/* * (C) Copyright 2003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * (C) Copyright 2010 * Thomas Langer, Ralph Hempel * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <command.h> #include <netdev.h> #include <miiphy.h> #include <asm/addrspace.h> #include <asm/ar9.h> #include <asm/reboot.h> #include <asm/io.h> #if defined(CONFIG_CMD_HTTPD) #include <httpd.h> #endif extern ulong ifx_get_ddr_hz(void); extern ulong ifx_get_cpuclk(void); /* definitions for external PHYs / Switches */ /* Split values into phy address and register address */ #define PHYADDR(_reg) ((_reg >> 5) & 0xff), (_reg & 0x1f) /* IDs and registers of known external switches */ #define ID_SAMURAI_0 0x1020 #define ID_SAMURAI_1 0x0007 #define SAMURAI_ID_REG0 0xA0 #define SAMURAI_ID_REG1 0xA1 #define ID_TANTOS 0x2599 #define RGMII_MODE 0 #define MII_MODE 1 #define REV_MII_MODE 2 #define RED_MII_MODE_IC 3 /*Input clock */ #define RGMII_MODE_100MB 4 #define TURBO_REV_MII_MODE 6 /*Turbo Rev Mii mode */ #define RED_MII_MODE_OC 7 /*Output clock */ #define RGMII_MODE_10MB 8 #define mdelay(n) udelay((n)*1000) static void ar9_sw_chip_init(u8 port, u8 mode); static void ar9_enable_sw_port(u8 port, u8 state); static void ar9_configure_sw_port(u8 port, u8 mode); static u16 ar9_smi_reg_read(u16 reg); static u16 ar9_smi_reg_write(u16 reg, u16 data); static char * const name = "lq_cpe_eth"; static int external_switch_init(void); void _machine_restart(void) { *AR9_RCU_RST_REQ |= AR9_RST_ALL; } #ifdef CONFIG_SYS_RAMBOOT phys_size_t initdram(int board_type) { return get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_MAX_RAM); } #elif defined(CONFIG_USE_DDR_RAM) phys_size_t initdram(int board_type) { return (CONFIG_SYS_MAX_RAM); } #else static ulong max_sdram_size(void) /* per Chip Select */ { /* The only supported SDRAM data width is 16bit. */ #define CFG_DW 4 /* The only supported number of SDRAM banks is 4. */ #define CFG_NB 4 ulong cfgpb0 = *AR9_SDRAM_MC_CFGPB0; int cols = cfgpb0 & 0xF; int rows = (cfgpb0 & 0xF0) >> 4; ulong size = (1 << (rows + cols)) * CFG_DW * CFG_NB; return size; } /* * Check memory range for valid RAM. A simple memory test determines * the actually available RAM size between addresses `base' and * `base + maxsize'. */ static long int dram_size(long int *base, long int maxsize) { volatile long int *addr; ulong cnt, val; ulong save[32]; /* to make test non-destructive */ unsigned char i = 0; for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) { addr = base + cnt; /* pointer arith! */ save[i++] = *addr; *addr = ~cnt; } /* write 0 to base address */ addr = base; save[i] = *addr; *addr = 0; /* check at base address */ if ((val = *addr) != 0) { *addr = save[i]; return (0); } for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) { addr = base + cnt; /* pointer arith! */ val = *addr; *addr = save[--i]; if (val != (~cnt)) { return (cnt * sizeof (long)); } } return (maxsize); } phys_size_t initdram(int board_type) { int rows, cols, best_val = *AR9_SDRAM_MC_CFGPB0; ulong size, max_size = 0; ulong our_address; /* load t9 into our_address */ asm volatile ("move %0, $25" : "=r" (our_address) :); /* Can't probe for RAM size unless we are running from Flash. * find out whether running from DRAM or Flash. */ if (CPHYSADDR(our_address) < CPHYSADDR(PHYS_FLASH_1)) { return max_sdram_size(); } for (cols = 0x8; cols <= 0xC; cols++) { for (rows = 0xB; rows <= 0xD; rows++) { *AR9_SDRAM_MC_CFGPB0 = (0x14 << 8) | (rows << 4) | cols; size = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, max_sdram_size()); if (size > max_size) { best_val = *AR9_SDRAM_MC_CFGPB0; max_size = size; } } } *AR9_SDRAM_MC_CFGPB0 = best_val; return max_size; } #endif int checkboard (void) { unsigned long chipid = *AR9_MPS_CHIPID; int part_num; puts ("Board: "); part_num = AR9_MPS_CHIPID_PARTNUM_GET(chipid); switch (part_num) { case 0x16C: puts("ARX188 "); break; case 0x16D: puts("ARX168 "); break; case 0x16F: puts("ARX182 "); break; case 0x170: puts("GRX188 "); break; case 0x171: puts("GRX168 "); break; default: printf ("unknown, chip part number 0x%03X ", part_num); break; } printf ("V1.