
struct morse_trig_data {
unsigned long delay;
char *msg;
unsigned char morse;
unsigned char state;
char *msgpos;
struct timer_list timer;
};
const unsigned char morsetable[] = {
0122, 0, 0310, 0, 0, 0163, /* "#$%&' */
055, 0155, 0, 0, 0163, 0141, 0152, 0051, /* ()*+,-./ */
077, 076, 074, 070, 060, 040, 041, 043, 047, 057, /* 0-9 */
0107, 0125, 0, 0061, 0, 0114, 0, /* :;<=>?@ */
006, 021, 025, 011, 002, 024, 013, 020, 004, /* A-I */
036, 015, 022, 007, 005, 017, 026, 033, 012, /* J-R */
010, 003, 014, 030, 016, 031, 035, 023, /* S-Z */
0, 0, 0, 0, 0154 /* [\]^_ */
};
static inline unsigned char tomorse(char c) {
if (c >= 'a' && c <= 'z')
c = c - 'a' + 'A';
if (c >= '"' && c <= '_') {
return morsetable[c - '"'];
} else
return 0;
}
static inline unsigned long dit_len(struct morse_trig_data *morse_data)
{
return MORSE_DIT_LEN*morse_data->delay;
}
static inline unsigned long dah_len(struct morse_trig_data *morse_data)
{
return MORSE_DAH_LEN*morse_data->delay;
}
static inline unsigned long space_len(struct morse_trig_data *morse_data)
{
return MORSE_SPACE_LEN*morse_data->delay;
}
static void morse_timer_function(unsigned long data)
{
struct led_classdev *led_cdev = (struct led_classdev *)data;
struct morse_trig_data *morse_data = led_cdev->trigger_data;
unsigned long brightness = LED_OFF;
unsigned long delay = 0;
if (!morse_data->msg)
goto set_led;
switch (morse_data->state) {
case MORSE_STATE_BLINK_START:
/* Starting a new blink. We have a valid code in morse. */
delay = (morse_data->morse & 001) ? dah_len(morse_data):
dit_len(morse_data);
brightness = LED_FULL;
morse_data->state = MORSE_STATE_BLINK_STOP;
morse_data->morse >>= 1;
break;
case MORSE_STATE_BLINK_STOP:
/* Coming off of a blink. */
morse_data->state = MORSE_STATE_BLINK_START;
if (morse_data->morse > 1) {
/* Not done yet, just a one-dit pause. */
delay = dit_len(morse_data);
break;
}
/* Get a new char, figure out how much space. */
/* First time through */
if (!morse_data->msgpos)
morse_data->msgpos = (char *)morse_data->msg;
if (!*morse_data->msgpos) {
/* Repeating */
morse_data->msgpos = (char *)morse_data->msg;
delay = space_len(morse_data);
} else {
/* Inter-letter space */
delay = dah_len(morse_data);
}
if (!(morse_data->morse = tomorse(*morse_data->msgpos))) {
delay = space_len(morse_data);
/* And get us back here */
morse_data->state = MORSE_STATE_BLINK_STOP;
}
morse_data->msgpos++;
break;
}
mod_timer(&morse_data->timer, jiffies + msecs_to_jiffies(delay));
set_led:
led_set_brightness(led_cdev, brightness);
}
static ssize_t _morse_delay_show(struct led_classdev *led_cdev, char *buf)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
sprintf(buf, "%lu\n", morse_data->delay);
return strlen(buf) + 1;
}
static ssize_t _morse_delay_store(struct led_classdev *led_cdev,
const char *buf, size_t size)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int ret = -EINVAL;
if (*after && isspace(*after))
count++;
if (count == size) {
morse_data->delay = state;
mod_timer(&morse_data->timer, jiffies + 1);
ret = count;
}
return ret;
}
static ssize_t _morse_msg_show(struct led_classdev *led_cdev, char *buf)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
if (!morse_data->msg)
sprintf(buf, "<none>\n");
else
sprintf(buf, "%s\n", morse_data->msg);
return strlen(buf) + 1;
}
static ssize_t _morse_msg_store(struct led_classdev *led_cdev,
const char *buf, size_t size)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
char *m;
m = kmalloc(size, GFP_KERNEL);
if (!m)
return -ENOMEM;
memcpy(m,buf,size);
m[size]='\0';
if (morse_data->msg)
kfree(morse_data->msg);
morse_data->msg = m;
morse_data->msgpos = NULL;
morse_data->state = MORSE_STATE_BLINK_STOP;
mod_timer(&morse_data->timer, jiffies + 1);
return size;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
static ssize_t morse_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_delay_show(led_cdev, buf);
}
static ssize_t morse_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_delay_store(led_cdev, buf, size);
}
static ssize_t morse_msg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_msg_show(led_cdev, buf);
}
static ssize_t morse_msg_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_msg_store(led_cdev, buf, size);
}
static DEVICE_ATTR(delay, 0644, morse_delay_show, morse_delay_store);
static DEVICE_ATTR(message, 0644, morse_msg_show, morse_msg_store);
#define led_device_create_file(leddev, attr) \
device_create_file(leddev->dev, &dev_attr_ ## attr)
#define led_device_remove_file(leddev, attr) \
device_remove_file(leddev->dev, &dev_attr_ ## attr)
#else
static ssize_t morse_delay_show(struct class_device *dev, char *buf)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_delay_show(led_cdev, buf);
}
static ssize_t morse_delay_store(struct class_device *dev, const char *buf,
size_t size)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_delay_store(led_cdev, buf, size);
}
static ssize_t morse_msg_show(struct class_device *dev, char *buf)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_msg_show(led_cdev, buf);
}
static ssize_t morse_msg_store(struct class_device *dev, const char *buf,
size_t size)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_msg_store(led_cdev, buf, size);
}
static CLASS_DEVICE_ATTR(delay, 0644, morse_delay_show, morse_delay_store);
static CLASS_DEVICE_ATTR(message, 0644, morse_msg_show, morse_msg_store);
#define led_device_create_file(leddev, attr) \
class_device_create_file(leddev->class_dev, &class_device_attr_ ## attr)
#define led_device_remove_file(leddev, attr) \
class_device_remove_file(leddev->class_dev, &class_device_attr_ ## attr)
#endif
static void morse_trig_activate(struct led_classdev *led_cdev)
{
struct morse_trig_data *morse_data;
int rc;
morse_data = kzalloc(sizeof(*morse_data), GFP_KERNEL);
if (!morse_data)
return;
morse_data->delay = MORSE_DELAY_BASE;
init_timer(&morse_data->timer);
morse_data->timer.function = morse_timer_function;
morse_data->timer.data = (unsigned long)led_cdev;
rc = led_device_create_file(led_cdev, delay);
if (rc) goto err;
rc = led_device_create_file(led_cdev, message);
if (rc) goto err_delay;
led_cdev->trigger_data = morse_data;
return;
err_delay:
led_device_remove_file(led_cdev, delay);
err:
kfree(morse_data);
}
static void morse_trig_deactivate(struct led_classdev *led_cdev)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
if (!morse_data)
return;
led_device_remove_file(led_cdev, message);
led_device_remove_file(led_cdev, delay);
del_timer_sync(&morse_data->timer);
if (morse_data->msg)
kfree(morse_data->msg);
kfree(morse_data);
}
static struct led_trigger morse_led_trigger = {
.name = "morse",
.activate = morse_trig_activate,
.deactivate = morse_trig_deactivate,
};
static int __init morse_trig_init(void)
{
return led_trigger_register(&morse_led_trigger);
}
static void __exit morse_trig_exit(void)
{
led_trigger_unregister(&morse_led_trigger);
}
module_init(morse_trig_init);
module_exit(morse_trig_exit);
MODULE_AUTHOR("Gabor Juhos <juhosg at openwrt.org>");
MODULE_DESCRIPTION("Morse LED trigger");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,451 @@
/*
* LED Kernel Netdev Trigger
*
* Toggles the LED to reflect the link and traffic state of a named net device
*
* Copyright 2007 Oliver Jowett <oliver@opencloud.com>
*
* Derived from ledtrig-timer.c which is:
* Copyright 2005-2006 Openedhand Ltd.
* Author: Richard Purdie <rpurdie@openedhand.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/leds.h>
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
#include <net/net_namespace.h>
#endif
#include "leds.h"
/*
* Configurable sysfs attributes:
*
* device_name - network device name to monitor
*
* interval - duration of LED blink, in milliseconds
*
* mode - either "none" (LED is off) or a space separated list of one or more of:
* link: LED's normal state reflects whether the link is up (has carrier) or not
* tx: LED blinks on transmitted data
* rx: LED blinks on receive data
*
* Some suggestions:
*
* Simple link status LED:
* $ echo netdev >someled/trigger
* $ echo eth0 >someled/device_name
* $ echo link >someled/mode
*
* Ethernet-style link/activity LED:
* $ echo netdev >someled/trigger
* $ echo eth0 >someled/device_name
* $ echo "link tx rx" >someled/mode
*
* Modem-style tx/rx LEDs:
* $ echo netdev >led1/trigger
* $ echo ppp0 >led1/device_name
* $ echo tx >led1/mode
* $ echo netdev >led2/trigger
* $ echo ppp0 >led2/device_name
* $ echo rx >led2/mode
*
*/
#define MODE_LINK 1
#define MODE_TX 2
#define MODE_RX 4
struct led_netdev_data {
rwlock_t lock;
struct timer_list timer;
struct notifier_block notifier;
struct led_classdev *led_cdev;
struct net_device *net_dev;
char device_name[IFNAMSIZ];
unsigned interval;
unsigned mode;
unsigned link_up;
unsigned last_activity;
};
static void set_baseline_state(struct led_netdev_data *trigger_data)
{
if ((trigger_data->mode & MODE_LINK) != 0 && trigger_data->link_up)
led_set_brightness(trigger_data->led_cdev, LED_FULL);
else
led_set_brightness(trigger_data->led_cdev, LED_OFF);
if ((trigger_data->mode & (MODE_TX | MODE_RX)) != 0 && trigger_data->link_up)
mod_timer(&trigger_data->timer, jiffies + trigger_data->interval);
else
del_timer(&trigger_data->timer);
}
static ssize_t led_device_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
sprintf(buf, "%s\n", trigger_data->device_name);
read_unlock(&trigger_data->lock);
return strlen(buf) + 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
extern struct net init_net;
#endif
static ssize_t led_device_name_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
if (size < 0 || size >= IFNAMSIZ)
return -EINVAL;
write_lock(&trigger_data->lock);
strcpy(trigger_data->device_name, buf);
if (size > 0 && trigger_data->device_name[size-1] == '\n')
trigger_data->device_name[size-1] = 0;
if (trigger_data->device_name[0] != 0) {
/* check for existing device to update from */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
trigger_data->net_dev = dev_get_by_name(&init_net, trigger_data->device_name);
#else
trigger_data->net_dev = dev_get_by_name(trigger_data->device_name);
#endif
if (trigger_data->net_dev != NULL)
trigger_data->link_up = (dev_get_flags(trigger_data->net_dev) & IFF_LOWER_UP) != 0;
set_baseline_state(trigger_data); /* updates LEDs, may start timers */
}
write_unlock(&trigger_data->lock);
return size;
}
static DEVICE_ATTR(device_name, 0644, led_device_name_show, led_device_name_store);
static ssize_t led_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
if (trigger_data->mode == 0) {
strcpy(buf, "none\n");
} else {
if (trigger_data->mode & MODE_LINK)
strcat(buf, "link ");
if (trigger_data->mode & MODE_TX)
strcat(buf, "tx ");
if (trigger_data->mode & MODE_RX)
strcat(buf, "rx ");
strcat(buf, "\n");
}
read_unlock(&trigger_data->lock);
return strlen(buf)+1;
}
static ssize_t led_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
char copybuf[1024];
int new_mode = -1;
char *p, *token;
/* take a copy since we don't want to trash the inbound buffer when using strsep */
strncpy(copybuf, buf, sizeof(copybuf));
copybuf[1023] = 0;
p = copybuf;
while ((token = strsep(&p, " \t\n")) != NULL) {
if (!*token)
continue;
if (new_mode == -1)
new_mode = 0;
if (!strcmp(token, "none"))
new_mode = 0;
else if (!strcmp(token, "tx"))
new_mode |= MODE_TX;
else if (!strcmp(token, "rx"))
new_mode |= MODE_RX;
else if (!strcmp(token, "link"))
new_mode |= MODE_LINK;
else
return -EINVAL;
}
if (new_mode == -1)
return -EINVAL;
write_lock(&trigger_data->lock);
trigger_data->mode = new_mode;
set_baseline_state(trigger_data);
write_unlock(&trigger_data->lock);
return size;
}
static DEVICE_ATTR(mode, 0644, led_mode_show, led_mode_store);
static ssize_t led_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
sprintf(buf, "%u\n", jiffies_to_msecs(trigger_data->interval));
read_unlock(&trigger_data->lock);
return strlen(buf) + 1;
}
static ssize_t led_interval_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
int ret = -EINVAL;
char *after;
unsigned long value = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
if (*after && isspace(*after))
count++;
/* impose some basic bounds on the timer interval */
if (count == size && value >= 5 && value <= 10000) {
write_lock(&trigger_data->lock);
trigger_data->interval = msecs_to_jiffies(value);
set_baseline_state(trigger_data); // resets timer
write_unlock(&trigger_data->lock);
ret = count;
}
return ret;
}
static DEVICE_ATTR(interval, 0644, led_interval_show, led_interval_store);
static int netdev_trig_notify(struct notifier_block *nb,
unsigned long evt,
void *dv)
{
struct net_device *dev = dv;
struct led_netdev_data *trigger_data = container_of(nb, struct led_netdev_data, notifier);
if (evt != NETDEV_UP && evt != NETDEV_DOWN && evt != NETDEV_CHANGE && evt != NETDEV_REGISTER && evt != NETDEV_UNREGISTER)
return NOTIFY_DONE;
write_lock(&trigger_data->lock);
if (strcmp(dev->name, trigger_data->device_name))
goto done;
if (evt == NETDEV_REGISTER) {
if (trigger_data->net_dev != NULL)
dev_put(trigger_data->net_dev);
dev_hold(dev);
trigger_data->net_dev = dev;
trigger_data->link_up = 0;
goto done;
}
if (evt == NETDEV_UNREGISTER && trigger_data->net_dev != NULL) {
dev_put(trigger_data->net_dev);
trigger_data->net_dev = NULL;
goto done;
}
/* UP / DOWN / CHANGE */
trigger_data->link_up = (evt != NETDEV_DOWN && netif_carrier_ok(dev));
set_baseline_state(trigger_data);
done:
write_unlock(&trigger_data->lock);
return NOTIFY_DONE;
}
/* here's the real work! */
static void netdev_trig_timer(unsigned long arg)
{
struct led_netdev_data *trigger_data = (struct led_netdev_data *)arg;
struct net_device_stats *dev_stats;
unsigned new_activity;
write_lock(&trigger_data->lock);
if (!trigger_data->link_up || !trigger_data->net_dev || (trigger_data->mode & (MODE_TX | MODE_RX)) == 0) {
/* we don't need to do timer work, just reflect link state. */
led_set_brightness(trigger_data->led_cdev, ((trigger_data->mode & MODE_LINK) != 0 && trigger_data->link_up) ? LED_FULL : LED_OFF);
goto no_restart;
}
dev_stats = trigger_data->net_dev->get_stats(trigger_data->net_dev);
new_activity =
((trigger_data->mode & MODE_TX) ? dev_stats->tx_packets : 0) +
((trigger_data->mode & MODE_RX) ? dev_stats->rx_packets : 0);
if (trigger_data->mode & MODE_LINK) {
/* base state is ON (link present) */
/* if there's no link, we don't get this far and the LED is off */
/* OFF -> ON always */
/* ON -> OFF on activity */
if (trigger_data->led_cdev->brightness == LED_OFF) {
led_set_brightness(trigger_data->led_cdev, LED_FULL);
} else if (trigger_data->last_activity != new_activity) {
led_set_brightness(trigger_data->led_cdev, LED_OFF);
}
} else {
/* base state is OFF */
/* ON -> OFF always */
/* OFF -> ON on activity */
if (trigger_data->led_cdev->brightness == LED_FULL) {
led_set_brightness(trigger_data->led_cdev, LED_OFF);
} else if (trigger_data->last_activity != new_activity) {
led_set_brightness(trigger_data->led_cdev, LED_FULL);
}
}
trigger_data->last_activity = new_activity;
mod_timer(&trigger_data->timer, jiffies + trigger_data->interval);
no_restart:
write_unlock(&trigger_data->lock);
}
static void netdev_trig_activate(struct led_classdev *led_cdev)
{
struct led_netdev_data *trigger_data;
int rc;
trigger_data = kzalloc(sizeof(struct led_netdev_data), GFP_KERNEL);
if (!trigger_data)
return;
rwlock_init(&trigger_data->lock);
trigger_data->notifier.notifier_call = netdev_trig_notify;
trigger_data->notifier.priority = 10;
setup_timer(&trigger_data->timer, netdev_trig_timer, (unsigned long) trigger_data);
trigger_data->led_cdev = led_cdev;
trigger_data->net_dev = NULL;
trigger_data->device_name[0] = 0;
trigger_data->mode = 0;
trigger_data->interval = msecs_to_jiffies(50);
trigger_data->link_up = 0;
trigger_data->last_activity = 0;
led_cdev->trigger_data = trigger_data;
rc = device_create_file(led_cdev->dev, &dev_attr_device_name);
if (rc)
goto err_out;
rc = device_create_file(led_cdev->dev, &dev_attr_mode);
if (rc)
goto err_out_device_name;
rc = device_create_file(led_cdev->dev, &dev_attr_interval);
if (rc)
goto err_out_mode;
register_netdevice_notifier(&trigger_data->notifier);
return;
err_out_mode:
device_remove_file(led_cdev->dev, &dev_attr_mode);
err_out_device_name:
device_remove_file(led_cdev->dev, &dev_attr_device_name);
err_out:
led_cdev->trigger_data = NULL;
kfree(trigger_data);
}
static void netdev_trig_deactivate(struct led_classdev *led_cdev)
{
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
if (trigger_data) {
unregister_netdevice_notifier(&trigger_data->notifier);
device_remove_file(led_cdev->dev, &dev_attr_device_name);
device_remove_file(led_cdev->dev, &dev_attr_mode);
device_remove_file(led_cdev->dev, &dev_attr_interval);
write_lock(&trigger_data->lock);
if (trigger_data->net_dev) {
dev_put(trigger_data->net_dev);
trigger_data->net_dev = NULL;
}
write_unlock(&trigger_data->lock);
del_timer_sync(&trigger_data->timer);
kfree(trigger_data);
}
}
static struct led_trigger netdev_led_trigger = {
.name = "netdev",
.activate = netdev_trig_activate,
.deactivate = netdev_trig_deactivate,
};
static int __init netdev_trig_init(void)
{
return led_trigger_register(&netdev_led_trigger);
}
static void __exit netdev_trig_exit(void)
{
led_trigger_unregister(&netdev_led_trigger);
}
module_init(netdev_trig_init);
module_exit(netdev_trig_exit);
MODULE_AUTHOR("Oliver Jowett <oliver@opencloud.com>");
MODULE_DESCRIPTION("Netdev LED trigger");
MODULE_LICENSE("GPL");

