1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-10-04 23:26:03 +03:00

danube led cleanup

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@9732 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
blogic 2007-12-13 20:29:22 +00:00
parent 5febfb7752
commit 9ae73d1998

View File

@ -244,11 +244,11 @@
* LED Registers Mapping * LED Registers Mapping
*/ */
#define DANUBE_LED (KSEG1 + 0x1E100BB0) #define DANUBE_LED (KSEG1 + 0x1E100BB0)
#define DANUBE_LED_CON0 ((volatile u32*)(DANUBE_LED + 0x0000)) #define DANUBE_LED_CON0 ((volatile unsigned int*)(DANUBE_LED + 0x0000))
#define DANUBE_LED_CON1 ((volatile u32*)(DANUBE_LED + 0x0004)) #define DANUBE_LED_CON1 ((volatile unsigned int*)(DANUBE_LED + 0x0004))
#define DANUBE_LED_CPU0 ((volatile u32*)(DANUBE_LED + 0x0008)) #define DANUBE_LED_CPU0 ((volatile unsigned int*)(DANUBE_LED + 0x0008))
#define DANUBE_LED_CPU1 ((volatile u32*)(DANUBE_LED + 0x000C)) #define DANUBE_LED_CPU1 ((volatile unsigned int*)(DANUBE_LED + 0x000C))
#define DANUBE_LED_AR ((volatile u32*)(DANUBE_LED + 0x0010)) #define DANUBE_LED_AR ((volatile unsigned int*)(DANUBE_LED + 0x0010))
/* /*
* LED Control 0 Register * LED Control 0 Register
@ -292,13 +292,6 @@
#define LED_AR_Ln(n) (*DANUBE_LED_AR & (1 << n)) #define LED_AR_Ln(n) (*DANUBE_LED_AR & (1 << n))
#define LED_AR_DEFAULT_VALUE 0x00000000 #define LED_AR_DEFAULT_VALUE 0x00000000
/*
* ####################################
* Preparation of Debug on Amazon Chip
* ####################################
*/
/* /*
* If try module on Amazon chip, prepare some tricks to prevent invalid memory write. * If try module on Amazon chip, prepare some tricks to prevent invalid memory write.
*/ */
@ -328,12 +321,6 @@
#endif // defined(DEBUG_ON_AMAZON) && DEBUG_ON_AMAZON #endif // defined(DEBUG_ON_AMAZON) && DEBUG_ON_AMAZON
/*
* ####################################
* Declaration
* ####################################
*/
/* /*
* File Operations * File Operations
*/ */
@ -349,16 +336,16 @@ static inline int update_led(void);
/* /*
* LED Configuration Functions * LED Configuration Functions
*/ */
static inline u32 set_update_source(u32, unsigned long, unsigned long); static inline unsigned int set_update_source(unsigned int, unsigned long, unsigned long);
static inline u32 set_blink_in_batch(u32, unsigned long, unsigned long); static inline unsigned int set_blink_in_batch(unsigned int, unsigned long, unsigned long);
static inline u32 set_data_clock_edge(u32, unsigned long); static inline unsigned int set_data_clock_edge(unsigned int, unsigned long);
static inline u32 set_update_clock(u32, unsigned long, unsigned long); static inline unsigned int set_update_clock(unsigned int, unsigned long, unsigned long);
static inline u32 set_store_mode(u32, unsigned long); static inline unsigned int set_store_mode(unsigned int, unsigned long);
static inline u32 set_shift_clock(u32, unsigned long); static inline unsigned int set_shift_clock(unsigned int, unsigned long);
static inline u32 set_data_offset(u32, unsigned long); static inline unsigned int set_data_offset(unsigned int, unsigned long);
static inline u32 set_number_of_enabled_led(u32, unsigned long); static inline unsigned int set_number_of_enabled_led(unsigned int, unsigned long);
static inline u32 set_data_in_batch(u32, unsigned long, unsigned long); static inline unsigned int set_data_in_batch(unsigned int, unsigned long, unsigned long);
static inline u32 set_access_right(u32, unsigned long, unsigned long); static inline unsigned int set_access_right(unsigned int, unsigned long, unsigned long);
/* /*
* PMU Operation * PMU Operation
@ -385,12 +372,6 @@ static inline int turn_on_led(unsigned long);
static inline void turn_off_led(unsigned long); static inline void turn_off_led(unsigned long);
/*
* ####################################
* Local Variable
* ####################################
*/
static struct semaphore led_sem; static struct semaphore led_sem;
static struct file_operations led_fops = { static struct file_operations led_fops = {
@ -418,20 +399,8 @@ static unsigned long f_led_on = 0;
static int module_id; static int module_id;
/* static int
* #################################### led_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
* Global Variable
* ####################################
*/
/*
* ####################################
* Local Function
* ####################################
*/
static int led_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{ {
int ret = -EINVAL; int ret = -EINVAL;
struct led_config_param param; struct led_config_param param;
@ -447,26 +416,20 @@ static int led_ioctl(struct inode *inode, struct file *file, unsigned int cmd, u
return ret; return ret;
} }
static int led_open(struct inode *inode, struct file *file) static int
led_open (struct inode *inode, struct file *file)
{ {
return 0; return 0;
} }
static int led_release(struct inode *inode, struct file *file) static int
led_release (struct inode *inode, struct file *file)
{ {
return 0; return 0;
} }
/* static inline int
* Description: update_led (void)
* Update LEDs with data stored in register.
