/*- * Linux port done by David McCullough <david_mccullough@mcafee.com> * Copyright (C) 2004-2010 David McCullough * The license and original author are listed below. * * Copyright (c) 2003 Sam Leffler, Errno Consulting * Copyright (c) 2003 Global Technology Associates, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * __FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $"); */ #include <linux/version.h> #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,33)) #include <generated/autoconf.h> #else #include <linux/autoconf.h> #endif #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/random.h> #include <linux/version.h> #include <linux/skbuff.h> #include <asm/io.h> /* * SafeNet SafeXcel-1141 hardware crypto accelerator */ #include <cryptodev.h> #include <uio.h> #include <safe/safereg.h> #include <safe/safevar.h> #if 1 #define DPRINTF(a) do { \ if (debug) { \ printk("%s: ", sc ? \ device_get_nameunit(sc->sc_dev) : "safe"); \ printk a; \ } \ } while (0) #else #define DPRINTF(a) #endif /* * until we find a cleaner way, include the BSD md5/sha1 code * here */ #define HMAC_HACK 1 #ifdef HMAC_HACK #define LITTLE_ENDIAN 1234 #define BIG_ENDIAN 4321 #ifdef __LITTLE_ENDIAN #define BYTE_ORDER LITTLE_ENDIAN #endif #ifdef __BIG_ENDIAN #define BYTE_ORDER BIG_ENDIAN #endif #include <safe/md5.h> #include <safe/md5.c> #include <safe/sha1.h> #include <safe/sha1.c> u_int8_t hmac_ipad_buffer[64] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; u_int8_t hmac_opad_buffer[64] = { 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C }; #endif /* HMAC_HACK */ /* add proc entry for this */ struct safe_stats safestats; #define debug safe_debug int safe_debug = 0; module_param(safe_debug, int, 0644); MODULE_PARM_DESC(safe_debug, "Enable debug"); static void safe_callback(struct safe_softc *, struct safe_ringentry *); static void safe_feed(struct safe_softc *, struct safe_ringentry *); #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) static void safe_rng_init(struct safe_softc *); int safe_rngbufsize = 8; /* 32 bytes each read */ module_param(safe_rngbufsize, int, 0644); MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)"); int safe_rngmaxalarm = 8; /* max alarms before reset */ module_param(safe_rngmaxalarm, int, 0644); MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset"); #endif /* SAFE_NO_RNG */ static void safe_totalreset(struct safe_softc *sc); static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op); static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op); static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re); static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint); static int safe_kstart(struct safe_softc *sc); static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr); static void safe_kfeed(struct safe_softc *sc); static void safe_kpoll(unsigned long arg); static void safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len, struct crparam *n); static int safe_newsession(device_t, u_int32_t *, struct cryptoini *); static int safe_freesession(device_t, u_int64_t); static int safe_process(device_t, struct cryptop *, int); static device_method_t safe_methods = { /* crypto device methods */ DEVMETHOD(cryptodev_newsession, safe_newsession), DEVMETHOD(cryptodev_freesession,safe_freesession), DEVMETHOD(cryptodev_process, safe_process), DEVMETHOD(cryptodev_kprocess, safe_kprocess), }; #define READ_REG(sc,r) readl((sc)->sc_base_addr + (r)) #define WRITE_REG(sc,r,val) writel((val), (sc)->sc_base_addr + (r)) #define SAFE_MAX_CHIPS 8 static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS]; /* * split our buffers up into safe DMAable byte fragments to avoid lockup * bug in 1141 HW on rev 1.0. */ static int pci_map_linear( struct safe_softc *sc, struct safe_operand *buf, void *addr, int len) { dma_addr_t tmp; int chunk, tlen = len; tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL); buf->mapsize += len; while (len > 0) { chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len; buf->segs[buf->nsegs].ds_addr = tmp; buf->segs[buf->nsegs].ds_len = chunk; buf->segs[buf->nsegs].ds_tlen = tlen; buf->nsegs++; tmp += chunk; len -= chunk; tlen = 0; } return 0; } /* * map in a given uio buffer (great on some arches :-) */ static int pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio) { struct iovec *iov = uio->uio_iov; int n; DPRINTF(("%s()\n", __FUNCTION__)); buf->mapsize = 0; buf->nsegs = 0; for (n = 0; n < uio->uio_iovcnt; n++) { pci_map_linear(sc, buf, iov->iov_base, iov->iov_len); iov++; } /* identify this buffer by the first segment */ buf->map = (void *) buf->segs[0].ds_addr; return(0); } /* * map in a given sk_buff */ static int pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb) { int i; DPRINTF(("%s()\n", __FUNCTION__)); buf->mapsize = 0; buf->nsegs = 0; pci_map_linear(sc, buf, skb->data, skb_headlen(skb)); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { pci_map_linear(sc, buf, page_address(skb_shinfo(skb)->frags[i].page) + skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size); } /* identify this buffer by the first segment */ buf->map = (void *) buf->segs[0].ds_addr; return(0); } #if 0 /* not needed at this time */ static void pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf) { int i; DPRINTF(("%s()\n", __FUNCTION__)); for (i = 0; i < buf->nsegs; i++) pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr, buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL); } #endif static void pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf) { int i; DPRINTF(("%s()\n", __FUNCTION__)); for (i = 0; i < buf->nsegs; i++) { if (buf->segs[i].ds_tlen) { DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen)); pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr, buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL); DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen)); } buf->segs[i].ds_addr = 0; buf->segs[i].ds_len = 0; buf->segs[i].ds_tlen = 0; } buf->nsegs = 0; buf->mapsize = 0; buf->map = 0; } /* * SafeXcel Interrupt routine */ static irqreturn_t #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19) safe_intr(int irq, void *arg) #else safe_intr(int irq, void *arg, struct pt_regs *regs) #endif { struct safe_softc *sc = arg; int stat; unsigned long flags; stat = READ_REG(sc, SAFE_HM_STAT); DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat)); if (stat == 0) /* shared irq, not for us */ return IRQ_NONE; WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */ if ((stat & SAFE_INT_PE_DDONE)) { /* * Descriptor(s) done; scan