/* * NVRAM variable manipulation (Linux kernel half) * * Copyright 2006, Broadcom Corporation * All Rights Reserved. * * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE. * * $Id: nvram_linux.c,v 1.19 2006/04/08 07:12:42 honor Exp $ */ #include <linux/config.h> #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/bootmem.h> #include <linux/wrapper.h> #include <linux/fs.h> #include <linux/miscdevice.h> #include <linux/mtd/mtd.h> #include <asm/addrspace.h> #include <asm/io.h> #include <asm/uaccess.h> #include <typedefs.h> #include <osl.h> #include <bcmendian.h> #include <bcmnvram.h> #include <sbconfig.h> #include <sbchipc.h> #include <sbutils.h> #include <hndmips.h> #include <sflash.h> /* In BSS to minimize text size and page aligned so it can be mmap()-ed */ static char nvram_buf[NVRAM_SPACE] __attribute__((aligned(PAGE_SIZE))); #ifdef MODULE #define early_nvram_get(name) nvram_get(name) #else /* !MODULE */ /* Global SB handle */ extern void *bcm947xx_sbh; extern spinlock_t bcm947xx_sbh_lock; static int cfe_env; extern char *cfe_env_get(char *nv_buf, const char *name); /* Convenience */ #define sbh bcm947xx_sbh #define sbh_lock bcm947xx_sbh_lock #define KB * 1024 #define MB * 1024 * 1024 /* Probe for NVRAM header */ static void __init early_nvram_init(void) { struct nvram_header *header; chipcregs_t *cc; struct sflash *info = NULL; int i; uint32 base, off, lim; u32 *src, *dst; if ((cc = sb_setcore(sbh, SB_CC, 0)) != NULL) { base = KSEG1ADDR(SB_FLASH2); switch (readl(&cc->capabilities) & CC_CAP_FLASH_MASK) { case PFLASH: lim = SB_FLASH2_SZ; break; case SFLASH_ST: case SFLASH_AT: if ((info = sflash_init(sbh,cc)) == NULL) return; lim = info->size; break; case FLASH_NONE: default: return; } } else { /* extif assumed, Stop at 4 MB */ base = KSEG1ADDR(SB_FLASH1); lim = SB_FLASH1_SZ; } /* XXX: hack for supporting the CFE environment stuff on WGT634U */ src = (u32 *) KSEG1ADDR(base + 8 * 1024 * 1024 - 0x2000); dst = (u32 *) nvram_buf; if ((lim == 0x02000000) && ((*src & 0xff00ff) == 0x000001)) { printk("early_nvram_init: WGT634U NVRAM found.\n"); for (i = 0; i < 0x1ff0; i++) { if (*src == 0xFFFFFFFF) break; *dst++ = *src++; } cfe_env = 1; return; } off = FLASH_MIN; while (off <= lim) { /* Windowed flash access */ header = (struct nvram_header *) KSEG1ADDR(base + off - NVRAM_SPACE); if (header->magic == NVRAM_MAGIC) goto found; off <<= 1; } /* Try embedded NVRAM at 4 KB and 1 KB as last resorts */ header = (struct nvram_header *) KSEG1ADDR(base + 4 KB); if (header->magic == NVRAM_MAGIC) goto found; header = (struct nvram_header *) KSEG1ADDR(base + 1 KB); if (header->magic == NVRAM_MAGIC) goto found; printk("early_nvram_init: NVRAM not found\n"); return; found: src = (u32 *) header; dst = (u32 *) nvram_buf; for (i = 0; i < sizeof(struct nvram_header); i += 4) *dst++ = *src++; for (; i < header->len && i < NVRAM_SPACE; i += 4) *dst++ = ltoh32(*src++); } /* Early (before mm or mtd) read-only access to NVRAM */ static char * __init early_nvram_get(const char *name) { char *var, *value, *end, *eq; if (!name) return NULL; /* Too early? */ if (sbh == NULL) return NULL; if (!nvram_buf[0]) early_nvram_init(); if (cfe_env) return cfe_env_get(nvram_buf, name); /* Look for name=value and return value */ var = &nvram_buf[sizeof(struct nvram_header)]; end = nvram_buf + sizeof(nvram_buf) - 2; end[0] = end[1] = '\0'; for (; *var; var = value + strlen(value) + 1) { if (!