/* * Platform driver for the Realtek RTL8366S ethernet switch * * Copyright (C) 2009-2010 Gabor Juhos * Copyright (C) 2010 Antti Seppälä * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "rtl8366_smi.h" #define RTL8366RB_DRIVER_DESC "Realtek RTL8366RB ethernet switch driver" #define RTL8366RB_DRIVER_VER "0.2.2" #define RTL8366RB_PHY_NO_MAX 4 #define RTL8366RB_PHY_PAGE_MAX 7 #define RTL8366RB_PHY_ADDR_MAX 31 /* Switch Global Configuration register */ #define RTL8366RB_SGCR 0x0000 #define RTL8366RB_SGCR_EN_BC_STORM_CTRL BIT(0) #define RTL8366RB_SGCR_MAX_LENGTH(_x) (_x << 4) #define RTL8366RB_SGCR_MAX_LENGTH_MASK RTL8366RB_SGCR_MAX_LENGTH(0x3) #define RTL8366RB_SGCR_MAX_LENGTH_1522 RTL8366RB_SGCR_MAX_LENGTH(0x0) #define RTL8366RB_SGCR_MAX_LENGTH_1536 RTL8366RB_SGCR_MAX_LENGTH(0x1) #define RTL8366RB_SGCR_MAX_LENGTH_1552 RTL8366RB_SGCR_MAX_LENGTH(0x2) #define RTL8366RB_SGCR_MAX_LENGTH_9216 RTL8366RB_SGCR_MAX_LENGTH(0x3) #define RTL8366RB_SGCR_EN_VLAN BIT(13) #define RTL8366RB_SGCR_EN_VLAN_4KTB BIT(14) /* Port Enable Control register */ #define RTL8366RB_PECR 0x0001 /* Switch Security Control registers */ #define RTL8366RB_SSCR0 0x0002 #define RTL8366RB_SSCR1 0x0003 #define RTL8366RB_SSCR2 0x0004 #define RTL8366RB_SSCR2_DROP_UNKNOWN_DA BIT(0) #define RTL8366RB_RESET_CTRL_REG 0x0100 #define RTL8366RB_CHIP_CTRL_RESET_HW 1 #define RTL8366RB_CHIP_CTRL_RESET_SW (1 << 1) #define RTL8366RB_CHIP_VERSION_CTRL_REG 0x050A #define RTL8366RB_CHIP_VERSION_MASK 0xf #define RTL8366RB_CHIP_ID_REG 0x0509 #define RTL8366RB_CHIP_ID_8366 0x5937 /* PHY registers control */ #define RTL8366RB_PHY_ACCESS_CTRL_REG 0x8000 #define RTL8366RB_PHY_ACCESS_DATA_REG 0x8002 #define RTL8366RB_PHY_CTRL_READ 1 #define RTL8366RB_PHY_CTRL_WRITE 0 #define RTL8366RB_PHY_REG_MASK 0x1f #define RTL8366RB_PHY_PAGE_OFFSET 5 #define RTL8366RB_PHY_PAGE_MASK (0xf << 5) #define RTL8366RB_PHY_NO_OFFSET 9 #define RTL8366RB_PHY_NO_MASK (0x1f << 9) #define RTL8366RB_VLAN_INGRESS_CTRL2_REG 0x037f /* LED control registers */ #define RTL8366RB_LED_BLINKRATE_REG 0x0430 #define RTL8366RB_LED_BLINKRATE_BIT 0 #define RTL8366RB_LED_BLINKRATE_MASK 0x0007 #define RTL8366RB_LED_CTRL_REG 0x0431 #define RTL8366RB_LED_0_1_CTRL_REG 0x0432 #define RTL8366RB_LED_2_3_CTRL_REG 0x0433 #define RTL8366RB_MIB_COUNT 33 #define RTL8366RB_GLOBAL_MIB_COUNT 1 #define RTL8366RB_MIB_COUNTER_PORT_OFFSET 0x0050 #define RTL8366RB_MIB_COUNTER_BASE 0x1000 #define RTL8366RB_MIB_CTRL_REG 0x13F0 #define RTL8366RB_MIB_CTRL_USER_MASK 0x0FFC #define RTL8366RB_MIB_CTRL_BUSY_MASK BIT(0) #define RTL8366RB_MIB_CTRL_RESET_MASK BIT(1) #define RTL8366RB_MIB_CTRL_PORT_RESET(_p) BIT(2 + (_p)) #define RTL8366RB_MIB_CTRL_GLOBAL_RESET BIT(11) #define RTL8366RB_PORT_VLAN_CTRL_BASE 0x0063 #define RTL8366RB_PORT_VLAN_CTRL_REG(_p) \ (RTL8366RB_PORT_VLAN_CTRL_BASE + (_p) / 4) #define RTL8366RB_PORT_VLAN_CTRL_MASK 0xf #define RTL8366RB_PORT_VLAN_CTRL_SHIFT(_p) (4 * ((_p) % 4)) #define RTL8366RB_VLAN_TABLE_READ_BASE 0x018C #define RTL8366RB_VLAN_TABLE_WRITE_BASE 0x0185 #define RTL8366RB_TABLE_ACCESS_CTRL_REG 0x0180 #define RTL8366RB_TABLE_VLAN_READ_CTRL 0x0E01 #define RTL8366RB_TABLE_VLAN_WRITE_CTRL 0x0F01 #define RTL8366RB_VLAN_MEMCONF_BASE 0x0020 #define RTL8366RB_PORT_LINK_STATUS_BASE 0x0014 #define RTL8366RB_PORT_STATUS_SPEED_MASK 0x0003 #define RTL8366RB_PORT_STATUS_DUPLEX_MASK 0x0004 #define RTL8366RB_PORT_STATUS_LINK_MASK 0x0010 #define RTL8366RB_PORT_STATUS_TXPAUSE_MASK 0x0020 #define RTL8366RB_PORT_STATUS_RXPAUSE_MASK 0x0040 #define RTL8366RB_PORT_STATUS_AN_MASK 0x0080 #define RTL8366RB_PORT_NUM_CPU 5 #define RTL8366RB_NUM_PORTS 6 #define RTL8366RB_NUM_VLANS 16 #define RTL8366RB_NUM_LEDGROUPS 4 #define RTL8366RB_NUM_VIDS 4096 #define RTL8366RB_PRIORITYMAX 7 #define RTL8366RB_FIDMAX 7 #define RTL8366RB_PORT_1 (1 << 0) /* In userspace port 0 */ #define RTL8366RB_PORT_2 (1 << 1) /* In userspace port 1 */ #define RTL8366RB_PORT_3 (1 << 