View File

@@ -0,0 +1,170 @@
/*
* ADM6996 switch driver
*
* Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License v2 as published by the
* Free Software Foundation
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "adm6996.h"
MODULE_DESCRIPTION("Infineon ADM6996 Switch");
MODULE_AUTHOR("Felix Fietkau");
MODULE_LICENSE("GPL");
struct adm6996_priv {
/* use abstraction for regops, we want to add gpio support in the future */
u16 (*read)(struct phy_device *phydev, enum admreg reg);
void (*write)(struct phy_device *phydev, enum admreg reg, u16 val);
};
#define to_adm(_phy) ((struct adm6996_priv *) (_phy)->priv)
static inline u16
r16(struct phy_device *pdev, enum admreg reg)
{
return to_adm(pdev)->read(pdev, reg);
}
static inline void
w16(struct phy_device *pdev, enum admreg reg, u16 val)
{
to_adm(pdev)->write(pdev, reg, val);
}
static u16
adm6996_read_mii_reg(struct phy_device *phydev, enum admreg reg)
{
return phydev->bus->read(phydev->bus, PHYADDR(reg));
}
static void
adm6996_write_mii_reg(struct phy_device *phydev, enum admreg reg, u16 val)
{
phydev->bus->write(phydev->bus, PHYADDR(reg), val);
}
static int adm6996_config_init(struct phy_device *pdev)
{
int i;
printk("%s: ADM6996 PHY driver attached.\n", pdev->attached_dev->name);
pdev->supported = ADVERTISED_100baseT_Full;
pdev->advertising = ADVERTISED_100baseT_Full;
/* initialize port and vlan settings */
for (i = 0; i < ADM_PHY_PORTS; i++) {
w16(pdev, adm_portcfg[i], ADM_PORTCFG_INIT |
ADM_PORTCFG_PVID((i == ADM_WAN_PORT) ? 1 : 0));
}
w16(pdev, adm_portcfg[5], ADM_PORTCFG_CPU);
/* reset all ports */
for (i = 0; i < ADM_PHY_PORTS; i++) {
w16(pdev, ADM_PHY_PORT(i), ADM_PHYCFG_INIT);
}
return 0;
}
static int adm6996_read_status(struct phy_device *phydev)
{
phydev->speed = SPEED_100;
phydev->duplex = DUPLEX_FULL;
phydev->state = PHY_UP;
return 0;
}
static int adm6996_config_aneg(struct phy_device *phydev)
{
return 0;
}
static int adm6996_probe(struct phy_device *pdev)
{
struct adm6996_priv *priv;
priv = kzalloc(sizeof(struct adm6996_priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
priv->read = adm6996_read_mii_reg;
priv->write = adm6996_write_mii_reg;
pdev->priv = priv;
return 0;
}
static void adm6996_remove(struct phy_device *pdev)
{
kfree(pdev->priv);
}
static bool adm6996_detect(struct mii_bus *bus, int addr)
{
u16 reg;
/* we only attach to phy id 0 */
if (addr != 0)
return false;
/* look for the switch on the bus */
reg = bus->read(bus, PHYADDR(ADM_SIG0)) & ADM_SIG0_MASK;
if (reg != ADM_SIG0_VAL)
return false;
reg = bus->read(bus, PHYADDR(ADM_SIG1)) & ADM_SIG1_MASK;
if (reg != ADM_SIG1_VAL)
return false;
return true;
}
static struct phy_driver adm6996_driver = {
.name = "Infineon ADM6996",
.features = PHY_BASIC_FEATURES,
.detect = adm6996_detect,
.probe = adm6996_probe,
.remove = adm6996_remove,
.config_init = &adm6996_config_init,
.config_aneg = &adm6996_config_aneg,
.read_status = &adm6996_read_status,
.driver = { .owner = THIS_MODULE,},
};
static int __init adm6996_init(void)
{
return phy_driver_register(&adm6996_driver);
}
static void __exit adm6996_exit(void)
{
phy_driver_unregister(&adm6996_driver);
}
module_init(adm6996_init);
module_exit(adm6996_exit);

View File

@@ -0,0 +1,105 @@
/*
* ADM6996 switch driver
*
* Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License v2 as published by the
* Free Software Foundation
*/
#ifndef __ADM6996_H
#define __ADM6996_H
#define ADM_PHY_PORTS 5
#define ADM_CPU_PORT 5
#define ADM_WAN_PORT 0 /* FIXME: dynamic ? */
enum admreg {
ADM_EEPROM_BASE = 0x0,
ADM_P0_CFG = ADM_EEPROM_BASE + 1,
ADM_P1_CFG = ADM_EEPROM_BASE + 3,
ADM_P2_CFG = ADM_EEPROM_BASE + 5,
ADM_P3_CFG = ADM_EEPROM_BASE + 7,
ADM_P4_CFG = ADM_EEPROM_BASE + 8,
ADM_P5_CFG = ADM_EEPROM_BASE + 9,
ADM_EEPROM_EXT_BASE = 0x40,
ADM_COUNTER_BASE = 0xa0,
ADM_SIG0 = ADM_COUNTER_BASE + 0,
ADM_SIG1 = ADM_COUNTER_BASE + 1,
ADM_PHY_BASE = 0x200,
#define ADM_PHY_PORT(n) (ADM_PHY_BASE + (0x20 * n))
};
/* Chip identification patterns */
#define ADM_SIG0_MASK 0xfff0
#define ADM_SIG0_VAL 0x1020
#define ADM_SIG1_MASK 0xffff
#define ADM_SIG1_VAL 0x0007
enum {
ADM_PHYCFG_COLTST = (1 << 7), /* Enable collision test */
ADM_PHYCFG_DPLX = (1 << 8), /* Enable full duplex */
ADM_PHYCFG_ANEN_RST = (1 << 9), /* Restart auto negotiation (self clear) */
ADM_PHYCFG_ISO = (1 << 10), /* Isolate PHY */
ADM_PHYCFG_PDN = (1 << 11), /* Power down PHY */
ADM_PHYCFG_ANEN = (1 << 12), /* Enable auto negotiation */
ADM_PHYCFG_SPEED_100 = (1 << 13), /* Enable 100 Mbit/s */
ADM_PHYCFG_LPBK = (1 << 14), /* Enable loopback operation */
ADM_PHYCFG_RST = (1 << 15), /* Reset the port (self clear) */
ADM_PHYCFG_INIT = (
ADM_PHYCFG_RST |
ADM_PHYCFG_SPEED_100 |
ADM_PHYCFG_ANEN |
ADM_PHYCFG_ANEN_RST
)
};
enum {
ADM_PORTCFG_FC = (1 << 0), /* Enable 802.x flow control */
ADM_PORTCFG_AN = (1 << 1), /* Enable auto-negotiation */
ADM_PORTCFG_SPEED_100 = (1 << 2), /* Enable 100 Mbit/s */
ADM_PORTCFG_DPLX = (1 << 3), /* Enable full duplex */
ADM_PORTCFG_OT = (1 << 4), /* Output tagged packets */
ADM_PORTCFG_PD = (1 << 5), /* Port disable */
ADM_PORTCFG_TV_PRIO = (1 << 6), /* 0 = VLAN based priority
* 1 = TOS based priority */
ADM_PORTCFG_PPE = (1 << 7), /* Port based priority enable */
ADM_PORTCFG_PP_S = (1 << 8), /* Port based priority, 2 bits */
ADM_PORTCFG_PVID_BASE = (1 << 10), /* Primary VLAN id, 4 bits */
ADM_PORTCFG_FSE = (1 << 14), /* Fx select enable */
ADM_PORTCFG_CAM = (1 << 15), /* Crossover Auto MDIX */
ADM_PORTCFG_INIT = (
ADM_PORTCFG_FC |
ADM_PORTCFG_AN |
ADM_PORTCFG_SPEED_100 |
ADM_PORTCFG_DPLX |
ADM_PORTCFG_CAM
),
ADM_PORTCFG_CPU = (
ADM_PORTCFG_FC |
ADM_PORTCFG_SPEED_100 |
ADM_PORTCFG_OT |
ADM_PORTCFG_DPLX
),
};
#define ADM_PORTCFG_PPID(N) ((n & 0x3) << 8)
#define ADM_PORTCFG_PVID(n) ((n & 0xf) << 10)
static const u8 adm_portcfg[] = {
[0] = ADM_P0_CFG,
[1] = ADM_P1_CFG,
[2] = ADM_P2_CFG,
[3] = ADM_P3_CFG,
[4] = ADM_P4_CFG,
[5] = ADM_P5_CFG,
};
/*
* Split the register address in phy id and register
* it will get combined again by the mdio bus op
*/
#define PHYADDR(_reg) ((_reg >> 5) & 0xff), (_reg & 0x1f)
#endif