the ring and * process completed operations. */ spin_lock_irqsave(&sc->sc_ringmtx, flags); while (sc->sc_back != sc->sc_front) { struct safe_ringentry *re = sc->sc_back; #ifdef SAFE_DEBUG if (debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif /* * safe_process marks ring entries that were allocated * but not used with a csr of zero. This insures the * ring front pointer never needs to be set backwards * in the event that an entry is allocated but not used * because of a setup error. */ DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr)); if (re->re_desc.d_csr != 0) { if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) { DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__)); break; } if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) { DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__)); break; } sc->sc_nqchip--; safe_callback(sc, re); } if (++(sc->sc_back) == sc->sc_ringtop) sc->sc_back = sc->sc_ring; } spin_unlock_irqrestore(&sc->sc_ringmtx, flags); } /* * Check to see if we got any DMA Error */ if (stat & SAFE_INT_PE_ERROR) { printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev), (int)READ_REG(sc, SAFE_PE_DMASTAT)); safestats.st_dmaerr++; safe_totalreset(sc); #if 0 safe_feed(sc); #endif } if (sc->sc_needwakeup) { /* XXX check high watermark */ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); DPRINTF(("%s: wakeup crypto %x\n", __func__, sc->sc_needwakeup)); sc->sc_needwakeup &= ~wakeup; crypto_unblock(sc->sc_cid, wakeup); } return IRQ_HANDLED; } /* * safe_feed() - post a request to chip */ static void safe_feed(struct safe_softc *sc, struct safe_ringentry *re) { DPRINTF(("%s()\n", __FUNCTION__)); #ifdef SAFE_DEBUG if (debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif sc->sc_nqchip++; if (sc->sc_nqchip > safestats.st_maxqchip) safestats.st_maxqchip = sc->sc_nqchip; /* poke h/w to check descriptor ring, any value can be written */ WRITE_REG(sc, SAFE_HI_RD_DESCR, 0); } #define N(a) (sizeof(a) / sizeof (a[0])) static void safe_setup_enckey(struct safe_session *ses, caddr_t key) { int i; bcopy(key, ses->ses_key, ses->ses_klen / 8); /* PE is little-endian, insure proper byte order */ for (i = 0; i < N(ses->ses_key); i++) ses->ses_key[i] = htole32(ses->ses_key[i]); } static void safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen) { #ifdef HMAC_HACK MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i; for (i = 0; i < klen; i++) key[i] ^= HMAC_IPAD_VAL; if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_ipad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_opad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= HMAC_OPAD_VAL; #if 0 /* * this code prevents SHA working on a BE host, * so it is obviously wrong. I think the byte * swap setup we do with the chip fixes this for us */ /* PE is little-endian, insure proper byte order */ for (i = 0; i < N(ses->ses_hminner); i++) { ses->ses_hminner[i] = htole32(ses->ses_hminner[i]); ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]); } #endif #else /* HMAC_HACK */ printk("safe: md5/sha not implemented\n"); #endif /* HMAC_HACK */ } #undef N /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ static int safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) { struct safe_softc *sc = device_get_softc(dev); struct cryptoini *c, *encini = NULL, *macini = NULL; struct safe_session *ses = NULL; int sesn; DPRINTF(("%s()\n", __FUNCTION__)); if (sidp == NULL || cri == NULL || sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC || c->cri_alg == CRYPTO_NULL_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC || c->cri_alg == CRYPTO_AES_CBC || c->cri_alg == CRYPTO_NULL_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (encini) { /* validate key length */ switch (encini->cri_alg) { case CRYPTO_DES_CBC: if (encini->cri_klen != 64) return (EINVAL); break; case CRYPTO_3DES_CBC: if (encini->cri_klen != 192) return (EINVAL); break; case CRYPTO_AES_CBC: if (encini->cri_klen != 128 && encini->cri_klen != 192 && encini->cri_klen != 256) return (EINVAL); break; } } if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct safe_session *) kmalloc(sizeof(struct safe_session), SLAB_ATOMIC); if (ses == NULL) return (ENOMEM); memset(ses, 0, sizeof(struct safe_session)); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct safe_session *) kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC); if (ses == NULL) return (ENOMEM); memset(ses, 0, (sesn + 1) * sizeof(struct safe_session)); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct safe_session)); bzero(sc->sc_sessions, sesn * sizeof(struct safe_session)); kfree(sc->sc_sessions); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct safe_session)); ses->ses_used = 1; if (encini) { /* get an IV */ /* XXX may read fewer than requested */ read_random(ses->ses_iv, sizeof(ses->ses_iv)); ses->ses_klen = encini->cri_klen; if (encini->cri_key != NULL) safe_setup_enckey(ses, encini->cri_key); } if (macini) { ses->ses_mlen = macini->cri_mlen; if (ses->ses_mlen == 0) { if (macini->cri_alg == CRYPTO_MD5_HMAC) ses->ses_mlen = MD5_HASH_LEN; else ses->ses_mlen = SHA1_HASH_LEN; } if (macini->cri_key != NULL) { safe_setup_mackey(ses, macini->cri_alg, macini->cri_key, macini->cri_klen / 8); } } *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn); return (0); } /* * Deallocate a session. */ static int safe_freesession(device_t dev, u_int64_t tid) { struct safe_softc *sc = device_get_softc(dev); int session, ret; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; DPRINTF(("%s()\n", __FUNCTION__)); if (sc == NULL) return (EINVAL); session = SAFE_SESSION(sid); if (session < sc->sc_nsessions) { bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); ret = 0; } else ret = EINVAL; return (ret); } static int safe_process(device_t dev, struct cryptop *crp, int hint) { struct safe_softc *sc = device_get_softc(dev); int err = 0, i, nicealign, uniform; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int bypass, oplen, ivsize; caddr_t iv; int16_t coffset; struct safe_session *ses; struct safe_ringentry *re; struct safe_sarec *sa; struct safe_pdesc *pd; u_int32_t cmd0, cmd1, staterec; unsigned long flags; DPRINTF(("%s()\n", __FUNCTION__)); if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { safestats.st_invalid++; return (EINVAL); } if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) { safestats.st_badsession++; return (EINVAL); } spin_lock_irqsave(&sc->sc_ringmtx, flags); if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) { safestats.st_ringfull++; sc->sc_needwakeup |= CRYPTO_SYMQ; spin_unlock_irqrestore(&sc->sc_ringmtx, flags); return (ERESTART); } re = sc->sc_front; staterec = re->re_sa.sa_staterec; /* save */ /* NB: zero everything but the PE descriptor */ bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc)); re->re_sa.sa_staterec = staterec; /* restore */ re->re_crp = crp; re->re_sesn = SAFE_SESSION(crp->crp_sid); re->re_src.nsegs = 0; re->re_dst.nsegs = 0; if (crp->crp_flags & CRYPTO_F_SKBUF) { re->re_src_skb = (struct sk_buff *)crp->crp_buf; re->re_dst_skb = (struct sk_buff *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { re->re_src_io = (struct uio *)crp->crp_buf; re->re_dst_io = (struct uio *)crp->crp_buf; } else { safestats.st_badflags++; err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } sa = &re->re_sa; ses = &sc->sc_sessions[re->re_sesn]; crd1 = crp->crp_desc; if (crd1 == NULL) { safestats.st_nodesc++; err = EINVAL; goto errout; } crd2 = crd1->crd_next; cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */ cmd1 = 0; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC || crd1->crd_alg == CRYPTO_NULL_HMAC) { maccrd = crd1; enccrd = NULL; cmd0 |= SAFE_SA_CMD0_OP_HASH; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC || crd1->crd_alg == CRYPTO_NULL_CBC) { maccrd = NULL; enccrd = crd1; cmd0 |= SAFE_SA_CMD0_OP_CRYPT; } else { safestats.st_badalg++; err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC || crd1->crd_alg == CRYPTO_NULL_HMAC) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC || crd2->crd_alg == CRYPTO_AES_CBC || crd2->crd_alg == CRYPTO_NULL_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC || crd1->crd_alg == CRYPTO_NULL_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC || crd2->crd_alg == CRYPTO_NULL_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { safestats.st_badalg++; err = EINVAL; goto errout; } cmd0 |= SAFE_SA_CMD0_OP_BOTH; } if (enccrd) { if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) safe_setup_enckey(ses, enccrd->crd_key); if (enccrd->crd_alg == CRYPTO_DES_CBC) { cmd0 |= SAFE_SA_CMD0_DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) { cmd0 |= SAFE_SA_CMD0_3DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_AES_CBC) { cmd0 |= SAFE_SA_CMD0_AES; cmd1 |= SAFE_SA_CMD1_CBC; if (ses->ses_klen == 128) cmd1 |= SAFE_SA_CMD1_AES128; else if (ses->ses_klen == 192) cmd1 |= SAFE_SA_CMD1_AES192; else cmd1 |= SAFE_SA_CMD1_AES256; ivsize = 4*sizeof(u_int32_t); } else { cmd0 |= SAFE_SA_CMD0_CRYPT_NULL; ivsize = 0; } /* * Setup encrypt/decrypt state. When using basic ops * we can't use an inline IV because hash/crypt offset * must be from the end of the IV to the start of the * crypt data and this leaves out the preceding header * from the hash calculation. Instead we place the IV * in the state record and set the hash/crypt offset to * copy both the header+IV. */ if (enccrd->crd_flags & CRD_F_ENCRYPT) { cmd0 |= SAFE_SA_CMD0_OUTBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) iv = enccrd->crd_iv; else iv = (caddr_t) ses->ses_iv; if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivsize, iv); } bcopy(iv, re->re_sastate.sa_saved_iv, ivsize); /* make iv LE */ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++) re->re_sastate.sa_saved_iv[i] = cpu_to_le32(re->re_sastate.sa_saved_iv[i]); cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV; re->re_flags |= SAFE_QFLAGS_COPYOUTIV; } else { cmd0 |= SAFE_SA_CMD0_INBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { bcopy(enccrd->crd_iv, re->re_sastate.sa_saved_iv, ivsize); } else { crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivsize, (caddr_t)re->re_sastate.sa_saved_iv); } /* make iv LE */ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++) re->re_sastate.sa_saved_iv[i] = cpu_to_le32(re->re_sastate.sa_saved_iv[i]); cmd0 |= SAFE_SA_CMD0_IVLD_STATE; } /* * For basic encryption use the zero pad algorithm. * This pads results to an 8-byte boundary and * suppresses padding verification for inbound (i.e. * decrypt) operations. * * NB: Not sure if the 8-byte pad boundary is a problem. */ cmd0 |= SAFE_SA_CMD0_PAD_ZERO; /* XXX assert key bufs have the same size */ bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key)); } if (maccrd) { if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) { safe_setup_mackey(ses, maccrd->crd_alg, maccrd->crd_key, maccrd->crd_klen / 8); } if (maccrd->crd_alg == CRYPTO_MD5_HMAC) { cmd0 |= SAFE_SA_CMD0_MD5; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) { cmd0 |= SAFE_SA_CMD0_SHA1; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else { cmd0 |= SAFE_SA_CMD0_HASH_NULL; } /* * Digest data is loaded from the SA and the hash * result is saved to the state block where we * retrieve it for return to the caller. */ /* XXX assert digest bufs have the same size */ bcopy(ses->ses_hminner, sa->sa_indigest, sizeof(sa->sa_indigest)); bcopy(ses->ses_hmouter, sa->sa_outdigest, sizeof(sa->sa_outdigest)); cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH; re->re_flags |= SAFE_QFLAGS_COPYOUTICV; } if (enccrd && maccrd) { /* * The offset from hash data to the start of * crypt data is the difference in the skips. */ bypass = maccrd->crd_skip; coffset = enccrd->crd_skip - maccrd->crd_skip; if (coffset < 0) { DPRINTF(("%s: hash does not precede crypt; " "mac skip %u enc skip %u\n", __func__, maccrd->crd_skip, enccrd->crd_skip)); safestats.st_skipmismatch++; err = EINVAL; goto errout; } oplen = enccrd->crd_skip + enccrd->crd_len; if (maccrd->crd_skip + maccrd->crd_len != oplen) { DPRINTF(("%s: hash amount %u != crypt amount %u\n", __func__, maccrd->crd_skip + maccrd->crd_len, oplen)); safestats.st_lenmismatch++; err = EINVAL; goto errout; } #ifdef SAFE_DEBUG if (debug) { printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("bypass %d coffset %d oplen %d\n", bypass, coffset, oplen); } #endif if (coffset & 3) { /* offset must be 32-bit aligned */ DPRINTF(("%s: coffset %u misaligned\n", __func__, coffset)); safestats.st_coffmisaligned++; err = EINVAL; goto errout; } coffset >>= 2; if (coffset > 255) { /* offset must be <256 dwords */ DPRINTF(("%s: coffset %u too big\n", __func__, coffset)); safestats.st_cofftoobig++; err = EINVAL; goto errout; } /* * Tell the hardware to copy the header to the output. * The header is defined as the data from the end of * the bypass to the start of data to be encrypted. * Typically this is the inline IV. Note that you need * to do this even if src+dst are the same; it appears * that w/o this bit the crypted