2) /* In userspace port 2 */ #define RTL8366RB_PORT_4 (1 << 3) /* In userspace port 3 */ #define RTL8366RB_PORT_5 (1 << 4) /* In userspace port 4 */ #define RTL8366RB_PORT_CPU (1 << 5) /* CPU port */ #define RTL8366RB_PORT_ALL (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4 | \ RTL8366RB_PORT_5 | \ RTL8366RB_PORT_CPU) #define RTL8366RB_PORT_ALL_BUT_CPU (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4 | \ RTL8366RB_PORT_5) #define RTL8366RB_PORT_ALL_EXTERNAL (RTL8366RB_PORT_1 | \ RTL8366RB_PORT_2 | \ RTL8366RB_PORT_3 | \ RTL8366RB_PORT_4) #define RTL8366RB_PORT_ALL_INTERNAL RTL8366RB_PORT_CPU struct rtl8366rb { struct device *parent; struct rtl8366_smi smi; struct switch_dev dev; }; struct rtl8366rb_vlan_mc { u16 reserved2:1; u16 priority:3; u16 vid:12; u16 untag:8; u16 member:8; u16 stag_mbr:8; u16 stag_idx:3; u16 reserved1:2; u16 fid:3; }; struct rtl8366rb_vlan_4k { u16 reserved1:4; u16 vid:12; u16 untag:8; u16 member:8; u16 reserved2:13; u16 fid:3; }; static struct rtl8366_mib_counter rtl8366rb_mib_counters[] = { { 0, 0, 4, "IfInOctets" }, { 0, 4, 4, "EtherStatsOctets" }, { 0, 8, 2, "EtherStatsUnderSizePkts" }, { 0, 10, 2, "EtherFragments" }, { 0, 12, 2, "EtherStatsPkts64Octets" }, { 0, 14, 2, "EtherStatsPkts65to127Octets" }, { 0, 16, 2, "EtherStatsPkts128to255Octets" }, { 0, 18, 2, "EtherStatsPkts256to511Octets" }, { 0, 20, 2, "EtherStatsPkts512to1023Octets" }, { 0, 22, 2, "EtherStatsPkts1024to1518Octets" }, { 0, 24, 2, "EtherOversizeStats" }, { 0, 26, 2, "EtherStatsJabbers" }, { 0, 28, 2, "IfInUcastPkts" }, { 0, 30, 2, "EtherStatsMulticastPkts" }, { 0, 32, 2, "EtherStatsBroadcastPkts" }, { 0, 34, 2, "EtherStatsDropEvents" }, { 0, 36, 2, "Dot3StatsFCSErrors" }, { 0, 38, 2, "Dot3StatsSymbolErrors" }, { 0, 40, 2, "Dot3InPauseFrames" }, { 0, 42, 2, "Dot3ControlInUnknownOpcodes" }, { 0, 44, 4, "IfOutOctets" }, { 0, 48, 2, "Dot3StatsSingleCollisionFrames" }, { 0, 50, 2, "Dot3StatMultipleCollisionFrames" }, { 0, 52, 2, "Dot3sDeferredTransmissions" }, { 0, 54, 2, "Dot3StatsLateCollisions" }, { 0, 56, 2, "EtherStatsCollisions" }, { 0, 58, 2, "Dot3StatsExcessiveCollisions" }, { 0, 60, 2, "Dot3OutPauseFrames" }, { 0, 62, 2, "Dot1dBasePortDelayExceededDiscards" }, { 0, 64, 2, "Dot1dTpPortInDiscards" }, { 0, 66, 2, "IfOutUcastPkts" }, { 0, 68, 2, "IfOutMulticastPkts" }, { 0, 70, 2, "IfOutBroadcastPkts" }, }; #define REG_WR(_smi, _reg, _val) \ do { \ err = rtl8366_smi_write_reg(_smi, _reg, _val); \ if (err) \ return err; \ } while (0) #define REG_RMW(_smi, _reg, _mask, _val) \ do { \ err = rtl8366_smi_rmwr(_smi, _reg, _mask, _val); \ if (err) \ return err; \ } while (0) static inline struct rtl8366rb *smi_to_rtl8366rb(struct rtl8366_smi *smi) { return container_of(smi, struct rtl8366rb, smi); } static inline struct rtl8366rb *sw_to_rtl8366rb(struct switch_dev *sw) { return container_of(sw, struct rtl8366rb, dev); } static inline struct rtl8366_smi *sw_to_rtl8366_smi(struct switch_dev *sw) { struct rtl8366rb *rtl = sw_to_rtl8366rb(sw); return &rtl->smi; } static int rtl8366rb_reset_chip(struct rtl8366_smi *smi) { int timeout = 10; u32 data; rtl8366_smi_write_reg(smi, RTL8366RB_RESET_CTRL_REG, RTL8366RB_CHIP_CTRL_RESET_HW); do { msleep(1); if (rtl8366_smi_read_reg(smi, RTL8366RB_RESET_CTRL_REG, &data)) return -EIO; if (!(data & RTL8366RB_CHIP_CTRL_RESET_HW)) break; } while (--timeout); if (!timeout) { printk("Timeout waiting for the switch to reset\n"); return -EIO; } return 0; } static int rtl8366rb_hw_init(struct rtl8366_smi *smi) { int err; /* set maximum packet length to 1536 bytes */ REG_RMW(smi, RTL8366RB_SGCR, RTL8366RB_SGCR_MAX_LENGTH_MASK, RTL8366RB_SGCR_MAX_LENGTH_1536); /* enable all ports */ REG_WR(smi, RTL8366RB_PECR, 0); /* enable learning for all ports */ REG_WR(smi, RTL8366RB_SSCR0, 0); /* enable auto ageing for all ports */ REG_WR(smi, RTL8366RB_SSCR1, 0); /* * discard VLAN tagged packets if the port is