View File

@@ -0,0 +1,474 @@
/*
* Marvell 88E6060 switch driver
* Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License v2 as published by the
* Free Software Foundation
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/if_vlan.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "mvswitch.h"
/* Undefine this to use trailer mode instead.
* I don't know if header mode works with all chips */
#define HEADER_MODE 1
MODULE_DESCRIPTION("Marvell 88E6060 Switch driver");
MODULE_AUTHOR("Felix Fietkau");
MODULE_LICENSE("GPL");
struct mvswitch_priv {
/* the driver's tx function */
int (*hardstart)(struct sk_buff *skb, struct net_device *dev);
struct vlan_group *grp;
u8 vlans[16];
};
#define to_mvsw(_phy) ((struct mvswitch_priv *) (_phy)->priv)
static inline u16
r16(struct phy_device *phydev, int addr, int reg)
{
return phydev->bus->read(phydev->bus, addr, reg);
}
static inline void
w16(struct phy_device *phydev, int addr, int reg, u16 val)
{
phydev->bus->write(phydev->bus, addr, reg, val);
}
static int
mvswitch_mangle_tx(struct sk_buff *skb, struct net_device *dev)
{
struct mvswitch_priv *priv;
char *buf = NULL;
u16 vid;
priv = dev->phy_ptr;
if (unlikely(!priv))
goto error;
if (unlikely(skb->len < 16))
goto error;
#ifdef HEADER_MODE
if (__vlan_hwaccel_get_tag(skb, &vid))
goto error;
if (skb_cloned(skb) || (skb->len <= 62) || (skb_headroom(skb) < MV_HEADER_SIZE)) {
if (pskb_expand_head(skb, MV_HEADER_SIZE, (skb->len < 62 ? 62 - skb->len : 0), GFP_ATOMIC))
goto error_expand;
if (skb->len < 62)
skb->len = 62;
}
buf = skb_push(skb, MV_HEADER_SIZE);
#else
if (__vlan_get_tag(skb, &vid))
goto error;
if (unlikely((vid > 15 || !priv->vlans[vid])))
goto error;
if (skb->len <= 64) {
if (pskb_expand_head(skb, 0, 64 + MV_TRAILER_SIZE - skb->len, GFP_ATOMIC))
goto error_expand;
buf = skb->data + 64;
skb->len = 64 + MV_TRAILER_SIZE;
} else {
if (skb_cloned(skb) || unlikely(skb_tailroom(skb) < 4)) {
if (pskb_expand_head(skb, 0, 4, GFP_ATOMIC))
goto error_expand;
}
buf = skb_put(skb, 4);
}
/* move the ethernet header 4 bytes forward, overwriting the vlan tag */
memmove(skb->data + 4, skb->data, 12);
skb->data += 4;
skb->len -= 4;
skb->mac_header += 4;
#endif
if (!buf)
goto error;
#ifdef HEADER_MODE
/* prepend the tag */
*((__be16 *) buf) = cpu_to_be16(
((vid << MV_HEADER_VLAN_S) & MV_HEADER_VLAN_M) |
((priv->vlans[vid] << MV_HEADER_PORTS_S) & MV_HEADER_PORTS_M)
);
#else
/* append the tag */
*((__be32 *) buf) = cpu_to_be32((
(MV_TRAILER_OVERRIDE << MV_TRAILER_FLAGS_S) |
((priv->vlans[vid] & MV_TRAILER_PORTS_M) << MV_TRAILER_PORTS_S)
));
#endif
return priv->hardstart(skb, dev);
error_expand:
if (net_ratelimit())
printk("%s: failed to expand/update skb for the switch\n", dev->name);
error:
/* any errors? drop the packet! */
dev_kfree_skb_any(skb);
return 0;
}
static int
mvswitch_mangle_rx(struct sk_buff *skb, int napi)
{
struct mvswitch_priv *priv;
struct net_device *dev;
int vlan = -1;
unsigned char *buf;
int i;
dev = skb->dev;
if (!dev)
goto error;
priv = dev->phy_ptr;
if (!priv)
goto error;
if (!priv->grp)
goto error;
#ifdef HEADER_MODE
buf = skb->data;
skb_pull(skb, MV_HEADER_SIZE);
#else
buf = skb->data + skb->len - MV_TRAILER_SIZE;
if (buf[0] != 0x80)
goto error;
#endif
/* look for the vlan matching the incoming port */
for (i = 0; i < ARRAY_SIZE(priv->vlans); i++) {
if ((1 << buf[1]) & priv->vlans[i])
vlan = i;
}
if (vlan == -1)
goto error;
skb->protocol = eth_type_trans(skb, skb->dev);
if (napi)
return vlan_hwaccel_receive_skb(skb, priv->grp, vlan);
else
return vlan_hwaccel_rx(skb, priv->grp, vlan);
error:
/* no vlan? eat the packet! */
dev_kfree_skb_any(skb);
return 0;
}
static int
mvswitch_netif_rx(struct sk_buff *skb)
{
return mvswitch_mangle_rx(skb, 0);
}
static int
mvswitch_netif_receive_skb(struct sk_buff *skb)
{
return mvswitch_mangle_rx(skb, 1);
}
static void
mvswitch_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct mvswitch_priv *priv = dev->phy_ptr;
priv->grp = grp;
}
static int
mvswitch_wait_mask(struct phy_device *pdev, int addr, int reg, u16 mask, u16 val)
{
int i = 100;
u16 r;
do {
r = r16(pdev, addr, reg) & mask;
if (r == val)
return 0;
} while(--i > 0);
return -ETIMEDOUT;
}
static int
mvswitch_config_init(struct phy_device *pdev)
{
struct mvswitch_priv *priv = to_mvsw(pdev);
struct net_device *dev = pdev->attached_dev;
u8 vlmap = 0;
int i;
if (!dev)
return -EINVAL;
printk("%s: Marvell 88E6060 PHY driver attached.\n", dev->name);
pdev->supported = ADVERTISED_100baseT_Full;
pdev->advertising = ADVERTISED_100baseT_Full;
dev->phy_ptr = priv;
dev->irq = PHY_POLL;
/* initialize default vlans */
for (i = 0; i < MV_PORTS; i++)
priv->vlans[(i == MV_WANPORT ? 1 : 0)] |= (1 << i);
/* before entering reset, disable all ports */
for (i = 0; i < MV_PORTS; i++)
w16(pdev, MV_PORTREG(CONTROL, i), 0x00);
msleep(2); /* wait for the status change to settle in */
/* put the ATU in reset */
w16(pdev, MV_SWITCHREG(ATU_CTRL), MV_ATUCTL_RESET);
i = mvswitch_wait_mask(pdev, MV_SWITCHREG(ATU_CTRL), MV_ATUCTL_RESET, 0);
if (i < 0) {
printk("%s: Timeout waiting for the switch to reset.\n", dev->name);
return i;
}
/* set the ATU flags */
w16(pdev, MV_SWITCHREG(ATU_CTRL),
MV_ATUCTL_NO_LEARN |
MV_ATUCTL_ATU_1K |
MV_ATUCTL_AGETIME(MV_ATUCTL_AGETIME_MIN) /* minimum without disabling ageing */
);
/* initialize the cpu port */
w16(pdev, MV_PORTREG(CONTROL, MV_CPUPORT),
#ifdef HEADER_MODE
MV_PORTCTRL_HEADER |
#else
MV_PORTCTRL_RXTR |
MV_PORTCTRL_TXTR |
#endif
MV_PORTCTRL_ENABLED
);
/* wait for the phy change to settle in */
msleep(2);
for (i = 0; i < MV_PORTS; i++) {
u8 pvid = 0;
int j;
vlmap = 0;
/* look for the matching vlan */
for (j = 0; j < ARRAY_SIZE(priv->vlans); j++) {
if (priv->vlans[j] & (1 << i)) {
vlmap = priv->vlans[j];
pvid = j;
}
}
/* leave port unconfigured if it's not part of a vlan */
if (!vlmap)
continue;
/* add the cpu port to the allowed destinations list */
vlmap |= (1 << MV_CPUPORT);
/* take port out of its own vlan destination map */
vlmap &= ~(1 << i);
/* apply vlan settings */
w16(pdev, MV_PORTREG(VLANMAP, i),
MV_PORTVLAN_PORTS(vlmap) |
MV_PORTVLAN_ID(i)
);
/* re-enable port */
w16(pdev, MV_PORTREG(CONTROL, i),
MV_PORTCTRL_ENABLED
);
}
w16(pdev, MV_PORTREG(VLANMAP, MV_CPUPORT),
MV_PORTVLAN_ID(MV_CPUPORT)
);
/* set the port association vector */
for (i = 0; i <= MV_PORTS; i++) {
w16(pdev, MV_PORTREG(ASSOC, i),
MV_PORTASSOC_PORTS(1 << i)
);
}
/* init switch control */
w16(pdev, MV_SWITCHREG(CTRL),
MV_SWITCHCTL_MSIZE |
MV_SWITCHCTL_DROP
);
/* hook into the tx function */
priv->hardstart = dev->hard_start_xmit;
pdev->netif_receive_skb = mvswitch_netif_receive_skb;
pdev->netif_rx = mvswitch_netif_rx;
dev->hard_start_xmit = mvswitch_mangle_tx;
dev->vlan_rx_register = mvswitch_vlan_rx_register;
#ifdef HEADER_MODE
dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
#else
dev->features |= NETIF_F_HW_VLAN_RX;
#endif
return 0;
}
static int
mvswitch_read_status(struct phy_device *pdev)
{
pdev->speed = SPEED_100;
pdev->duplex = DUPLEX_FULL;
pdev->state = PHY_UP;
/* XXX ugly workaround: we can't force the switch
* to gracefully handle hosts moving from one port to another,
* so we have to regularly clear the ATU database */
/* wait for the ATU to become available */
mvswitch_wait_mask(pdev, MV_SWITCHREG(ATU_OP), MV_ATUOP_INPROGRESS, 0);
/* flush the ATU */
w16(pdev, MV_SWITCHREG(ATU_OP),
MV_ATUOP_INPROGRESS |
MV_ATUOP_FLUSH_ALL
);
/* wait for operation to complete */
mvswitch_wait_mask(pdev, MV_SWITCHREG(ATU_OP), MV_ATUOP_INPROGRESS, 0);
return 0;
}
static int
mvswitch_config_aneg(struct phy_device *phydev)
{
return 0;
}
static void
mvswitch_remove(struct phy_device *pdev)
{
struct mvswitch_priv *priv = to_mvsw(pdev);
struct net_device *dev = pdev->attached_dev;
/* restore old xmit handler */
if (priv->hardstart && dev)
dev->hard_start_xmit = priv->hardstart;
dev->vlan_rx_register = NULL;
dev->vlan_rx_kill_vid = NULL;
dev->phy_ptr = NULL;
dev->features &= ~NETIF_F_HW_VLAN_RX;
kfree(priv);
}
static bool
mvswitch_detect(struct mii_bus *bus, int addr)
{
u16 reg;
int i;
/* we attach to phy id 31 to make sure that the late probe works */
if (addr != 31)
return false;
/* look for the switch on the bus */
reg = bus->read(bus, MV_PORTREG(IDENT, 0)) & MV_IDENT_MASK;
if (reg != MV_IDENT_VALUE)
return false;
/*
* Now that we've established that the switch actually exists, let's
* get rid of the competition :)
*/
for (i = 0; i < 31; i++) {
if (!bus->phy_map[i])
continue;
device_unregister(&bus->phy_map[i]->dev);
kfree(bus->phy_map[i]);
bus->phy_map[i] = NULL;
}
return true;
}
static int
mvswitch_probe(struct phy_device *pdev)
{
struct mvswitch_priv *priv;
priv = kzalloc(sizeof(struct mvswitch_priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
pdev->priv = priv;
return 0;
}
static struct phy_driver mvswitch_driver = {
.name = "Marvell 88E6060",
.features = PHY_BASIC_FEATURES,
.detect = &mvswitch_detect,
.probe = &mvswitch_probe,
.remove = &mvswitch_remove,
.config_init = &mvswitch_config_init,
.config_aneg = &mvswitch_config_aneg,
.read_status = &mvswitch_read_status,
.driver = { .owner = THIS_MODULE,},
};
static int __init
mvswitch_init(void)
{
return phy_driver_register(&mvswitch_driver);
}
static void __exit
mvswitch_exit(void)
{
phy_driver_unregister(&mvswitch_driver);
}
module_init(mvswitch_init);
module_exit(mvswitch_exit);

View File

@@ -0,0 +1,145 @@
/*
* Marvell 88E6060 switch driver
* Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License v2 as published by the
* Free Software Foundation
*/
#ifndef __MVSWITCH_H
#define __MVSWITCH_H
#define MV_HEADER_SIZE 2
#define MV_HEADER_PORTS_M 0x001f
#define MV_HEADER_PORTS_S 0
#define MV_HEADER_VLAN_M 0xf000
#define MV_HEADER_VLAN_S 12
#define MV_TRAILER_SIZE 4
#define MV_TRAILER_PORTS_M 0x1f
#define MV_TRAILER_PORTS_S 16
#define MV_TRAILER_FLAGS_S 24
#define MV_TRAILER_OVERRIDE 0x80
#define MV_PORTS 5
#define MV_WANPORT 4
#define MV_CPUPORT 5
#define MV_BASE 0x10
#define MV_PHYPORT_BASE (MV_BASE + 0x0)
#define MV_PHYPORT(_n) (MV_PHYPORT_BASE + (_n))
#define MV_SWITCHPORT_BASE (MV_BASE + 0x8)
#define MV_SWITCHPORT(_n) (MV_SWITCHPORT_BASE + (_n))
#define MV_SWITCHREGS (MV_BASE + 0xf)
enum {
MV_PHY_CONTROL = 0x00,
MV_PHY_STATUS = 0x01,
MV_PHY_IDENT0 = 0x02,
MV_PHY_IDENT1 = 0x03,
MV_PHY_ANEG = 0x04,
MV_PHY_LINK_ABILITY = 0x05,
MV_PHY_ANEG_EXPAND = 0x06,
MV_PHY_XMIT_NEXTP = 0x07,
MV_PHY_LINK_NEXTP = 0x08,
MV_PHY_CONTROL1 = 0x10,
MV_PHY_STATUS1 = 0x11,
MV_PHY_INTR_EN = 0x12,
MV_PHY_INTR_STATUS = 0x13,
MV_PHY_INTR_PORT = 0x14,
MV_PHY_RECV_COUNTER = 0x16,
MV_PHY_LED_PARALLEL = 0x16,
MV_PHY_LED_STREAM = 0x17,
MV_PHY_LED_CTRL = 0x18,
MV_PHY_LED_OVERRIDE = 0x19,
MV_PHY_VCT_CTRL = 0x1a,
MV_PHY_VCT_STATUS = 0x1b,
MV_PHY_CONTROL2 = 0x1e
};
#define MV_PHYREG(_type, _port) MV_PHYPORT(_port), MV_PHY_##_type
enum {
MV_PORT_STATUS = 0x00,
MV_PORT_IDENT = 0x03,
MV_PORT_CONTROL = 0x04,
MV_PORT_VLANMAP = 0x06,
MV_PORT_ASSOC = 0x0b,
MV_PORT_RXCOUNT = 0x10,
MV_PORT_TXCOUNT = 0x11,
};
#define MV_PORTREG(_type, _port) MV_SWITCHPORT(_port), MV_PORT_##_type
enum {
MV_PORTCTRL_BLOCK = (1 << 0),
MV_PORTCTRL_LEARN = (2 << 0),
MV_PORTCTRL_ENABLED = (3 << 0),
MV_PORTCTRL_VLANTUN = (1 << 7), /* Enforce VLANs on packets */
MV_PORTCTRL_RXTR = (1 << 8), /* Enable Marvell packet trailer for ingress */
MV_PORTCTRL_HEADER = (1 << 11), /* Enable Marvell packet header mode for port */
MV_PORTCTRL_TXTR = (1 << 14), /* Enable Marvell packet trailer for egress */
MV_PORTCTRL_FORCEFL = (1 << 15), /* force flow control */
};
#define MV_PORTVLAN_ID(_n) (((_n) & 0xf) << 12)
#define MV_PORTVLAN_PORTS(_n) ((_n) & 0x3f)
#define MV_PORTASSOC_PORTS(_n) ((_n) & 0x1f)
#define MV_PORTASSOC_MONITOR (1 << 15)
enum {
MV_SWITCH_MAC0 = 0x01,
MV_SWITCH_MAC1 = 0x02,
MV_SWITCH_MAC2 = 0x03,
MV_SWITCH_CTRL = 0x04,
MV_SWITCH_ATU_CTRL = 0x0a,
MV_SWITCH_ATU_OP = 0x0b,
MV_SWITCH_ATU_DATA = 0x0c,
MV_SWITCH_ATU_MAC0 = 0x0d,
MV_SWITCH_ATU_MAC1 = 0x0e,
MV_SWITCH_ATU_MAC2 = 0x0f,
};
#define MV_SWITCHREG(_type) MV_SWITCHREGS, MV_SWITCH_##_type
enum {
MV_SWITCHCTL_EEIE = (1 << 0), /* EEPROM interrupt enable */
MV_SWITCHCTL_PHYIE = (1 << 1), /* PHY interrupt enable */
MV_SWITCHCTL_ATUDONE= (1 << 2), /* ATU done interrupt enable */
MV_SWITCHCTL_ATUIE = (1 << 3), /* ATU interrupt enable */
MV_SWITCHCTL_CTRMODE= (1 << 8), /* statistics for rx and tx errors */
MV_SWITCHCTL_RELOAD = (1 << 9), /* reload registers from eeprom */
MV_SWITCHCTL_MSIZE = (1 << 10), /* increase maximum frame size */
MV_SWITCHCTL_DROP = (1 << 13), /* discard frames with excessive collisions */
};
enum {
#define MV_ATUCTL_AGETIME_MIN 16
#define MV_ATUCTL_AGETIME_MAX 4080
#define MV_ATUCTL_AGETIME(_n) ((((_n) / 16) & 0xff) << 4)
MV_ATUCTL_ATU_256 = (0 << 12),
MV_ATUCTL_ATU_512 = (1 << 12),
MV_ATUCTL_ATU_1K = (2 << 12),
MV_ATUCTL_ATUMASK = (3 << 12),
MV_ATUCTL_NO_LEARN = (1 << 14),
MV_ATUCTL_RESET = (1 << 15),
};
enum {
#define MV_ATUOP_DBNUM(_n) ((_n) & 0x0f)
MV_ATUOP_NOOP = (0 << 12),
MV_ATUOP_FLUSH_ALL = (1 << 12),
MV_ATUOP_FLUSH_U = (2 << 12),
MV_ATUOP_LOAD_DB = (3 << 12),
MV_ATUOP_GET_NEXT = (4 << 12),
MV_ATUOP_FLUSH_DB = (5 << 12),
MV_ATUOP_FLUSH_DB_UU= (6 << 12),
MV_ATUOP_INPROGRESS = (1 << 15),
};
#define MV_IDENT_MASK 0xfff0
#define MV_IDENT_VALUE 0x0600
#endif