(eq = strchr(var, '='))) break; value = eq + 1; if ((eq - var) == strlen(name) && strncmp(var, name, (eq - var)) == 0) return value; } return NULL; } static int __init early_nvram_getall(char *buf, int count) { char *var, *end; int len = 0; /* Too early? */ if (sbh == NULL) return -1; if (!nvram_buf[0]) early_nvram_init(); bzero(buf, count); /* Write name=value\0 ... \0\0 */ var = &nvram_buf[sizeof(struct nvram_header)]; end = nvram_buf + sizeof(nvram_buf) - 2; end[0] = end[1] = '\0'; for (; *var; var += strlen(var) + 1) { if ((count - len) <= (strlen(var) + 1)) break; len += sprintf(buf + len, "%s", var) + 1; } return 0; } #endif /* !MODULE */ extern char * _nvram_get(const char *name); extern int _nvram_set(const char *name, const char *value); extern int _nvram_unset(const char *name); extern int _nvram_getall(char *buf, int count); extern int _nvram_commit(struct nvram_header *header); extern int _nvram_init(void *sbh); extern void _nvram_exit(void); /* Globals */ static spinlock_t nvram_lock = SPIN_LOCK_UNLOCKED; static struct semaphore nvram_sem; static unsigned long nvram_offset = 0; static int nvram_major = -1; static devfs_handle_t nvram_handle = NULL; static struct mtd_info *nvram_mtd = NULL; int _nvram_read(char *buf) { struct nvram_header *header = (struct nvram_header *) buf; size_t len; if (!nvram_mtd || MTD_READ(nvram_mtd, nvram_mtd->size - NVRAM_SPACE, NVRAM_SPACE, &len, buf) || len != NVRAM_SPACE || header->magic != NVRAM_MAGIC) { /* Maybe we can recover some data from early initialization */ memcpy(buf, nvram_buf, NVRAM_SPACE); } return 0; } struct nvram_tuple * _nvram_realloc(struct nvram_tuple *t, const char *name, const char *value) { if ((nvram_offset + strlen(value) + 1) > NVRAM_SPACE) return NULL; if (!t) { if (!(t = kmalloc(sizeof(struct nvram_tuple) + strlen(name) + 1, GFP_ATOMIC))) return NULL; /* Copy name */ t->name = (char *) &t[1]; strcpy(t->name, name); t->value = NULL; } /* Copy value */ if (!t->value || strcmp(t->value, value)) { t->value = &nvram_buf[nvram_offset]; strcpy(t->value, value); nvram_offset += strlen(value) + 1; } return t; } void _nvram_free(struct nvram_tuple *t) { if (!t) nvram_offset = 0; else kfree(t); } int nvram_set(const char *name, const char *value) { unsigned long flags; int ret; struct nvram_header *header; spin_lock_irqsave(&nvram_lock, flags); if ((ret = _nvram_set(name, value))) { /* Consolidate space and try again */ if ((header = kmalloc(NVRAM_SPACE, GFP_ATOMIC))) { if (_nvram_commit(header) == 0) ret = _nvram_set(name, value); kfree(header); } } spin_unlock_irqrestore(&nvram_lock, flags); return ret; } char * real_nvram_get(const char *name) { unsigned long flags; char *value; spin_lock_irqsave(&nvram_lock, flags); value = _nvram_get(name); spin_unlock_irqrestore(&nvram_lock, flags); return value; } char * nvram_get(const char *name) { if (nvram_major >= 0) return real_nvram_get(name); else return early_nvram_get(name); } int nvram_unset(const char *name) { unsigned long flags; int ret; spin_lock_irqsave(&nvram_lock, flags); ret = _nvram_unset(name); spin_unlock_irqrestore(&nvram_lock, flags); return ret; } static void erase_callback(struct erase_info *done) { wait_queue_head_t *wait_q = (wait_queue_head_t *) done->priv; wake_up(wait_q); } int nvram_commit(void) { char *buf; size_t erasesize, len, magic_len; unsigned int i; int ret; struct nvram_header *header; unsigned long flags; u_int32_t offset; DECLARE_WAITQUEUE(wait, current); wait_queue_head_t wait_q; struct erase_info erase; u_int32_t magic_offset = 0; /* Offset for writing MAGIC # */ if (!nvram_mtd) { printk("nvram_commit: NVRAM not found\n"); return -ENODEV; } if (in_interrupt()) { printk("nvram_commit: not committing in interrupt\n"); return -EINVAL; } /* Backup sector blocks to be erased */ erasesize = ROUNDUP(NVRAM_SPACE, nvram_mtd->erasesize); if (!(buf = kmalloc(erasesize, GFP_KERNEL))) { printk("nvram_commit: out of memory\n"); return -ENOMEM; } down(&nvram_sem); if ((i = erasesize - NVRAM_SPACE) > 0) { offset = nvram_mtd->size - erasesize; len = 0; ret = MTD_READ(nvram_mtd, offset, i, &len, buf); if (ret || len != i) { printk("nvram_commit: read error ret = %d, len = %d/%d\n", ret, len, i); ret = -EIO; goto done; } header = (struct nvram_header *)(buf + i); magic_offset = i + ((void *)&header->magic - (void *)header); } else { offset = nvram_mtd->size - NVRAM_SPACE; magic_offset = ((void *)&header->magic - (void *)header); header = (struct nvram_header *)buf; } /* clear the existing magic # to mark the NVRAM as unusable we can pull MAGIC bits low without erase */ header->magic = NVRAM_CLEAR_MAGIC; /* All zeros magic */ /* Unlock sector blocks (for Intel 28F320C3B flash) , 20060309 */ if(nvram_mtd->unlock) nvram_mtd->unlock(nvram_mtd, offset, nvram_mtd->erasesize); ret = MTD_WRITE(nvram_mtd, offset + magic_offset, sizeof(header->magic), &magic_len, (char *)&header->magic); if (ret || magic_len != sizeof(header->magic)) { printk("nvram_commit: clear MAGIC error\n"); ret = -EIO; goto done; } header->magic = NVRAM_MAGIC; /* reset MAGIC before we regenerate the NVRAM, otherwise we'll have an incorrect CRC */ /* Regenerate NVRAM */ spin_lock_irqsave(&nvram_lock, flags); ret = _nvram_commit(header); spin_unlock_irqrestore(&nvram_lock, flags); if (ret) goto done; /* Erase sector blocks */ init_waitqueue_head(&wait_q); for (; offset < nvram_mtd->size - NVRAM_SPACE + header->len; offset += nvram_mtd->erasesize) { erase.mtd = nvram_mtd; erase.addr = offset; erase.len = nvram_mtd->erasesize; erase.callback = erase_callback; erase.priv = (u_long) &wait_q; set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&wait_q, &wait); /* Unlock sector blocks */ if (nvram_mtd->unlock) nvram_mtd->unlock(nvram_mtd, offset, nvram_mtd->erasesize); if ((ret = MTD_ERASE(nvram_mtd, &erase))) { set_current_state(TASK_RUNNING); remove_wait_queue(&wait_q, &wait); printk("nvram_commit: erase error\n"); goto done; } /* Wait for erase to finish */ schedule(); remove_wait_queue(&wait_q, &wait); } /* Write partition up to end of data area */ header->magic = NVRAM_INVALID_MAGIC; /* All ones magic */ offset = nvram_mtd->size - erasesize; i = erasesize - NVRAM_SPACE + header->len; ret = MTD_WRITE(nvram_mtd, offset, i, &len, buf); if (ret || len != i) { printk("nvram_commit: write error\n"); ret = -EIO; goto done; } /* Now mark the NVRAM in flash as "valid" by setting the correct MAGIC # */ header->magic = NVRAM_MAGIC; ret = MTD_WRITE(nvram_mtd, offset + magic_offset, sizeof(header->magic), &magic_len, (char *)&header->magic); if (ret || magic_len != sizeof(header->magic)) { printk("nvram_commit: write MAGIC error\n"); ret = -EIO; goto done; } /* * Reading a few bytes back here will put the device * back to the correct mode on certain flashes */ offset = nvram_mtd->size - erasesize; ret = MTD_READ(nvram_mtd, offset, 4, &len, buf); done: up(&nvram_sem); kfree(buf); return ret; } int nvram_getall(char *buf, int count) { unsigned long flags; int ret; spin_lock_irqsave(&nvram_lock, flags); if (nvram_major >= 0) ret = _nvram_getall(buf, count); else ret = early_nvram_getall(buf, count); spin_unlock_irqrestore(&nvram_lock, flags); return ret; } /* User mode interface below */ static ssize_t dev_nvram_read(struct file *file, char *buf, size_t count, loff_t *ppos) { char tmp[100], *name = tmp, *value; ssize_t ret; unsigned long off; if (count > sizeof(tmp)) { if (!(name = kmalloc(count, GFP_KERNEL))) return -ENOMEM; } if (copy_from_user(name, buf, count)) { ret = -EFAULT; goto done; } if (*name == '\0') { /* Get all variables */ ret = nvram_getall(name, count); if (ret == 0) { if (copy_to_user(buf, name, count)) { ret = -EFAULT; goto done; } ret = count; } } else { if (!(value = nvram_get(name))) { ret = 0; goto done; } /* Provide the offset into mmap() space */ off = (unsigned long) value - (unsigned long) nvram_buf; if (put_user(off, (unsigned long *) buf)) { ret = -EFAULT; goto done; } ret = sizeof(unsigned long); } flush_cache_all(); done: if (name != tmp) kfree(name); return ret; } static ssize_t dev_nvram_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { char tmp[100], *name = tmp, *value; ssize_t ret; if (count > sizeof(tmp)) { if (!(name = kmalloc(count, GFP_KERNEL))) return -ENOMEM; } if (copy_from_user(name, buf, count)) { ret = -EFAULT; goto done; } value = name; name = strsep(&value, "="); if (value) ret = nvram_set(name, value) ? : count; else ret = nvram_unset(name) ? : count; done: if (name != tmp) kfree(name); return ret; } static int dev_nvram_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { if (cmd != NVRAM_MAGIC) return -EINVAL; return nvram_commit(); } static int dev_nvram_mmap(struct file *file, struct vm_area_struct *vma) { unsigned long offset = virt_to_phys(nvram_buf); if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } static int dev_nvram_open(struct inode *inode, struct file * file) { MOD_INC_USE_COUNT; return 0; } static int dev_nvram_release(struct inode *inode, struct file * file) { MOD_DEC_USE_COUNT; return 0; } static struct file_operations dev_nvram_fops = { owner: THIS_MODULE, open: dev_nvram_open, release: dev_nvram_release, read: dev_nvram_read, write: dev_nvram_write, ioctl: dev_nvram_ioctl, mmap: dev_nvram_mmap, }; static void dev_nvram_exit(void) { int order = 0; struct page *page, *end; if (nvram_handle) devfs_unregister(nvram_handle); if (nvram_major >= 0) devfs_unregister_chrdev(nvram_major, "nvram"); if (nvram_mtd) put_mtd_device(nvram_mtd); while ((PAGE_SIZE << order) < NVRAM_SPACE) order++; end = virt_to_page(nvram_buf + (PAGE_SIZE << order) - 1); for (page = virt_to_page(nvram_buf); page <= end; page++) mem_map_unreserve(page); _nvram_exit(); } static int __init dev_nvram_init(void) { int order = 0, ret = 0; struct page *page, *end; unsigned int i; /* Allocate and reserve memory to mmap() */ while ((PAGE_SIZE << order) < NVRAM_SPACE) order++; end = virt_to_page(nvram_buf + (PAGE_SIZE << order) - 1); for (page = virt_to_page(nvram_buf); page <= end; page++) mem_map_reserve(page); #ifdef CONFIG_MTD /* Find associated MTD device */ for (i = 0; i < MAX_MTD_DEVICES; i++) { nvram_mtd = get_mtd_device(NULL, i); if (nvram_mtd) { if (!strcmp(nvram_mtd->name, "nvram") && nvram_mtd->size >= NVRAM_SPACE) break; put_mtd_device(nvram_mtd); } } if (i >= MAX_MTD_DEVICES) nvram_mtd = NULL; #endif /* Initialize hash table lock */ spin_lock_init(&nvram_lock); /* Initialize commit semaphore */ init_MUTEX(&nvram_sem); /* Register char device */ if ((nvram_major = devfs_register_chrdev(0, "nvram", &dev_nvram_fops)) < 0) { ret = nvram_major; goto err; } /* Initialize hash table */ _nvram_init(sbh); /* Create /dev/nvram handle */ nvram_handle = devfs_register(NULL, "nvram", DEVFS_FL_NONE, nvram_major, 0, S_IFCHR | S_IRUSR | S_IWUSR | S_IRGRP, &dev_nvram_fops, NULL); /* Set the SDRAM NCDL value into NVRAM if not already done */ if (getintvar(NULL, "sdram_ncdl") == 0) { unsigned int ncdl; char buf[] = "0x00000000"; if ((ncdl = sb_memc_get_ncdl(sbh))) { sprintf(buf, "0x%08x", ncdl); nvram_set("sdram_ncdl", buf); nvram_commit(); } } return 0; err: dev_nvram_exit(); return ret; } module_init(dev_nvram_init); module_exit(dev_nvram_exit);