/* * Platform independend driver for JZ4740. * * Copyright (c) 2007 Ingenic Semiconductor Inc. * Author: * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. */ #include #if defined(CONFIG_CMD_NAND) #include #include #include #define __nand_ecc_enable() (REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST ) #define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE) #define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000) #define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000) #define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000) #define BIT(x) (1 << (x)) #define JZ_NAND_ECC_CTRL_ENCODING BIT(3) #define JZ_NAND_ECC_CTRL_RS BIT(2) #define JZ_NAND_ECC_CTRL_RESET BIT(1) #define JZ_NAND_ECC_CTRL_ENABLE BIT(0) static struct nand_ecclayout qi_lb60_ecclayout_2gb = { .eccbytes = 72, .eccpos = { 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83}, .oobfree = { {.offset = 2, .length = 10}, {.offset = 84, .length = 44}} }; static int is_reading; static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; if (ctrl & NAND_CTRL_CHANGE) { if (ctrl & NAND_ALE) this->IO_ADDR_W = JZ_NAND_ADDR_ADDR; else if (ctrl & NAND_CLE) this->IO_ADDR_W = JZ_NAND_CMD_ADDR; else this->IO_ADDR_W = JZ_NAND_DATA_ADDR; if (ctrl & NAND_NCE) REG_EMC_NFCSR |= EMC_NFCSR_NFCE1; else REG_EMC_NFCSR &= ~EMC_NFCSR_NFCE1; } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } static int jz_nand_device_ready(struct mtd_info *mtd) { udelay(20); return (REG_GPIO_PXPIN(2) & 0x40000000) ? 1 : 0; } void board_nand_select_device(struct nand_chip *nand, int chip) { /* * Don't use "chip" to address the NAND device, * generate the cs from the address where it is encoded. */ } static int jz_nand_rs_calculate_ecc(struct mtd_info* mtd, const u_char* dat, u_char* ecc_code) { uint32_t reg, status; int i; volatile u8 *paraddr = (volatile u8 *)EMC_NFPAR0; if(is_reading) return 0; do { status = REG_EMC_NFINTS; } while(!(status & EMC_NFINTS_ENCF)); __nand_ecc_disable(); for(i = 0; i < 9; i++) ecc_code[i] = *(paraddr + i); return 0; } static void jz_nand_hwctl(struct mtd_info* mtd, int mode) { uint32_t reg; REG_EMC_NFINTS = 0; reg = REG_EMC_NFECR; reg |= JZ_NAND_ECC_CTRL_RESET; reg |= JZ_NAND_ECC_CTRL_ENABLE; reg |= JZ_NAND_ECC_CTRL_RS; switch(mode) { case NAND_ECC_READ: reg &= ~JZ_NAND_ECC_CTRL_ENCODING; is_reading = 1; break; case NAND_ECC_WRITE: reg |= JZ_NAND_ECC_CTRL_ENCODING; is_reading = 0; break; default: break; } REG_EMC_NFECR = reg; } /* Correct 1~9-bit errors in 512-bytes data */ static void jz_rs_correct(unsigned char *dat, int idx, int mask) { int i; idx--; i = idx + (idx >> 3); if (i >= 512) return; mask <<= (idx & 0x7); dat[i] ^= mask & 0xff; if (i < 511) dat[i+1] ^= (mask >> 8) & 0xff; } static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { int k; uint32_t reg, status; volatile u8 *paraddr = (volatile u8 *)EMC_NFPAR0; /* Set PAR values */ static uint8_t all_ff_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f}; if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff && read_ecc[3] == 0xff && read_ecc[4] == 0xff && read_ecc[5] == 0xff && read_ecc[6] == 0xff && read_ecc[7] == 0xff && read_ecc[8] == 0xff) { for (k = 0; k < 9; k++) *(paraddr + k) = all_ff_ecc[k]; } else { for (k = 0; k < 9; k++) *(paraddr + k) = read_ecc[k]; } /* Set PRDY */ REG_EMC_NFECR |= EMC_NFECR_PRDY; /* Wait for completion */ do { status = REG_EMC_NFINTS; } while (!(status & EMC_NFINTS_DECF)); __nand_ecc_disable(); /* Check decoding */ if (status & EMC_NFINTS_ERR) { if (status & EMC_NFINTS_UNCOR) { printk("uncorrectable ecc\n"); while(1); return -1; } uint32_t errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT; switch (errcnt) { case 4: jz_rs_correct(dat, (REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT); case 3: jz_rs_correct(dat, (REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT); case 2: jz_rs_correct(dat, (REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT); case 1: jz_rs_correct(dat, (REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT, (REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT); return errcnt; default: break; } } return 0; } /* * Main initialization routine */ int board_nand_init(struct nand_chip *nand) { /* EMC setup, Set NFE bit */ REG_EMC_NFCSR |= EMC_NFCSR_NFE1; REG_EMC_SMCR1 = 0x094c4400; /* REG_EMC_SMCR3 = 0x04444400; */ nand->IO_ADDR_R = JZ_NAND_DATA_ADDR; nand->IO_ADDR_W = JZ_NAND_DATA_ADDR; nand->cmd_ctrl = jz_nand_cmd_ctrl; nand->dev_ready = jz_nand_device_ready; nand->ecc.hwctl = jz_nand_hwctl; nand->ecc.correct = jz_nand_rs_correct_data; nand->ecc.calculate = jz_nand_rs_calculate_ecc; nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; nand->ecc.layout = &qi_lb60_ecclayout_2gb; nand->chip_delay = 50; return 0; } #endif /* (CONFIG_CMD_NAND) */