View File

@@ -0,0 +1,242 @@
/*
* Bitbanging SPI bus driver using GPIO API
*
* Copyright (c) 2008 Piotr Skamruk
* Copyright (c) 2008 Michael Buesch
*
* based on spi_s3c2410_gpio.c
* Copyright (c) 2006 Ben Dooks
* Copyright (c) 2006 Simtec Electronics
* and on i2c-gpio.c
* Copyright (C) 2007 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include "linux/spi/spi_gpio.h" //XXX
#include <asm/gpio.h>
struct spi_gpio {
struct spi_bitbang bitbang;
struct spi_gpio_platform_data *info;
struct platform_device *pdev;
struct spi_board_info bi;
};
static inline struct spi_gpio *spidev_to_sg(struct spi_device *dev)
{
return dev->controller_data;
}
static inline void setsck(struct spi_device *dev, int val)
{
struct spi_gpio *sp = spidev_to_sg(dev);
gpio_set_value(sp->info->pin_clk, val ? 1 : 0);
}
static inline void setmosi(struct spi_device *dev, int val )
{
struct spi_gpio *sp = spidev_to_sg(dev);
gpio_set_value(sp->info->pin_mosi, val ? 1 : 0);
}
static inline u32 getmiso(struct spi_device *dev)
{
struct spi_gpio *sp = spidev_to_sg(dev);
return gpio_get_value(sp->info->pin_miso) ? 1 : 0;
}
static inline void do_spidelay(struct spi_device *dev, unsigned nsecs)
{
struct spi_gpio *sp = spidev_to_sg(dev);
if (!sp->info->no_spi_delay)
ndelay(nsecs);
}
#define spidelay(nsecs) do { \
/* Steal the spi_device pointer from our caller. \
* The bitbang-API should probably get fixed here... */ \
do_spidelay(spi, nsecs); \
} while (0)
#define EXPAND_BITBANG_TXRX
#include <linux/spi/spi_bitbang.h>
static u32 spi_gpio_txrx_mode0(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha0(spi, nsecs, 0, word, bits);
}
static u32 spi_gpio_txrx_mode1(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha1(spi, nsecs, 0, word, bits);
}
static u32 spi_gpio_txrx_mode2(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha0(spi, nsecs, 1, word, bits);
}
static u32 spi_gpio_txrx_mode3(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha1(spi, nsecs, 1, word, bits);
}
static void spi_gpio_chipselect(struct spi_device *dev, int on)
{
struct spi_gpio *sp = spidev_to_sg(dev);
if (sp->info->cs_activelow)
on = !on;
gpio_set_value(sp->info->pin_cs, on ? 1 : 0);
}
static int spi_gpio_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct spi_gpio_platform_data *pdata;
struct spi_gpio *sp;
struct spi_device *spidev;
int err;
pdata = pdev->dev.platform_data;
if (!pdata)
return -ENXIO;
err = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof(struct spi_gpio));
if (!master)
goto err_alloc_master;
sp = spi_master_get_devdata(master);
platform_set_drvdata(pdev, sp);
sp->info = pdata;
err = gpio_request(pdata->pin_clk, "spi_clock");
if (err)
goto err_request_clk;
err = gpio_request(pdata->pin_mosi, "spi_mosi");
if (err)
goto err_request_mosi;
err = gpio_request(pdata->pin_miso, "spi_miso");
if (err)
goto err_request_miso;
err = gpio_request(pdata->pin_cs, "spi_cs");
if (err)
goto err_request_cs;
sp->bitbang.master = spi_master_get(master);
sp->bitbang.master->bus_num = -1;
sp->bitbang.master->num_chipselect = 1;
sp->bitbang.chipselect = spi_gpio_chipselect;
sp->bitbang.txrx_word[SPI_MODE_0] = spi_gpio_txrx_mode0;
sp->bitbang.txrx_word[SPI_MODE_1] = spi_gpio_txrx_mode1;
sp->bitbang.txrx_word[SPI_MODE_2] = spi_gpio_txrx_mode2;
sp->bitbang.txrx_word[SPI_MODE_3] = spi_gpio_txrx_mode3;
gpio_direction_output(pdata->pin_clk, 0);
gpio_direction_output(pdata->pin_mosi, 0);
gpio_direction_output(pdata->pin_cs,
pdata->cs_activelow ? 1 : 0);
gpio_direction_input(pdata->pin_miso);
err = spi_bitbang_start(&sp->bitbang);
if (err)
goto err_no_bitbang;
err = pdata->boardinfo_setup(&sp->bi, master,
pdata->boardinfo_setup_data);
if (err)
goto err_bi_setup;
sp->bi.controller_data = sp;
spidev = spi_new_device(master, &sp->bi);
if (!spidev)
goto err_new_dev;
return 0;
err_new_dev:
err_bi_setup:
spi_bitbang_stop(&sp->bitbang);
err_no_bitbang:
spi_master_put(sp->bitbang.master);
gpio_free(pdata->pin_cs);
err_request_cs:
gpio_free(pdata->pin_miso);
err_request_miso:
gpio_free(pdata->pin_mosi);
err_request_mosi:
gpio_free(pdata->pin_clk);
err_request_clk:
kfree(master);
err_alloc_master:
return err;
}
static int __devexit spi_gpio_remove(struct platform_device *pdev)
{
struct spi_gpio *sp;
struct spi_gpio_platform_data *pdata;
pdata = pdev->dev.platform_data;
sp = platform_get_drvdata(pdev);
gpio_free(pdata->pin_clk);
gpio_free(pdata->pin_mosi);
gpio_free(pdata->pin_miso);
gpio_free(pdata->pin_cs);
spi_bitbang_stop(&sp->bitbang);
spi_master_put(sp->bitbang.master);
return 0;
}
static struct platform_driver spi_gpio_driver = {
.driver = {
.name = "spi-gpio",
.owner = THIS_MODULE,
},
.probe = spi_gpio_probe,
.remove = __devexit_p(spi_gpio_remove),
};
static int __init spi_gpio_init(void)
{
int err;
err = platform_driver_register(&spi_gpio_driver);
if (err)
printk(KERN_ERR "spi-gpio: register failed: %d\n", err);
return err;
}
module_init(spi_gpio_init);
static void __exit spi_gpio_exit(void)
{
platform_driver_unregister(&spi_gpio_driver);
}
module_exit(spi_gpio_exit);
MODULE_AUTHOR("Piot Skamruk <piotr.skamruk at gmail.com>");
MODULE_AUTHOR("Michael Buesch");
MODULE_DESCRIPTION("Platform independent GPIO bitbangling SPI driver");
MODULE_LICENSE("GPL v2");

View File

@@ -0,0 +1,117 @@
menu "Sonics Silicon Backplane"
config SSB_POSSIBLE
bool
depends on HAS_IOMEM
default y
config SSB
tristate "Sonics Silicon Backplane support"
depends on SSB_POSSIBLE
help
Support for the Sonics Silicon Backplane bus.
You only need to enable this option, if you are
configuring a kernel for an embedded system with
this bus.
It will be auto-selected if needed in other
environments.
The module will be called ssb.
If unsure, say N.
config SSB_PCIHOST_POSSIBLE
bool
depends on SSB && (PCI = y || PCI = SSB)
default y
config SSB_PCIHOST
bool "Support for SSB on PCI-bus host"
depends on SSB_PCIHOST_POSSIBLE
default y
help
Support for a Sonics Silicon Backplane on top
of a PCI device.
If unsure, say Y
config SSB_PCMCIAHOST_POSSIBLE
bool
depends on SSB && (PCMCIA = y || PCMCIA = SSB) && EXPERIMENTAL
default y
config SSB_PCMCIAHOST
bool "Support for SSB on PCMCIA-bus host (EXPERIMENTAL)"
depends on SSB_PCMCIAHOST_POSSIBLE
help
Support for a Sonics Silicon Backplane on top
of a PCMCIA device.
If unsure, say N
config SSB_SILENT
bool "No SSB kernel messages"
depends on SSB && EMBEDDED
help
This option turns off all Sonics Silicon Backplane printks.
Note that you won't be able to identify problems, once
messages are turned off.
This might only be desired for production kernels on
embedded devices to reduce the kernel size.
Say N
config SSB_DEBUG
bool "SSB debugging"
depends on SSB && !SSB_SILENT
help
This turns on additional runtime checks and debugging
messages. Turn this on for SSB troubleshooting.
If unsure, say N
config SSB_SERIAL
bool
depends on SSB
# ChipCommon and ExtIf serial support routines.
config SSB_DRIVER_PCICORE_POSSIBLE
bool
depends on SSB_PCIHOST
default y
config SSB_DRIVER_PCICORE
bool "SSB PCI core driver"
depends on SSB_DRIVER_PCICORE_POSSIBLE
help
Driver for the Sonics Silicon Backplane attached
Broadcom PCI core.
If unsure, say Y
config SSB_PCICORE_HOSTMODE
bool "Hostmode support for SSB PCI core (EXPERIMENTAL)"
depends on SSB_DRIVER_PCICORE && SSB_DRIVER_MIPS && EXPERIMENTAL
help
PCIcore hostmode operation (external PCI bus).
config SSB_DRIVER_MIPS
bool "SSB Broadcom MIPS core driver (EXPERIMENTAL)"
depends on SSB && MIPS && EXPERIMENTAL
select SSB_SERIAL
help
Driver for the Sonics Silicon Backplane attached
Broadcom MIPS core.
If unsure, say N
config SSB_DRIVER_EXTIF
bool "SSB Broadcom EXTIF core driver (EXPERIMENTAL)"
depends on SSB_DRIVER_MIPS && EXPERIMENTAL
help
Driver for the Sonics Silicon Backplane attached
Broadcom EXTIF core.
If unsure, say N
endmenu

View File

@@ -0,0 +1,18 @@
# core
ssb-y += main.o scan.o
# host support
ssb-$(CONFIG_SSB_PCIHOST) += pci.o pcihost_wrapper.o
ssb-$(CONFIG_SSB_PCMCIAHOST) += pcmcia.o
# built-in drivers
ssb-y += driver_chipcommon.o
ssb-$(CONFIG_SSB_DRIVER_MIPS) += driver_mipscore.o
ssb-$(CONFIG_SSB_DRIVER_EXTIF) += driver_extif.o
ssb-$(CONFIG_SSB_DRIVER_PCICORE) += driver_pcicore.o
# b43 pci-ssb-bridge driver
# Not strictly a part of SSB, but kept here for convenience
ssb-$(CONFIG_SSB_PCIHOST) += b43_pci_bridge.o
obj-$(CONFIG_SSB) += ssb.o

View File

@@ -0,0 +1,50 @@
/*
* Broadcom 43xx PCI-SSB bridge module
*
* This technically is a separate PCI driver module, but
* because of its small size we include it in the SSB core
* instead of creating a standalone module.
*
* Copyright 2007 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/pci.h>
#include <linux/ssb/ssb.h>
#include "ssb_private.h"
static const struct pci_device_id b43_pci_bridge_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4301) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4307) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4311) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4312) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4318) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4319) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4320) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4321) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4325) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4328) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4329) },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, b43_pci_bridge_tbl);
static struct pci_driver b43_pci_bridge_driver = {
.name = "b43-pci-bridge",
.id_table = b43_pci_bridge_tbl,
};
int __init b43_pci_ssb_bridge_init(void)
{
return ssb_pcihost_register(&b43_pci_bridge_driver);
}
void __exit b43_pci_ssb_bridge_exit(void)
{
ssb_pcihost_unregister(&b43_pci_bridge_driver);
}

View File

@@ -0,0 +1,445 @@
/*
* Sonics Silicon Backplane
* Broadcom ChipCommon core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include "ssb_private.h"
/* Clock sources */
enum ssb_clksrc {
/* PCI clock */
SSB_CHIPCO_CLKSRC_PCI,
/* Crystal slow clock oscillator */
SSB_CHIPCO_CLKSRC_XTALOS,
/* Low power oscillator */
SSB_CHIPCO_CLKSRC_LOPWROS,
};
static inline u32 chipco_read32(struct ssb_chipcommon *cc,
u16 offset)
{
return ssb_read32(cc->dev, offset);
}
static inline void chipco_write32(struct ssb_chipcommon *cc,
u16 offset,
u32 value)
{
ssb_write32(cc->dev, offset, value);
}
static inline void chipco_write32_masked(struct ssb_chipcommon *cc, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= chipco_read32(cc, offset) & ~mask;
chipco_write32(cc, offset, value);
}
void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode)
{
struct ssb_device *ccdev = cc->dev;
struct ssb_bus *bus;
u32 tmp;
if (!ccdev)
return;
bus = ccdev->bus;
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (ccdev->id.revision < 6)
return;
/* chipcommon cores rev10 are a whole new ball game */
if (ccdev->id.revision >= 10)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
switch (mode) {
case SSB_CLKMODE_SLOW:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_FAST:
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_DYNAMIC:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) != SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL)
tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL)
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0);
break;
default:
SSB_WARN_ON(1);
}
}
/* Get the Slow Clock Source */
static enum ssb_clksrc chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 uninitialized_var(tmp);
if (cc->dev->id.revision < 6) {
if (bus->bustype == SSB_BUSTYPE_SSB ||
bus->bustype == SSB_BUSTYPE_PCMCIA)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (bus->bustype == SSB_BUSTYPE_PCI) {
pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp);
if (tmp & 0x10)
return SSB_CHIPCO_CLKSRC_PCI;
return SSB_CHIPCO_CLKSRC_XTALOS;
}
}
if (cc->dev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= 0x7;
if (tmp == 0)
return SSB_CHIPCO_CLKSRC_LOPWROS;
if (tmp == 1)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (tmp == 2)
return SSB_CHIPCO_CLKSRC_PCI;
}
return SSB_CHIPCO_CLKSRC_XTALOS;
}
/* Get maximum or minimum (depending on get_max flag) slowclock frequency. */
static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max)
{
int uninitialized_var(limit);
enum ssb_clksrc clocksrc;
int divisor = 1;
u32 tmp;
clocksrc = chipco_pctl_get_slowclksrc(cc);
if (cc->dev->id.revision < 6) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_PCI:
divisor = 64;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
divisor = 32;
break;
default:
SSB_WARN_ON(1);
}
} else if (cc->dev->id.revision < 10) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
case SSB_CHIPCO_CLKSRC_PCI:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
break;
}
} else {
tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
}
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
if (get_max)
limit = 43000;
else
limit = 25000;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
if (get_max)
limit = 20200000;
else
limit = 19800000;
break;
case SSB_CHIPCO_CLKSRC_PCI:
if (get_max)
limit = 34000000;
else
limit = 25000000;
break;
}
limit /= divisor;
return limit;
}
static void chipco_powercontrol_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (bus->chip_id == 0x4321) {
if (bus->chip_rev == 0)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4);
else if (bus->chip_rev == 1)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4);
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
if (cc->dev->id.revision >= 10) {
/* Set Idle Power clock rate to 1Mhz */
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
0x0000FFFF) | 0x00040000);
} else {
int maxfreq;
maxfreq = chipco_pctl_clockfreqlimit(cc, 1);
chipco_write32(cc, SSB_CHIPCO_PLLONDELAY,
(maxfreq * 150 + 999999) / 1000000);
chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY,
(maxfreq * 15 + 999999) / 1000000);
}
}
static void calc_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
int minfreq;
unsigned int tmp;
u32 pll_on_delay;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
minfreq = chipco_pctl_clockfreqlimit(cc, 0);
pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY);
tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq;
SSB_WARN_ON(tmp & ~0xFFFF);
cc->fast_pwrup_delay = tmp;
}
void ssb_chipcommon_init(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return; /* We don't have a ChipCommon */
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
calc_fast_powerup_delay(cc);
}
void ssb_chipco_suspend(struct ssb_chipcommon *cc, pm_message_t state)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
}
void ssb_chipco_resume(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
}
/* Get the processor clock */
void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_2:
case SSB_PLLTYPE_4:
case SSB_PLLTYPE_6:
case SSB_PLLTYPE_7:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3:
/* 5350 uses m2 to control mips */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
break;
}
}
/* Get the bus clock */
void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
if (cc->dev->bus->chip_id != 0x5365) {
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
}
/* Fallthough */
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
}
}
void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns)
{
struct ssb_device *dev = cc->dev;
struct ssb_bus *bus = dev->bus;
u32 tmp;
/* set register for external IO to control LED. */
chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11);
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */
tmp |= DIV_ROUND_UP(240, ns); /* Waitcount-0 = 240ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */
tmp |= DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120nS */
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9))
chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp);
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9) ||
((bus->chip_id == 0x5350) && (bus->chip_rev == 0)))
chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp);
if (bus->chip_id == 0x5350) {
/* Enable EXTIF */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
}
}
/* Set chip watchdog reset timer to fire in 'ticks' backplane cycles */
void ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc, u32 ticks)
{
/* instant NMI */
chipco_write32(cc, SSB_CHIPCO_WATCHDOG, ticks);
}
u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_GPIOIN) & mask;
}
void ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUT, mask, value);
}
void ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUTEN, mask, value);
}
#ifdef CONFIG_SSB_SERIAL
int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports)
{
struct ssb_bus *bus = cc->dev->bus;
int nr_ports = 0;
u32 plltype;
unsigned int irq;
u32 baud_base, div;
u32 i, n;
plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
irq = ssb_mips_irq(cc->dev);
if (plltype == SSB_PLLTYPE_1) {
/* PLL clock */
baud_base = ssb_calc_clock_rate(plltype,
chipco_read32(cc, SSB_CHIPCO_CLOCK_N),
chipco_read32(cc, SSB_CHIPCO_CLOCK_M2));
div = 1;
} else {
if (cc->dev->id.revision >= 11) {
/* Fixed ALP clock */
baud_base = 20000000;
div = 1;
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
SSB_CHIPCO_CORECTL_UARTCLK0);
} else if (cc->dev->id.revision >= 3) {
/* Internal backplane clock */
baud_base = ssb_clockspeed(bus);
div = chipco_read32(cc, SSB_CHIPCO_CLKDIV)
& SSB_CHIPCO_CLKDIV_UART;
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((cc->dev->id.revision > 0) &&
!(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) {
if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) ==
SSB_CHIPCO_CAP_UARTCLK_INT) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Determine the registers of the UARTs */
n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART);
for (i = 0; i < n; i++) {
void __iomem *cc_mmio;
void __iomem *uart_regs;
cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE);
uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA;
/* Offset changed at after rev 0 */
if (cc->dev->id.revision == 0)
uart_regs += (i * 8);
else
uart_regs += (i * 256);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = irq;
ports[i].baud_base = baud_base;
ports[i].reg_shift = 0;
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */

View File

@@ -0,0 +1,129 @@
/*
* Sonics Silicon Backplane
* Broadcom EXTIF core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
* Copyright 2006, 2007, Felix Fietkau <nbd@openwrt.org>
* Copyright 2007, Aurelien Jarno <aurelien@aurel32.net>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include "ssb_private.h"
static inline u32 extif_read32(struct ssb_extif *extif, u16 offset)
{
return ssb_read32(extif->dev, offset);
}
static inline void extif_write32(struct ssb_extif *extif, u16 offset, u32 value)
{
ssb_write32(extif->dev, offset, value);
}
static inline void extif_write32_masked(struct ssb_extif *extif, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= extif_read32(extif, offset) & ~mask;
extif_write32(extif, offset, value);
}
#ifdef CONFIG_SSB_SERIAL
static bool serial_exists(u8 *regs)
{
u8 save_mcr, msr = 0;
if (regs) {
save_mcr = regs[UART_MCR];
regs[UART_MCR] = (UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_RTS);
msr = regs[UART_MSR] & (UART_MSR_DCD | UART_MSR_RI
| UART_MSR_CTS | UART_MSR_DSR);
regs[UART_MCR] = save_mcr;
}
return (msr == (UART_MSR_DCD | UART_MSR_CTS));
}
int ssb_extif_serial_init(struct ssb_extif *extif, struct ssb_serial_port *ports)
{
u32 i, nr_ports = 0;
/* Disable GPIO interrupt initially */
extif_write32(extif, SSB_EXTIF_GPIO_INTPOL, 0);
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 0);
for (i = 0; i < 2; i++) {
void __iomem *uart_regs;
uart_regs = ioremap_nocache(SSB_EUART, 16);
if (uart_regs) {
uart_regs += (i * 8);
if (serial_exists(uart_regs) && ports) {
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 2);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = 2;
ports[i].baud_base = 13500000;
ports[i].reg_shift = 0;
}
iounmap(uart_regs);
}
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */
void ssb_extif_timing_init(struct ssb_extif *extif, unsigned long ns)
{
u32 tmp;
/* Initialize extif so we can get to the LEDs and external UART */
extif_write32(extif, SSB_EXTIF_PROG_CFG, SSB_EXTCFG_EN);
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
/* Set programmable interface timing for external uart */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT;
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
}
void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *pll_type, u32 *n, u32 *m)
{
*pll_type = SSB_PLLTYPE_1;
*n = extif_read32(extif, SSB_EXTIF_CLOCK_N);
*m = extif_read32(extif, SSB_EXTIF_CLOCK_SB);
}
u32 ssb_extif_gpio_in(struct ssb_extif *extif, u32 mask)
{
return extif_read32(extif, SSB_EXTIF_GPIO_IN) & mask;
}
void ssb_extif_gpio_out(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUT(0),
mask, value);
}
void ssb_extif_gpio_outen(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUTEN(0),
mask, value);
}

View File

@@ -0,0 +1,225 @@
/*
* Sonics Silicon Backplane
* Broadcom MIPS core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <linux/time.h>
#include "ssb_private.h"
static inline u32 mips_read32(struct ssb_mipscore *mcore,
u16 offset)
{
return ssb_read32(mcore->dev, offset);
}
static inline void mips_write32(struct ssb_mipscore *mcore,
u16 offset,
u32 value)
{
ssb_write32(mcore->dev, offset, value);
}
static const u32 ipsflag_irq_mask[] = {
0,
SSB_IPSFLAG_IRQ1,
SSB_IPSFLAG_IRQ2,
SSB_IPSFLAG_IRQ3,
SSB_IPSFLAG_IRQ4,
};
static const u32 ipsflag_irq_shift[] = {
0,
SSB_IPSFLAG_IRQ1_SHIFT,
SSB_IPSFLAG_IRQ2_SHIFT,
SSB_IPSFLAG_IRQ3_SHIFT,
SSB_IPSFLAG_IRQ4_SHIFT,
};
static inline u32 ssb_irqflag(struct ssb_device *dev)
{
return ssb_read32(dev, SSB_TPSFLAG) & SSB_TPSFLAG_BPFLAG;
}
/* Get the MIPS IRQ assignment for a specified device.
* If unassigned, 0 is returned.
*/
unsigned int ssb_mips_irq(struct ssb_device *dev)
{
struct ssb_bus *bus = dev->bus;
u32 irqflag;
u32 ipsflag;
u32 tmp;
unsigned int irq;
irqflag = ssb_irqflag(dev);
ipsflag = ssb_read32(bus->mipscore.dev, SSB_IPSFLAG);
for (irq = 1; irq <= 4; irq++) {
tmp = ((ipsflag & ipsflag_irq_mask[irq]) >> ipsflag_irq_shift[irq]);
if (tmp == irqflag)
break;
}
if (irq == 5)
irq = 0;
return irq;
}
static void clear_irq(struct ssb_bus *bus, unsigned int irq)
{
struct ssb_device *dev = bus->mipscore.dev;
/* Clear the IRQ in the MIPScore backplane registers */
if (irq == 0) {
ssb_write32(dev, SSB_INTVEC, 0);
} else {
ssb_write32(dev, SSB_IPSFLAG,
ssb_read32(dev, SSB_IPSFLAG) |
ipsflag_irq_mask[irq]);
}
}
static void set_irq(struct ssb_device *dev, unsigned int irq)
{
unsigned int oldirq = ssb_mips_irq(dev);
struct ssb_bus *bus = dev->bus;
struct ssb_device *mdev = bus->mipscore.dev;
u32 irqflag = ssb_irqflag(dev);
dev->irq = irq + 2;
ssb_dprintk(KERN_INFO PFX
"set_irq: core 0x%04x, irq %d => %d\n",
dev->id.coreid, oldirq, irq);
/* clear the old irq */
if (oldirq == 0)
ssb_write32(mdev, SSB_INTVEC, (~(1 << irqflag) & ssb_read32(mdev, SSB_INTVEC)));
else
clear_irq(bus, oldirq);
/* assign the new one */
if (irq == 0) {
ssb_write32(mdev, SSB_INTVEC, ((1 << irqflag) | ssb_read32(mdev, SSB_INTVEC)));
} else {
irqflag <<= ipsflag_irq_shift[irq];
irqflag |= (ssb_read32(mdev, SSB_IPSFLAG) & ~ipsflag_irq_mask[irq]);
ssb_write32(mdev, SSB_IPSFLAG, irqflag);
}
}
static void ssb_mips_serial_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
if (bus->extif.dev)
mcore->nr_serial_ports = ssb_extif_serial_init(&bus->extif, mcore->serial_ports);
else if (bus->chipco.dev)
mcore->nr_serial_ports = ssb_chipco_serial_init(&bus->chipco, mcore->serial_ports);
else
mcore->nr_serial_ports = 0;
}
static void ssb_mips_flash_detect(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
mcore->flash_buswidth = 2;
if (bus->chipco.dev) {
mcore->flash_window = 0x1c000000;
mcore->flash_window_size = 0x02000000;
if ((ssb_read32(bus->chipco.dev, SSB_CHIPCO_FLASH_CFG)
& SSB_CHIPCO_CFG_DS16) == 0)
mcore->flash_buswidth = 1;
} else {
mcore->flash_window = 0x1fc00000;
mcore->flash_window_size = 0x00400000;
}
}
u32 ssb_cpu_clock(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
u32 pll_type, n, m, rate = 0;
if (bus->extif.dev) {
ssb_extif_get_clockcontrol(&bus->extif, &pll_type, &n, &m);
} else if (bus->chipco.dev) {
ssb_chipco_get_clockcpu(&bus->chipco, &pll_type, &n, &m);
} else
return 0;
if ((pll_type == SSB_PLLTYPE_5) || (bus->chip_id == 0x5365)) {
rate = 200000000;
} else {
rate = ssb_calc_clock_rate(pll_type, n, m);
}
if (pll_type == SSB_PLLTYPE_6) {
rate *= 2;
}
return rate;
}
void ssb_mipscore_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus;
struct ssb_device *dev;
unsigned long hz, ns;
unsigned int irq, i;
if (!mcore->dev)
return; /* We don't have a MIPS core */
ssb_dprintk(KERN_INFO PFX "Initializing MIPS core...\n");
bus = mcore->dev->bus;
hz = ssb_clockspeed(bus);
if (!hz)
hz = 100000000;
ns = 1000000000 / hz;
if (bus->extif.dev)
ssb_extif_timing_init(&bus->extif, ns);
else if (bus->chipco.dev)
ssb_chipco_timing_init(&bus->chipco, ns);
/* Assign IRQs to all cores on the bus, start with irq line 2, because serial usually takes 1 */
for (irq = 2, i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
dev->irq = ssb_mips_irq(dev) + 2;
switch (dev->id.coreid) {
case SSB_DEV_USB11_HOST:
/* shouldn't need a separate irq line for non-4710, most of them have a proper
* external usb controller on the pci */
if ((bus->chip_id == 0x4710) && (irq <= 4)) {
set_irq(dev, irq++);
break;
}
/* fallthrough */
case SSB_DEV_PCI:
case SSB_DEV_ETHERNET:
case SSB_DEV_80211:
case SSB_DEV_USB20_HOST:
/* These devices get their own IRQ line if available, the rest goes on IRQ0 */
if (irq <= 4) {
set_irq(dev, irq++);
break;
}
}
}
ssb_mips_serial_init(mcore);
ssb_mips_flash_detect(mcore);
}

