/* * drivers/mtd/devices/ubi32-m25p80.c * NOR flash driver, Ubicom processor internal SPI flash interface. * * This code instantiates the serial flash that contains the * original bootcode. The serial flash start at address 0x60000000 * in both Ubicom32V3 and Ubicom32V4 ISAs. * * This piece of flash is made to appear as a Memory Technology * Device (MTD) with this driver to allow Read/Write/Erase operations. * * (C) Copyright 2009, Ubicom, Inc. * * This file is part of the Ubicom32 Linux Kernel Port. * * The Ubicom32 Linux Kernel Port is free software: you can redistribute * it and/or modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, either version 2 of the * License, or (at your option) any later version. * * The Ubicom32 Linux Kernel Port is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Ubicom32 Linux Kernel Port. If not, * see <http://www.gnu.org/licenses/>. * * Ubicom32 implementation derived from (with many thanks): * arch/m68knommu * arch/blackfin * arch/parisc */ #include <linux/types.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/physmap.h> #include <linux/spi/spi.h> #include <linux/spi/flash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <asm/ip5000.h> #include <asm/devtree.h> #define UBICOM32_FLASH_BASE 0x60000000 #define UBICOM32_FLASH_MAX_SIZE 0x01000000 #define UBICOM32_FLASH_START 0x00000000 #define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom * .protect section. */ static struct mtd_partition ubicom32_flash_partitions[] = { { .name = "Bootloader", /* Protected Section * Partition */ .size = 0x10000, .offset = UBICOM32_FLASH_START, // .mask_flags = MTD_WRITEABLE /* Mark Read-only */ }, { .name = "Kernel", /* Kernel Partition. */ .size = 0, /* this will be set up during * probe stage. At that time we * will know end of linux image * in flash. */ .offset = MTDPART_OFS_APPEND, /* Starts right after Protected * section. */ // .mask_flags = MTD_WRITEABLE /* Mark Read-only */ }, { .name = "Rest", /* Rest of the flash. */ .size = 0x200000, /* Use up what remains in the * flash. */ .offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected * section. */ } }; static struct flash_platform_data ubicom32_flash_data = { .name = "ubicom32_boot_flash", .parts = ubicom32_flash_partitions, .nr_parts = ARRAY_SIZE(ubicom32_flash_partitions), }; static struct resource ubicom32_flash_resource[] = { { .start = UBICOM32_FLASH_BASE, .end = UBICOM32_FLASH_BASE + UBICOM32_FLASH_MAX_SIZE - 1, .flags = IORESOURCE_MEM, }, }; static struct platform_device ubicom32_flash_device = { .name = "ubicom32flashdriver", .id = 0, /* Bus number */ .num_resources = ARRAY_SIZE(ubicom32_flash_resource), .resource = ubicom32_flash_resource, .dev = { .platform_data = &ubicom32_flash_data, }, }; static struct platform_device *ubicom32_flash_devices[] = { &ubicom32_flash_device, }; static int __init ubicom32_flash_init(void) { printk(KERN_INFO "%s(): registering device resources\n", __FUNCTION__); platform_add_devices(ubicom32_flash_devices, ARRAY_SIZE(ubicom32_flash_devices)); return 0; } arch_initcall(ubicom32_flash_init); /* * MTD SPI driver for ST M25Pxx (and similar) serial flash chips through * Ubicom32 SPI controller. * * Author: Mike Lavender, mike@steroidmicros.com * * Copyright (c) 2005, Intec Automation Inc. * * Some parts are based on lart.c by Abraham Van Der Merwe * * Cleaned up and generalized based on mtd_dataflash.c * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #define FLASH_PAGESIZE 256 /* Flash opcodes. */ #define OPCODE_WREN 0x06 /* Write enable */ #define OPCODE_RDSR 0x05 /* Read status register */ #define OPCODE_READ 0x03 /* Read data bytes (low frequency) */ #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ #define OPCODE_RDID 0x9f /* Read JEDEC ID */ /* Status Register bits. */ #define SR_WIP 1 /* Write in progress */ #define SR_WEL 2 /* Write enable latch */ /* meaning of other SR_* bits