* Input:
* none
* Output:
* int --- 0: Success
* else: Error Code
*/
static inline int update_led(void)
{ {
int i, j; int i, j;
@ -496,63 +459,26 @@ static inline int update_led(void)
return -EBUSY; return -EBUSY;
} }
/* static inline unsigned int
* Description: set_update_source (unsigned int reg, unsigned long led, unsigned long source)
* Select update source for LED bit 0 and bit 1.
* Input:
* reg --- u32, the original register value going to be modified.
* led --- unsigned long, bit 0 stands for LED 0, and bit 1 stands for
* LED 1. If the bit is set, the source value is valid, else
* the source value is invalid.
* source --- unsigned long, bit 0 stands for LED 0, and bit 1 stands for
* LED 1. If the corresponding is cleared, LED is updated with
* value in data register, else LED is updated with ARC module.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_update_source(u32 reg, unsigned long led, unsigned long source)
{ {
return (reg & ~((led & 0x03) << 24)) | ((source & 0x03) << 24); return (reg & ~((led & 0x03) << 24)) | ((source & 0x03) << 24);
} }
/* static inline unsigned int
* Description: set_blink_in_batch (unsigned int reg, unsigned long mask, unsigned long blink)
* Define which of the LEDs should change their value based on the US pulse.
* Input:
* reg --- u32, the original register value going to be modified.
* mask --- unsigned long, if the corresponding bit is set, the blink value
* is valid, else the blink value is invalid.
* blink --- unsigned long, if the corresponding bit is set, the LED should
* change its value based on the US pulse.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_blink_in_batch(u32 reg, unsigned long mask, unsigned long blink)
{ {
return (reg & (~(mask & 0x00FFFFFF) & 0x87FFFFFF)) | (blink & 0x00FFFFFF); return (reg & (~(mask & 0x00FFFFFF) & 0x87FFFFFF)) | (blink & 0x00FFFFFF);
} }
static inline u32 set_data_clock_edge(u32 reg, unsigned long f_on_rising_edge) static inline unsigned int
set_data_clock_edge (unsigned int reg, unsigned long f_on_rising_edge)
{ {
return f_on_rising_edge ? (reg & ~(1 << 26)) : (reg | (1 << 26)); return f_on_rising_edge ? (reg & ~(1 << 26)) : (reg | (1 << 26));
} }
/* static inline unsigned int
* Description: set_update_clock (unsigned int reg, unsigned long clock, unsigned long fpid)
* Select the clock source for US pulse.
* Input:
* reg --- u32, the original register value going to be modified.
* clock --- unsigned long, there 3 available values:
* 0x00 - use software update bit (SWU) as source.
* 0x01 - use GPT2 as clock source.
* 0x02 - use FPI as clock source.
* fpid --- unsigned long, if FPI is selected as clock source, this field
* specify the divider. Please refer to specification for detail
* description.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_update_clock(u32 reg, unsigned long clock, unsigned long fpid)
{ {
switch ( clock ) switch ( clock )
{ {
@ -563,103 +489,47 @@ static inline u32 set_update_clock(u32 reg, unsigned long clock, unsigned long f
return reg; return reg;
} }
/* static inline unsigned int
* Description: set_store_mode (unsigned int reg, unsigned long mode)
* Set the behavior of the LED_ST (shift register) signal.
* Input:
* reg --- u32, the original register value going to be modified.
* mode --- unsigned long, there 2 available values:
* zero - LED controller generate single pulse.
* non-zero - LED controller generate inverted shift clock.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_store_mode(u32 reg, unsigned long mode)
{ {
return mode ? (reg | (1 << 28)) : (reg & ~(1 << 28)); return mode ? (reg | (1 << 28)) : (reg & ~(1 << 28));
} }
/* static inline
* Description: unsigned int set_shift_clock (unsigned int reg, unsigned long fpis)
* Select the clock source for shift clock LED_SH.
* Input:
* reg --- u32, the original register value going to be modified.
* fpis --- unsigned long, if FPI is selected as clock source, this field
* specify the divider. Please refer to specification for detail
* description.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_shift_clock(u32 reg, unsigned long fpis)
{ {
return SET_BITS(reg, 21, 20, fpis); return SET_BITS(reg, 21, 20, fpis);
} }
/* static inline
* Description: unsigned int set_data_offset (unsigned int reg, unsigned long offset)
* Set the clock cycle offset before data is transmitted to LED_D pin.
* Input:
* reg --- u32, the original register value going to be modified.
* offset --- unsigned long, the number of clock cycles would be inserted
* before data is transmitted to LED_D pin. Zero means no cycle
* inserted.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_data_offset(u32 reg, unsigned long offset)
{ {
return SET_BITS(reg, 19, 18, offset); return SET_BITS(reg, 19, 18, offset);
} }
/* static inline
* Description: unsigned int set_number_of_enabled_led (unsigned int reg, unsigned long number)
* Enable or disable LEDs.
* Input:
* reg --- u32, the original register value going to be modified.
* number --- unsigned long, the number of LED to be enabled. This field
* could 0, 8, 16 or 24. Zero means disable all LEDs.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_number_of_enabled_led(u32 reg, unsigned long number)
{ {
u32 bit_mask; unsigned int bit_mask;
bit_mask = number > 16 ? 0x07 : (number > 8 ? 0x03 : (number ? 0x01 : 0x00)); bit_mask = number > 16 ? 0x07 : (number > 8 ? 0x03 : (number ? 0x01 : 0x00));
return (reg & ~0x07) | bit_mask; return (reg & ~0x07) | bit_mask;
} }
/* static inline unsigned int
* Description: set_data_in_batch (unsigned int reg, unsigned long mask, unsigned long data)
* Turn on/off LEDs.
* Input:
* reg --- u32, the original register value going to be modified.
* mask --- unsigned long, if the corresponding bit is set, the data value
* is valid, else the data value is invalid.
* data --- unsigned long, if the corresponding bit is set, the LED should
* be on, else be off.
* Output:
* u32 --- The updated register value.
*/
static inline u32 set_data_in_batch(u32 reg, unsigned long mask, unsigned long data)
{ {
return (reg & ~(mask & 0x00FFFFFF)) | (data & 0x00FFFFFF); return (reg & ~(mask & 0x00FFFFFF)) | (data & 0x00FFFFFF);
} }
static inline u32 set_access_right(u32 reg, unsigned long mask, unsigned long ar) static inline unsigned int
set_access_right (unsigned int reg, unsigned long mask, unsigned long ar)
{ {
return (reg & ~(mask & 0x00FFFFFF)) | (~ar & mask); return (reg & ~(mask & 0x00FFFFFF)) | (~ar & mask);
} }
/* static inline void
* Description: enable_led (void)
* Enable LED control module.
* Input:
* none
* Output:
* none
*/
static inline void enable_led(void)
{ {
#if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON #if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON
/* Activate LED module in PMU. */ /* Activate LED module in PMU. */
@ -672,15 +542,8 @@ static inline void enable_led(void)
#endif #endif
} }
/* static inline void
* Description: disable_led (void)
* Disable LED control module.
* Input:
* none
* Output:
* none
*/
static inline void disable_led(void)
{ {
#if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON #if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON
/* Inactivating LED module in PMU. */ /* Inactivating LED module in PMU. */
@ -688,16 +551,8 @@ static inline void disable_led(void)
#endif #endif
} }
/* static inline int
* Description: setup_gpio_port (unsigned long adsl)
* If LEDs are enabled, GPIO must be setup to enable LED pins.
* Input:
* none
* Output:
* int --- 0: Success
* else: Error Code
*/
static inline int setup_gpio_port(unsigned long adsl)
{ {
#if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON #if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON
int ret = 0; int ret = 0;
@ -786,16 +641,8 @@ static inline int setup_gpio_port(unsigned long adsl)
return 0; return 0;
} }
/* static inline void
* Description: release_gpio_port (unsigned long adsl)
* If LEDs are all disabled, GPIO must be released so that other application
* could reuse it.
* Input:
* none
* Output:
* none
*/
static inline void release_gpio_port(unsigned long adsl)
{ {
#if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON #if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON
#if !defined(DEBUG_WRITE_REGISTER) || !DEBUG_WRITE_REGISTER #if !defined(DEBUG_WRITE_REGISTER) || !DEBUG_WRITE_REGISTER
@ -814,33 +661,13 @@ static inline void release_gpio_port(unsigned long adsl)
#endif #endif
} }
/* static inline int
* Description: setup_gpt (int timer, unsigned long freq)
* If shifter or update select GPT as clock source, this function would be
* invoked to setup corresponding GPT module.
* Attention please, this function is not working since the GPTU driver is
* not ready.
* Input:
* timer --- int, index of timer.
* freq --- unsigned long, frequency of timer (0.001Hz). This value will be
* rounded off to nearest possible value.
* Output:
* int --- 0: Success
* else: Error Code
*/
static inline int setup_gpt(int timer, unsigned long freq)
{ {
int ret; int ret;
#if 0 timer = TIMER(timer, 1);
timer = TIMER(timer, 0);
#else
timer = TIMER(timer, 1); // 2B
#endif
#if 0
ret = set_timer(timer, freq, 1, 0, TIMER_FLAG_NO_HANDLE, 0, 0);
#else
ret = request_timer(timer, ret = request_timer(timer,
TIMER_FLAG_SYNC TIMER_FLAG_SYNC
| TIMER_FLAG_16BIT | TIMER_FLAG_16BIT
@ -852,8 +679,6 @@ static inline int setup_gpt(int timer, unsigned long freq)
0, 0,
0); 0);
#endif
// printk("setup_gpt: timer = %d, freq = %d, return = %d\n", timer, freq, ret);
if ( !ret ) if ( !ret )
{ {
ret = start_timer(timer, 0); ret = start_timer(timer, 0);
@ -864,29 +689,16 @@ static inline int setup_gpt(int timer, unsigned long freq)
return ret; return ret;
} }
/* static inline void
* Description: release_gpt (int timer)
* If shifter or update select other clock source, allocated GPT must be
* released so that other application can use it.
* Attention please, this function is not working since the GPTU driver is
* not ready.
* Input:
* none
* Output:
* none
*/
static inline void release_gpt(int timer)
{ {
#if 0
timer = TIMER(timer, 0);
#else
timer = TIMER(timer, 1); timer = TIMER(timer, 1);
#endif
stop_timer(timer); stop_timer(timer);
free_timer(timer); free_timer(timer);
} }
static inline int turn_on_led(unsigned long adsl) static inline int
turn_on_led (unsigned long adsl)
{ {
int ret; int ret;
@ -899,33 +711,18 @@ static inline int turn_on_led(unsigned long adsl)
return 0; return 0;
} }
static inline void turn_off_led(unsigned long adsl) static inline void
turn_off_led (unsigned long adsl)
{ {
release_gpio_port(adsl); release_gpio_port(adsl);
disable_led(); disable_led();
} }
/* int
* #################################### danube_led_set_blink (unsigned int led, unsigned int blink)
* Global Function
* ####################################
*/
/*
* Description:
* Define which of the LEDs should change its value based on the US pulse.
* Input:
* led --- unsigned int, index of the LED to be set.
* blink --- unsigned int, zero means normal mode, and non-zero means blink
* mode.
* Output:
* int --- 0: Success
* else: Error Code
*/
int danube_led_set_blink(unsigned int led, unsigned int blink)
{ {
u32 bit_mask; unsigned int bit_mask;
if ( led > 23 ) if ( led > 23 )
return -EINVAL; return -EINVAL;
@ -941,20 +738,11 @@ int danube_led_set_blink(unsigned int led, unsigned int blink)
return (led == 0 && LED_CON0_AD0) || (led == 1 && LED_CON0_AD1) ? -EINVAL : 0; return (led == 0 && LED_CON0_AD0) || (led == 1 && LED_CON0_AD1) ? -EINVAL : 0;
} }
/* int
* Description: danube_led_set_data (unsigned int led, unsigned int data)
* Turn on/off LED.
* Input:
* led --- unsigned int, index of the LED to be set.
* data --- unsigned int, zero means off, and non-zero means on.
* Output:
* int --- 0: Success
* else: Error Code
*/
int danube_led_set_data(unsigned int led, unsigned int data)
{ {
unsigned long f_update; unsigned long f_update;
u32 bit_mask; unsigned int bit_mask;
if ( led > 23 ) if ( led > 23 )
return -EINVAL; return -EINVAL;
@ -971,39 +759,15 @@ int danube_led_set_data(unsigned int led, unsigned int data)
return f_update ? update_led() : 0; return f_update ? update_led() : 0;
} }
/* int
* Description: danube_led_config (struct led_config_param* param)
* Config LED controller.
* Input:
* param --- struct led_config_param*, the members are listed below:
* operation_mask - Select operations to be performed
* led - LED to change update source
* source - Corresponding update source
* blink_mask - LEDs to set blink mode
* blink - Set to blink mode or normal mode
* update_clock - Select the source of update clock
* fpid - If FPI is the source of update clock, set the divider
* store_mode - Set clock mode or single pulse mode for store signal
* fpis - If FPI is the source of shift clock, set the divider
* data_offset - Set cycles to be inserted before data is transmitted
* number_of_enabled_led - Total number of LED to be enabled
* data_mask - LEDs to set value
* data - Corresponding value
* mips0_access_mask - LEDs to set access right
* mips0_access; - 1: the corresponding data is output from MIPS0, 0: MIPS1
* f_data_clock_on_rising - 1: data clock on rising edge, 0: data clock on falling edge
* Output:
* int --- 0: Success
* else: Error Code
*/
int danube_led_config(struct led_config_param* param)
{ {
int ret; int ret;
u32 reg_con0, reg_con1, reg_cpu0, reg_ar; unsigned int reg_con0, reg_con1, reg_cpu0, reg_ar;
u32 clean_reg_con0, clean_reg_con1, clean_reg_cpu0, clean_reg_ar; unsigned int clean_reg_con0, clean_reg_con1, clean_reg_cpu0, clean_reg_ar;
u32 f_setup_gpt2; unsigned int f_setup_gpt2;
u32 f_software_update; unsigned int f_software_update;
u32 new_led_on, new_adsl_on; unsigned int new_led_on, new_adsl_on;
if ( !param ) if ( !param )
return -EINVAL; return -EINVAL;
@ -1183,20 +947,13 @@ int danube_led_config(struct led_config_param* param)
ret = turn_on_led(new_adsl_on); ret = turn_on_led(new_adsl_on);
if ( ret ) if ( ret )
{ {
#if 1
printk("Setup GPIO error!\n"); printk("Setup GPIO error!\n");
#endif
goto SETUP_GPIO_ERROR; goto SETUP_GPIO_ERROR;
} }
adsl_on = new_adsl_on; adsl_on = new_adsl_on;
f_led_on = 1; f_led_on = 1;
} }
#if 0
if ( (reg_con0 & 0x80000000) )
printk("software update\n");
#endif
/* Write Register */ /* Write Register */
if ( !f_led_on ) if ( !f_led_on )
enable_led(); enable_led();
@ -1215,21 +972,6 @@ int danube_led_config(struct led_config_param* param)
*DANUBE_LED_CON0 &= 0x7FFFFFFF; *DANUBE_LED_CON0 &= 0x7FFFFFFF;
#endif #endif
#if 0
#if !defined(DEBUG_ON_AMAZON) || !DEBUG_ON_AMAZON
printk("*0xBF10201C = 0x%08lX\n", *(unsigned long *)0xBF10201C);
printk("*0xBE100B18 = 0x%08lX\n", *(unsigned long *)0xBE100B18);
printk("*0xBE100B1C = 0x%08lX\n", *(unsigned long *)0xBE100B1C);
printk("*0xBE100B20 = 0x%08lX\n", *(unsigned long *)0xBE100B20);
printk("*0xBE100B24 = 0x%08lX\n", *(unsigned long *)0xBE100B24);
#endif
printk("*DANUBE_LED_CON0 = 0x%08X\n", *DANUBE_LED_CON0);
printk("*DANUBE_LED_CON1 = 0x%08X\n", *DANUBE_LED_CON1);
printk("*DANUBE_LED_CPU0 = 0x%08X\n", *DANUBE_LED_CPU0);
printk("*DANUBE_LED_CPU1 = 0x%08X\n", *DANUBE_LED_CPU1);
printk("*DANUBE_LED_AR = 0x%08X\n", *DANUBE_LED_AR);
#endif
up(&led_sem); up(&led_sem);
return 0; return 0;
@ -1246,22 +988,8 @@ INVALID_PARAM:
} }
/* int __init
* #################################### danube_led_init (void)
* Init/Cleanup API
* ####################################
*/
/*
* Description:
* register device
* Input:
* none
* Output:
* 0 --- successful
* else --- failure, usually it is negative value of error code
*/
int __init danube_led_init(void)
{ {
int ret; int ret;
struct led_config_param param = {0}; struct led_config_param param = {0};
@ -1350,15 +1078,8 @@ int __init danube_led_init(void)
return 0; return 0;
} }
/* void __exit
* Description: danube_led_exit (void)
* deregister device
* Input:
* none
* Output:
* none
*/
void __exit danube_led_exit(void)
{ {
int ret; int ret;