View File

@@ -0,0 +1,576 @@
/*
* Sonics Silicon Backplane
* Broadcom PCI-core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
static inline
u32 pcicore_read32(struct ssb_pcicore *pc, u16 offset)
{
return ssb_read32(pc->dev, offset);
}
static inline
void pcicore_write32(struct ssb_pcicore *pc, u16 offset, u32 value)
{
ssb_write32(pc->dev, offset, value);
}
/**************************************************
* Code for hostmode operation.
**************************************************/
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
#include <asm/paccess.h>
/* Probe a 32bit value on the bus and catch bus exceptions.
* Returns nonzero on a bus exception.
* This is MIPS specific */
#define mips_busprobe32(val, addr) get_dbe((val), ((u32 *)(addr)))
/* Assume one-hot slot wiring */
#define SSB_PCI_SLOT_MAX 16
/* Global lock is OK, as we won't have more than one extpci anyway. */
static DEFINE_SPINLOCK(cfgspace_lock);
/* Core to access the external PCI config space. Can only have one. */
static struct ssb_pcicore *extpci_core;
static u32 ssb_pcicore_pcibus_iobase = 0x100;
static u32 ssb_pcicore_pcibus_membase = SSB_PCI_DMA;
int pcibios_plat_dev_init(struct pci_dev *d)
{
struct resource *res;
int pos, size;
u32 *base;
ssb_printk(KERN_INFO "PCI: Fixing up device %s\n",
pci_name(d));
/* Fix up resource bases */
for (pos = 0; pos < 6; pos++) {
res = &d->resource[pos];
if (res->flags & IORESOURCE_IO)
base = &ssb_pcicore_pcibus_iobase;
else
base = &ssb_pcicore_pcibus_membase;
if (res->end) {
size = res->end - res->start + 1;
if (*base & (size - 1))
*base = (*base + size) & ~(size - 1);
res->start = *base;
res->end = res->start + size - 1;
*base += size;
pci_write_config_dword(d, PCI_BASE_ADDRESS_0 + (pos << 2), res->start);
}
/* Fix up PCI bridge BAR0 only */
if (d->bus->number == 0 && PCI_SLOT(d->devfn) == 0)
break;
}
/* Fix up interrupt lines */
d->irq = ssb_mips_irq(extpci_core->dev) + 2;
pci_write_config_byte(d, PCI_INTERRUPT_LINE, d->irq);
return 0;
}
static void __init ssb_fixup_pcibridge(struct pci_dev *dev)
{
if (dev->bus->number != 0 || PCI_SLOT(dev->devfn) != 0)
return;
ssb_printk(KERN_INFO "PCI: fixing up bridge\n");
/* Enable PCI bridge bus mastering and memory space */
pci_set_master(dev);
pcibios_enable_device(dev, ~0);
/* Enable PCI bridge BAR1 prefetch and burst */
pci_write_config_dword(dev, SSB_BAR1_CONTROL, 3);
/* Make sure our latency is high enough to handle the devices behind us */
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xa8);
}
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, ssb_fixup_pcibridge);
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
return ssb_mips_irq(extpci_core->dev) + 2;
}
static u32 get_cfgspace_addr(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off)
{
u32 addr = 0;
u32 tmp;
if (unlikely(pc->cardbusmode && dev > 1))
goto out;
if (bus == 0) {
/* Type 0 transaction */
if (unlikely(dev >= SSB_PCI_SLOT_MAX))
goto out;
/* Slide the window */
tmp = SSB_PCICORE_SBTOPCI_CFG0;
tmp |= ((1 << (dev + 16)) & SSB_PCICORE_SBTOPCI1_MASK);
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1, tmp);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= ((1 << (dev + 16)) & ~SSB_PCICORE_SBTOPCI1_MASK);
addr |= (func << 8);
addr |= (off & ~3);
} else {
/* Type 1 transaction */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG1);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= (bus << 16);
addr |= (dev << 11);
addr |= (func << 8);
addr |= (off & ~3);
}
out:
return addr;
}
static int ssb_extpci_read_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
void *buf, int len)
{
int err = -EINVAL;
u32 addr, val;
void __iomem *mmio;
SSB_WARN_ON(!pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
goto unmap;
}
val = readl(mmio);
val >>= (8 * (off & 3));
switch (len) {
case 1:
*((u8 *)buf) = (u8)val;
break;
case 2:
*((u16 *)buf) = (u16)val;
break;
case 4:
*((u32 *)buf) = (u32)val;
break;
}
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_extpci_write_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
const void *buf, int len)
{
int err = -EINVAL;
u32 addr, val = 0;
void __iomem *mmio;
SSB_WARN_ON(!pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
goto unmap;
}
switch (len) {
case 1:
val = readl(mmio);
val &= ~(0xFF << (8 * (off & 3)));
val |= *((const u8 *)buf) << (8 * (off & 3));
break;
case 2:
val = readl(mmio);
val &= ~(0xFFFF << (8 * (off & 3)));
val |= *((const u16 *)buf) << (8 * (off & 3));
break;
case 4:
val = *((const u32 *)buf);
break;
}
writel(val, mmio);
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_pcicore_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_read_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static int ssb_pcicore_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_write_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, &val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static struct pci_ops ssb_pcicore_pciops = {
.read = ssb_pcicore_read_config,
.write = ssb_pcicore_write_config,
};
static struct resource ssb_pcicore_mem_resource = {
.name = "SSB PCIcore external memory",
.start = SSB_PCI_DMA,
.end = SSB_PCI_DMA + SSB_PCI_DMA_SZ - 1,
.flags = IORESOURCE_MEM,
};
static struct resource ssb_pcicore_io_resource = {
.name = "SSB PCIcore external I/O",
.start = 0x100,
.end = 0x7FF,
.flags = IORESOURCE_IO,
};
static struct pci_controller ssb_pcicore_controller = {
.pci_ops = &ssb_pcicore_pciops,
.io_resource = &ssb_pcicore_io_resource,
.mem_resource = &ssb_pcicore_mem_resource,
.mem_offset = 0x24000000,
};
static void ssb_pcicore_init_hostmode(struct ssb_pcicore *pc)
{
u32 val;
if (WARN_ON(extpci_core))
return;
extpci_core = pc;
ssb_dprintk(KERN_INFO PFX "PCIcore in host mode found\n");
/* Reset devices on the external PCI bus */
val = SSB_PCICORE_CTL_RST_OE;
val |= SSB_PCICORE_CTL_CLK_OE;
pcicore_write32(pc, SSB_PCICORE_CTL, val);
val |= SSB_PCICORE_CTL_CLK; /* Clock on */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
udelay(150); /* Assertion time demanded by the PCI standard */
val |= SSB_PCICORE_CTL_RST; /* Deassert RST# */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
val = SSB_PCICORE_ARBCTL_INTERN;
pcicore_write32(pc, SSB_PCICORE_ARBCTL, val);
udelay(1); /* Assertion time demanded by the PCI standard */
/*TODO cardbus mode */
/* 64MB I/O window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI0,
SSB_PCICORE_SBTOPCI_IO);
/* 64MB config space */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG0);
/* 1GB memory window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2,
SSB_PCICORE_SBTOPCI_MEM | SSB_PCI_DMA);
/* Enable PCI bridge BAR0 prefetch and burst */
val = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
ssb_extpci_write_config(pc, 0, 0, 0, PCI_COMMAND, &val, 2);
/* Clear error conditions */
val = 0;
ssb_extpci_write_config(pc, 0, 0, 0, PCI_STATUS, &val, 2);
/* Enable PCI interrupts */
pcicore_write32(pc, SSB_PCICORE_IMASK,
SSB_PCICORE_IMASK_INTA);
/* Ok, ready to run, register it to the system.
* The following needs change, if we want to port hostmode
* to non-MIPS platform. */
set_io_port_base((unsigned long)ioremap_nocache(SSB_PCI_MEM, 0x04000000));
/* Give some time to the PCI controller to configure itself with the new
* values. Not waiting at this point causes crashes of the machine. */
mdelay(10);
register_pci_controller(&ssb_pcicore_controller);
}
static int pcicore_is_in_hostmode(struct ssb_pcicore *pc)
{
struct ssb_bus *bus = pc->dev->bus;
u16 chipid_top;
u32 tmp;
chipid_top = (bus->chip_id & 0xFF00);
if (chipid_top != 0x4700 &&
chipid_top != 0x5300)
return 0;
if (bus->sprom.r1.boardflags_lo & SSB_PCICORE_BFL_NOPCI)
return 0;
/* The 200-pin BCM4712 package does not bond out PCI. Even when
* PCI is bonded out, some boards may leave the pins floating. */
if (bus->chip_id == 0x4712) {
if (bus->chip_package == SSB_CHIPPACK_BCM4712S)
return 0;
if (bus->chip_package == SSB_CHIPPACK_BCM4712M)
return 0;
}
if (bus->chip_id == 0x5350)
return 0;
return !mips_busprobe32(tmp, (bus->mmio + (pc->dev->core_index * SSB_CORE_SIZE)));
}
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
/**************************************************
* Generic and Clientmode operation code.
**************************************************/
static void ssb_pcicore_init_clientmode(struct ssb_pcicore *pc)
{
/* Disable PCI interrupts. */
ssb_write32(pc->dev, SSB_INTVEC, 0);
}
void ssb_pcicore_init(struct ssb_pcicore *pc)
{
struct ssb_device *dev = pc->dev;
struct ssb_bus *bus;
if (!dev)
return;
bus = dev->bus;
if (!ssb_device_is_enabled(dev))
ssb_device_enable(dev, 0);
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
pc->hostmode = pcicore_is_in_hostmode(pc);
if (pc->hostmode)
ssb_pcicore_init_hostmode(pc);
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
if (!pc->hostmode)
ssb_pcicore_init_clientmode(pc);
}
static u32 ssb_pcie_read(struct ssb_pcicore *pc, u32 address)
{
pcicore_write32(pc, 0x130, address);
return pcicore_read32(pc, 0x134);
}
static void ssb_pcie_write(struct ssb_pcicore *pc, u32 address, u32 data)
{
pcicore_write32(pc, 0x130, address);
pcicore_write32(pc, 0x134, data);
}
static void ssb_pcie_mdio_write(struct ssb_pcicore *pc, u8 device,
u8 address, u16 data)
{
const u16 mdio_control = 0x128;
const u16 mdio_data = 0x12C;
u32 v;
int i;
v = 0x80; /* Enable Preamble Sequence */
v |= 0x2; /* MDIO Clock Divisor */
pcicore_write32(pc, mdio_control, v);
v = (1 << 30); /* Start of Transaction */
v |= (1 << 28); /* Write Transaction */
v |= (1 << 17); /* Turnaround */
v |= (u32)device << 22;
v |= (u32)address << 18;
v |= data;
pcicore_write32(pc, mdio_data, v);
/* Wait for the device to complete the transaction */
udelay(10);
for (i = 0; i < 10; i++) {
v = pcicore_read32(pc, mdio_control);
if (v & 0x100 /* Trans complete */)
break;
msleep(1);
}
pcicore_write32(pc, mdio_control, 0);
}
static void ssb_broadcast_value(struct ssb_device *dev,
u32 address, u32 data)
{
/* This is used for both, PCI and ChipCommon core, so be careful. */
BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
ssb_write32(dev, SSB_PCICORE_BCAST_ADDR, address);
ssb_read32(dev, SSB_PCICORE_BCAST_ADDR); /* flush */
ssb_write32(dev, SSB_PCICORE_BCAST_DATA, data);
ssb_read32(dev, SSB_PCICORE_BCAST_DATA); /* flush */
}
static void ssb_commit_settings(struct ssb_bus *bus)
{
struct ssb_device *dev;
dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
if (WARN_ON(!dev))
return;
/* This forces an update of the cached registers. */
ssb_broadcast_value(dev, 0xFD8, 0);
}
int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev)
{
struct ssb_device *pdev = pc->dev;
struct ssb_bus *bus;
int err = 0;
u32 tmp;
might_sleep();
if (!pdev)
goto out;
bus = pdev->bus;
/* Enable interrupts for this device. */
if (bus->host_pci &&
((pdev->id.revision >= 6) || (pdev->id.coreid == SSB_DEV_PCIE))) {
u32 coremask;
/* Calculate the "coremask" for the device. */
coremask = (1 << dev->core_index);
err = pci_read_config_dword(bus->host_pci, SSB_PCI_IRQMASK, &tmp);
if (err)
goto out;
tmp |= coremask << 8;
err = pci_write_config_dword(bus->host_pci, SSB_PCI_IRQMASK, tmp);
if (err)
goto out;
} else {
u32 intvec;
intvec = ssb_read32(pdev, SSB_INTVEC);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: On the BCM44XX the BPFLAG routing
* bit is wrong. Use a hardcoded constant. */
intvec |= 0x00000002;
} else {
tmp = ssb_read32(dev, SSB_TPSFLAG);
tmp &= SSB_TPSFLAG_BPFLAG;
intvec |= tmp;
}
ssb_write32(pdev, SSB_INTVEC, intvec);
}
/* Setup PCIcore operation. */
if (pc->setup_done)
goto out;
if (pdev->id.coreid == SSB_DEV_PCI) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_PREF;
tmp |= SSB_PCICORE_SBTOPCI_BURST;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
if (pdev->id.revision < 5) {
tmp = ssb_read32(pdev, SSB_IMCFGLO);
tmp &= ~SSB_IMCFGLO_SERTO;
tmp |= 2;
tmp &= ~SSB_IMCFGLO_REQTO;
tmp |= 3 << SSB_IMCFGLO_REQTO_SHIFT;
ssb_write32(pdev, SSB_IMCFGLO, tmp);
ssb_commit_settings(bus);
} else if (pdev->id.revision >= 11) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_MRM;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
}
} else {
WARN_ON(pdev->id.coreid != SSB_DEV_PCIE);
//TODO: Better make defines for all these magic PCIE values.
if ((pdev->id.revision == 0) || (pdev->id.revision == 1)) {
/* TLP Workaround register. */
tmp = ssb_pcie_read(pc, 0x4);
tmp |= 0x8;
ssb_pcie_write(pc, 0x4, tmp);
}
if (pdev->id.revision == 0) {
const u8 serdes_rx_device = 0x1F;
ssb_pcie_mdio_write(pc, serdes_rx_device,
2 /* Timer */, 0x8128);
ssb_pcie_mdio_write(pc, serdes_rx_device,
6 /* CDR */, 0x0100);
ssb_pcie_mdio_write(pc, serdes_rx_device,
7 /* CDR BW */, 0x1466);
} else if (pdev->id.revision == 1) {
/* DLLP Link Control register. */
tmp = ssb_pcie_read(pc, 0x100);
tmp |= 0x40;
ssb_pcie_write(pc, 0x100, tmp);
}
}
pc->setup_done = 1;
out:
return err;
}
EXPORT_SYMBOL(ssb_pcicore_dev_irqvecs_enable);

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,790 @@
/*
* Sonics Silicon Backplane PCI-Hostbus related functions.
*
* Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
*
* Derived from the Broadcom 4400 device driver.
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
* Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
/* Lowlevel coreswitching */
int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
while (1) {
err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
(coreidx * SSB_CORE_SIZE)
+ SSB_ENUM_BASE);
if (err)
goto error;
err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
&cur_core);
if (err)
goto error;
cur_core = (cur_core - SSB_ENUM_BASE)
/ SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
#if SSB_VERBOSE_PCICORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pci_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
/* Enable/disable the on board crystal oscillator and/or PLL. */
int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
{
int err;
u32 in, out, outenable;
u16 pci_status;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
if (err)
goto err_pci;
outenable |= what;
if (turn_on) {
/* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (!(in & SSB_GPIO_XTAL)) {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal on */
out |= SSB_GPIO_XTAL;
if (what & SSB_GPIO_PLL)
out |= SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
outenable);
if (err)
goto err_pci;
msleep(1);
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL on */
out &= ~SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
msleep(5);
}
}
err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
if (err)
goto err_pci;
pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
if (err)
goto err_pci;
} else {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal off */
out &= ~SSB_GPIO_XTAL;
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL off */
out |= SSB_GPIO_PLL;
}
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
if (err)
goto err_pci;
}
out:
return err;
err_pci:
printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
err = -EBUSY;
goto out;
}
/* Get the word-offset for a SSB_SPROM_XXX define. */
#define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16))
/* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
#define SPEX(_outvar, _offset, _mask, _shift) \
out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
static inline u8 ssb_crc8(u8 crc, u8 data)
{
/* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < size - 1; word++) {
crc = ssb_crc8(crc, sprom[word] & 0x00FF);
crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
crc ^= 0xFF;
return crc;
}
static int sprom_check_crc(const u16 *sprom, u16 size)
{
u8 crc;
u8 expected_crc;
u16 tmp;
crc = ssb_sprom_crc(sprom, size);
tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
if (crc != expected_crc)
return -EPROTO;
return 0;
}
static void sprom_do_read(struct ssb_bus *bus, u16 *sprom)
{
int i;
for (i = 0; i < bus->sprom_size; i++)
sprom[i] = ioread16(bus->mmio + SSB_SPROM_BASE + (i * 2));
}
static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
{
struct pci_dev *pdev = bus->host_pci;
int i, err;
u32 spromctl;
u16 size = bus->sprom_size;
ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl |= SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
ssb_printk(KERN_NOTICE PFX "[ 0%%");
msleep(500);
for (i = 0; i < size; i++) {
if (i == size / 4)
ssb_printk("25%%");
else if (i == size / 2)
ssb_printk("50%%");
else if (i == (size * 3) / 4)
ssb_printk("75%%");
else if (i % 2)
ssb_printk(".");
writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2));
mmiowb();
msleep(20);
}
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl &= ~SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
msleep(500);
ssb_printk("100%% ]\n");
ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
return 0;
err_ctlreg:
ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
return err;
}
static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
u16 mask, u16 shift)
{
u16 v;
u8 gain;
v = in[SPOFF(SSB_SPROM1_AGAIN)];
gain = (v & mask) >> shift;
if (gain == 0xFF)
gain = 2; /* If unset use 2dBm */
if (sprom_revision == 1) {
/* Convert to Q5.2 */
gain <<= 2;
} else {
/* Q5.2 Fractional part is stored in 0xC0 */
gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
}
return (s8)gain;
}
static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
s8 gain;
u16 loc[3];
if (out->revision == 3) { /* rev 3 moved MAC */
loc[0] = SSB_SPROM3_IL0MAC;
loc[1] = SSB_SPROM3_ET0MAC;
loc[2] = SSB_SPROM3_ET1MAC;
} else {
loc[0] = SSB_SPROM1_IL0MAC;
loc[1] = SSB_SPROM1_ET0MAC;
loc[2] = SSB_SPROM1_ET1MAC;
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[0]) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[1]) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[2]) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
SSB_SPROM1_ETHPHY_ET1A_SHIFT);
SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
SSB_SPROM1_BINF_CCODE_SHIFT);
SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
SSB_SPROM1_BINF_ANTA_SHIFT);
SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
SSB_SPROM1_BINF_ANTBG_SHIFT);
SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
SSB_SPROM1_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
SSB_SPROM1_GPIOB_P3_SHIFT);
SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
SSB_SPROM1_MAXPWR_A_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
SSB_SPROM1_ITSSI_A_SHIFT);
SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
if (out->revision >= 2)
SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
/* Extract the antenna gain values. */
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_BG,
SSB_SPROM1_AGAIN_BG_SHIFT);
out->antenna_gain.ghz24.a0 = gain;
out->antenna_gain.ghz24.a1 = gain;
out->antenna_gain.ghz24.a2 = gain;
out->antenna_gain.ghz24.a3 = gain;
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_A,
SSB_SPROM1_AGAIN_A_SHIFT);
out->antenna_gain.ghz5.a0 = gain;
out->antenna_gain.ghz5.a1 = gain;
out->antenna_gain.ghz5.a2 = gain;
out->antenna_gain.ghz5.a3 = gain;
}
static void sprom_extract_r4(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
/* extract the equivalent of the r1 variables */
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_IL0MAC) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_ET0MAC) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_ET1MAC) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
SSB_SPROM4_ETHPHY_ET1A_SHIFT);
SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
SSB_SPROM4_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
SSB_SPROM4_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
SSB_SPROM4_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
SSB_SPROM4_ITSSI_A_SHIFT);
SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
SSB_SPROM4_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
SSB_SPROM4_GPIOB_P3_SHIFT);
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
/* TODO - get remaining rev 4 stuff needed */
}
static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
const u16 *in, u16 size)
{
memset(out, 0, sizeof(*out));
out->revision = in[size - 1] & 0x00FF;
ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: The BCM44XX chip has a stupid revision
* number stored in the SPROM.
* Always extract r1. */
out->revision = 1;
sprom_extract_r123(out, in);
} else if (bus->chip_id == 0x4321) {
/* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */
out->revision = 4;
sprom_extract_r4(out, in);
} else {
if (out->revision == 0)
goto unsupported;
if (out->revision >= 1 && out->revision <= 3) {
sprom_extract_r123(out, in);
}
if (out->revision == 4)
sprom_extract_r4(out, in);
if (out->revision >= 5)
goto unsupported;
}
return 0;
unsupported:
ssb_printk(KERN_WARNING PFX "Unsupported SPROM revision %d "
"detected. Will extract v1\n", out->revision);
sprom_extract_r123(out, in);
return 0;
}
static int ssb_pci_sprom_get(struct ssb_bus *bus,
struct ssb_sprom *sprom)
{
int err = -ENOMEM;
u16 *buf;
buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* check for rev 4 sprom - has special signature */
if (buf[32] == 0x5372) {
kfree(buf);
buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
}
if (err)
ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
" SPROM CRC (corrupt SPROM)\n");
}
err = sprom_extract(bus, sprom, buf, bus->sprom_size);
kfree(buf);
out:
return err;
}
static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
struct ssb_boardinfo *bi)
{
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
&bi->vendor);
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
&bi->type);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bi->rev);
}
int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
int err;
err = ssb_pci_sprom_get(bus, &iv->sprom);
if (err)
goto out;
ssb_pci_get_boardinfo(bus, &iv->boardinfo);
out:
return err;
}
#ifdef CONFIG_SSB_DEBUG
static int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
if (likely(bus->powered_up))
return 0;
printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
"while accessing PCI MMIO space\n");
if (bus->power_warn_count <= 10) {
bus->power_warn_count++;
dump_stack();
}
return -ENODEV;
}
#else /* DEBUG */
static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
return 0;
}
#endif /* DEBUG */
static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFF;
}
return ioread16(bus->mmio + offset);
}
static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFFFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFFFFFF;
}
return ioread32(bus->mmio + offset);
}
static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite16(value, bus->mmio + offset);
}
static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite32(value, bus->mmio + offset);
}
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pci_ops = {
.read16 = ssb_pci_read16,
.read32 = ssb_pci_read32,
.write16 = ssb_pci_write16,
.write32 = ssb_pci_write32,
};
static int sprom2hex(const u16 *sprom, char *buf, size_t buf_len, u16 size)
{
int i, pos = 0;
for (i = 0; i < size; i++)
pos += snprintf(buf + pos, buf_len - pos - 1,
"%04X", swab16(sprom[i]) & 0xFFFF);
pos += snprintf(buf + pos, buf_len - pos - 1, "\n");
return pos + 1;
}
static int hex2sprom(u16 *sprom, const char *dump, size_t len, u16 size)
{
char tmp[5] = { 0 };
int cnt = 0;
unsigned long parsed;
if (len < size * 2)
return -EINVAL;
while (cnt < size) {
memcpy(tmp, dump, 4);
dump += 4;
parsed = simple_strtoul(tmp, NULL, 16);
sprom[cnt++] = swab16((u16)parsed);
}
return 0;
}
static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
u16 *sprom;
int err = -ENODEV;
ssize_t count = 0;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
goto out;
err = -ENOMEM;
sprom = kcalloc(bus->sprom_size, sizeof(u16), GFP_KERNEL);
if (!sprom)
goto out;
/* Use interruptible locking, as the SPROM write might
* be holding the lock for several seconds. So allow userspace
* to cancel operation. */
err = -ERESTARTSYS;
if (mutex_lock_interruptible(&bus->pci_sprom_mutex))
goto out_kfree;
sprom_do_read(bus, sprom);
mutex_unlock(&bus->pci_sprom_mutex);
count = sprom2hex(sprom, buf, PAGE_SIZE, bus->sprom_size);
err = 0;
out_kfree:
kfree(sprom);
out:
return err ? err : count;
}
static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
u16 *sprom;
int res = 0, err = -ENODEV;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
goto out;
err = -ENOMEM;
sprom = kcalloc(bus->sprom_size, sizeof(u16), GFP_KERNEL);
if (!sprom)
goto out;
err = hex2sprom(sprom, buf, count, bus->sprom_size);
if (err) {
err = -EINVAL;
goto out_kfree;
}
err = sprom_check_crc(sprom, bus->sprom_size);
if (err) {
err = -EINVAL;
goto out_kfree;
}
/* Use interruptible locking, as the SPROM write might
* be holding the lock for several seconds. So allow userspace
* to cancel operation. */
err = -ERESTARTSYS;
if (mutex_lock_interruptible(&bus->pci_sprom_mutex))
goto out_kfree;
err = ssb_devices_freeze(bus);
if (err == -EOPNOTSUPP) {
ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze devices. "
"No suspend support. Is CONFIG_PM enabled?\n");
goto out_unlock;
}
if (err) {
ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze all devices\n");
goto out_unlock;
}
res = sprom_do_write(bus, sprom);
err = ssb_devices_thaw(bus);
if (err)
ssb_printk(KERN_ERR PFX "SPROM write: Could not thaw all devices\n");
out_unlock:
mutex_unlock(&bus->pci_sprom_mutex);
out_kfree:
kfree(sprom);
out:
if (res)
return res;
return err ? err : count;
}
static DEVICE_ATTR(ssb_sprom, 0600,
ssb_pci_attr_sprom_show,
ssb_pci_attr_sprom_store);
void ssb_pci_exit(struct ssb_bus *bus)
{
struct pci_dev *pdev;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
pdev = bus->host_pci;
device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
}
int ssb_pci_init(struct ssb_bus *bus)
{
struct pci_dev *pdev;
int err;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
pdev = bus->host_pci;
mutex_init(&bus->pci_sprom_mutex);
err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
if (err)
goto out;
out:
return err;
}

View File

@@ -0,0 +1,104 @@
/*
* Sonics Silicon Backplane
* PCI Hostdevice wrapper
*
* Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (c) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (c) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (c) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
* Copyright (c) 2005-2007 Michael Buesch <mbuesch@freenet.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/pci.h>
#include <linux/ssb/ssb.h>
#ifdef CONFIG_PM
static int ssb_pcihost_suspend(struct pci_dev *dev, pm_message_t state)
{
pci_save_state(dev);
pci_disable_device(dev);
pci_set_power_state(dev, pci_choose_state(dev, state));
return 0;
}
static int ssb_pcihost_resume(struct pci_dev *dev)
{
int err;
pci_set_power_state(dev, 0);
err = pci_enable_device(dev);
if (err)
return err;
pci_restore_state(dev);
return 0;
}
#else /* CONFIG_PM */
# define ssb_pcihost_suspend NULL
# define ssb_pcihost_resume NULL
#endif /* CONFIG_PM */
static int ssb_pcihost_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
struct ssb_bus *ssb;
int err = -ENOMEM;
const char *name;
ssb = kzalloc(sizeof(*ssb), GFP_KERNEL);
if (!ssb)
goto out;
err = pci_enable_device(dev);
if (err)
goto err_kfree_ssb;
name = dev->dev.bus_id;
if (dev->driver && dev->driver->name)
name = dev->driver->name;
err = pci_request_regions(dev, name);
if (err)
goto err_pci_disable;
pci_set_master(dev);
err = ssb_bus_pcibus_register(ssb, dev);
if (err)
goto err_pci_release_regions;
pci_set_drvdata(dev, ssb);
out:
return err;
err_pci_release_regions:
pci_release_regions(dev);
err_pci_disable:
pci_disable_device(dev);
err_kfree_ssb:
kfree(ssb);
return err;
}
static void ssb_pcihost_remove(struct pci_dev *dev)
{
struct ssb_bus *ssb = pci_get_drvdata(dev);
ssb_bus_unregister(ssb);
pci_release_regions(dev);
pci_disable_device(dev);
kfree(ssb);
pci_set_drvdata(dev, NULL);
}
int ssb_pcihost_register(struct pci_driver *driver)
{
driver->probe = ssb_pcihost_probe;
driver->remove = ssb_pcihost_remove;
driver->suspend = ssb_pcihost_suspend;
driver->resume = ssb_pcihost_resume;
return pci_register_driver(driver);
}
EXPORT_SYMBOL(ssb_pcihost_register);

View File

@@ -0,0 +1,287 @@
/*
* Sonics Silicon Backplane
* PCMCIA-Hostbus related functions
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2007 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <pcmcia/cisreg.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCMCIACORESWITCH_DEBUG 0
int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
struct pcmcia_device *pdev = bus->host_pcmcia;
int err;
int attempts = 0;
u32 cur_core;
conf_reg_t reg;
u32 addr;
u32 read_addr;
addr = (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE;
while (1) {
reg.Action = CS_WRITE;
reg.Offset = 0x2E;
reg.Value = (addr & 0x0000F000) >> 12;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x30;
reg.Value = (addr & 0x00FF0000) >> 16;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x32;
reg.Value = (addr & 0xFF000000) >> 24;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr = 0;
reg.Action = CS_READ;
reg.Offset = 0x2E;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)(reg.Value & 0x0F)) << 12;
reg.Offset = 0x30;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)reg.Value) << 16;
reg.Offset = 0x32;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)reg.Value) << 24;
cur_core = (read_addr - SSB_ENUM_BASE) / SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
#if SSB_VERBOSE_PCMCIACORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
err = ssb_pcmcia_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
return err;
}
int ssb_pcmcia_switch_segment(struct ssb_bus *bus, u8 seg)
{
int attempts = 0;
conf_reg_t reg;
int res;
SSB_WARN_ON((seg != 0) && (seg != 1));
reg.Offset = 0x34;
reg.Function = 0;
while (1) {
reg.Action = CS_WRITE;
reg.Value = seg;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
reg.Value = 0xFF;
reg.Action = CS_READ;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
if (reg.Value == seg)
break;
if (unlikely(attempts++ > SSB_BAR0_MAX_RETRIES))
goto error;
udelay(10);
}
bus->mapped_pcmcia_seg = seg;
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch pcmcia segment\n");
return -ENODEV;
}
static int select_core_and_segment(struct ssb_device *dev,
u16 *offset)
{
struct ssb_bus *bus = dev->bus;
int err;
u8 need_segment;
if (*offset >= 0x800) {
*offset -= 0x800;
need_segment = 1;
} else
need_segment = 0;
if (unlikely(dev != bus->mapped_device)) {
err = ssb_pcmcia_switch_core(bus, dev);
if (unlikely(err))
return err;
}
if (unlikely(need_segment != bus->mapped_pcmcia_seg)) {
err = ssb_pcmcia_switch_segment(bus, need_segment);
if (unlikely(err))
return err;
}
return 0;
}
static u16 ssb_pcmcia_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u16 value = 0xFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
value = readw(bus->mmio + offset);
spin_unlock_irqrestore(&bus->bar_lock, flags);
return value;
}
static u32 ssb_pcmcia_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u32 lo = 0xFFFFFFFF, hi = 0xFFFFFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
lo = readw(bus->mmio + offset);
hi = readw(bus->mmio + offset + 2);
}
spin_unlock_irqrestore(&bus->bar_lock, flags);
return (lo | (hi << 16));
}
static void ssb_pcmcia_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
writew(value, bus->mmio + offset);
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
static void ssb_pcmcia_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
writew((value & 0x0000FFFF), bus->mmio + offset);
writew(((value & 0xFFFF0000) >> 16), bus->mmio + offset + 2);
}
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pcmcia_ops = {
.read16 = ssb_pcmcia_read16,
.read32 = ssb_pcmcia_read32,
.write16 = ssb_pcmcia_write16,
.write32 = ssb_pcmcia_write32,
};
#include <linux/etherdevice.h>
int ssb_pcmcia_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
//TODO
random_ether_addr(iv->sprom.il0mac);
return 0;
}
int ssb_pcmcia_init(struct ssb_bus *bus)
{
conf_reg_t reg;
int err;
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return 0;
/* Switch segment to a known state and sync
* bus->mapped_pcmcia_seg with hardware state. */
ssb_pcmcia_switch_segment(bus, 0);
/* Init IRQ routing */
reg.Action = CS_READ;
reg.Function = 0;
if (bus->chip_id == 0x4306)
reg.Offset = 0x00;
else
reg.Offset = 0x80;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Action = CS_WRITE;
reg.Value |= 0x04 | 0x01;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
return 0;
error:
return -ENODEV;
}

View File

@@ -0,0 +1,424 @@
/*
* Sonics Silicon Backplane
* Bus scanning
*
* Copyright (C) 2005-2007 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
#include "ssb_private.h"
const char *ssb_core_name(u16 coreid)
{
switch (coreid) {
case SSB_DEV_CHIPCOMMON:
return "ChipCommon";
case SSB_DEV_ILINE20:
return "ILine 20";
case SSB_DEV_SDRAM:
return "SDRAM";
case SSB_DEV_PCI:
return "PCI";
case SSB_DEV_MIPS:
return "MIPS";
case SSB_DEV_ETHERNET:
return "Fast Ethernet";
case SSB_DEV_V90:
return "V90";
case SSB_DEV_USB11_HOSTDEV:
return "USB 1.1 Hostdev";
case SSB_DEV_ADSL:
return "ADSL";
case SSB_DEV_ILINE100:
return "ILine 100";
case SSB_DEV_IPSEC:
return "IPSEC";
case SSB_DEV_PCMCIA:
return "PCMCIA";
case SSB_DEV_INTERNAL_MEM:
return "Internal Memory";
case SSB_DEV_MEMC_SDRAM:
return "MEMC SDRAM";
case SSB_DEV_EXTIF:
return "EXTIF";
case SSB_DEV_80211:
return "IEEE 802.11";
case SSB_DEV_MIPS_3302:
return "MIPS 3302";
case SSB_DEV_USB11_HOST:
return "USB 1.1 Host";
case SSB_DEV_USB11_DEV:
return "USB 1.1 Device";
case SSB_DEV_USB20_HOST:
return "USB 2.0 Host";
case SSB_DEV_USB20_DEV:
return "USB 2.0 Device";
case SSB_DEV_SDIO_HOST:
return "SDIO Host";
case SSB_DEV_ROBOSWITCH:
return "Roboswitch";
case SSB_DEV_PARA_ATA:
return "PATA";
case SSB_DEV_SATA_XORDMA:
return "SATA XOR-DMA";
case SSB_DEV_ETHERNET_GBIT:
return "GBit Ethernet";
case SSB_DEV_PCIE:
return "PCI-E";
case SSB_DEV_MIMO_PHY:
return "MIMO PHY";
case SSB_DEV_SRAM_CTRLR:
return "SRAM Controller";
case SSB_DEV_MINI_MACPHY:
return "Mini MACPHY";
case SSB_DEV_ARM_1176:
return "ARM 1176";
case SSB_DEV_ARM_7TDMI:
return "ARM 7TDMI";
}
return "UNKNOWN";
}
static u16 pcidev_to_chipid(struct pci_dev *pci_dev)
{
u16 chipid_fallback = 0;
switch (pci_dev->device) {
case 0x4301:
chipid_fallback = 0x4301;
break;
case 0x4305 ... 0x4307:
chipid_fallback = 0x4307;
break;
case 0x4403:
chipid_fallback = 0x4402;
break;
case 0x4610 ... 0x4615:
chipid_fallback = 0x4610;
break;
case 0x4710 ... 0x4715:
chipid_fallback = 0x4710;
break;
case 0x4320 ... 0x4325:
chipid_fallback = 0x4309;
break;
case PCI_DEVICE_ID_BCM4401:
case PCI_DEVICE_ID_BCM4401B0:
case PCI_DEVICE_ID_BCM4401B1:
chipid_fallback = 0x4401;
break;
default:
ssb_printk(KERN_ERR PFX
"PCI-ID not in fallback list\n");
}
return chipid_fallback;
}
static u8 chipid_to_nrcores(u16 chipid)
{
switch (chipid) {
case 0x5365:
return 7;
case 0x4306:
return 6;
case 0x4310:
return 8;
case 0x4307:
case 0x4301:
return 5;
case 0x4401:
case 0x4402:
return 3;
case 0x4710:
case 0x4610:
case 0x4704:
return 9;
default:
ssb_printk(KERN_ERR PFX
"CHIPID not in nrcores fallback list\n");
}
return 1;
}
static u32 scan_read32(struct ssb_bus *bus, u8 current_coreidx,
u16 offset)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
offset += current_coreidx * SSB_CORE_SIZE;
break;
case SSB_BUSTYPE_PCI:
break;
case SSB_BUSTYPE_PCMCIA:
if (offset >= 0x800) {
ssb_pcmcia_switch_segment(bus, 1);
offset -= 0x800;
} else
ssb_pcmcia_switch_segment(bus, 0);
break;
}
return readl(bus->mmio + offset);
}
static int scan_switchcore(struct ssb_bus *bus, u8 coreidx)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
break;
case SSB_BUSTYPE_PCI:
return ssb_pci_switch_coreidx(bus, coreidx);
case SSB_BUSTYPE_PCMCIA:
return ssb_pcmcia_switch_coreidx(bus, coreidx);
}
return 0;
}
void ssb_iounmap(struct ssb_bus *bus)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
case SSB_BUSTYPE_PCMCIA:
iounmap(bus->mmio);
break;
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_iounmap(bus->host_pci, bus->mmio);
#else
SSB_BUG_ON(1); /* Can't reach this code. */
#endif
break;
}
bus->mmio = NULL;
bus->mapped_device = NULL;
}
static void __iomem *ssb_ioremap(struct ssb_bus *bus,
unsigned long baseaddr)
{
void __iomem *mmio = NULL;
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
/* Only map the first core for now. */
/* fallthrough... */
case SSB_BUSTYPE_PCMCIA:
mmio = ioremap(baseaddr, SSB_CORE_SIZE);
break;
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
mmio = pci_iomap(bus->host_pci, 0, ~0UL);
#else
SSB_BUG_ON(1); /* Can't reach this code. */
#endif
break;
}
return mmio;
}
static int we_support_multiple_80211_cores(struct ssb_bus *bus)
{
/* More than one 802.11 core is only supported by special chips.
* There are chips with two 802.11 cores, but with dangling
* pins on the second core. Be careful and reject them here.
*/
#ifdef CONFIG_SSB_PCIHOST
if (bus->bustype == SSB_BUSTYPE_PCI) {
if (bus->host_pci->vendor == PCI_VENDOR_ID_BROADCOM &&
bus->host_pci->device == 0x4324)
return 1;
}
#endif /* CONFIG_SSB_PCIHOST */
return 0;
}
int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr)
{
int err = -ENOMEM;
void __iomem *mmio;
u32 idhi, cc, rev, tmp;
int dev_i, i;
struct ssb_device *dev;
int nr_80211_cores = 0;
mmio = ssb_ioremap(bus, baseaddr);
if (!mmio)
goto out;
bus->mmio = mmio;
err = scan_switchcore(bus, 0); /* Switch to first core */
if (err)
goto err_unmap;
idhi = scan_read32(bus, 0, SSB_IDHIGH);
cc = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
rev = (idhi & SSB_IDHIGH_RCLO);
rev |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
bus->nr_devices = 0;
if (cc == SSB_DEV_CHIPCOMMON) {
tmp = scan_read32(bus, 0, SSB_CHIPCO_CHIPID);
bus->chip_id = (tmp & SSB_CHIPCO_IDMASK);
bus->chip_rev = (tmp & SSB_CHIPCO_REVMASK) >>
SSB_CHIPCO_REVSHIFT;
bus->chip_package = (tmp & SSB_CHIPCO_PACKMASK) >>
SSB_CHIPCO_PACKSHIFT;
if (rev >= 4) {
bus->nr_devices = (tmp & SSB_CHIPCO_NRCORESMASK) >>
SSB_CHIPCO_NRCORESSHIFT;
}
tmp = scan_read32(bus, 0, SSB_CHIPCO_CAP);
bus->chipco.capabilities = tmp;
} else {
if (bus->bustype == SSB_BUSTYPE_PCI) {
bus->chip_id = pcidev_to_chipid(bus->host_pci);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bus->chip_rev);
bus->chip_package = 0;
} else {
bus->chip_id = 0x4710;
bus->chip_rev = 0;
bus->chip_package = 0;
}
}
if (!bus->nr_devices)
bus->nr_devices = chipid_to_nrcores(bus->chip_id);
if (bus->nr_devices > ARRAY_SIZE(bus->devices)) {
ssb_printk(KERN_ERR PFX
"More than %d ssb cores found (%d)\n",
SSB_MAX_NR_CORES, bus->nr_devices);
goto err_unmap;
}
if (bus->bustype == SSB_BUSTYPE_SSB) {
/* Now that we know the number of cores,
* remap the whole IO space for all cores.
*/
err = -ENOMEM;
iounmap(mmio);
mmio = ioremap(baseaddr, SSB_CORE_SIZE * bus->nr_devices);
if (!mmio)
goto out;
bus->mmio = mmio;
}
/* Fetch basic information about each core/device */
for (i = 0, dev_i = 0; i < bus->nr_devices; i++) {
err = scan_switchcore(bus, i);
if (err)
goto err_unmap;
dev = &(bus->devices[dev_i]);
idhi = scan_read32(bus, i, SSB_IDHIGH);
dev->id.coreid = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
dev->id.revision = (idhi & SSB_IDHIGH_RCLO);
dev->id.revision |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
dev->id.vendor = (idhi & SSB_IDHIGH_VC) >> SSB_IDHIGH_VC_SHIFT;
dev->core_index = i;
dev->bus = bus;
dev->ops = bus->ops;
ssb_dprintk(KERN_INFO PFX
"Core %d found: %s "
"(cc 0x%03X, rev 0x%02X, vendor 0x%04X)\n",
i, ssb_core_name(dev->id.coreid),
dev->id.coreid, dev->id.revision, dev->id.vendor);
switch (dev->id.coreid) {
case SSB_DEV_80211:
nr_80211_cores++;
if (nr_80211_cores > 1) {
if (!we_support_multiple_80211_cores(bus)) {
ssb_dprintk(KERN_INFO PFX "Ignoring additional "
"802.11 core\n");
continue;
}
}
break;
case SSB_DEV_EXTIF:
#ifdef CONFIG_SSB_DRIVER_EXTIF
if (bus->extif.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple EXTIFs found\n");
break;
}
bus->extif.dev = dev;
#endif /* CONFIG_SSB_DRIVER_EXTIF */
break;
case SSB_DEV_CHIPCOMMON:
if (bus->chipco.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple ChipCommon found\n");
break;
}
bus->chipco.dev = dev;
break;
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
#ifdef CONFIG_SSB_DRIVER_MIPS
if (bus->mipscore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple MIPS cores found\n");
break;
}
bus->mipscore.dev = dev;
#endif /* CONFIG_SSB_DRIVER_MIPS */
break;
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
#ifdef CONFIG_SSB_DRIVER_PCICORE
if (bus->bustype == SSB_BUSTYPE_PCI) {
/* Ignore PCI cores on PCI-E cards.
* Ignore PCI-E cores on PCI cards. */
if (dev->id.coreid == SSB_DEV_PCI) {
if (bus->host_pci->is_pcie)
continue;
} else {
if (!bus->host_pci->is_pcie)
continue;
}
}
if (bus->pcicore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple PCI(E) cores found\n");
break;
}
bus->pcicore.dev = dev;
#endif /* CONFIG_SSB_DRIVER_PCICORE */
break;
default:
break;
}
dev_i++;
}
bus->nr_devices = dev_i;
err = 0;
out:
return err;
err_unmap:
ssb_iounmap(bus);
goto out;
}

View File

@@ -0,0 +1,136 @@
#ifndef LINUX_SSB_PRIVATE_H_
#define LINUX_SSB_PRIVATE_H_
#include <linux/ssb/ssb.h>
#include <linux/types.h>
#define PFX "ssb: "
#ifdef CONFIG_SSB_SILENT
# define ssb_printk(fmt, x...) do { /* nothing */ } while (0)
#else
# define ssb_printk printk
#endif /* CONFIG_SSB_SILENT */
/* dprintk: Debugging printk; vanishes for non-debug compilation */
#ifdef CONFIG_SSB_DEBUG
# define ssb_dprintk(fmt, x...) ssb_printk(fmt , ##x)
#else
# define ssb_dprintk(fmt, x...) do { /* nothing */ } while (0)
#endif
#ifdef CONFIG_SSB_DEBUG
# define SSB_WARN_ON(x) WARN_ON(x)
# define SSB_BUG_ON(x) BUG_ON(x)
#else
static inline int __ssb_do_nothing(int x) { return x; }
# define SSB_WARN_ON(x) __ssb_do_nothing(unlikely(!!(x)))
# define SSB_BUG_ON(x) __ssb_do_nothing(unlikely(!!(x)))
#endif
/* pci.c */
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on);
extern int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
extern void ssb_pci_exit(struct ssb_bus *bus);
extern int ssb_pci_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pci_ops;
#else /* CONFIG_SSB_PCIHOST */
static inline int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on)
{
return 0;
}
static inline void ssb_pci_exit(struct ssb_bus *bus)
{
}
static inline int ssb_pci_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCIHOST */
/* pcmcia.c */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg);
extern int ssb_pcmcia_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
extern int ssb_pcmcia_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pcmcia_ops;
#else /* CONFIG_SSB_PCMCIAHOST */
static inline int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg)
{
return 0;
}
static inline int ssb_pcmcia_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCMCIAHOST */
/* scan.c */
extern const char *ssb_core_name(u16 coreid);
extern int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr);
extern void ssb_iounmap(struct ssb_bus *ssb);
/* core.c */
extern u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m);
extern int ssb_devices_freeze(struct ssb_bus *bus);
extern int ssb_devices_thaw(struct ssb_bus *bus);
extern struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev);
/* b43_pci_bridge.c */
#ifdef CONFIG_SSB_PCIHOST
extern int __init b43_pci_ssb_bridge_init(void);
extern void __exit b43_pci_ssb_bridge_exit(void);
#else /* CONFIG_SSB_PCIHOST */
static inline int b43_pci_ssb_bridge_init(void)
{
return 0;
}
static inline void b43_pci_ssb_bridge_exit(void)
{
}
#endif /* CONFIG_SSB_PCIHOST */
#endif /* LINUX_SSB_PRIVATE_H_ */