may differ between vendors */ #define SR_BP0 4 /* Block protect 0 */ #define SR_BP1 8 /* Block protect 1 */ #define SR_BP2 0x10 /* Block protect 2 */ #define SR_SRWD 0x80 /* SR write protect */ /* Define max times to check status register before we give up. */ #define MAX_READY_WAIT_COUNT 100000 #ifdef CONFIG_MTD_PARTITIONS #define mtd_has_partitions() (1) #else #define mtd_has_partitions() (0) #endif /* * Ubicom32 FLASH Command Set */ #define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */ #define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */ #define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */ #define ALIGN_DOWN(v, a) ((v) & ~((a) - 1)) #define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1)) #define FLASH_COMMAND_KICK_OFF(io) \ asm volatile( \ " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ " jmpt.t .+4 \n\t" \ " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \ : \ : "a" (io) \ : "memory", "cc" \ ); #define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \ asm volatile( \ " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \ " jmpeq.f .-4 \n\t" \ : \ : "a" (io) \ : "memory", "cc" \ ); #define FLASH_COMMAND_EXEC(io) \ FLASH_COMMAND_KICK_OFF(io) \ FLASH_COMMAND_WAIT_FOR_COMPLETION(io) #define OSC1_FREQ 12000000 #define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000) /* * We will have to eventually replace this null definition with the real thing. */ #define WATCHDOG_RESET() #define EXTFLASH_WRITE_FIFO_SIZE 32 #define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to * FIFO capacity, so * the thread can be * suspended. */ #define JFFS2_FILESYSTEM_SIZE 0x100000 /****************************************************************************/ struct m25p { struct platform_device *plt_dev; struct mutex lock; struct mtd_info mtd; unsigned partitioned:1; u8 erase_opcode; u8 command[4]; }; static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) { return container_of(mtd, struct m25p, mtd); } /****************************************************************************/ /* * Internal helper functions */ /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct m25p *flash) { struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1); io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); FLASH_COMMAND_EXEC(io); return io->status1 & 0xff; } /* * mem_flash_io_read_u32() */ static u32 mem_flash_io_read_u32(u32 addr) { struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) | IO_XFL_CTL1_FC_ADDR; io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) | IO_XFL_CTL2_FC_ADDR(addr); FLASH_COMMAND_EXEC(io); return io->status1; } /* * mem_flash_read_u8() */ static u8 mem_flash_read_u8(u32 addr) { u32 tmp_addr = ALIGN_DOWN(addr, 4); u32 tmp_data = mem_flash_io_read_u32(tmp_addr); u8 *ptr = (u8 *)&tmp_data; return ptr[addr & 0x3]; } /* * mem_flash_read() * No need to lock as read is implemented with ireads (same as normal flash * execution). */ static void mem_flash_read(u32 addr, void *dst, size_t length) { /* * Range check */ /* * Fix source alignment. */ while (addr & 0x03) { if (length == 0) { return; } *((u8 *)dst) = mem_flash_read_u8(addr++); dst++; length--; } while (length >= 4) { u32 tmp_data = mem_flash_io_read_u32(addr); addr += 4; length -= 4; /* * Send the data to the destination. */ memcpy((void *)dst, (void *)&tmp_data, 4); dst += 4; } while (length--) { *((u8 *)dst) = mem_flash_read_u8(addr++); dst++; } } /* * mem_flash_wait_until_complete() */ static void mem_flash_wait_until_complete(void) { struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; do { /* * Put a delay here to deal with flash programming problem. */ u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; while (UBICOM32_IO_TIMER->mptval < mptval) ; io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1); io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR); FLASH_COMMAND_EXEC(io); } while (io->status1 & SR_WIP); } /* * mem_flash_write_next() */ static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length) { struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; u32 data_start = addr; u32 data_end = addr + length; size_t count; u32 i, j; /* * Top limit address. */ u32 block_start = ALIGN_DOWN(data_start, 4); u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE; union { u8 byte[EXTFLASH_WRITE_BLOCK_SIZE]; u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4]; } write_buf; u32 *flash_addr = (u32 *)block_start; /* * The write block must be limited by FLASH internal buffer. */ u32 block_end_align = ALIGN_DOWN(block_end, 256); bool write_needed; block_end = (block_end_align > block_start) ? block_end_align : block_end; data_end = (data_end <= block_end) ? data_end : block_end; block_end = ALIGN_UP(data_end, 4); count = data_end - data_start; /* * Transfer data to a buffer. */ for (i = 0; i < (block_end - block_start) / 4; i++) { /* * The FLASH read can hold D-cache for a long time. * Use I/O operation to read FLASH to avoid starving other * threads, especially HRT. (Do this for application only) */ write_buf.word[i] = mem_flash_io_read_u32( (u32)(&flash_addr[i])); } write_needed = false; for (i = 0, j = (data_start - block_start); i < (data_end - data_start); i++, j++) { write_needed = write_needed || (write_buf.byte[j] != buf[i]); write_buf.byte[j] &= buf[i]; } /* * If the data in FLASH is identical to what to be written. Then skip * it. */ if (write_needed) { /* * Write to flash. */ void *tmp __attribute__((unused)); s32 extra_words; asm volatile( " move.4 %0, %2 \n\t" " bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t" " pipe_flush 0 \n\t" " .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t" " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" " .endr \n\t" : "=&a" (tmp) : "a" (io), "r" (&write_buf.word[0]) : "memory", "cc" ); /* Lock FLASH for write access. */ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; /* Command: WREN */ io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); FLASH_COMMAND_EXEC(io); /* Command: BYTE PROGRAM */ io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(block_end - block_start) | IO_XFL_CTL1_FC_ADDR; io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) | IO_XFL_CTL2_FC_ADDR(block_start); FLASH_COMMAND_KICK_OFF(io); extra_words = (s32)(block_end - block_start - EXTFLASH_WRITE_FIFO_SIZE) / 4; if (extra_words > 0) { asm volatile( " move.4 %0, %3 \n\t" "1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t" " jmpgt.s.t 1b \n\t" " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t" " add.4 %2, #-1, %2 \n\t" " jmpgt.t 1b \n\t" : "=&a" (tmp) : "a" (io), "d" (extra_words), "r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4]) : "memory", "cc" ); } FLASH_COMMAND_WAIT_FOR_COMPLETION(io); mem_flash_wait_until_complete(); /* Unlock FLASH for cache access. */ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; } /* * Complete. */ return count; } /* * mem_flash_write() */ static void mem_flash_write(u32 addr, const void *src, size_t length) { /* * Write data */ u8_t *ptr = (u8_t *)src; while (length) { size_t count = mem_flash_write_next(addr, ptr, length); addr += count; ptr += count; length -= count; } } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int wait_till_ready(struct m25p *flash) { int count; int sr; /* one chip guarantees max 5 msec wait here after page writes, * but potentially three seconds (!) after page erase. */ for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { u32 mptval; sr = read_sr(flash); if (sr < 0) break; else if (!