not a member of * the VLAN with which the packets is associated. */ REG_WR(smi, RTL8366RB_VLAN_INGRESS_CTRL2_REG, RTL8366RB_PORT_ALL); /* don't drop packets whose DA has not been learned */ REG_RMW(smi, RTL8366RB_SSCR2, RTL8366RB_SSCR2_DROP_UNKNOWN_DA, 0); return 0; } static int rtl8366rb_read_phy_reg(struct rtl8366_smi *smi, u32 phy_no, u32 page, u32 addr, u32 *data) { u32 reg; int ret; if (phy_no > RTL8366RB_PHY_NO_MAX) return -EINVAL; if (page > RTL8366RB_PHY_PAGE_MAX) return -EINVAL; if (addr > RTL8366RB_PHY_ADDR_MAX) return -EINVAL; ret = rtl8366_smi_write_reg(smi, RTL8366RB_PHY_ACCESS_CTRL_REG, RTL8366RB_PHY_CTRL_READ); if (ret) return ret; reg = 0x8000 | (1 << (phy_no + RTL8366RB_PHY_NO_OFFSET)) | ((page << RTL8366RB_PHY_PAGE_OFFSET) & RTL8366RB_PHY_PAGE_MASK) | (addr & RTL8366RB_PHY_REG_MASK); ret = rtl8366_smi_write_reg(smi, reg, 0); if (ret) return ret; ret = rtl8366_smi_read_reg(smi, RTL8366RB_PHY_ACCESS_DATA_REG, data); if (ret) return ret; return 0; } static int rtl8366rb_write_phy_reg(struct rtl8366_smi *smi, u32 phy_no, u32 page, u32 addr, u32 data) { u32 reg; int ret; if (phy_no > RTL8366RB_PHY_NO_MAX) return -EINVAL; if (page > RTL8366RB_PHY_PAGE_MAX) return -EINVAL; if (addr > RTL8366RB_PHY_ADDR_MAX) return -EINVAL; ret = rtl8366_smi_write_reg(smi, RTL8366RB_PHY_ACCESS_CTRL_REG, RTL8366RB_PHY_CTRL_WRITE); if (ret) return ret; reg = 0x8000 | (1 << (phy_no + RTL8366RB_PHY_NO_OFFSET)) | ((page << RTL8366RB_PHY_PAGE_OFFSET) & RTL8366RB_PHY_PAGE_MASK) | (addr & RTL8366RB_PHY_REG_MASK); ret = rtl8366_smi_write_reg(smi, reg, data); if (ret) return ret; return 0; } static int rtl8366rb_get_mib_counter(struct rtl8366_smi *smi, int counter, int port, unsigned long long *val) { int i; int err; u32 addr, data; u64 mibvalue; if (port > RTL8366RB_NUM_PORTS || counter >= RTL8366RB_MIB_COUNT) return -EINVAL; addr = RTL8366RB_MIB_COUNTER_BASE + RTL8366RB_MIB_COUNTER_PORT_OFFSET * (port) + rtl8366rb_mib_counters[counter].offset; /* * Writing access counter address first * then ASIC will prepare 64bits counter wait for being retrived */ data = 0; /* writing data will be discard by ASIC */ err = rtl8366_smi_write_reg(smi, addr, data); if (err) return err; /* read MIB control register */ err = rtl8366_smi_read_reg(smi, RTL8366RB_MIB_CTRL_REG, &data); if (err) return err; if (data & RTL8366RB_MIB_CTRL_BUSY_MASK) return -EBUSY; if (data & RTL8366RB_MIB_CTRL_RESET_MASK) return -EIO; mibvalue = 0; for (i = rtl8366rb_mib_counters[counter].length; i > 0; i--) { err = rtl8366_smi_read_reg(smi, addr + (i - 1), &data); if (err) return err; mibvalue = (mibvalue << 16) | (data & 0xFFFF); } *val = mibvalue; return 0; } static int rtl8366rb_get_vlan_4k(struct rtl8366_smi *smi, u32 vid, struct rtl8366_vlan_4k *vlan4k) { struct rtl8366rb_vlan_4k vlan4k_priv; int err; u32 data; u16 *tableaddr; memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k)); vlan4k_priv.vid = vid; if (vid >= RTL8366RB_NUM_VIDS) return -EINVAL; tableaddr = (u16 *)&vlan4k_priv; /* write VID */ data = *tableaddr; err = rtl8366_smi_write_reg(smi, RTL8366RB_VLAN_TABLE_WRITE_BASE, data); if (err) return err; /* write table access control word */ err = rtl8366_smi_write_reg(smi, RTL8366RB_TABLE_ACCESS_CTRL_REG, RTL8366RB_TABLE_VLAN_READ_CTRL); if (err) return err; err = rtl8366_smi_read_reg(smi, RTL8366RB_VLAN_TABLE_READ_BASE, &data); if (err) return err; *tableaddr = data; tableaddr++; err = rtl8366_smi_read_reg(smi, RTL8366RB_VLAN_TABLE_READ_BASE + 1, &data); if (err) return err; *tableaddr = data; tableaddr++; err = rtl8366_smi_read_reg(smi, RTL8366RB_VLAN_TABLE_READ_BASE + 2, &data); if (err) return err; *tableaddr = data; vlan4k->vid = vid; vlan4k->untag = vlan4k_priv.untag; vlan4k->member = vlan4k_priv.member; vlan4k->fid = vlan4k_priv.fid; return 0; } static int rtl8366rb_set_vlan_4k(struct rtl8366_smi *smi, const struct rtl8366_vlan_4k *vlan4k) { struct rtl8366rb_vlan_4k