data is written * immediately after the bypass data. */ cmd1 |= SAFE_SA_CMD1_HDRCOPY; /* * Disable IP header mutable bit handling. This is * needed to get correct HMAC calculations. */ cmd1 |= SAFE_SA_CMD1_MUTABLE; } else { if (enccrd) { bypass = enccrd->crd_skip; oplen = bypass + enccrd->crd_len; } else { bypass = maccrd->crd_skip; oplen = bypass + maccrd->crd_len; } coffset = 0; } /* XXX verify multiple of 4 when using s/g */ if (bypass > 96) { /* bypass offset must be <= 96 bytes */ DPRINTF(("%s: bypass %u too big\n", __func__, bypass)); safestats.st_bypasstoobig++; err = EINVAL; goto errout; } if (crp->crp_flags & CRYPTO_F_SKBUF) { if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) { safestats.st_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (pci_map_uio(sc, &re->re_src, re->re_src_io)) { safestats.st_noload++; err = ENOMEM; goto errout; } } nicealign = safe_dmamap_aligned(sc, &re->re_src); uniform = safe_dmamap_uniform(sc, &re->re_src); DPRINTF(("src nicealign %u uniform %u nsegs %u\n", nicealign, uniform, re->re_src.nsegs)); if (re->re_src.nsegs > 1) { re->re_desc.d_src = sc->sc_spalloc.dma_paddr + ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring); for (i = 0; i < re->re_src_nsegs; i++) { /* NB: no need to check if there's space */ pd = sc->sc_spfree; if (++(sc->sc_spfree) == sc->sc_springtop) sc->sc_spfree = sc->sc_spring; KASSERT((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus source particle descriptor; flags %x", pd->pd_flags)); pd->pd_addr = re->re_src_segs[i].ds_addr; pd->pd_size = re->re_src_segs[i].ds_len; pd->pd_flags = SAFE_PD_READY; } cmd0 |= SAFE_SA_CMD0_IGATHER; } else { /* * No need for gather, reference the operand directly. */ re->re_desc.d_src = re->re_src_segs[0].ds_addr; } if (enccrd == NULL && maccrd != NULL) { /* * Hash op; no destination needed. */ } else { if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) { if (!nicealign) { safestats.st_iovmisaligned++; err = EINVAL; goto errout; } if (uniform != 1) { device_printf(sc->sc_dev, "!uniform source\n"); if (!uniform) { /* * There's no way to handle the DMA * requirements with this uio. We * could create a separate DMA area for * the result and then copy it back, * but for now we just bail and return * an error. Note that uio requests * > SAFE_MAX_DSIZE are handled because * the DMA map and segment list for the * destination wil result in a * destination particle list that does * the necessary scatter DMA. */ safestats.st_iovnotuniform++; err = EINVAL; goto errout; } } else re->re_dst = re->re_src; } else { safestats.st_badflags++; err = EINVAL; goto errout; } if (re->re_dst.nsegs > 1) { re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr + ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring); for (i = 0; i < re->re_dst_nsegs; i++) { pd = sc->sc_dpfree; KASSERT((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus dest particle descriptor; flags %x", pd->pd_flags)); if (++(sc->sc_dpfree) == sc->sc_dpringtop) sc->sc_dpfree = sc->sc_dpring; pd->pd_addr = re->re_dst_segs[i].ds_addr; pd->pd_flags = SAFE_PD_READY; } cmd0 |= SAFE_SA_CMD0_OSCATTER; } else { /* * No need for scatter, reference the operand directly. */ re->re_desc.d_dst = re->re_dst_segs[0].ds_addr; } } /* * All done with setup; fillin the SA command words * and the packet engine descriptor. The operation * is now ready for submission to the hardware. */ sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI; sa->sa_cmd1 = cmd1 | (coffset << SAFE_SA_CMD1_OFFSET_S) | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */ | SAFE_SA_CMD1_SRPCI ; /* * NB: the order of writes is important here. In case the * chip is scanning the ring because of an outstanding request * it might nab this one too. In that case we need to make * sure the setup is complete before we write the length * field of the descriptor as it signals the descriptor is * ready for processing. */ re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI; if (maccrd) re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL; wmb(); re->re_desc.d_len = oplen | SAFE_PE_LEN_READY | (bypass << SAFE_PE_LEN_BYPASS_S) ; safestats.st_ipackets++; safestats.st_ibytes += oplen; if (++(sc->sc_front) == sc->sc_ringtop) sc->sc_front = sc->sc_ring; /* XXX honor batching */ safe_feed(sc, re); spin_unlock_irqrestore(&sc->sc_ringmtx, flags); return (0); errout: if (re->re_src.map != re->re_dst.map) pci_unmap_operand(sc, &re->re_dst); if (re->re_src.map) pci_unmap_operand(sc, &re->re_src); spin_unlock_irqrestore(&sc->sc_ringmtx, flags); if (err != ERESTART) { crp->crp_etype = err; crypto_done(crp); } else { sc->sc_needwakeup |= CRYPTO_SYMQ; } return (err); } static void safe_callback(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp = (struct cryptop *)re->re_crp; struct cryptodesc *crd; DPRINTF(("%s()\n", __FUNCTION__)); safestats.st_opackets++; safestats.st_obytes += re->re_dst.mapsize; if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) { device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n", re->re_desc.d_csr, re->re_sa.sa_cmd0, re->re_sa.sa_cmd1); safestats.st_peoperr++; crp->crp_etype = EIO; /* something more meaningful? */ } if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map) pci_unmap_operand(sc, &re->re_dst); pci_unmap_operand(sc, &re->re_src); /* * If result was written to a differet mbuf chain, swap * it in as the return value and reclaim the original. */ if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) { device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n"); /* kfree_skb(skb) */ /* crp->crp_buf = (caddr_t)re->re_dst_skb */ return; } if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) { /* copy out IV for future use */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { int i; int ivsize; if (crd->crd_alg == CRYPTO_DES_CBC || crd->crd_alg == CRYPTO_3DES_CBC) { ivsize = 2*sizeof(u_int32_t); } else if (crd->crd_alg == CRYPTO_AES_CBC) { ivsize = 4*sizeof(u_int32_t); } else continue; crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip + crd->crd_len - ivsize, ivsize, (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv); for (i = 0; i < ivsize/sizeof(sc->sc_sessions[re->re_sesn].ses_iv[0]); i++) sc->sc_sessions[re->re_sesn].ses_iv[i] = cpu_to_le32(sc->sc_sessions[re->re_sesn].ses_iv[i]); break; } } if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) { /* copy out ICV result */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (!(crd->crd_alg == CRYPTO_MD5_HMAC || crd->crd_alg == CRYPTO_SHA1_HMAC || crd->crd_alg == CRYPTO_NULL_HMAC)) continue; if (crd->crd_alg == CRYPTO_SHA1_HMAC) { /* * SHA-1 ICV's are byte-swapped; fix 'em up * before copy them to their destination. */ re->re_sastate.sa_saved_indigest[0] = cpu_to_be32(re->re_sastate.sa_saved_indigest[0]); re->re_sastate.sa_saved_indigest[1] = cpu_to_be32(re->re_sastate.sa_saved_indigest[1]); re->re_sastate.sa_saved_indigest[2] = cpu_to_be32(re->re_sastate.sa_saved_indigest[2]); } else { re->re_sastate.sa_saved_indigest[0] = cpu_to_le32(re->re_sastate.sa_saved_indigest[0]); re->re_sastate.sa_saved_indigest[1] = cpu_to_le32(re->re_sastate.sa_saved_indigest[1]); re->re_sastate.sa_saved_indigest[2] = cpu_to_le32(re->re_sastate.sa_saved_indigest[2]); } crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, sc->sc_sessions[re->re_sesn].ses_mlen, (caddr_t)re->re_sastate.sa_saved_indigest); break; } } crypto_done(crp); } #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) #define SAFE_RNG_MAXWAIT 1000 static void safe_rng_init(struct safe_softc *sc) { u_int32_t w, v; int i; DPRINTF(("%s()\n", __FUNCTION__)); WRITE_REG(sc, SAFE_RNG_CTRL, 0); /* use default value according to the manual */ WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); /* * There is a bug in rev 1.0 of the 1140 that when the RNG * is brought out of reset the ready status flag does not * work until the RNG has finished its internal initialization. * * So in order to determine the device is through its * initialization we must read the data register, using the * status reg in the read in case it is initialized. Then read * the data register until it changes from the first read. * Once it changes read the data register until it changes * again. At this time the RNG is considered initialized. * This could take between 750ms - 1000ms in time. */ i = 0; w = READ_REG(sc, SAFE_RNG_OUT); do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) { w = v; break; } DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); /* Wait Until data changes again */ i = 0; do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) break; DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); } static __inline void safe_rng_disable_short_cycle(struct safe_softc *sc) { DPRINTF(("%s()\n", __FUNCTION__)); WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN); } static __inline void safe_rng_enable_short_cycle(struct safe_softc *sc) { DPRINTF(("%s()\n", __FUNCTION__)); WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN); } static __inline u_int32_t safe_rng_read(struct safe_softc *sc) { int i; i = 0; while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT) ; return READ_REG(sc, SAFE_RNG_OUT); } static int safe_read_random(void *arg, u_int32_t *buf, int maxwords) { struct safe_softc *sc = (struct safe_softc *) arg; int i, rc; DPRINTF(("%s()\n", __FUNCTION__)); safestats.st_rng++; /* * Fetch the next block of data. */ if (maxwords > safe_rngbufsize) maxwords = safe_rngbufsize; if (maxwords > SAFE_RNG_MAXBUFSIZ) maxwords = SAFE_RNG_MAXBUFSIZ; retry: /* read as much as we can */ for (rc = 0; rc < maxwords; rc++) { if (READ_REG(sc, SAFE_RNG_STAT) != 0) break; buf[rc] = READ_REG(sc, SAFE_RNG_OUT); } if (rc == 0) return 0; /* * Check the comparator alarm count and reset the h/w if * it exceeds our threshold. This guards against the * hardware oscillators resonating with external signals. */ if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) { u_int32_t freq_inc, w; DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__, (unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm)); safestats.st_rngalarm++; safe_rng_enable_short_cycle(sc); freq_inc = 18; for (i = 0; i < 64; i++) { w = READ_REG(sc, SAFE_RNG_CNFG); freq_inc = ((w + freq_inc) & 0x3fL); w = ((w & ~0x3fL) | freq_inc); WRITE_REG(sc, SAFE_RNG_CNFG, w); WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); (void) safe_rng_read(sc); DELAY(25); if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) { safe_rng_disable_short_cycle(sc); goto retry; } freq_inc = 1; } safe_rng_disable_short_cycle(sc); } else WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); return(rc); } #endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */ /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ static void safe_reset_board(struct safe_softc *sc) { u_int32_t v; /* * Reset the device. The manual says no delay * is needed between marking and clearing reset. */ DPRINTF(("%s()\n", __FUNCTION__)); v = READ_REG(sc, SAFE_PE_DMACFG) &~ (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v); } /* * Initialize registers we need to touch only once. */ static void safe_init_board(struct safe_softc *sc) { u_int32_t v, dwords; DPRINTF(("%s()\n", __FUNCTION__)); v = READ_REG(sc, SAFE_PE_DMACFG); v &=~ ( SAFE_PE_DMACFG_PEMODE | SAFE_PE_DMACFG_FSENA /* failsafe enable */ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */ ); v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ #if 0 | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */ #endif ; WRITE_REG(sc, SAFE_PE_DMACFG, v); #ifdef __BIG_ENDIAN /* tell the safenet that we are 4321 and not 1234 */ WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b); #endif if (sc->sc_chiprev == SAFE_REV(1,0)) { /* * Avoid large PCI DMA transfers. Rev 1.0 has a bug where * "target mode transfers" done while the chip is DMA'ing * >1020 bytes cause the hardware to lockup. To avoid this * we reduce the max PCI transfer size and use small source * particle descriptors (<= 256 bytes). */ WRITE_REG(sc, SAFE_DMA_CFG, 256); device_printf(sc->sc_dev, "Reduce max DMA size to %u words for rev %u.%u WAR\n", (unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff), (unsigned) SAFE_REV_MAJ(sc->sc_chiprev), (unsigned) SAFE_REV_MIN(sc->sc_chiprev)); sc->sc_max_dsize = 256; } else { sc->sc_max_dsize = SAFE_MAX_DSIZE; } /* NB: operands+results are overlaid */ WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr); /* * Configure ring entry size and number of items in the ring. */ KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0, ("PE ring entry not 32-bit aligned!")); dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t); WRITE_REG(sc, SAFE_PE_RINGCFG, (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE); WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */ WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_PARTSIZE, (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART); /* * NB: destination particles are fixed size. We use * an mbuf cluster and require all results go to * clusters or smaller. */ WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize); /* it's now safe to enable PE mode, do it */ WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE); /* * Configure hardware to use level-triggered interrupts and * to interrupt after each descriptor is processed. */ WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL); WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff); WRITE_REG(sc, SAFE_HI_DESC_CNT, 1); WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR); } /* * Clean up after a chip crash. * It is assumed that the caller in splimp() */ static void safe_cleanchip(struct safe_softc *sc) { DPRINTF(("%s()\n", __FUNCTION__)); if (sc->sc_nqchip != 0) { struct safe_ringentry *re = sc->sc_back; while (re != sc->sc_front) { if (re->re_desc.d_csr != 0) safe_free_entry(sc, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } sc->sc_back = re; sc->sc_nqchip = 0; } } /* * free a safe_q * It is assumed that the caller is within splimp(). */ static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp; DPRINTF(("%s()\n", __FUNCTION__)); /* * Free header MCR */ if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb)) #ifdef NOTYET m_freem(re->re_dst_m); #else printk("%s,%d: SKB not supported\n", __FILE__, __LINE__); #endif crp = (struct cryptop *)re->re_crp; re->re_desc.d_csr = 0; crp->crp_etype = EFAULT; crypto_done(crp); return(0); } /* * Routine to reset the chip and clean up. * It is assumed that the caller is in splimp() */ static void safe_totalreset(struct safe_softc *sc) { DPRINTF(("%s()\n", __FUNCTION__)); safe_reset_board(sc); safe_init_board(sc); safe_cleanchip(sc); } /* * Is the operand suitable aligned for direct DMA. Each * segment must be aligned on a 32-bit boundary and all * but the last segment must be a multiple of 4 bytes. */ static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op) { int i; DPRINTF(("%s()\n", __FUNCTION__)); for (i = 0; i < op->nsegs; i++) { if (op->segs[i].ds_addr & 3) return (0); if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3)) return (0); } return (1); } /* * Is the operand suitable for direct DMA as the destination * of an operation. The hardware requires that each ``particle'' * but the last in an operation result have the same size. We * fix that size at SAFE_MAX_DSIZE bytes. This routine returns * 0 if some segment is not a multiple of of this size, 1 if all * segments are exactly this size, or 2 if segments are at worst * a multple of this size. */ static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op) { int result = 1; DPRINTF(("%s()\n", __FUNCTION__)); if (op->nsegs > 0) { int i; for (i = 0; i < op->nsegs-1; i++) { if (op->segs[i].ds_len % sc->sc_max_dsize) return (0); if (op->segs[i].ds_len != sc->sc_max_dsize) result = 2; } } return (result); } static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint) { struct safe_softc *sc = device_get_softc(dev); struct safe_pkq *q; unsigned long flags; DPRINTF(("%s()\n", __FUNCTION__)); if (sc == NULL) { krp->krp_status = EINVAL; goto err; } if (krp->krp_op != CRK_MOD_EXP) { krp->krp_status = EOPNOTSUPP; goto err; } q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL); if (q == NULL) { krp->krp_status = ENOMEM; goto err; } memset(q, 0, sizeof(*q)); q->pkq_krp = krp; INIT_LIST_HEAD(&q->pkq_list); spin_lock_irqsave(&sc->sc_pkmtx, flags); list_add_tail(&q->pkq_list, &sc->sc_pkq); safe_kfeed(sc); spin_unlock_irqrestore(&sc->sc_pkmtx, flags); return (0); err: crypto_kdone(krp); return (0); } #define SAFE_CRK_PARAM_BASE 0 #define SAFE_CRK_PARAM_EXP 1 #define SAFE_CRK_PARAM_MOD 2 static int safe_kstart(struct safe_softc *sc) { struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp; int exp_bits, mod_bits, base_bits; u_int32_t op, a_off, b_off, c_off, d_off; DPRINTF(("%s()\n", __FUNCTION__)); if (krp->krp_iparams < 3 || krp->krp_oparams != 1) { krp->krp_status = EINVAL; return (1); } base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]); if (base_bits > 2048) goto too_big; if (base_bits <= 0) /* 5. base not zero */ goto too_small; exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]); if (exp_bits > 2048) goto too_big; if (exp_bits <= 0) /* 1. exponent word length > 0 */ goto too_small; /* 4. exponent not zero */ mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]); if (mod_bits > 2048) goto too_big; if (mod_bits <= 32) /* 2. modulus word length > 1 */ goto too_small; /* 8. MSW of modulus != zero */ if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */ goto too_small; if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0) goto bad_domain; /* 6. modulus is odd */ if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits) goto too_small; /* make sure result will fit */ /* 7. modulus > base */ if (mod_bits < base_bits) goto too_small; if (mod_bits == base_bits) { u_int8_t *basep, *modp; int i; basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p + ((base_bits + 7) / 8) - 1; modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p + ((mod_bits + 7) / 8) - 1; for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) { if (*modp < *basep) goto too_small; if (*modp > *basep) break; } } /* And on the 9th step, he rested. */ WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32); WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32); if (mod_bits > 1024) { op = SAFE_PK_FUNC_EXP4; a_off = 0x000; b_off = 0x100; c_off = 0x200; d_off = 0x300; } else { op = SAFE_PK_FUNC_EXP16; a_off = 0x000; b_off = 0x080; c_off = 0x100; d_off = 0x180; } sc->sc_pk_reslen = b_off - a_off; sc->sc_pk_resoff = d_off; /* A is exponent, B is modulus, C is base, D is result */ safe_kload_reg(sc, a_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_EXP]); WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2); safe_kload_reg(sc, b_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_MOD]); WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2); safe_kload_reg(sc, c_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_BASE]); WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2); WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2); WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN); return (0); too_big: krp->krp_status = E2BIG; return (1); too_small: krp->krp_status = ERANGE; return (1); bad_domain: krp->krp_status = EDOM; return (1); } static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr) { u_int plen = (cr->crp_nbits + 7) / 8; int i, sig = plen * 8; u_int8_t c, *p = cr->crp_p; DPRINTF(("%s()\n", __FUNCTION__)); for (i = plen - 1; i >= 0; i--) { c = p[i]; if (c != 