(sr & SR_WIP)) return 0; /* * Put a 10us delay here to deal with flash programming problem. */ mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS; while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) { WATCHDOG_RESET(); } /* REVISIT sometimes sleeping would be best */ } return 1; } /* * mem_flash_erase_page() */ static void mem_flash_erase_page(u32 addr) { struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; /* Lock FLASH for write access. */ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK; /* Command: WREN */ io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD); io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN); FLASH_COMMAND_EXEC(io); /* Command: ERASE */ io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | IO_XFL_CTL1_FC_ADDR; io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) | IO_XFL_CTL2_FC_ADDR(addr); FLASH_COMMAND_EXEC(io); mem_flash_wait_until_complete(); /* Unlock FLASH for cache access. */ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK; } /* * mem_flash_erase() */ static u32 mem_flash_erase(u32 addr, u32 length) { /* * Calculate the endaddress to be the first address of the page * just beyond this erase section of pages. */ u32 endaddr = addr + length; /* * Erase. */ while (addr < endaddr) { u32 test_addr = addr; mem_flash_erase_page(addr); /* * Test how much was erased as actual flash page at this address * may be smaller than the expected page size. */ while (test_addr < endaddr) { /* * The FLASH read can hold D-cache for a long time. Use * I/O operation to read FLASH to avoid starving other * threads, especially HRT. (Do this for application * only) */ if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) { break; } test_addr += 4; } if (test_addr == addr) { printk("erase failed at address 0x%x, skipping", test_addr); test_addr += 4; return 1; } addr = test_addr; } return 0; } /****************************************************************************/ /* * MTD implementation */ /* * Erase an address range on the flash chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static int ubicom32_flash_driver_erase(struct mtd_info *mtd, struct erase_info *instr) { struct m25p *flash = mtd_to_m25p(mtd); u32 addr, len; DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n", dev_name(&flash->plt_dev->dev), __FUNCTION__, "at", (u32)instr->addr, instr->len); /* sanity checks */ if (instr->addr + instr->len > flash->mtd.size) return -EINVAL; if ((instr->addr % mtd->erasesize) != 0 || (instr->len % mtd->erasesize) != 0) { return -EINVAL; } addr = instr->addr + UBICOM32_FLASH_BASE; len = instr->len; mutex_lock(&flash->lock); /* REVISIT in some cases we could speed up erasing large regions * by using OPCODE_SE instead of OPCODE_BE_4K */ /* now erase those sectors */ if (mem_flash_erase(addr, len)) { instr->state = MTD_ERASE_FAILED; mutex_unlock(&flash->lock); return -EIO; } mutex_unlock(&flash->lock); instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; } /* * Read an address range from the flash chip. The address range * may be any size provided it is within the physical boundaries. */ static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct m25p *flash = mtd_to_m25p(mtd); u32 base_addr = UBICOM32_FLASH_BASE + from; DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", dev_name(&flash->plt_dev->dev), __FUNCTION__, "from", (u32)from, len); /* sanity checks */ if (!len) return 0; if (from + len > flash->mtd.size) return -EINVAL; /* Byte count starts at zero. */ if (retlen) *retlen = 0; mutex_lock(&flash->lock); /* Wait till previous write/erase is done. */ if (wait_till_ready(flash)) { /* REVISIT status return?? */ mutex_unlock(&flash->lock); return 1; } mem_flash_read(base_addr, (void *)buf, len); if (retlen) *retlen = len; mutex_unlock(&flash->lock); return 0; } /* * Write an address range to the flash chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct m25p *flash = mtd_to_m25p(mtd); u32 base_addr = UBICOM32_FLASH_BASE + to; DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", dev_name(&flash->plt_dev->dev), __FUNCTION__, "to", (u32)to, len); if (retlen) *retlen = 0; /* sanity checks */ if (!len) return 0; if (to + len > flash->mtd.size) return -EINVAL; mutex_lock(&flash->lock); mem_flash_write(base_addr, (void *) buf, len); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) { mutex_unlock(&flash->lock); return 1; } if (retlen) *retlen = len; mutex_unlock(&flash->lock); return 0; } /****************************************************************************/ /* * SPI device driver setup and teardown */ struct flash_info { char *name; /* JEDEC id zero means "no ID" (most older chips); otherwise it has * a high byte of zero plus three data bytes: the manufacturer id, * then a two byte device id. */ u32 jedec_id; /* The size listed here is what works with OPCODE_SE, which isn't * necessarily called a "sector" by the vendor. */ unsigned sector_size; u16 n_sectors; u16 flags; #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ }; /* NOTE: double check command sets and memory organization when you add * more flash chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. */ static struct flash_info __devinitdata m25p_data[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, }, { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, }, { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, }, { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl004a", 0x010212, 64 * 1024, 8, }, { "s25sl008a", 0x010213, 64 * 1024, 16, }, { "s25sl016a", 0x010214, 64 * 1024, 32, }, { "s25sl032a", 0x010215, 64 * 1024, 64, }, { "s25sl064a", 0x010216, 64 * 1024, 128, }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, /* ST Microelectronics -- newer production may have feature updates */ { "m25p05", 0x202010, 32 * 1024, 2, }, { "m25p10", 0x202011, 32 * 1024, 4, }, { "m25p20", 0x202012, 64 * 1024, 4, }, { "m25p40", 0x202013, 64 * 1024, 8, }, { "m25p80", 0, 64 * 1024, 16, }, { "m25p16", 0x202015, 64 * 1024, 32, }, { "m25p32", 0x202016, 64 * 1024, 64, }, { "m25p64", 0x202017, 64 * 1024, 128, }, { "m25p128", 0x202018, 256 * 1024, 64, }, { "m45pe80", 0x204014, 64 * 1024, 16, }, { "m45pe16", 0x204015, 64 * 1024, 32, }, { "m25pe80", 0x208014, 64 * 1024, 16, }, { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, /* Macronix -- mx25lxxx */ { "mx25l32", 0xc22016, 64 * 1024, 64, }, { "mx25l64", 0xc22017, 64 * 1024, 128, }, { "mx25l128", 0xc22018, 64 * 1024, 256, }, }; struct flash_info *__devinit jedec_probe(struct platform_device *spi) { int tmp; u32 jedec; struct flash_info *info; struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA; /* * Setup and run RDID command on the flash. */ io->ctl1 &= ~IO_XFL_CTL1_MASK; io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(3); io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID); FLASH_COMMAND_EXEC(io); jedec = io->status1 & 0x00ffffff; for (tmp = 0, info = m25p_data; tmp < ARRAY_SIZE(m25p_data); tmp++, info++) { if (info->jedec_id == jedec) return info; } dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); return NULL; } /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ static int __devinit ubicom32_flash_probe(struct platform_device *spi) { struct flash_platform_data *data; struct m25p *flash; struct flash_info *info; unsigned i; /* Platform data helps sort out which chip type we have, as * well as how this board partitions it. If we don't have * a chip ID, try the JEDEC id commands; they'll work for most * newer chips, even if we don't recognize the particular chip. */ data = spi->dev.platform_data; if (data && data->type) { for (i = 0, info = m25p_data; i < ARRAY_SIZE(m25p_data); i++, info++) { if (strcmp(data->type, info->name) == 0) break; } /* unrecognized chip? */ if (i == ARRAY_SIZE(m25p_data)) { DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n", dev_name(&spi->dev), data->type); info = NULL; /* recognized; is that chip really what's there? */ } else if (info->jedec_id) { struct flash_info *chip = jedec_probe(spi); if (!chip || chip != info) { dev_warn(&spi->dev, "found %s, expected %s\n", chip ? chip->name : "UNKNOWN", info->name); info = NULL; } } } else info = jedec_probe(spi); if (!info) return -ENODEV; flash = kzalloc(sizeof *flash, GFP_KERNEL); if (!flash) return -ENOMEM; flash->plt_dev = spi; mutex_init(&flash->lock); dev_set_drvdata(&spi->dev, flash); if (data && data->name) flash->mtd.name = data->name; else flash->mtd.name = dev_name(&spi->dev); flash->mtd.type = MTD_NORFLASH; flash->mtd.writesize = 1; flash->mtd.flags = MTD_CAP_NORFLASH; flash->mtd.size = info->sector_size * info->n_sectors; flash->mtd.erase = ubicom32_flash_driver_erase; flash->mtd.read = ubicom32_flash_driver_read; flash->mtd.write = ubicom32_flash_driver_write; /* prefer "small sector" erase if possible */ /* * The Ubicom erase code does not use the opcode for smaller sectors, * so disable that functionality and keep erasesize == sector_size * so that the test in ubicom32_flash_driver_erase works properly. * * This was: `if (info->flags & SECT_4K) {' instead of `if (0) {' */ if (0) { flash->erase_opcode = OPCODE_BE_4K; flash->mtd.erasesize = 4096; } else { flash->erase_opcode = OPCODE_SE; flash->mtd.erasesize = info->sector_size; } dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name, flash->mtd.size / 1024); DEBUG(MTD_DEBUG_LEVEL2, "mtd .name = %s, .size = 0x%.8llx (%lluMiB) " ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", flash->mtd.name, flash->mtd.size, flash->mtd.size / (1024*1024), flash->mtd.erasesize, flash->mtd.erasesize / 1024, flash->mtd.numeraseregions); if (flash->mtd.numeraseregions) for (i = 0; i < flash->mtd.numeraseregions; i++) DEBUG(MTD_DEBUG_LEVEL2, "mtd.eraseregions[%d] = { .offset = 0x%.8llx, " ".erasesize = 0x%.8x (%uKiB), " ".numblocks = %d }\n", i, flash->mtd.eraseregions[i].offset, flash->mtd.eraseregions[i].erasesize, flash->mtd.eraseregions[i].erasesize / 1024, flash->mtd.eraseregions[i].numblocks); /* partitions should match sector boundaries; and it may be good to * use readonly partitions for writeprotected sectors (BP2..BP0). */ if (mtd_has_partitions()) { struct mtd_partition *parts = NULL; int nr_parts = 0; #ifdef CONFIG_MTD_CMDLINE_PARTS static const char *part_probes[] = { "cmdlinepart", NULL, }; nr_parts = parse_mtd_partitions(&flash->mtd, part_probes, &parts, 0); #endif if (nr_parts <= 0 && data && data->parts) { parts = data->parts; nr_parts = data->nr_parts; if (nr_parts >= 2) { /* * Set last partition size to be 1M. */ parts[1].size = flash->mtd.size - parts[0].size - JFFS2_FILESYSTEM_SIZE; parts[2].size = JFFS2_FILESYSTEM_SIZE; } } if (nr_parts > 0) { for (i = 0; i < nr_parts; i++) { DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " "{.name = %s, .offset = 0x%.8llx, " ".size = 0x%.8llx (%lluKiB) }\n", i, parts[i].name, parts[i].offset, parts[i].size, parts[i].size / 1024); } flash->partitioned = 1; return add_mtd_partitions(&flash->mtd, parts, nr_parts); } } else if (data->nr_parts) dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", data->nr_parts, data->name); return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; } static int __devexit ubicom32_flash_remove(struct spi_device *spi) { struct m25p *flash = dev_get_drvdata(&spi->dev); int status; /* Clean up MTD stuff. */ if (mtd_has_partitions() && flash->partitioned) status = del_mtd_partitions(&flash->mtd); else status = del_mtd_device(&flash->mtd); if (status == 0) kfree(flash); return 0; } static struct platform_driver ubicom32_flash_driver = { .driver = { .name = "ubicom32flashdriver", .bus = &platform_bus_type, .owner = THIS_MODULE, }, .probe = ubicom32_flash_probe, .remove = NULL, }; static int ubicom32_flash_driver_init(void) { return platform_driver_register(&ubicom32_flash_driver); } static void ubicom32_flash_driver_exit(void) { platform_driver_unregister(&ubicom32_flash_driver); } module_init(ubicom32_flash_driver_init); module_exit(ubicom32_flash_driver_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips");