/* * linux/arch/mips/jz4730/dma.c * * JZ4730 DMA PC-like APIs. * * Copyright (c) 2006-2007 Ingenic Semiconductor Inc. * Author: * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * A note on resource allocation: * * All drivers needing DMA channels, should allocate and release them * through the public routines `jz_request_dma()' and `jz_free_dma()'. * * In order to avoid problems, all processes should allocate resources in * the same sequence and release them in the reverse order. * * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ. * When releasing them, first release the IRQ, then release the DMA. The * main reason for this order is that, if you are requesting the DMA buffer * done interrupt, you won't know the irq number until the DMA channel is * returned from jz_request_dma(). */ struct jz_dma_chan jz_dma_table[NUM_DMA] = { {dev_id:-1,}, {dev_id:-1,}, {dev_id:-1,}, {dev_id:-1,}, {dev_id:-1,}, {dev_id:-1,}, }; // Device FIFO addresses and default DMA modes static const struct { unsigned int fifo_addr; unsigned int dma_mode; unsigned int dma_source; } dma_dev_table[NUM_DMA_DEV] = { {CPHYSADDR(UART0_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART0OUT}, {CPHYSADDR(UART0_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART0IN}, {CPHYSADDR(UART1_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART1OUT}, {CPHYSADDR(UART1_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART1IN}, {CPHYSADDR(UART2_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART2OUT}, {CPHYSADDR(UART2_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART2IN}, {CPHYSADDR(UART3_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART3OUT}, {CPHYSADDR(UART3_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART3IN}, {CPHYSADDR(SSI_DR), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_SSIOUT}, {CPHYSADDR(SSI_DR), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_SSIIN}, {CPHYSADDR(MSC_TXFIFO), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_MSCOUT}, {CPHYSADDR(MSC_RXFIFO), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_MSCIN}, {CPHYSADDR(AIC_DR), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_AICOUT}, {CPHYSADDR(AIC_DR), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_AICIN}, {0, DMA_AUTOINIT, 0}, }; int jz_dma_read_proc(char *buf, char **start, off_t fpos, int length, int *eof, void *data) { int i, len = 0; struct jz_dma_chan *chan; for (i = 0; i < NUM_DMA; i++) { if ((chan = get_dma_chan(i)) != NULL) { len += sprintf(buf + len, "%2d: %s\n", i, chan->dev_str); } } if (fpos >= len) { *start = buf; *eof = 1; return 0; } *start = buf + fpos; if ((len -= fpos) > length) return length; *eof = 1; return len; } void dump_jz_dma_channel(unsigned int dmanr) { struct jz_dma_chan *chan; if (dmanr > NUM_DMA) return; chan = &jz_dma_table[dmanr]; printk(KERN_INFO "DMA%d Register Dump:\n", dmanr); printk(KERN_INFO " DMACR= 0x%08x\n", REG_DMAC_DMACR); printk(KERN_INFO " DSAR = 0x%08x\n", REG_DMAC_DSAR(dmanr)); printk(KERN_INFO " DDAR = 0x%08x\n", REG_DMAC_DDAR(dmanr)); printk(KERN_INFO " DTCR = 0x%08x\n", REG_DMAC_DTCR(dmanr)); printk(KERN_INFO " DRSR = 0x%08x\n", REG_DMAC_DRSR(dmanr)); printk(KERN_INFO " DCCSR = 0x%08x\n", REG_DMAC_DCCSR(dmanr)); } /** * jz_request_dma - dynamically allcate an idle DMA channel to return * @dev_id: the specified dma device id or DMA_ID_RAW_REQ * @dev_str: the specified dma device string name * @irqhandler: the irq handler, or NULL * @irqflags: the irq handler flags * @irq_dev_id: the irq handler device id for shared irq * * Finds a free channel, and binds the requested device to it. * Returns the allocated channel number, or negative on error. * Requests the DMA done IRQ if irqhandler != NULL. * */ int jz_request_dma(int dev_id, const char *dev_str, irqreturn_t (*irqhandler)(int, void *), unsigned long irqflags, void *irq_dev_id) { struct jz_dma_chan *chan; int i, ret; if (dev_id < 0 || dev_id >= NUM_DMA_DEV) return -EINVAL; for (i = 0; i < NUM_DMA; i++) { if (jz_dma_table[i].dev_id < 0) break; } if (i == NUM_DMA) return -ENODEV; chan = &jz_dma_table[i]; if (irqhandler) { chan->irq = IRQ_DMA_0 + i; // see intc.h chan->irq_dev = irq_dev_id; if ((ret = request_irq(chan->irq, irqhandler, irqflags, dev_str, chan->irq_dev))) { chan->irq = 0; chan->irq_dev = NULL; return ret; } } else { chan->irq = 0; chan->irq_dev = NULL; } // fill it in chan->io = i; chan->dev_id = dev_id; chan->dev_str = dev_str; chan->fifo_addr = dma_dev_table[dev_id].fifo_addr; chan->mode = dma_dev_table[dev_id].dma_mode; chan->source = dma_dev_table[dev_id].dma_source; return i; } void jz_free_dma(unsigned int dmanr) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) { printk("Trying to free DMA%d\n", dmanr); return; } disable_dma(dmanr); if (chan->irq) free_irq(chan->irq, chan->irq_dev); chan->irq = 0; chan->irq_dev = NULL; chan->dev_id = -1; } void jz_set_dma_dest_width(int dmanr, int nbit) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; chan->mode &= ~DMAC_DCCSR_DWDH_MASK; switch (nbit) { case 8: chan->mode |= DMAC_DCCSR_DWDH_8; break; case 16: chan->mode |= DMAC_DCCSR_DWDH_16; break; case 32: chan->mode |= DMAC_DCCSR_DWDH_32; break; } } void jz_set_dma_src_width(int dmanr, int nbit) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; chan->mode &= ~DMAC_DCCSR_SWDH_MASK; switch (nbit) { case 8: chan->mode |= DMAC_DCCSR_SWDH_8; break; case 16: chan->mode |= DMAC_DCCSR_SWDH_16; break; case 32: chan->mode |= DMAC_DCCSR_SWDH_32; break; } } void jz_set_dma_block_size(int dmanr, int nbyte) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; chan->mode &= ~DMAC_DCCSR_DS_MASK; switch (nbyte) { case 1: chan->mode |= DMAC_DCCSR_DS_8b; break; case 2: chan->mode |= DMAC_DCCSR_DS_16b; break; case 4: chan->mode |= DMAC_DCCSR_DS_32b; break; case 16: chan->mode |= DMAC_DCCSR_DS_16B; break; case 32: chan->mode |= DMAC_DCCSR_DS_32B; break; } } /** * jz_set_dma_mode - do the raw settings for the specified DMA channel * @dmanr: the specified DMA channel * @mode: dma operate mode, DMA_MODE_READ or DMA_MODE_WRITE * @dma_mode: dma raw mode * @dma_source: dma raw request source * @fifo_addr: dma raw device fifo address * * Ensure call jz_request_dma(DMA_ID_RAW_REQ, ...) first, then call * jz_set_dma_mode() rather than set_dma_mode() if you work with * and external request dma device. * * NOTE: Don not dynamically allocate dma channel if one external request * dma device will occupy this channel. */ int jz_set_dma_mode(unsigned int dmanr, unsigned int mode, unsigned int dma_mode, unsigned int dma_source, unsigned int fifo_addr) { int dev_id, i; struct jz_dma_chan *chan; if (dmanr > NUM_DMA) return -ENODEV; for (i = 0; i < NUM_DMA; i++) { if (jz_dma_table[i].dev_id < 0) break; } if (i == NUM_DMA) return -ENODEV; chan = &jz_dma_table[dmanr]; dev_id = chan->dev_id; if (dev_id > 0) { printk(KERN_DEBUG "%s sets the allocated DMA channel %d!\n", __FUNCTION__, dmanr); return -ENODEV; } /* clone it from the dynamically allocated. */ if (i != dmanr) { chan->irq = jz_dma_table[i].irq; chan->irq_dev = jz_dma_table[i].irq_dev; chan->dev_str = jz_dma_table[i].dev_str; jz_dma_table[i].irq = 0; jz_dma_table[i].irq_dev = NULL; jz_dma_table[i].dev_id = -1; } chan->dev_id = DMA_ID_RAW_SET; chan->io = dmanr; chan->fifo_addr = fifo_addr; chan->mode = dma_mode; chan->source = dma_source; set_dma_mode(dmanr, dma_mode); return dmanr; } void enable_dma(unsigned int dmanr) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; REG_DMAC_DCCSR(chan->io) &= ~(DMAC_DCCSR_HLT | DMAC_DCCSR_TC | DMAC_DCCSR_AR); __dmac_enable_channel(dmanr); if (chan->irq) __dmac_channel_enable_irq(dmanr); } #define DMA_DISABLE_POLL 0x5000 void disable_dma(unsigned int dmanr) { int i; struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; if (!__dmac_channel_enabled(dmanr)) return; for (i = 0; i < DMA_DISABLE_POLL; i++) if (__dmac_channel_transmit_end_detected(dmanr)) break; #if 0 if (i == DMA_DISABLE_POLL) printk(KERN_INFO "disable_dma: poll expired!\n"); #endif __dmac_disable_channel(dmanr); if (chan->irq) __dmac_channel_disable_irq(dmanr); } /* note: DMA_MODE_MASK is simulated by sw, DCCSR_MODE_MASK mask hw bits */ void set_dma_mode(unsigned int dmanr, unsigned int mode) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR); chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM); mode &= DMA_MODE_MASK; if (mode == DMA_MODE_READ) { chan->mode |= DMAC_DCCSR_DAM; chan->mode &= ~DMAC_DCCSR_SAM; } else if (mode == DMA_MODE_WRITE) { chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM; chan->mode &= ~DMAC_DCCSR_DAM; } else { printk(KERN_DEBUG "set_dma_mode() support DMA_MODE_READ or DMA_MODE_WRITE!\n"); } REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK; REG_DMAC_DRSR(chan->io) = chan->source; } void jz_set_oss_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; switch (audio_fmt) { case AFMT_U8: /* SNDRV_PCM_FORMAT_S8 burst mode : 32BIT */ break; case AFMT_S16_LE: /* SNDRV_PCM_FORMAT_S16_LE burst mode : 16BYTE */ if (mode == DMA_MODE_READ) { mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR); chan->mode = DMA_AIC_32_16BYTE_RX_CMD | DMA_MODE_READ; chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM); mode &= DMA_MODE_MASK; chan->mode |= DMAC_DCCSR_DAM; chan->mode &= ~DMAC_DCCSR_SAM; } else if (mode == DMA_MODE_WRITE) { mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR); chan->mode = DMA_AIC_32_16BYTE_TX_CMD | DMA_MODE_WRITE; chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM |DMAC_DCCSR_DAM); mode &= DMA_MODE_MASK; chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM; chan->mode &= ~DMAC_DCCSR_DAM; } else printk("jz_set_oss_dma() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n"); REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK; REG_DMAC_DRSR(chan->io) = chan->source; break; } } void jz_set_alsa_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt) { struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; switch (audio_fmt) { case 8: /* SNDRV_PCM_FORMAT_S8 burst mode : 32BIT */ break; case 16: /* SNDRV_PCM_FORMAT_S16_LE burst mode : 16BYTE */ if (mode == DMA_MODE_READ) { mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR); chan->mode = DMA_AIC_16BYTE_RX_CMD | DMA_MODE_READ; chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM); mode &= DMA_MODE_MASK; chan->mode |= DMAC_DCCSR_DAM; chan->mode &= ~DMAC_DCCSR_SAM; } else if (mode == DMA_MODE_WRITE) { mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR); chan->mode = DMA_AIC_16BYTE_TX_CMD | DMA_MODE_WRITE; chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM); mode &= DMA_MODE_MASK; chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM; chan->mode &= ~DMAC_DCCSR_DAM; } else printk("jz_set_alsa_dma() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n"); REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK; REG_DMAC_DRSR(chan->io) = chan->source; break; } } void set_dma_addr(unsigned int dmanr, unsigned int a) { unsigned int mode; struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; mode = chan->mode & DMA_MODE_MASK; if (mode == DMA_MODE_READ) { REG_DMAC_DSAR(chan->io) = chan->fifo_addr; REG_DMAC_DDAR(chan->io) = a; } else if (mode == DMA_MODE_WRITE) { REG_DMAC_DSAR(chan->io) = a; REG_DMAC_DDAR(chan->io) = chan->fifo_addr; } else printk(KERN_DEBUG "Driver should call set_dma_mode() ahead set_dma_addr()!\n"); } void set_dma_count(unsigned int dmanr, unsigned int count) { unsigned int mode; int dma_ds[] = {4, 1, 2, 16, 32}; struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return; mode = (chan->mode & DMAC_DCCSR_DS_MASK) >> DMAC_DCCSR_DS_BIT; count = count / dma_ds[mode]; REG_DMAC_DTCR(chan->io) = count; } int get_dma_residue(unsigned int dmanr) { int count; unsigned int mode; int dma_ds[] = {4, 1, 2, 16, 32}; struct jz_dma_chan *chan = get_dma_chan(dmanr); if (!chan) return 0; mode = (chan->mode & DMAC_DCCSR_DS_MASK) >> DMAC_DCCSR_DS_BIT; count = REG_DMAC_DTCR(chan->io); count = count * dma_ds[mode]; return count; } EXPORT_SYMBOL(jz_dma_table); EXPORT_SYMBOL(jz_request_dma); EXPORT_SYMBOL(jz_free_dma); EXPORT_SYMBOL(jz_set_dma_src_width); EXPORT_SYMBOL(jz_set_dma_dest_width); EXPORT_SYMBOL(jz_set_dma_block_size); EXPORT_SYMBOL(jz_set_dma_mode); EXPORT_SYMBOL(set_dma_mode); EXPORT_SYMBOL(jz_set_oss_dma); EXPORT_SYMBOL(jz_set_alsa_dma); EXPORT_SYMBOL(set_dma_addr); EXPORT_SYMBOL(set_dma_count); EXPORT_SYMBOL(get_dma_residue); EXPORT_SYMBOL(enable_dma); EXPORT_SYMBOL(disable_dma); EXPORT_SYMBOL(dump_jz_dma_channel);