0) { while ((c & 0x80) == 0) { sig--; c <<= 1; } break; } sig -= 8; } return (sig); } static void safe_kfeed(struct safe_softc *sc) { struct safe_pkq *q, *tmp; DPRINTF(("%s()\n", __FUNCTION__)); if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL) return; if (sc->sc_pkq_cur != NULL) return; list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) { sc->sc_pkq_cur = q; list_del(&q->pkq_list); if (safe_kstart(sc) != 0) { crypto_kdone(q->pkq_krp); kfree(q); sc->sc_pkq_cur = NULL; } else { /* op started, start polling */ mod_timer(&sc->sc_pkto, jiffies + 1); break; } } } static void safe_kpoll(unsigned long arg) { struct safe_softc *sc = NULL; struct safe_pkq *q; struct crparam *res; int i; u_int32_t buf[64]; unsigned long flags; DPRINTF(("%s()\n", __FUNCTION__)); if (arg >= SAFE_MAX_CHIPS) return; sc = safe_chip_idx[arg]; if (!sc) { DPRINTF(("%s() - bad callback\n", __FUNCTION__)); return; } spin_lock_irqsave(&sc->sc_pkmtx, flags); if (sc->sc_pkq_cur == NULL) goto out; if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) { /* still running, check back later */ mod_timer(&sc->sc_pkto, jiffies + 1); goto out; } q = sc->sc_pkq_cur; res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams]; bzero(buf, sizeof(buf)); bzero(res->crp_p, (res->crp_nbits + 7) / 8); for (i = 0; i < sc->sc_pk_reslen >> 2; i++) buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START + sc->sc_pk_resoff + (i << 2))); bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8); /* * reduce the bits that need copying if possible */ res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8); res->crp_nbits = safe_ksigbits(sc, res); for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4) WRITE_REG(sc, i, 0); crypto_kdone(q->pkq_krp); kfree(q); sc->sc_pkq_cur = NULL; safe_kfeed(sc); out: spin_unlock_irqrestore(&sc->sc_pkmtx, flags); } static void safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len, struct crparam *n) { u_int32_t buf[64], i; DPRINTF(("%s()\n", __FUNCTION__)); bzero(buf, sizeof(buf)); bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8); for (i = 0; i < len >> 2; i++) WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2), cpu_to_le32(buf[i])); } #ifdef SAFE_DEBUG static void safe_dump_dmastatus(struct safe_softc *sc, const char *tag) { printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n" , tag , READ_REG(sc, SAFE_DMA_ENDIAN) , READ_REG(sc, SAFE_DMA_SRCADDR) , READ_REG(sc, SAFE_DMA_DSTADDR) , READ_REG(sc, SAFE_DMA_STAT) ); } static void safe_dump_intrstate(struct safe_softc *sc, const char *tag) { printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n" , tag , READ_REG(sc, SAFE_HI_CFG) , READ_REG(sc, SAFE_HI_MASK) , READ_REG(sc, SAFE_HI_DESC_CNT) , READ_REG(sc, SAFE_HU_STAT) , READ_REG(sc, SAFE_HM_STAT) ); } static void safe_dump_ringstate(struct safe_softc *sc, const char *tag) { u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT); /* NB: assume caller has lock on ring */ printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n", tag, estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S), (unsigned long)(sc->sc_back - sc->sc_ring), (unsigned long)(sc->sc_front - sc->sc_ring)); } static void safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re) { int ix, nsegs; ix = re - sc->sc_ring; printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n" , tag , re, ix , re->re_desc.d_csr , re->re_desc.d_src , re->re_desc.d_dst , re->re_desc.d_sa , re->re_desc.d_len ); if (re->re_src.nsegs > 1) { ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_src.nsegs; nsegs; nsegs--) { printf(" spd[%u] %p: %p size %u flags %x" , ix, &sc->sc_spring[ix] , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr , sc->sc_spring[ix].pd_size , sc->sc_spring[ix].pd_flags ); if (sc->sc_spring[ix].pd_size == 0) printf(" (zero!)"); printf("\n"); if (++ix == SAFE_TOTAL_SPART) ix = 0; } } if (re->re_dst.nsegs > 1) { ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) { printf(" dpd[%u] %p: %p flags %x\n" , ix, &sc->sc_dpring[ix] , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr , sc->sc_dpring[ix].pd_flags ); if (++ix == SAFE_TOTAL_DPART) ix = 0; } } printf("sa: cmd0 %08x cmd1 %08x staterec %x\n", re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec); printf("sa: key %x %x %x %x %x %x %x %x\n" , re->re_sa.sa_key[0] , re->re_sa.sa_key[1] , re->re_sa.sa_key[2] , re->re_sa.sa_key[3] , re->re_sa.sa_key[4] , re->re_sa.sa_key[5] , re->re_sa.sa_key[6] , re->re_sa.sa_key[7] ); printf("sa: indigest %x %x %x %x %x\n" , re->re_sa.sa_indigest[0] , re->re_sa.sa_indigest[1] , re->re_sa.sa_indigest[2] , re->re_sa.sa_indigest[3] , re->re_sa.sa_indigest[4] ); printf("sa: outdigest %x %x %x %x %x\n" , re->re_sa.sa_outdigest[0] , re->re_sa.sa_outdigest[1] , re->re_sa.sa_outdigest[2] , re->re_sa.sa_outdigest[3] , re->re_sa.sa_outdigest[4] ); printf("sr: iv %x %x %x %x\n" , re->re_sastate.sa_saved_iv[0] , re->re_sastate.sa_saved_iv[1] , re->re_sastate.sa_saved_iv[2] , re->re_sastate.sa_saved_iv[3] ); printf("sr: hashbc %u indigest %x %x %x %x %x\n" , re->re_sastate.sa_saved_hashbc , re->re_sastate.sa_saved_indigest[0] , re->re_sastate.sa_saved_indigest[1] , re->re_sastate.sa_saved_indigest[2] , re->re_sastate.sa_saved_indigest[3] , re->re_sastate.sa_saved_indigest[4] ); } static void safe_dump_ring(struct safe_softc *sc, const char *tag) { unsigned long flags; spin_lock_irqsave(&sc->sc_ringmtx, flags); printf("\nSafeNet Ring State:\n"); safe_dump_intrstate(sc, tag); safe_dump_dmastatus(sc, tag); safe_dump_ringstate(sc, tag); if (sc->sc_nqchip) { struct safe_ringentry *re = sc->sc_back; do { safe_dump_request(sc, tag, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } while (re != sc->sc_front); } spin_unlock_irqrestore(&sc->sc_ringmtx, flags); } #endif /* SAFE_DEBUG */ static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent) { struct safe_softc *sc = NULL; u32 mem_start, mem_len, cmd; int i, rc, devinfo; dma_addr_t raddr; static int num_chips = 0; DPRINTF(("%s()\n", __FUNCTION__)); if (pci_enable_device(dev) < 0) return(-ENODEV); if (!dev->irq) { printk("safe: found device with no IRQ assigned. check BIOS settings!"); pci_disable_device(dev); return(-ENODEV); } if (pci_set_mwi(dev)) { printk("safe: pci_set_mwi failed!"); return(-ENODEV); } sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL); if (!sc) return(-ENOMEM); memset(sc, 0, sizeof(*sc)); softc_device_init(sc, "safe", num_chips, safe_methods); sc->sc_irq = -1; sc->sc_cid = -1; sc->sc_pcidev = dev; if (num_chips < SAFE_MAX_CHIPS) { safe_chip_idx[device_get_unit(sc->sc_dev)] = sc; num_chips++; } INIT_LIST_HEAD(&sc->sc_pkq); spin_lock_init(&sc->sc_pkmtx); pci_set_drvdata(sc->sc_pcidev, sc); /* we read its hardware registers as memory */ mem_start = pci_resource_start(sc->sc_pcidev, 0); mem_len = pci_resource_len(sc->sc_pcidev, 0); sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len); if (!sc->sc_base_addr) { device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n", mem_start, mem_start + mem_len - 1); goto out; } /* fix up the bus size */ if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) { device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n"); goto out; } if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) { device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n"); goto out; } pci_set_master(sc->sc_pcidev); pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd); if (!