vlan4k_priv; int err; u32 data; u16 *tableaddr; if (vlan4k->vid >= RTL8366RB_NUM_VIDS || vlan4k->member > RTL8366RB_PORT_ALL || vlan4k->untag > RTL8366RB_PORT_ALL || vlan4k->fid > RTL8366RB_FIDMAX) return -EINVAL; vlan4k_priv.vid = vlan4k->vid; vlan4k_priv.untag = vlan4k->untag; vlan4k_priv.member = vlan4k->member; vlan4k_priv.fid = vlan4k->fid; tableaddr = (u16 *)&vlan4k_priv; data = *tableaddr; err = rtl8366_smi_write_reg(smi, RTL8366RB_VLAN_TABLE_WRITE_BASE, data); if (err) return err; tableaddr++; data = *tableaddr; err = rtl8366_smi_write_reg(smi, RTL8366RB_VLAN_TABLE_WRITE_BASE + 1, data); if (err) return err; tableaddr++; data = *tableaddr; err = rtl8366_smi_write_reg(smi, RTL8366RB_VLAN_TABLE_WRITE_BASE + 2, data); if (err) return err; /* write table access control word */ err = rtl8366_smi_write_reg(smi, RTL8366RB_TABLE_ACCESS_CTRL_REG, RTL8366RB_TABLE_VLAN_WRITE_CTRL); return err; } static int rtl8366rb_get_vlan_mc(struct rtl8366_smi *smi, u32 index, struct rtl8366_vlan_mc *vlanmc) { struct rtl8366rb_vlan_mc vlanmc_priv; int err; u32 addr; u32 data; u16 *tableaddr; memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc)); if (index >= RTL8366RB_NUM_VLANS) return -EINVAL; tableaddr = (u16 *)&vlanmc_priv; addr = RTL8366RB_VLAN_MEMCONF_BASE + (index * 3); err = rtl8366_smi_read_reg(smi, addr, &data); if (err) return err; *tableaddr = data; tableaddr++; addr = RTL8366RB_VLAN_MEMCONF_BASE + 1 + (index * 3); err = rtl8366_smi_read_reg(smi, addr, &data); if (err) return err; *tableaddr = data; tableaddr++; addr = RTL8366RB_VLAN_MEMCONF_BASE + 2 + (index * 3); err = rtl8366_smi_read_reg(smi, addr, &data); if (err) return err; *tableaddr = data; vlanmc->vid = vlanmc_priv.vid; vlanmc->priority = vlanmc_priv.priority; vlanmc->untag = vlanmc_priv.untag; vlanmc->member = vlanmc_priv.member; vlanmc->fid = vlanmc_priv.fid; return 0; } static int rtl8366rb_set_vlan_mc(struct rtl8366_smi *smi, u32 index, const struct rtl8366_vlan_mc *vlanmc) { struct rtl8366rb_vlan_mc vlanmc_priv; int err; u32 addr; u32 data; u16 *tableaddr; if (index >= RTL8366RB_NUM_VLANS || vlanmc->vid >= RTL8366RB_NUM_VIDS || vlanmc->priority > RTL8366RB_PRIORITYMAX || vlanmc->member > RTL8366RB_PORT_ALL || vlanmc->untag > RTL8366RB_PORT_ALL || vlanmc->fid > RTL8366RB_FIDMAX) return -EINVAL; vlanmc_priv.vid = vlanmc->vid; vlanmc_priv.priority = vlanmc->priority; vlanmc_priv.untag = vlanmc->untag; vlanmc_priv.member = vlanmc->member; vlanmc_priv.stag_mbr = 0; vlanmc_priv.stag_idx = 0; vlanmc_priv.fid = vlanmc->fid; addr = RTL8366RB_VLAN_MEMCONF_BASE + (index * 3); tableaddr = (u16 *)&vlanmc_priv; data = *tableaddr; err = rtl8366_smi_write_reg(smi, addr, data); if (err) return err; addr = RTL8366RB_VLAN_MEMCONF_BASE + 1 + (index * 3); tableaddr++; data = *tableaddr; err = rtl8366_smi_write_reg(smi, addr, data); if (err) return err; addr = RTL8366RB_VLAN_MEMCONF_BASE + 2 + (index * 3); tableaddr++; data = *tableaddr; err = rtl8366_smi_write_reg(smi, addr, data); if (err) return err; return 0; } static int rtl8366rb_get_mc_index(struct rtl8366_smi *smi, int port, int *val) { u32 data; int err; if (port >= RTL8366RB_NUM_PORTS) return -EINVAL; err = rtl8366_smi_read_reg(smi, RTL8366RB_PORT_VLAN_CTRL_REG(port), &data); if (err) return err; *val = (data >> RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)) & RTL8366RB_PORT_VLAN_CTRL_MASK; return 0; } static int rtl8366rb_set_mc_index(struct rtl8366_smi *smi, int port, int index) { if (port >= RTL8366RB_NUM_PORTS || index >= RTL8366RB_NUM_VLANS) return -EINVAL; return rtl8366_smi_rmwr(smi, RTL8366RB_PORT_VLAN_CTRL_REG(port), RTL8366RB_PORT_VLAN_CTRL_MASK << RTL8366RB_PORT_VLAN_CTRL_SHIFT(port), (index & RTL8366RB_PORT_VLAN_CTRL_MASK) << RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)); } static int rtl8366rb_vlan_set_vlan(struct rtl8366_smi *smi, int enable) { return rtl8366_smi_rmwr(smi, RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN, (enable) ? RTL8366RB_SGCR_EN_VLAN : 0); } static int rtl8366rb_vlan_set_4ktable(struct rtl8366_smi *smi, int enable) { return rtl8366_smi_rmwr(smi, RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN_4KTB, (enable) ? RTL8366RB_SGCR_EN_VLAN_4KTB : 0); } static int rtl8366rb_sw_reset_mibs(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); int err = 0; if (val->value.i == 1) err = rtl8366_smi_rmwr(smi, RTL8366RB_MIB_CTRL_REG, 0, RTL8366RB_MIB_CTRL_GLOBAL_RESET); return err; } static int rtl8366rb_sw_get_vlan_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 data; if (attr->ofs == 1) { rtl8366_smi_read_reg(smi, RTL8366RB_SGCR, &data); if (data & RTL8366RB_SGCR_EN_VLAN) val->value.i = 1; else val->value.i = 0; } else if (attr->ofs == 2) { rtl8366_smi_read_reg(smi, RTL8366RB_SGCR, &data); if (data & RTL8366RB_SGCR_EN_VLAN_4KTB) val->value.i = 1; else val->value.i = 0; } return 0; } static int rtl8366rb_sw_get_blinkrate(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 data; rtl8366_smi_read_reg(smi, RTL8366RB_LED_BLINKRATE_REG, &data); val->value.i = (data & (RTL8366RB_LED_BLINKRATE_MASK)); return 0; } static int rtl8366rb_sw_set_blinkrate(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); if (val->value.i >= 6) return -EINVAL; return rtl8366_smi_rmwr(smi, RTL8366RB_LED_BLINKRATE_REG, RTL8366RB_LED_BLINKRATE_MASK, val->value.i); } static int rtl8366rb_sw_set_vlan_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); if (attr->ofs == 1) return rtl8366rb_vlan_set_vlan(smi, val->value.i); else return rtl8366rb_vlan_set_4ktable(smi, val->value.i); } static int rtl8366rb_sw_get_learning_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 data; rtl8366_smi_read_reg(smi, RTL8366RB_SSCR0, &data); val->value.i = !data; return 0; } static int rtl8366rb_sw_set_learning_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 portmask = 0; int err = 0; if (!val->value.i) portmask = RTL8366RB_PORT_ALL; /* set learning for all ports */ REG_WR(smi, RTL8366RB_SSCR0, portmask); /* set auto ageing for all ports */ REG_WR(smi, RTL8366RB_SSCR1, portmask); return 0; } static const char *rtl8366rb_speed_str(unsigned speed) { switch (speed) { case 0: return "10baseT"; case 1: return "100baseT"; case 2: return "1000baseT"; } return "unknown"; } static int rtl8366rb_sw_get_port_link(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 len = 0, data = 0; if (val->port_vlan >= RTL8366RB_NUM_PORTS) return -EINVAL; memset(smi->buf, '\0', sizeof(smi->buf)); rtl8366_smi_read_reg(smi, RTL8366RB_PORT_LINK_STATUS_BASE + (val->port_vlan / 2), &data); if (val->port_vlan % 2) data = data >> 8; if (data & RTL8366RB_PORT_STATUS_LINK_MASK) { len = snprintf(smi->buf, sizeof(smi->buf), "port:%d link:up speed:%s %s-duplex %s%s%s", val->port_vlan, rtl8366rb_speed_str(data & RTL8366RB_PORT_STATUS_SPEED_MASK), (data & RTL8366RB_PORT_STATUS_DUPLEX_MASK) ? "full" : "half", (data & RTL8366RB_PORT_STATUS_TXPAUSE_MASK) ? "tx-pause ": "", (data & RTL8366RB_PORT_STATUS_RXPAUSE_MASK) ? "rx-pause " : "", (data & RTL8366RB_PORT_STATUS_AN_MASK) ? "nway ": ""); } else { len = snprintf(smi->buf, sizeof(smi->buf), "port:%d link: down", val->port_vlan); } val->value.s = smi->buf; val->len = len; return 0; } static int rtl8366rb_sw_get_vlan_info(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { int i; u32 len = 0; struct rtl8366_vlan_4k vlan4k; struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); char *buf = smi->buf; int err; if (val->port_vlan == 0 || val->port_vlan >= RTL8366RB_NUM_VLANS) return -EINVAL; memset(buf, '\0', sizeof(smi->buf)); err = rtl8366rb_get_vlan_4k(smi, val->port_vlan, &vlan4k); if (err) return err; len += snprintf(buf + len, sizeof(smi->buf) - len, "VLAN %d: Ports: '", vlan4k.vid); for (i = 0; i < RTL8366RB_NUM_PORTS; i++) { if (!(vlan4k.member & (1 << i))) continue; len += snprintf(buf + len, sizeof(smi->buf) - len, "%d%s", i, (vlan4k.untag & (1 << i)) ? "" : "t"); } len += snprintf(buf + len, sizeof(smi->buf) - len, "', members=%04x, untag=%04x, fid=%u", vlan4k.member, vlan4k.untag, vlan4k.fid); val->value.s = buf; val->len = len; return 0; } static int rtl8366rb_sw_set_port_led(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 data; u32 mask; u32 reg; if (val->port_vlan >= RTL8366RB_NUM_PORTS) return -EINVAL; if (val->port_vlan == RTL8366RB_PORT_NUM_CPU) { reg = RTL8366RB_LED_BLINKRATE_REG; mask = 0xF << 4; data = val->value.i << 4; } else { reg = RTL8366RB_LED_CTRL_REG; mask = 0xF << (val->port_vlan * 4), data = val->value.i << (val->port_vlan * 4); } return rtl8366_smi_rmwr(smi, reg, mask, data); } static int rtl8366rb_sw_get_port_led(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); u32 data = 0; if (val->port_vlan >= RTL8366RB_NUM_LEDGROUPS) return -EINVAL; rtl8366_smi_read_reg(smi, RTL8366RB_LED_CTRL_REG, &data); val->value.i = (data >> (val->port_vlan * 4)) & 0x000F; return 0; } static int rtl8366rb_sw_reset_port_mibs(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); if (val->port_vlan >= RTL8366RB_NUM_PORTS) return -EINVAL; return rtl8366_smi_rmwr(smi, RTL8366RB_MIB_CTRL_REG, 0, RTL8366RB_MIB_CTRL_PORT_RESET(val->port_vlan)); } static int rtl8366rb_sw_get_port_mib(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); int i, len = 0; unsigned long long counter = 0; char *buf = smi->buf; if (val->port_vlan >= RTL8366RB_NUM_PORTS) return -EINVAL; len += snprintf(buf + len, sizeof(smi->buf) - len, "Port %d MIB counters\n", val->port_vlan); for (i = 0; i < ARRAY_SIZE(rtl8366rb_mib_counters); ++i) { len += snprintf(buf + len, sizeof(smi->buf) - len, "%-36s: ", rtl8366rb_mib_counters[i].name); if (!rtl8366rb_get_mib_counter(smi, i, val->port_vlan, &counter)) len += snprintf(buf + len, sizeof(smi->buf) - len, "%llu\n", counter); else len += snprintf(buf + len, sizeof(smi->buf) - len, "%s\n", "error"); } val->value.s = buf; val->len = len; return 0; } static int rtl8366rb_sw_get_vlan_ports(struct switch_dev *dev, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); struct switch_port *port; struct rtl8366_vlan_4k vlan4k; int i; if (val->port_vlan == 0 || val->port_vlan >= RTL8366RB_NUM_VLANS) return -EINVAL; rtl8366rb_get_vlan_4k(smi, val->port_vlan, &vlan4k); port = &val->value.ports[0]; val->len = 0; for (i = 0; i < RTL8366RB_NUM_PORTS; i++) { if (!(vlan4k.member & BIT(i))) continue; port->id = i; port->flags = (vlan4k.untag & BIT(i)) ? 0 : BIT(SWITCH_PORT_FLAG_TAGGED); val->len++; port++; } return 0; } static int rtl8366rb_sw_set_vlan_ports(struct switch_dev *dev, struct switch_val *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); struct switch_port *port; u32 member = 0; u32 untag = 0; int i; if (val->port_vlan == 0 || val->port_vlan >= RTL8366RB_NUM_VLANS) return -EINVAL; port = &val->value.ports[0]; for (i = 0; i < val->len; i++, port++) { member |= BIT(port->id); if (!(port->flags & BIT(SWITCH_PORT_FLAG_TAGGED))) untag |= BIT(port->id); } return rtl8366_set_vlan(smi, val->port_vlan, member, untag, 0); } static int rtl8366rb_sw_get_port_pvid(struct switch_dev *dev, int port, int *val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); return rtl8366_get_pvid(smi, port, val); } static int rtl8366rb_sw_set_port_pvid(struct switch_dev *dev, int port, int val) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); return rtl8366_set_pvid(smi, port, val); } static int rtl8366rb_sw_reset_switch(struct switch_dev *dev) { struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev); int err; err = rtl8366rb_reset_chip(smi); if (err) return err; err = rtl8366rb_hw_init(smi); if (err) return err; return rtl8366_reset_vlan(smi); } static struct switch_attr rtl8366rb_globals[] = { { .type = SWITCH_TYPE_INT, .name = "enable_learning", .description = "Enable learning, enable aging", .set = rtl8366rb_sw_set_learning_enable, .get = rtl8366rb_sw_get_learning_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "enable_vlan", .description = "Enable VLAN mode", .set = rtl8366rb_sw_set_vlan_enable, .get = rtl8366rb_sw_get_vlan_enable, .max = 1, .ofs = 1 }, { .type = SWITCH_TYPE_INT, .name = "enable_vlan4k", .description = "Enable VLAN 4K mode", .set = rtl8366rb_sw_set_vlan_enable, .get = rtl8366rb_sw_get_vlan_enable, .max = 1, .ofs = 2 }, { .type = SWITCH_TYPE_INT, .name = "reset_mibs", .description = "Reset all MIB counters", .set = rtl8366rb_sw_reset_mibs, .get = NULL, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "blinkrate", .description = "Get/Set LED blinking rate (0 = 43ms, 1 = 84ms," " 2 = 120ms, 3 = 170ms, 4 = 340ms, 5 = 670ms)", .set = rtl8366rb_sw_set_blinkrate, .get = rtl8366rb_sw_get_blinkrate, .max = 5 }, }; static struct switch_attr rtl8366rb_port[] = { { .type = SWITCH_TYPE_STRING, .name = "link", .description = "Get port link information", .max = 1, .set = NULL, .get = rtl8366rb_sw_get_port_link, }, { .type = SWITCH_TYPE_INT, .name = "reset_mib", .description = "Reset single port MIB counters", .max = 1, .set = rtl8366rb_sw_reset_port_mibs, .get = NULL, }, { .type = SWITCH_TYPE_STRING, .name = "mib", .description = "Get MIB counters for port", .max = 33, .set = NULL, .get = rtl8366rb_sw_get_port_mib, }, { .type = SWITCH_TYPE_INT, .name = "led", .description = "Get/Set port group (0 - 3) led mode (0 - 15)", .max = 15, .set = rtl8366rb_sw_set_port_led, .get = rtl8366rb_sw_get_port_led, }, }; static struct switch_attr rtl8366rb_vlan[] = { { .type = SWITCH_TYPE_STRING, .name = "info", .description = "Get vlan information", .max = 1, .set = NULL, .get = rtl8366rb_sw_get_vlan_info, }, }; /* template */ static struct switch_dev rtl8366_switch_dev = { .name = "RTL8366S", .cpu_port = RTL8366RB_PORT_NUM_CPU, .ports = RTL8366RB_NUM_PORTS, .vlans = RTL8366RB_NUM_VLANS, .attr_global = { .attr = rtl8366rb_globals, .n_attr = ARRAY_SIZE(rtl8366rb_globals), }, .attr_port = { .attr = rtl8366rb_port, .n_attr = ARRAY_SIZE(rtl8366rb_port), }, .attr_vlan = { .attr = rtl8366rb_vlan, .n_attr = ARRAY_SIZE(rtl8366rb_vlan), }, .get_vlan_ports = rtl8366rb_sw_get_vlan_ports, .set_vlan_ports = rtl8366rb_sw_set_vlan_ports, .get_port_pvid = rtl8366rb_sw_get_port_pvid, .set_port_pvid = rtl8366rb_sw_set_port_pvid, .reset_switch = rtl8366rb_sw_reset_switch, }; static int rtl8366rb_switch_init(struct rtl8366rb *rtl) { struct switch_dev *dev = &rtl->dev; int err; memcpy(dev, &rtl8366_switch_dev, sizeof(struct switch_dev)); dev->priv = rtl; dev->devname = dev_name(rtl->parent); err = register_switch(dev, NULL); if (err) dev_err(rtl->parent, "switch registration failed\n"); return err; } static void rtl8366rb_switch_cleanup(struct rtl8366rb *rtl) { unregister_switch(&rtl->dev); } static int rtl8366rb_mii_read(struct mii_bus *bus, int addr, int reg) { struct rtl8366_smi *smi = bus->priv; u32 val = 0; int err; err = rtl8366rb_read_phy_reg(smi, addr, 0, reg, &val); if (err) return 0xffff; return val; } static int rtl8366rb_mii_write(struct mii_bus *bus, int addr, int reg, u16 val) { struct rtl8366_smi *smi = bus->priv; u32 t; int err; err = rtl8366rb_write_phy_reg(smi, addr, 0, reg, val); /* flush write */ (void) rtl8366rb_read_phy_reg(smi, addr, 0, reg, &t); return err; } static int rtl8366rb_mii_bus_match(struct mii_bus *bus) { return (bus->read == rtl8366rb_mii_read && bus->write == rtl8366rb_mii_write); } static int rtl8366rb_setup(struct rtl8366rb *rtl) { struct rtl8366_smi *smi = &rtl->smi; int ret; ret = rtl8366rb_reset_chip(smi); if (ret) return ret; ret = rtl8366rb_hw_init(smi); return ret; } static int rtl8366rb_detect(struct rtl8366_smi *smi) { u32 chip_id = 0; u32 chip_ver = 0; int ret; ret = rtl8366_smi_read_reg(smi, RTL8366RB_CHIP_ID_REG, &chip_id); if (ret) { dev_err(smi->parent, "unable to read chip id\n"); return ret; } switch (chip_id) { case RTL8366RB_CHIP_ID_8366: break; default: dev_err(smi->parent, "unknown chip id (%04x)\n", chip_id); return -ENODEV; } ret = rtl8366_smi_read_reg(smi, RTL8366RB_CHIP_VERSION_CTRL_REG, &chip_ver); if (ret) { dev_err(smi->parent, "unable to read chip version\n"); return ret; } dev_info(smi->parent, "RTL%04x ver. %u chip found\n", chip_id, chip_ver & RTL8366RB_CHIP_VERSION_MASK); return 0; } static struct rtl8366_smi_ops rtl8366rb_smi_ops = { .detect = rtl8366rb_detect, .mii_read = rtl8366rb_mii_read, .mii_write = rtl8366rb_mii_write, .get_vlan_mc = rtl8366rb_get_vlan_mc, .set_vlan_mc = rtl8366rb_set_vlan_mc, .get_vlan_4k = rtl8366rb_get_vlan_4k, .set_vlan_4k = rtl8366rb_set_vlan_4k, .get_mc_index = rtl8366rb_get_mc_index, .set_mc_index = rtl8366rb_set_mc_index, .get_mib_counter = rtl8366rb_get_mib_counter, }; static int __init rtl8366rb_probe(struct platform_device *pdev) { static int rtl8366_smi_version_printed; struct rtl8366rb_platform_data *pdata; struct rtl8366rb *rtl; struct rtl8366_smi *smi; int err; if (!rtl8366_smi_version_printed++) printk(KERN_NOTICE RTL8366RB_DRIVER_DESC " version " RTL8366RB_DRIVER_VER"\n"); pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "no platform data specified\n"); err = -EINVAL; goto err_out; } rtl = kzalloc(sizeof(*rtl), GFP_KERNEL); if (!rtl) { dev_err(&pdev->dev, "no memory for private data\n"); err = -ENOMEM; goto err_out; } rtl->parent = &pdev->dev; smi = &rtl->smi; smi->parent = &pdev->dev; smi->gpio_sda = pdata->gpio_sda; smi->gpio_sck = pdata->gpio_sck; smi->ops = &rtl8366rb_smi_ops; smi->cpu_port = RTL8366RB_PORT_NUM_CPU; smi->num_ports = RTL8366RB_NUM_PORTS; smi->num_vlan_mc = RTL8366RB_NUM_VLANS; smi->mib_counters = rtl8366rb_mib_counters; smi->num_mib_counters = ARRAY_SIZE(rtl8366rb_mib_counters); err = rtl8366_smi_init(smi); if (err) goto err_free_rtl; platform_set_drvdata(pdev, rtl); err = rtl8366rb_setup(rtl); if (err) goto err_clear_drvdata; err = rtl8366rb_switch_init(rtl); if (err) goto err_clear_drvdata; return 0; err_clear_drvdata: platform_set_drvdata(pdev, NULL); rtl8366_smi_cleanup(smi); err_free_rtl: kfree(rtl); err_out: return err; } static int rtl8366rb_phy_config_init(struct phy_device *phydev) { if (!rtl8366rb_mii_bus_match(phydev->bus)) return -EINVAL; return 0; } static int rtl8366rb_phy_config_aneg(struct phy_device *phydev) { return 0; } static struct phy_driver rtl8366rb_phy_driver = { .phy_id = 0x001cc960, .name = "Realtek RTL8366RB", .phy_id_mask = 0x1ffffff0, .features = PHY_GBIT_FEATURES, .config_aneg = rtl8366rb_phy_config_aneg, .config_init = rtl8366rb_phy_config_init, .read_status = genphy_read_status, .driver = { .owner = THIS_MODULE, }, }; static int __devexit rtl8366rb_remove(struct platform_device *pdev) { struct rtl8366rb *rtl = platform_get_drvdata(pdev); if (rtl) { rtl8366rb_switch_cleanup(rtl); platform_set_drvdata(pdev, NULL); rtl8366_smi_cleanup(&rtl->smi); kfree(rtl); } return 0; } static struct platform_driver rtl8366rb_driver = { .driver = { .name = RTL8366RB_DRIVER_NAME, .owner = THIS_MODULE, }, .probe = rtl8366rb_probe, .remove = __devexit_p(rtl8366rb_remove), }; static int __init rtl8366rb_module_init(void) { int ret; ret = platform_driver_register(&rtl8366rb_driver); if (ret) return ret; ret = phy_driver_register(&rtl8366rb_phy_driver); if (ret) goto err_platform_unregister; return 0; err_platform_unregister: platform_driver_unregister(&rtl8366rb_driver); return ret; } module_init(rtl8366rb_module_init); static void __exit rtl8366rb_module_exit(void) { phy_driver_unregister(&rtl8366rb_phy_driver); platform_driver_unregister(&rtl8366rb_driver); } module_exit(rtl8366rb_module_exit); MODULE_DESCRIPTION(RTL8366RB_DRIVER_DESC); MODULE_VERSION(RTL8366RB_DRIVER_VER); MODULE_AUTHOR("Gabor Juhos "); MODULE_AUTHOR("Antti Seppälä "); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" RTL8366RB_DRIVER_NAME);