/* * ADM5120 built-in ethernet switch driver * * Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org> * * This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken. * Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005 * NAPI extension for the Jeroen's driver * Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007 * Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007 * Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver. * Copyright ADMtek Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/spinlock.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <asm/mipsregs.h> #include <asm/mach-adm5120/adm5120_info.h> #include <asm/mach-adm5120/adm5120_defs.h> #include <asm/mach-adm5120/adm5120_switch.h> #include "adm5120sw.h" #define DRV_NAME "adm5120-switch" #define DRV_DESC "ADM5120 built-in ethernet switch driver" #define DRV_VERSION "0.1.1" #define CONFIG_ADM5120_SWITCH_NAPI 1 #undef CONFIG_ADM5120_SWITCH_DEBUG /* ------------------------------------------------------------------------ */ #ifdef CONFIG_ADM5120_SWITCH_DEBUG #define SW_DBG(f, a...) printk(KERN_DBG "%s: " f, DRV_NAME , ## a) #else #define SW_DBG(f, a...) do {} while (0) #endif #define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a) #define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a) #define SWITCH_NUM_PORTS 6 #define ETH_CSUM_LEN 4 #define RX_MAX_PKTLEN 1550 #define RX_RING_SIZE 64 #define TX_RING_SIZE 32 #define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */ #define TX_TIMEOUT (HZ * 400) #define RX_DESCS_SIZE (RX_RING_SIZE * sizeof(struct dma_desc *)) #define RX_SKBS_SIZE (RX_RING_SIZE * sizeof(struct sk_buff *)) #define TX_DESCS_SIZE (TX_RING_SIZE * sizeof(struct dma_desc *)) #define TX_SKBS_SIZE (TX_RING_SIZE * sizeof(struct sk_buff *)) #define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32) #define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD) #define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF) #define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF) #define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH) #define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \ SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \ SWITCH_INT_CPQF | SWITCH_INT_GQF) #define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \ SWITCH_INTS_ERR | SWITCH_INTS_Q | \ SWITCH_INT_MD | SWITCH_INT_PSC) #define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC) #define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD) /* ------------------------------------------------------------------------ */ struct adm5120_if_priv { struct net_device *dev; unsigned int vlan_no; unsigned int port_mask; #ifdef CONFIG_ADM5120_SWITCH_NAPI struct napi_struct napi; #endif }; struct dma_desc { __u32 buf1; #define DESC_OWN (1UL << 31) /* Owned by the switch */ #define DESC_EOR (1UL << 28) /* End of Ring */ #define DESC_ADDR_MASK 0x1FFFFFF #define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK) __u32 buf2; #define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */ __u32 buflen; __u32 misc; /* definitions for tx/rx descriptors */ #define DESC_PKTLEN_SHIFT 16 #define DESC_PKTLEN_MASK 0x7FF /* tx descriptor specific part */ #define DESC_CSUM (1UL << 31) /* Append checksum */ #define DESC_DSTPORT_SHIFT 8 #define DESC_DSTPORT_MASK 0x3F #define DESC_VLAN_MASK 0x3F /* rx descriptor specific part */ #define DESC_SRCPORT_SHIFT 12 #define DESC_SRCPORT_MASK 0x7 #define DESC_DA_MASK 0x3 #define DESC_DA_SHIFT 4 #define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */ #define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */ #define DESC_TYPE_MASK 0x3 /* mask for Packet type */ #define DESC_TYPE_IP 0x0 /* IP packet */ #define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */ } __attribute__ ((aligned(16))); /* ------------------------------------------------------------------------ */ static int adm5120_nrdevs; static struct net_device *adm5120_devs[SWITCH_NUM_PORTS]; /* Lookup table port -> device */ static struct net_device *adm5120_port[SWITCH_NUM_PORTS]; static struct dma_desc *txl_descs; static struct dma_desc *rxl_descs; static dma_addr_t txl_descs_dma; static dma_addr_t rxl_descs_dma; static struct sk_buff **txl_skbuff; static struct sk_buff **rxl_skbuff; static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */ static unsigned int cur_txl, dirty_txl; static unsigned int sw_used; static spinlock_t tx_lock = SPIN_LOCK_UNLOCKED; /* ------------------------------------------------------------------------ */ static inline u32 sw_read_reg(u32 reg) { return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg); } static inline void sw_write_reg(u32 reg, u32 val) { __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg); } static inline void sw_int_mask(u32 mask) { u32 t; t = sw_read_reg(SWITCH_REG_INT_MASK); t |= mask; sw_write_reg(SWITCH_REG_INT_MASK, t); } static inline void sw_int_unmask(u32 mask) { u32 t; t = sw_read_reg(SWITCH_REG_INT_MASK); t &= ~mask; sw_write_reg(SWITCH_REG_INT_MASK, t); } static inline void sw_int_ack(u32 mask) { sw_write_reg(SWITCH_REG_INT_STATUS, mask); } static inline u32 sw_int_status(void) { u32 t; t = sw_read_reg(SWITCH_REG_INT_STATUS); t &= ~sw_read_reg(SWITCH_REG_INT_MASK); return t; } static inline u32 desc_get_srcport(struct dma_desc *desc) { return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK; } static inline u32 desc_get_pktlen(struct dma_desc *desc) { return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK; } static inline int desc_ipcsum_fail(struct dma_desc *desc) { return ((desc->misc & DESC_IPCSUM_FAIL) != 0); } /* ------------------------------------------------------------------------ */ static void sw_dump_desc(char *label, struct dma_desc *desc, int tx) { u32 t; SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc); t = desc->buf1; SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t, t & DESC_ADDR_MASK, desc->buflen, (t & DESC_OWN) ? "SWITCH" : "CPU", (t & DESC_EOR) ? " RE" : ""); t = desc->buf2; SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2, t & DESC_ADDR_MASK, (t & DESC_BUF2_EN) ? " EN" : ""); t = desc->misc; if (tx) SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t, (t & DESC_CSUM) ? " CSUM" : "", (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK, (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK, t & DESC_VLAN_MASK); else SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n", t, (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK, (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK, (t >> DESC_DA_SHIFT) & DESC_DA_MASK, (t & DESC_IPCSUM_FAIL) ? " IPCF" : "", (t & DESC_VLAN_TAG) ? " VLAN" : "", (t & DESC_TYPE_MASK)); } static void sw_dump_intr_mask(char *label, u32 mask) { SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", label, mask, (mask & SWITCH_INT_SHD) ? " SHD" : "", (mask & SWITCH_INT_SLD) ? " SLD" : "", (mask & SWITCH_INT_RHD) ? " RHD" : "", (mask & SWITCH_INT_RLD) ? " RLD" : "", (mask & SWITCH_INT_HDF) ? " HDF" : "", (mask & SWITCH_INT_LDF) ? " LDF" : "", (mask & SWITCH_INT_P0QF) ? " P0QF" : "", (mask & SWITCH_INT_P1QF) ? " P1QF" : "", (mask & SWITCH_INT_P2QF) ? " P2QF" : "", (mask & SWITCH_INT_P3QF) ? " P3QF" : "", (mask & SWITCH_INT_P4QF) ? " P4QF" : "", (mask & SWITCH_INT_CPQF) ? " CPQF" : "", (mask & SWITCH_INT_GQF) ? " GQF" : "", (mask & SWITCH_INT_MD) ? " MD" : "", (mask & SWITCH_INT_BCS) ? " BCS" : "", (mask & SWITCH_INT_PSC) ? " PSC" : "", (mask & SWITCH_INT_ID) ? " ID" : "", (mask & SWITCH_INT_W0TE) ? " W0TE" : "", (mask & SWITCH_INT_W1TE) ? " W1TE" : "", (mask & SWITCH_INT_RDE) ? " RDE" : "", (mask & SWITCH_INT_SDE) ? " SDE" : "", (mask & SWITCH_INT_CPUH) ? " CPUH" : ""); } static void sw_dump_regs(void) { u32 t; t = sw_read_reg(SWITCH_REG_PHY_STATUS); SW_DBG("phy_status: %08X\n", t); t = sw_read_reg(SWITCH_REG_CPUP_CONF); SW_DBG("cpup_conf: %08X%s%s%s\n", t, (t & CPUP_CONF_DCPUP) ? " DCPUP" : "", (t & CPUP_CONF_CRCP) ? " CRCP" : "", (t & CPUP_CONF_BTM) ? " BTM" : ""); t = sw_read_reg(SWITCH_REG_PORT_CONF0); SW_DBG("port_conf0: %08X\n", t); t = sw_read_reg(SWITCH_REG_PORT_CONF1); SW_DBG("port_conf1: %08X\n", t); t = sw_read_reg(SWITCH_REG_PORT_CONF2); SW_DBG("port_conf2: %08X\n", t); t = sw_read_reg(SWITCH_REG_VLAN_G1); SW_DBG("vlan g1: %08X\n", t); t = sw_read_reg(SWITCH_REG_VLAN_G2); SW_DBG("vlan g2: %08X\n", t); t = sw_read_reg(SWITCH_REG_BW_CNTL0); SW_DBG("bw_cntl0: %08X\n", t); t = sw_read_reg(SWITCH_REG_BW_CNTL1); SW_DBG("bw_cntl1: %08X\n", t); t = sw_read_reg(SWITCH_REG_PHY_CNTL0); SW_DBG("phy_cntl0: %08X\n", t); t = sw_read_reg(SWITCH_REG_PHY_CNTL1); SW_DBG("phy_cntl1: %08X\n", t); t = sw_read_reg(SWITCH_REG_PHY_CNTL2); SW_DBG("phy_cntl2: %08X\n", t); t = sw_read_reg(SWITCH_REG_PHY_CNTL3); SW_DBG("phy_cntl3: %08X\n", t); t = sw_read_reg(SWITCH_REG_PHY_CNTL4); SW_DBG("phy_cntl4: %08X\n", t); t = sw_read_reg(SWITCH_REG_INT_STATUS); sw_dump_intr_mask("int_status: ", t); t = sw_read_reg(SWITCH_REG_INT_MASK); sw_dump_intr_mask("int_mask: ", t); t = sw_read_reg(SWITCH_REG_SHDA); SW_DBG("shda: %08X\n", t); t = sw_read_reg(SWITCH_REG_SLDA); SW_DBG("slda: %08X\n", t); t = sw_read_reg(SWITCH_REG_RHDA); SW_DBG("rhda: %08X\n", t); t = sw_read_reg(SWITCH_REG_RLDA); SW_DBG("rlda: %08X\n", t); } /* ------------------------------------------------------------------------ */ static inline void adm5120_rx_dma_update(struct dma_desc *desc, struct sk_buff *skb, int end) { desc->misc = 0; desc->buf2 = 0; desc->buflen = RX_MAX_PKTLEN; desc->buf1 = DESC_ADDR(skb->data) | DESC_OWN | (end ? DESC_EOR : 0); } static void adm5120_switch_rx_refill(void) { unsigned int entry; for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) { struct dma_desc *desc; struct sk_buff *skb; entry = dirty_rxl % RX_RING_SIZE; desc = &rxl_descs[entry]; skb = rxl_skbuff[entry]; if (skb == NULL) { skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC); if (skb) { skb_reserve(skb, SKB_RESERVE_LEN); rxl_skbuff[entry] = skb; } else { SW_ERR("no memory for skb\n"); desc->buflen = 0; desc->buf2 = 0; desc->misc = 0; desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN; break; } } desc->buf2 = 0; desc->buflen = RX_MAX_PKTLEN; desc->misc = 0; desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN | DESC_ADDR(skb->data); } } static int adm5120_switch_rx(int limit) { unsigned int done = 0; SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n", limit, cur_rxl, dirty_rxl); while (done < limit) { int entry = cur_rxl % RX_RING_SIZE; struct dma_desc *desc = &rxl_descs[entry]; struct net_device *rdev; unsigned int port; if (desc->buf1 & DESC_OWN) break; if (dirty_rxl + RX_RING_SIZE == cur_rxl) break; port = desc_get_srcport(desc); rdev = adm5120_port[port]; SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc, rxl_skbuff[entry]); if ((rdev) && netif_running(rdev)) { struct sk_buff *skb = rxl_skbuff[entry]; int pktlen; pktlen = desc_get_pktlen(desc); pktlen -= ETH_CSUM_LEN; if ((pktlen == 0) || desc_ipcsum_fail(desc)) { rdev->stats.rx_errors++; if (pktlen == 0) rdev->stats.rx_length_errors++; if (desc_ipcsum_fail(desc)) rdev->stats.rx_crc_errors++; SW_DBG("rx error, recycling skb %u\n", entry); } else { skb_put(skb, pktlen); skb->dev = rdev; skb->protocol = eth_type_trans(skb, rdev); skb->ip_summed = CHECKSUM_UNNECESSARY; dma_cache_wback_inv((unsigned long)skb->data, skb->len); #ifdef CONFIG_ADM5120_SWITCH_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif rdev->last_rx = jiffies; rdev->stats.rx_packets++; rdev->stats.rx_bytes += pktlen; rxl_skbuff[entry] = NULL; done++; } } else { SW_DBG("no rx device, recycling skb %u\n", entry); } cur_rxl++; if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4) adm5120_switch_rx_refill(); } adm5120_switch_rx_refill(); SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n", cur_rxl, dirty_rxl, done); return done; } static void adm5120_switch_tx(void) { unsigned int entry; spin_lock(&tx_lock); entry = dirty_txl % TX_RING_SIZE; while (dirty_txl != cur_txl) { struct dma_desc *desc = &txl_descs[entry]; struct sk_buff *skb = txl_skbuff[entry]; if (desc->buf1 & DESC_OWN) break; if (netif_running(skb->dev)) { skb->dev->stats.tx_bytes += skb->len; skb->dev->stats.tx_packets++; } dev_kfree_skb_irq(skb); txl_skbuff[entry] = NULL; entry = (++dirty_txl) % TX_RING_SIZE; } if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) { int i; for (i = 0; i < SWITCH_NUM_PORTS; i++) { if (!adm5120_devs[i]) continue; netif_wake_queue(adm5120_devs[i]); } } spin_unlock(&tx_lock); } #ifdef CONFIG_ADM5120_SWITCH_NAPI static int adm5120_if_poll(struct napi_struct *napi, int limit) { struct adm5120_if_priv *priv = container_of(napi, struct adm5120_if_priv, napi); struct net_device *dev = priv->dev; int done; u32 status; sw_int_ack(SWITCH_INTS_POLL); SW_DBG("%s: processing TX ring\n", dev->name); adm5120_switch_tx(); SW_DBG("%s: processing RX ring\n", dev->name); done = adm5120_switch_rx(limit); status = sw_int_status() & SWITCH_INTS_POLL; if ((done < limit) && (!status)) { SW_DBG("disable polling mode for %s\n", dev->name); napi_complete(napi); sw_int_unmask(SWITCH_INTS_POLL); return 0; } SW_DBG("%s still in polling mode, done=%d, status=%x\n", dev->name, done, status); return 1; } #endif /* CONFIG_ADM5120_SWITCH_NAPI */ static irqreturn_t adm5120_switch_irq(int irq, void *dev_id) { u32 status; status = sw_int_status(); status &= SWITCH_INTS_ALL; if (!status) return IRQ_NONE; #ifdef CONFIG_ADM5120_SWITCH_NAPI sw_int_ack(status & ~SWITCH_INTS_POLL); if (status & SWITCH_INTS_POLL) { struct net_device *dev = dev_id; struct adm5120_if_priv *priv = netdev_priv(dev); sw_dump_intr_mask("poll ints", status); SW_DBG("enable polling mode for %s\n", dev->name); sw_int_mask(SWITCH_INTS_POLL); napi_schedule(&priv->napi); } #else sw_int_ack(status); if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF)) adm5120_switch_rx(RX_RING_SIZE); if (status & SWITCH_INT_SLD) adm5120_switch_tx(); #endif return IRQ_HANDLED; } static void adm5120_set_bw(char *matrix) { unsigned long val; /* Port 0 to 3 are set using the bandwidth control 0 register */ val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24); sw_write_reg(SWITCH_REG_BW_CNTL0, val); /* Port 4 and 5 are set using the bandwidth control 1 register */ val = matrix[4]; if (matrix[5] == 1) sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000); else sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000); SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0), sw_read_reg(SWITCH_REG_BW_CNTL1)); } static void adm5120_switch_tx_ring_reset(struct dma_desc *desc, struct sk_buff **skbl, int num) { memset(desc, 0, num * sizeof(*desc)); desc[num-1].buf1 |= DESC_EOR; memset(skbl, 0, sizeof(struct skb *) * num); cur_txl = 0; dirty_txl = 0; } static void adm5120_switch_rx_ring_reset(struct dma_desc *desc, struct sk_buff **skbl, int num) { int i; memset(desc, 0, num * sizeof(*desc)); for (i = 0; i < num; i++) { skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN); if (!skbl[i]) { i = num; break; } skb_reserve(skbl[i], SKB_RESERVE_LEN); adm5120_rx_dma_update(&desc[i], skbl[i], (num - 1 == i)); } cur_rxl = 0; dirty_rxl = 0; } static int adm5120_switch_tx_ring_alloc(void) { int err; txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma, GFP_ATOMIC); if (!txl_descs) { err = -ENOMEM; goto err; } txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL); if (!txl_skbuff) { err = -ENOMEM; goto err; } return 0; err: return err; } static void adm5120_switch_tx_ring_free(void) { int i; if (txl_skbuff) { for (i = 0; i < TX_RING_SIZE; i++) if (txl_skbuff[i]) kfree_skb(txl_skbuff[i]); kfree(txl_skbuff); } if (txl_descs) dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs, txl_descs_dma); } static int adm5120_switch_rx_ring_alloc(void) { int err; int i; /* init RX ring */ rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma, GFP_ATOMIC); if (!rxl_descs) { err = -ENOMEM; goto err; } rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL); if (!rxl_skbuff) { err = -ENOMEM; goto err; } for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC); if (!skb) { err = -ENOMEM; goto err; } rxl_skbuff[i] = skb; skb_reserve(skb, SKB_RESERVE_LEN); } return 0; err: return err; } static void adm5120_switch_rx_ring_free(void) { int i; if (rxl_skbuff) { for (i = 0; i < RX_RING_SIZE; i++) if (rxl_skbuff[i]) kfree_skb(rxl_skbuff[i]); kfree(rxl_skbuff); } if (rxl_descs) dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs, rxl_descs_dma); } static void adm5120_write_mac(struct net_device *dev) { struct adm5120_if_priv *priv = netdev_priv(dev); unsigned char *mac = dev->dev_addr; u32 t; t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) | (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT); sw_write_reg(SWITCH_REG_MAC_WT1, t); t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) | MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3); sw_write_reg(SWITCH_REG_MAC_WT0, t); while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD)) ; } static void adm5120_set_vlan(char *matrix) { unsigned long val; int vlan_port, port; val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24); sw_write_reg(SWITCH_REG_VLAN_G1, val); val = matrix[4] + (matrix[5]<<8); sw_write_reg(SWITCH_REG_VLAN_G2, val); /* Now set/update the port vs. device lookup table */ for (port = 0; port < SWITCH_NUM_PORTS; port++) { for (vlan_port = 0; vlan_port < SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++) ; if (vlan_port < SWITCH_NUM_PORTS) adm5120_port[port] = adm5120_devs[vlan_port]; else adm5120_port[port] = NULL; } } static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac) { u32 t; t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) | (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT); sw_write_reg(SWITCH_REG_MAC_WT1, t); t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) | MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) | (MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT); sw_write_reg(SWITCH_REG_MAC_WT0, t); do { t = sw_read_reg(SWITCH_REG_MAC_WT0); } while ((t & MAC_WT0_MWD) == 0); } static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports) { unsigned int reg; u32 t; if (vlan < 4) reg = SWITCH_REG_VLAN_G1; else { vlan -= 4; reg = SWITCH_REG_VLAN_G2; } t = sw_read_reg(reg); t &= ~(0xFF << (vlan*8)); t |= (ports << (vlan*8)); sw_write_reg(reg, t); } /* ------------------------------------------------------------------------ */ #ifdef CONFIG_ADM5120_SWITCH_NAPI static inline void adm5120_if_napi_enable(struct net_device *dev) { struct adm5120_if_priv *priv = netdev_priv(dev); napi_enable(&priv->napi); } static inline void adm5120_if_napi_disable(struct net_device *dev) { struct adm5120_if_priv *priv = netdev_priv(dev); napi_disable(&priv->napi); } #else static inline void adm5120_if_napi_enable(struct net_device *dev) {} static inline void adm5120_if_napi_disable(struct net_device *dev) {} #endif /* CONFIG_ADM5120_SWITCH_NAPI */ static int adm5120_if_open(struct net_device *dev) { u32 t; int err; int i; adm5120_if_napi_enable(dev); err = request_irq(dev->irq, adm5120_switch_irq, IRQF_SHARED, dev->name, dev); if (err) { SW_ERR("unable to get irq for %s\n", dev->name); goto err; } if (!sw_used++) /* enable interrupts on first open */ sw_int_unmask(SWITCH_INTS_USED); /* enable (additional) port */ t = sw_read_reg(SWITCH_REG_PORT_CONF0); for (i = 0; i < SWITCH_NUM_PORTS; i++) { if (dev == adm5120_devs[i]) t &= ~adm5120_eth_vlans[i]; } sw_write_reg(SWITCH_REG_PORT_CONF0, t); netif_start_queue(dev); return 0; err: adm5120_if_napi_disable(dev); return err; } static int adm5120_if_stop(struct net_device *dev) { u32 t; int i; netif_stop_queue(dev); adm5120_if_napi_disable(dev); /* disable port if not assigned to other devices */ t = sw_read_reg(SWITCH_REG_PORT_CONF0); t |= SWITCH_PORTS_NOCPU; for (i = 0; i < SWITCH_NUM_PORTS; i++) { if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i])) t &= ~adm5120_eth_vlans[i]; } sw_write_reg(SWITCH_REG_PORT_CONF0, t); if (!--sw_used) sw_int_mask(SWITCH_INTS_USED); free_irq(dev->irq, dev); return 0; } static int adm5120_if_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct dma_desc *desc; struct adm5120_if_priv *priv = netdev_priv(dev); unsigned int entry; unsigned long data; int i; /* lock switch irq */ spin_lock_irq(&tx_lock); /* calculate the next TX descriptor entry. */ entry = cur_txl % TX_RING_SIZE; desc = &txl_descs[entry]; if (desc->buf1 & DESC_OWN) { /* We want to write a packet but the TX queue is still * occupied by the DMA. We are faster than the DMA... */ SW_DBG("%s unable to transmit, packet dopped\n", dev->name); dev_kfree_skb(skb); dev->stats.tx_dropped++; return 0; } txl_skbuff[entry] = skb; data = (desc->buf1 & DESC_EOR); data |= DESC_ADDR(skb->data); desc->misc = ((skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len) << DESC_PKTLEN_SHIFT) | (0x1 << priv->vlan_no); desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len; desc->buf1 = data | DESC_OWN; sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL); cur_txl++; if (cur_txl == dirty_txl + TX_QUEUE_LEN) { for (i = 0; i < SWITCH_NUM_PORTS; i++) { if (!adm5120_devs[i]) continue; netif_stop_queue(adm5120_devs[i]); } } dev->trans_start = jiffies; spin_unlock_irq(&tx_lock); return 0; } static void adm5120_if_tx_timeout(struct net_device *dev) { SW_INFO("TX timeout on %s\n", dev->name); } static void adm5120_if_set_multicast_list(struct net_device *dev) { struct adm5120_if_priv *priv = netdev_priv(dev); u32 ports; u32 t; ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU; t = sw_read_reg(SWITCH_REG_CPUP_CONF); if (dev->flags & IFF_PROMISC) /* enable unknown packets */ t &= ~(ports << CPUP_CONF_DUNP_SHIFT); else /* disable unknown packets */ t |= (ports << CPUP_CONF_DUNP_SHIFT); if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI || dev->mc_count) /* enable multicast packets */ t &= ~(ports << CPUP_CONF_DMCP_SHIFT); else /* disable multicast packets */ t |= (ports << CPUP_CONF_DMCP_SHIFT); /* If there is any port configured to be in promiscuous mode, then the */ /* Bridge Test Mode has to be activated. This will result in */ /* transporting also packets learned in another VLAN to be forwarded */ /* to the CPU. */ /* The difficult scenario is when we want to build a bridge on the CPU.*/ /* Assume we have port0 and the CPU port in VLAN0 and port1 and the */ /* CPU port in VLAN1. Now we build a bridge on the CPU between */ /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */ /* Now assume a packet with ethernet source address 99 enters port 0 */ /* It will be forwarded to the CPU because it is unknown. Then the */ /* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */ /* When now a packet with ethernet destination address 99 comes in at */ /* port 1 in VLAN1, then the switch has learned that this address is */ /* located at port 0 in VLAN0. Therefore the switch will drop */ /* this packet. In order to avoid this and to send the packet still */ /* to the CPU, the Bridge Test Mode has to be activated. */ /* Check if there is any vlan in promisc mode. */ if (~t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT)) t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */ else t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */ sw_write_reg(SWITCH_REG_CPUP_CONF, t); } static int adm5120_if_set_mac_address(struct net_device *dev, void *p) { int ret; ret = eth_mac_addr(dev, p); if (ret) return ret; adm5120_write_mac(dev); return 0; } static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { int err; struct adm5120_sw_info info; struct adm5120_if_priv *priv = netdev_priv(dev); switch (cmd) { case SIOCGADMINFO: info.magic = 0x5120; info.ports = adm5120_nrdevs; info.vlan = priv->vlan_no; err = copy_to_user(rq->ifr_data, &info, sizeof(info)); if (err) return -EFAULT; break; case SIOCSMATRIX: if (!capable(CAP_NET_ADMIN)) return -EPERM; err = copy_from_user(adm5120_eth_vlans, rq->ifr_data, sizeof(adm5120_eth_vlans)); if (err) return -EFAULT; adm5120_set_vlan(adm5120_eth_vlans); break; case SIOCGMATRIX: err = copy_to_user(rq->ifr_data, adm5120_eth_vlans, sizeof(adm5120_eth_vlans)); if (err) return -EFAULT; break; default: return -EOPNOTSUPP; } return 0; } static const struct net_device_ops adm5120sw_netdev_ops = { .ndo_open = adm5120_if_open, .ndo_stop = adm5120_if_stop, .ndo_start_xmit = adm5120_if_hard_start_xmit, .ndo_set_multicast_list = adm5120_if_set_multicast_list, .ndo_do_ioctl = adm5120_if_do_ioctl, .ndo_tx_timeout = adm5120_if_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = adm5120_if_set_mac_address, }; static struct net_device *adm5120_if_alloc(void) { struct net_device *dev; struct adm5120_if_priv *priv; dev = alloc_etherdev(sizeof(*priv)); if (!dev) return NULL; priv = netdev_priv(dev); priv->dev = dev; dev->irq = ADM5120_IRQ_SWITCH; dev->netdev_ops = &adm5120sw_netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; #ifdef CONFIG_ADM5120_SWITCH_NAPI netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64); #endif return dev; } /* ------------------------------------------------------------------------ */ static void adm5120_switch_cleanup(void) { int i; /* disable interrupts */ sw_int_mask(SWITCH_INTS_ALL); for (i = 0; i < SWITCH_NUM_PORTS; i++) { struct net_device *dev = adm5120_devs[i]; if (dev) { unregister_netdev(dev); free_netdev(dev); } } adm5120_switch_tx_ring_free(); adm5120_switch_rx_ring_free(); } static int __init adm5120_switch_probe(struct platform_device *pdev) { u32 t; int i, err; adm5120_nrdevs = adm5120_eth_num_ports; t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP | SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT | SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ; sw_write_reg(SWITCH_REG_CPUP_CONF, t); t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) | (SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) | (SWITCH_PORTS_NOCPU); sw_write_reg(SWITCH_REG_PORT_CONF0, t); /* setup ports to Autoneg/100M/Full duplex/Auto MDIX */ t = SWITCH_PORTS_PHY | (SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) | (SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) | (SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) | (SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) | PHY_CNTL2_RMAE; sw_write_reg(SWITCH_REG_PHY_CNTL2, t); t = sw_read_reg(SWITCH_REG_PHY_CNTL3); t |= PHY_CNTL3_RNT; sw_write_reg(SWITCH_REG_PHY_CNTL3, t); /* Force all the packets from all ports are low priority */ sw_write_reg(SWITCH_REG_PRI_CNTL, 0); sw_int_mask(SWITCH_INTS_ALL); sw_int_ack(SWITCH_INTS_ALL); err = adm5120_switch_rx_ring_alloc(); if (err) goto err; err = adm5120_switch_tx_ring_alloc(); if (err) goto err; adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE); adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE); sw_write_reg(SWITCH_REG_SHDA, 0); sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs)); sw_write_reg(SWITCH_REG_RHDA, 0); sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs)); for (i = 0; i < SWITCH_NUM_PORTS; i++) { struct net_device *dev; struct adm5120_if_priv *priv; dev = adm5120_if_alloc(); if (!dev) { err = -ENOMEM; goto err; } adm5120_devs[i] = dev; priv = netdev_priv(dev); priv->vlan_no = i; priv->port_mask = adm5120_eth_vlans[i]; memcpy(dev->dev_addr, adm5120_eth_macs[i], 6); adm5120_write_mac(dev); err = register_netdev(dev); if (err) { SW_INFO("%s register failed, error=%d\n", dev->name, err); goto err; } } /* setup vlan/port mapping after devs are filled up */ adm5120_set_vlan(adm5120_eth_vlans); /* enable CPU port */ t = sw_read_reg(SWITCH_REG_CPUP_CONF); t &= ~CPUP_CONF_DCPUP; sw_write_reg(SWITCH_REG_CPUP_CONF, t); return 0; err: adm5120_switch_cleanup(); SW_ERR("init failed\n"); return err; } static int adm5120_switch_remove(struct platform_device *dev) { adm5120_switch_cleanup(); return 0; } static struct platform_driver adm5120_switch_driver = { .probe = adm5120_switch_probe, .remove = adm5120_switch_remove, .driver = { .name = DRV_NAME, }, }; /* -------------------------------------------------------------------------- */ static int __init adm5120_switch_mod_init(void) { int err; pr_info(DRV_DESC " version " DRV_VERSION "\n"); err = platform_driver_register(&adm5120_switch_driver); return err; } static void __exit adm5120_switch_mod_exit(void) { platform_driver_unregister(&adm5120_switch_driver); } module_init(adm5120_switch_mod_init); module_exit(adm5120_switch_mod_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>"); MODULE_DESCRIPTION(DRV_DESC); MODULE_VERSION(DRV_VERSION);