(cmd & PCI_COMMAND_MEMORY)) { device_printf(sc->sc_dev, "failed to enable memory mapping\n"); goto out; } if (!(cmd & PCI_COMMAND_MASTER)) { device_printf(sc->sc_dev, "failed to enable bus mastering\n"); goto out; } rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc); if (rc) { device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq); goto out; } sc->sc_irq = dev->irq; sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) & (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN); /* * Allocate packet engine descriptors. */ sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), &sc->sc_ringalloc.dma_paddr); if (!sc->sc_ringalloc.dma_vaddr) { device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n"); goto out; } /* * Hookup the static portion of all our data structures. */ sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr; sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE; sc->sc_front = sc->sc_ring; sc->sc_back = sc->sc_ring; raddr = sc->sc_ringalloc.dma_paddr; bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry)); for (i = 0; i < SAFE_MAX_NQUEUE; i++) { struct safe_ringentry *re = &sc->sc_ring[i]; re->re_desc.d_sa = raddr + offsetof(struct safe_ringentry, re_sa); re->re_sa.sa_staterec = raddr + offsetof(struct safe_ringentry, re_sastate); raddr += sizeof (struct safe_ringentry); } spin_lock_init(&sc->sc_ringmtx); /* * Allocate scatter and gather particle descriptors. */ sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc), &sc->sc_spalloc.dma_paddr); if (!sc->sc_spalloc.dma_vaddr) { device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n"); goto out; } sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr; sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART; sc->sc_spfree = sc->sc_spring; bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc)); sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), &sc->sc_dpalloc.dma_paddr); if (!sc->sc_dpalloc.dma_vaddr) { device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n"); goto out; } sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr; sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART; sc->sc_dpfree = sc->sc_dpring; bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc)); sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE); if (sc->sc_cid < 0) { device_printf(sc->sc_dev, "could not get crypto driver id\n"); goto out; } printf("%s:", device_get_nameunit(sc->sc_dev)); devinfo = READ_REG(sc, SAFE_DEVINFO); if (devinfo & SAFE_DEVINFO_RNG) { sc->sc_flags |= SAFE_FLAGS_RNG; printf(" rng"); } if (devinfo & SAFE_DEVINFO_PKEY) { printf(" key"); sc->sc_flags |= SAFE_FLAGS_KEY; crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0); #if 0 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0); #endif init_timer(&sc->sc_pkto); sc->sc_pkto.function = safe_kpoll; sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev); } if (devinfo & SAFE_DEVINFO_DES) { printf(" des/3des"); crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); } if (devinfo & SAFE_DEVINFO_AES) { printf(" aes"); crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); } if (devinfo & SAFE_DEVINFO_MD5) { printf(" md5"); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); } if (devinfo & SAFE_DEVINFO_SHA1) { printf(" sha1"); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); } printf(" null"); crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0); /* XXX other supported algorithms */ printf("\n"); safe_reset_board(sc); /* reset h/w */ safe_init_board(sc); /* init h/w */ #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) if (sc->sc_flags & SAFE_FLAGS_RNG) { safe_rng_init(sc); crypto_rregister(sc->sc_cid, safe_read_random, sc); } #endif /* SAFE_NO_RNG */ return (0); out: if (sc->sc_cid >= 0) crypto_unregister_all(sc->sc_cid); if (sc->sc_irq != -1) free_irq(sc->sc_irq, sc); if (sc->sc_ringalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr); if (sc->sc_spalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr); if (sc->sc_dpalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr); kfree(sc); return(-ENODEV); } static void safe_remove(struct pci_dev *dev) { struct safe_softc *sc = pci_get_drvdata(dev); DPRINTF(("%s()\n", __FUNCTION__)); /* XXX wait/abort active ops */ WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */ del_timer_sync(&sc->sc_pkto); crypto_unregister_all(sc->sc_cid); safe_cleanchip(sc); if (sc->sc_irq != -1) free_irq(sc->sc_irq, sc); if (sc->sc_ringalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr); if (sc->sc_spalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr); if (sc->sc_dpalloc.dma_vaddr) pci_free_consistent(sc->sc_pcidev, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr); sc->sc_irq = -1; sc->sc_ringalloc.dma_vaddr = NULL; sc->sc_spalloc.dma_vaddr = NULL; sc->sc_dpalloc.dma_vaddr = NULL; } static struct pci_device_id safe_pci_tbl[] = { { PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { }, }; MODULE_DEVICE_TABLE(pci, safe_pci_tbl); static struct pci_driver safe_driver = { .name = "safe", .id_table = safe_pci_tbl, .probe = safe_probe, .remove = safe_remove, /* add PM stuff here one day */ }; static int __init safe_init (void) { struct safe_softc *sc = NULL; int rc; DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init)); rc = pci_register_driver(&safe_driver); pci_register_driver_compat(&safe_driver, rc); return rc; } static void __exit safe_exit (void) { pci_unregister_driver(&safe_driver); } module_init(safe_init); module_exit(safe_exit); MODULE_LICENSE("BSD"); MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>"); MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices");