1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-24 05:57:32 +02:00

locking rework, drop non-napi rx, multiqueue tx, misc cleanups

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@9251 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
ejka 2007-10-11 01:21:32 +00:00
parent ea9f57570d
commit af7b1083d0

View File

@ -38,23 +38,21 @@
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <asm/gpio.h> #include <asm/gpio.h>
MODULE_AUTHOR("Eugene Konev"); MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)"); MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
static int disable_napi;
static int debug_level = 8; static int debug_level = 8;
static int dumb_switch; static int dumb_switch;
module_param(disable_napi, int, 0644);
/* Next 2 are only used in cpmac_probe, so it's pointless to change them */ /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
module_param(debug_level, int, 0444); module_param(debug_level, int, 0444);
module_param(dumb_switch, int, 0444); module_param(dumb_switch, int, 0444);
MODULE_PARM_DESC(disable_napi, "Disable NAPI polling");
MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable"); MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus"); MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
#define CPMAC_VERSION "0.5.0"
/* stolen from net/ieee80211.h */ /* stolen from net/ieee80211.h */
#ifndef MAC_FMT #ifndef MAC_FMT
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x" #define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
@ -63,7 +61,7 @@ MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
#endif #endif
/* frame size + 802.1q tag */ /* frame size + 802.1q tag */
#define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4) #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
#define CPMAC_TX_RING_SIZE 8 #define CPMAC_QUEUES 8
/* Ethernet registers */ /* Ethernet registers */
#define CPMAC_TX_CONTROL 0x0004 #define CPMAC_TX_CONTROL 0x0004
@ -199,8 +197,8 @@ struct cpmac_desc {
struct cpmac_priv { struct cpmac_priv {
spinlock_t lock; spinlock_t lock;
spinlock_t rx_lock;
struct cpmac_desc *rx_head; struct cpmac_desc *rx_head;
int tx_head, tx_tail;
int ring_size; int ring_size;
struct cpmac_desc *desc_ring; struct cpmac_desc *desc_ring;
dma_addr_t dma_ring; dma_addr_t dma_ring;
@ -210,12 +208,14 @@ struct cpmac_priv {
char phy_name[BUS_ID_SIZE]; char phy_name[BUS_ID_SIZE];
int oldlink, oldspeed, oldduplex; int oldlink, oldspeed, oldduplex;
u32 msg_enable; u32 msg_enable;
struct net_device *dev;
struct work_struct reset_work;
struct platform_device *pdev; struct platform_device *pdev;
}; };
static irqreturn_t cpmac_irq(int, void *); static irqreturn_t cpmac_irq(int, void *);
static void cpmac_reset(struct net_device *dev); static void cpmac_hw_start(struct net_device *dev);
static void cpmac_hw_init(struct net_device *dev); static void cpmac_hw_stop(struct net_device *dev);
static int cpmac_stop(struct net_device *dev); static int cpmac_stop(struct net_device *dev);
static int cpmac_open(struct net_device *dev); static int cpmac_open(struct net_device *dev);
@ -366,7 +366,6 @@ static struct sk_buff *cpmac_rx_one(struct net_device *dev,
struct cpmac_priv *priv, struct cpmac_priv *priv,
struct cpmac_desc *desc) struct cpmac_desc *desc)
{ {
unsigned long flags;
struct sk_buff *skb, *result = NULL; struct sk_buff *skb, *result = NULL;
if (unlikely(netif_msg_hw(priv))) if (unlikely(netif_msg_hw(priv)))
@ -380,7 +379,6 @@ static struct sk_buff *cpmac_rx_one(struct net_device *dev,
} }
skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE); skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
spin_lock_irqsave(&priv->lock, flags);
if (likely(skb)) { if (likely(skb)) {
skb_reserve(skb, 2); skb_reserve(skb, 2);
skb_put(desc->skb, desc->datalen); skb_put(desc->skb, desc->datalen);
@ -406,7 +404,6 @@ static struct sk_buff *cpmac_rx_one(struct net_device *dev,
"%s: low on skbs, dropping packet\n", dev->name); "%s: low on skbs, dropping packet\n", dev->name);
dev->stats.rx_dropped++; dev->stats.rx_dropped++;
} }
spin_unlock_irqrestore(&priv->lock, flags);
desc->buflen = CPMAC_SKB_SIZE; desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN; desc->dataflags = CPMAC_OWN;
@ -414,32 +411,6 @@ static struct sk_buff *cpmac_rx_one(struct net_device *dev,
return result; return result;
} }
static void cpmac_rx(struct net_device *dev)
{
struct sk_buff *skb;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
if (unlikely(!priv->rx_head)) {
spin_unlock(&priv->lock);
return;
}
desc = priv->rx_head;
while ((desc->dataflags & CPMAC_OWN) == 0) {
skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb))
netif_rx(skb);
desc = desc->next;
}
priv->rx_head = desc;
cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping);
spin_unlock(&priv->lock);
}
static int cpmac_poll(struct net_device *dev, int *budget) static int cpmac_poll(struct net_device *dev, int *budget)
{ {
struct sk_buff *skb; struct sk_buff *skb;
@ -447,6 +418,7 @@ static int cpmac_poll(struct net_device *dev, int *budget)
int received = 0, quota = min(dev->quota, *budget); int received = 0, quota = min(dev->quota, *budget);
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->rx_lock);
if (unlikely(!priv->rx_head)) { if (unlikely(!priv->rx_head)) {
if (netif_msg_rx_err(priv) && net_ratelimit()) if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx: polling, but no queue\n", printk(KERN_WARNING "%s: rx: polling, but no queue\n",
@ -456,7 +428,6 @@ static int cpmac_poll(struct net_device *dev, int *budget)
} }
desc = priv->rx_head; desc = priv->rx_head;
while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) { while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
skb = cpmac_rx_one(dev, priv, desc); skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb)) { if (likely(skb)) {
@ -467,6 +438,7 @@ static int cpmac_poll(struct net_device *dev, int *budget)
} }
priv->rx_head = desc; priv->rx_head = desc;
spin_unlock(&priv->rx_lock);
*budget -= received; *budget -= received;
dev->quota -= received; dev->quota -= received;
if (unlikely(netif_msg_rx_status(priv))) if (unlikely(netif_msg_rx_status(priv)))
@ -484,41 +456,39 @@ static int cpmac_poll(struct net_device *dev, int *budget)
static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev) static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
unsigned long flags; int queue, len;
int channel, len;
struct cpmac_desc *desc; struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(skb_padto(skb, ETH_ZLEN))) { if (unlikely(skb_padto(skb, ETH_ZLEN))) {
if (netif_msg_tx_err(priv) && net_ratelimit()) if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING"%s: tx: padding failed, dropping\n", printk(KERN_WARNING
dev->name); "%s: tx: padding failed, dropping\n", dev->name);
spin_lock_irqsave(&priv->lock, flags); spin_lock(&priv->lock);
dev->stats.tx_dropped++; dev->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags); spin_unlock(&priv->lock);
return -ENOMEM; return -ENOMEM;
} }
len = max(skb->len, ETH_ZLEN); len = max(skb->len, ETH_ZLEN);
spin_lock_irqsave(&priv->lock, flags); queue = skb->queue_mapping;
channel = priv->tx_tail++; netif_stop_subqueue(dev, queue);
priv->tx_tail %= CPMAC_TX_RING_SIZE;
if (priv->tx_tail == priv->tx_head)
netif_stop_queue(dev);
desc = &priv->desc_ring[channel]; desc = &priv->desc_ring[queue];
if (desc->dataflags & CPMAC_OWN) { if (unlikely(desc->dataflags & CPMAC_OWN)) {
if (netif_msg_tx_err(priv) && net_ratelimit()) if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: tx dma ring full, dropping\n", printk(KERN_WARNING "%s: tx dma ring full, dropping\n",
dev->name); dev->name);
spin_lock(&priv->lock);
dev->stats.tx_dropped++; dev->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags); spin_unlock(&priv->lock);
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
return -ENOMEM; return -ENOMEM;
} }
spin_lock(&priv->lock);
dev->trans_start = jiffies; dev->trans_start = jiffies;
spin_unlock_irqrestore(&priv->lock, flags); spin_unlock(&priv->lock);
desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN; desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
desc->skb = skb; desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data, len, desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
@ -533,22 +503,23 @@ static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
cpmac_dump_desc(dev, desc); cpmac_dump_desc(dev, desc);
if (unlikely(netif_msg_pktdata(priv))) if (unlikely(netif_msg_pktdata(priv)))
cpmac_dump_skb(dev, skb); cpmac_dump_skb(dev, skb);
cpmac_write(priv->regs, CPMAC_TX_PTR(channel), (u32)desc->mapping); cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
return 0; return 0;
} }
static void cpmac_end_xmit(struct net_device *dev, int channel) static void cpmac_end_xmit(struct net_device *dev, int queue)
{ {
struct cpmac_desc *desc; struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock); desc = &priv->desc_ring[queue];
desc = &priv->desc_ring[channel]; cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
cpmac_write(priv->regs, CPMAC_TX_ACK(channel), (u32)desc->mapping);
if (likely(desc->skb)) { if (likely(desc->skb)) {
spin_lock(&priv->lock);
dev->stats.tx_packets++; dev->stats.tx_packets++;
dev->stats.tx_bytes += desc->skb->len; dev->stats.tx_bytes += desc->skb->len;
spin_unlock(&priv->lock);
dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len, dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
@ -557,16 +528,19 @@ static void cpmac_end_xmit(struct net_device *dev, int channel)
desc->skb, desc->skb->len); desc->skb, desc->skb->len);
dev_kfree_skb_irq(desc->skb); dev_kfree_skb_irq(desc->skb);
if (netif_queue_stopped(dev)) desc->skb = NULL;
netif_wake_queue(dev); if (netif_subqueue_stopped(dev, queue))
} else netif_wake_subqueue(dev, queue);
} else {
if (netif_msg_tx_err(priv) && net_ratelimit()) if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING printk(KERN_WARNING
"%s: end_xmit: spurious interrupt\n", dev->name); "%s: end_xmit: spurious interrupt\n", dev->name);
spin_unlock(&priv->lock); if (netif_subqueue_stopped(dev, queue))
netif_wake_subqueue(dev, queue);
}
} }
static void cpmac_reset(struct net_device *dev) static void cpmac_hw_stop(struct net_device *dev)
{ {
int i; int i;
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
@ -581,23 +555,64 @@ static void cpmac_reset(struct net_device *dev)
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
} }
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL, cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII); cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
} }
static inline void cpmac_free_rx_ring(struct net_device *dev) static void cpmac_hw_start(struct net_device *dev)
{ {
struct cpmac_desc *desc;
int i; int i;
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
ar7_device_reset(pdata->reset_bit);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
MBP_RXMCAST);
cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
(dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[3] << 24));
cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
MAC_FDX);
}
static void cpmac_clear_rx(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc;
int i;
if (unlikely(!priv->rx_head)) if (unlikely(!priv->rx_head))
return; return;
desc = priv->rx_head; desc = priv->rx_head;
for (i = 0; i < priv->ring_size; i++) { for (i = 0; i < priv->ring_size; i++) {
desc->buflen = CPMAC_SKB_SIZE;
if ((desc->dataflags & CPMAC_OWN) == 0) { if ((desc->dataflags & CPMAC_OWN) == 0) {
if (netif_msg_rx_err(priv) && net_ratelimit()) if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: packet dropped\n", printk(KERN_WARNING "%s: packet dropped\n",
@ -611,10 +626,38 @@ static inline void cpmac_free_rx_ring(struct net_device *dev)
} }
} }
static void cpmac_clear_tx(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
int i;
if (unlikely(!priv->desc_ring))
return;
for (i = 0; i < CPMAC_QUEUES; i++)
if (priv->desc_ring[i].skb) {
dev_kfree_skb_any(priv->desc_ring[i].skb);
if (netif_subqueue_stopped(dev, i))
netif_wake_subqueue(dev, i);
}
}
static void cpmac_hw_error(struct work_struct *work)
{
struct cpmac_priv *priv =
container_of(work, struct cpmac_priv, reset_work);
spin_lock(&priv->rx_lock);
cpmac_clear_rx(priv->dev);
spin_unlock(&priv->rx_lock);
cpmac_clear_tx(priv->dev);
cpmac_hw_start(priv->dev);
netif_start_queue(priv->dev);
}
static irqreturn_t cpmac_irq(int irq, void *dev_id) static irqreturn_t cpmac_irq(int irq, void *dev_id)
{ {
struct net_device *dev = dev_id; struct net_device *dev = dev_id;
struct cpmac_priv *priv; struct cpmac_priv *priv;
int queue;
u32 status; u32 status;
if (!dev) if (!dev)
@ -632,12 +675,9 @@ static irqreturn_t cpmac_irq(int irq, void *dev_id)
cpmac_end_xmit(dev, (status & 7)); cpmac_end_xmit(dev, (status & 7));
if (status & MAC_INT_RX) { if (status & MAC_INT_RX) {
if (disable_napi) queue = (status >> 8) & 7;
cpmac_rx(dev); netif_rx_schedule(dev);
else { cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1);
netif_rx_schedule(dev);
}
} }
cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0); cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
@ -646,14 +686,11 @@ static irqreturn_t cpmac_irq(int irq, void *dev_id)
if (netif_msg_drv(priv) && net_ratelimit()) if (netif_msg_drv(priv) && net_ratelimit())
printk(KERN_ERR "%s: hw error, resetting...\n", printk(KERN_ERR "%s: hw error, resetting...\n",
dev->name); dev->name);
netif_stop_queue(dev);
cpmac_hw_stop(dev);
schedule_work(&priv->reset_work);
if (unlikely(netif_msg_hw(priv))) if (unlikely(netif_msg_hw(priv)))
cpmac_dump_regs(dev); cpmac_dump_regs(dev);
spin_lock(&priv->lock);
phy_stop(priv->phy);
cpmac_reset(dev);
cpmac_free_rx_ring(dev);
cpmac_hw_init(dev);
spin_unlock(&priv->lock);
} }
return IRQ_HANDLED; return IRQ_HANDLED;
@ -662,16 +699,23 @@ static irqreturn_t cpmac_irq(int irq, void *dev_id)
static void cpmac_tx_timeout(struct net_device *dev) static void cpmac_tx_timeout(struct net_device *dev)
{ {
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc; int i;
spin_lock(&priv->lock);
dev->stats.tx_errors++; dev->stats.tx_errors++;
desc = &priv->desc_ring[priv->tx_head++]; spin_unlock(&priv->lock);
priv->tx_head %= 8;
if (netif_msg_tx_err(priv) && net_ratelimit()) if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: transmit timeout\n", dev->name); printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
if (desc->skb) /*
dev_kfree_skb_any(desc->skb); * FIXME: waking up random queue is not the best thing to
netif_wake_queue(dev); * do... on the other hand why we got here at all?
*/
for (i = 0; i < CPMAC_QUEUES; i++)
if (priv->desc_ring[i].skb) {
dev_kfree_skb_any(priv->desc_ring[i].skb);
netif_wake_subqueue(dev, i);
break;
}
} }
static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
@ -685,7 +729,7 @@ static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
(cmd == SIOCSMIIREG)) (cmd == SIOCSMIIREG))
return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd); return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
return -EINVAL; return -EOPNOTSUPP;
} }
static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
@ -740,7 +784,7 @@ static void cpmac_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info) struct ethtool_drvinfo *info)
{ {
strcpy(info->driver, "cpmac"); strcpy(info->driver, "cpmac");
strcpy(info->version, "0.0.3"); strcpy(info->version, CPMAC_VERSION);
info->fw_version[0] = '\0'; info->fw_version[0] = '\0';
sprintf(info->bus_info, "%s", "cpmac"); sprintf(info->bus_info, "%s", "cpmac");
info->regdump_len = 0; info->regdump_len = 0;
@ -758,11 +802,11 @@ static const struct ethtool_ops cpmac_ethtool_ops = {
static void cpmac_adjust_link(struct net_device *dev) static void cpmac_adjust_link(struct net_device *dev)
{ {
struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_priv *priv = netdev_priv(dev);
unsigned long flags;
int new_state = 0; int new_state = 0;
spin_lock_irqsave(&priv->lock, flags); spin_lock(&priv->lock);
if (priv->phy->link) { if (priv->phy->link) {
netif_start_queue(dev);
if (priv->phy->duplex != priv->oldduplex) { if (priv->phy->duplex != priv->oldduplex) {
new_state = 1; new_state = 1;
priv->oldduplex = priv->phy->duplex; priv->oldduplex = priv->phy->duplex;
@ -779,6 +823,7 @@ static void cpmac_adjust_link(struct net_device *dev)
netif_schedule(dev); netif_schedule(dev);
} }
} else if (priv->oldlink) { } else if (priv->oldlink) {
netif_stop_queue(dev);
new_state = 1; new_state = 1;
priv->oldlink = 0; priv->oldlink = 0;
priv->oldspeed = 0; priv->oldspeed = 0;
@ -788,49 +833,7 @@ static void cpmac_adjust_link(struct net_device *dev)
if (new_state && netif_msg_link(priv) && net_ratelimit()) if (new_state && netif_msg_link(priv) && net_ratelimit())
phy_print_status(priv->phy); phy_print_status(priv->phy);
spin_unlock_irqrestore(&priv->lock, flags); spin_unlock(&priv->lock);
}
static void cpmac_hw_init(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
MBP_RXMCAST);
cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xfe);
cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
(dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[3] << 24));
cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
MAC_FDX);
priv->phy->state = PHY_CHANGELINK;
phy_start(priv->phy);
} }
static int cpmac_open(struct net_device *dev) static int cpmac_open(struct net_device *dev)
@ -868,8 +871,7 @@ static int cpmac_open(struct net_device *dev)
goto fail_remap; goto fail_remap;
} }
priv->rx_head = NULL; size = priv->ring_size + CPMAC_QUEUES;
size = priv->ring_size + CPMAC_TX_RING_SIZE;
priv->desc_ring = dma_alloc_coherent(&dev->dev, priv->desc_ring = dma_alloc_coherent(&dev->dev,
sizeof(struct cpmac_desc) * size, sizeof(struct cpmac_desc) * size,
&priv->dma_ring, &priv->dma_ring,
@ -879,11 +881,11 @@ static int cpmac_open(struct net_device *dev)
goto fail_alloc; goto fail_alloc;
} }
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i; priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
for (i = 0, desc = &priv->rx_head[i]; i < priv->ring_size; i++, desc++) { priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE); skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
if (unlikely(!skb)) { if (unlikely(!skb)) {
res = -ENOMEM; res = -ENOMEM;
@ -909,21 +911,23 @@ static int cpmac_open(struct net_device *dev)
goto fail_irq; goto fail_irq;
} }
cpmac_reset(dev); INIT_WORK(&priv->reset_work, cpmac_hw_error);
cpmac_hw_init(dev); cpmac_hw_start(dev);
priv->phy->state = PHY_CHANGELINK;
phy_start(priv->phy);
netif_start_queue(dev);
return 0; return 0;
fail_irq: fail_irq:
fail_desc: fail_desc:
for (i = 0; i < priv->ring_size; i++) { for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) { if (priv->rx_head[i].skb) {
kfree_skb(priv->rx_head[i].skb);
dma_unmap_single(&dev->dev, dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping, priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE, CPMAC_SKB_SIZE,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
kfree_skb(priv->rx_head[i].skb);
} }
} }
fail_alloc: fail_alloc:
@ -947,11 +951,12 @@ static int cpmac_stop(struct net_device *dev)
netif_stop_queue(dev); netif_stop_queue(dev);
cancel_work_sync(&priv->reset_work);
phy_stop(priv->phy); phy_stop(priv->phy);
phy_disconnect(priv->phy); phy_disconnect(priv->phy);
priv->phy = NULL; priv->phy = NULL;
cpmac_reset(dev); cpmac_hw_stop(dev);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
@ -962,19 +967,19 @@ static int cpmac_stop(struct net_device *dev)
iounmap(priv->regs); iounmap(priv->regs);
mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
release_mem_region(mem->start, mem->end - mem->start); release_mem_region(mem->start, mem->end - mem->start);
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE]; priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
for (i = 0; i < priv->ring_size; i++) { for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) { if (priv->rx_head[i].skb) {
kfree_skb(priv->rx_head[i].skb);
dma_unmap_single(&dev->dev, dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping, priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE, CPMAC_SKB_SIZE,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
kfree_skb(priv->rx_head[i].skb);
} }
} }
dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
(CPMAC_TX_RING_SIZE + priv->ring_size), (CPMAC_QUEUES + priv->ring_size),
priv->desc_ring, priv->dma_ring); priv->desc_ring, priv->dma_ring);
return 0; return 0;
} }
@ -1008,7 +1013,7 @@ static int __devinit cpmac_probe(struct platform_device *pdev)
} }
} }
dev = alloc_etherdev(sizeof(struct cpmac_priv)); dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
if (!dev) { if (!dev) {
printk(KERN_ERR "cpmac: Unable to allocate net_device\n"); printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
@ -1035,20 +1040,19 @@ static int __devinit cpmac_probe(struct platform_device *pdev)
dev->set_multicast_list = cpmac_set_multicast_list; dev->set_multicast_list = cpmac_set_multicast_list;
dev->tx_timeout = cpmac_tx_timeout; dev->tx_timeout = cpmac_tx_timeout;
dev->ethtool_ops = &cpmac_ethtool_ops; dev->ethtool_ops = &cpmac_ethtool_ops;
if (!disable_napi) { dev->poll = cpmac_poll;
dev->poll = cpmac_poll; dev->weight = 64;
dev->weight = 64; dev->features |= NETIF_F_MULTI_QUEUE;
}
spin_lock_init(&priv->lock); spin_lock_init(&priv->lock);
priv->msg_enable = netif_msg_init(debug_level, 0xff); spin_lock_init(&priv->rx_lock);
priv->dev = dev;
priv->ring_size = 64; priv->ring_size = 64;
priv->msg_enable = netif_msg_init(debug_level, 0xff);
memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr)); memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
if (phy_id == 31) { if (phy_id == 31) {
snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT, snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
cpmac_mii.id, phy_id); cpmac_mii.id, phy_id);
/* cpmac_write(cpmac_mii.priv, CPMAC_MDIO_PHYSEL(0), PHYSEL_LINKSEL
| PHYSEL_LINKINT | phy_id);*/
} else } else
snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1); snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);