%ld, ", AR9_MPS_CHIPID_VERSION_GET(chipid)); printf("DDR Speed %ld MHz, ", ifx_get_ddr_hz()/1000000); printf("CPU Speed %ld MHz\n", ifx_get_cpuclk()/1000000); return 0; } #ifdef CONFIG_SKIP_LOWLEVEL_INIT int board_early_init_f(void) { #ifdef CONFIG_EBU_ADDSEL0 (*AR9_EBU_ADDSEL0) = CONFIG_EBU_ADDSEL0; #endif #ifdef CONFIG_EBU_ADDSEL1 (*AR9_EBU_ADDSEL1) = CONFIG_EBU_ADDSEL1; #endif #ifdef CONFIG_EBU_ADDSEL2 (*AR9_EBU_ADDSEL2) = CONFIG_EBU_ADDSEL2; #endif #ifdef CONFIG_EBU_ADDSEL3 (*AR9_EBU_ADDSEL3) = CONFIG_EBU_ADDSEL3; #endif #ifdef CONFIG_EBU_BUSCON0 (*AR9_EBU_BUSCON0) = CONFIG_EBU_BUSCON0; #endif #ifdef CONFIG_EBU_BUSCON1 (*AR9_EBU_BUSCON1) = CONFIG_EBU_BUSCON1; #endif #ifdef CONFIG_EBU_BUSCON2 (*AR9_EBU_BUSCON2) = CONFIG_EBU_BUSCON2; #endif #ifdef CONFIG_EBU_BUSCON3 (*AR9_EBU_BUSCON3) = CONFIG_EBU_BUSCON3; #endif return 0; } #endif /* CONFIG_SKIP_LOWLEVEL_INIT */ int board_eth_init(bd_t *bis) { #if defined(CONFIG_IFX_ETOP) *AR9_PMU_PWDCR &= 0xFFFFEFDF; *AR9_PMU_PWDCR &= ~AR9_PMU_DMA; /* enable DMA from PMU */ if (lq_eth_initialize(bis) < 0) return -1; *AR9_RCU_RST_REQ |= 1; udelay(200000); *AR9_RCU_RST_REQ &= (unsigned long)~1; udelay(1000); #ifdef CONFIG_EXTRA_SWITCH if (external_switch_init()<0) return -1; #endif /* CONFIG_EXTRA_SWITCH */ #endif /* CONFIG_IFX_ETOP */ return 0; } static void ar9_configure_sw_port(u8 port, u8 mode) { if(port) { if (mode == 1) //MII mode { *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 | (0xf000); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(0xf000); *AR9_GPIO_P2_DIR = (*AR9_GPIO_P2_DIR & ~(0xf000)) | 0x2000; *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | 0x2000; } else if(mode == 2 || mode == 6) //Rev Mii mode { *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 | (0xf000); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(0xf000); *AR9_GPIO_P2_DIR = (*AR9_GPIO_P2_DIR | (0xf000)) & ~0x2000; *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | 0xd000; } } else //Port 0 { if (mode == 1) //MII mode { *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 | (0x0303); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(0x0303); *AR9_GPIO_P2_DIR = (*AR9_GPIO_P2_DIR & ~(0x0303)) | 0x0100; *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | 0x0100; } else if(mode ==2 || mode ==6) //Rev Mii mode { *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 | (0x0303); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(0x0303); *AR9_GPIO_P2_DIR = (*AR9_GPIO_P2_DIR | (0x0303)) & ~0x0100; *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | 0x0203; } } } /* Call this function to place either MAC port 0 or 1 into working mode. Parameters: port - select ports 0 or 1. state of interface : state 0: RGMII 1: MII 2: Rev MII 3: Reduce MII (input clock) 4: RGMII 100mb 5: Reserve 6: Turbo Rev MII 7: Reduce MII (output clock) */ void ar9_enable_sw_port(u8 port, u8 state) { REG32(AR9_SW_GCTL0) |= 0x80000000; if (port == 0) { REG32(AR9_SW_RGMII_CTL) &= 0xffcffc0e ; //#if AR9_REFBOARD_TANTOS REG32(0xbf20302c) &= 0xffff81ff; REG32(0xbf20302c) |= 4<<9 ; //#endif REG32(AR9_SW_RGMII_CTL) |= ((u32)(state &0x3))<<8; if((state &0x3) == 0) { REG32(AR9_SW_RGMII_CTL) &= 0xfffffff3; if(state == 4) REG32(AR9_SW_RGMII_CTL) |= 0x4; else REG32(AR9_SW_RGMII_CTL) |= 0x8; } if(state == 6) REG32(AR9_SW_RGMII_CTL) |= ((u32) (1<<20)); if(state == 7) REG32(AR9_SW_RGMII_CTL) |= ((u32) (1<<21)); } // *AR9_PPE32_ETOP_CFG = *AR9_PPE32_ETOP_CFG & 0xfffffffe; else { REG32(AR9_SW_RGMII_CTL) &= 0xff303fff ; REG32(AR9_SW_RGMII_CTL) |= ((u32)(state &0x3))<<18; if((state &0x3) == 0) { REG32(AR9_SW_RGMII_CTL) &= 0xffffcfff; if(state == 4) REG32(AR9_SW_RGMII_CTL) |= 0x1000; else REG32(AR9_SW_RGMII_CTL) |= 0x2000; } if(state == 6) REG32(AR9_SW_RGMII_CTL) |= ((u32) (1<<22)); if(state == 7) REG32(AR9_SW_RGMII_CTL) |= ((u32) (1<<23)); } } void pci_reset(void) { int i,j; #define AR9_V1_PCI_RST_FIX 1 #if AR9_V1_PCI_RST_FIX // 5th June 2008 Add GPIO19 to control EJTAG_TRST *AR9_GPIO_P1_ALTSEL0 = *AR9_GPIO_P1_ALTSEL0 & ~0x8; *AR9_GPIO_P1_ALTSEL1 = *AR9_GPIO_P1_ALTSEL1 & ~0x8; *AR9_GPIO_P1_DIR = *AR9_GPIO_P1_DIR | 0x8; *AR9_GPIO_P1_OD = *AR9_GPIO_P1_OD | 0x8; *AR9_GPIO_P1_OUT = *AR9_GPIO_P1_OUT | 0x8; *AR9_GPIO_P0_ALTSEL0 = *AR9_GPIO_P0_ALTSEL0 & ~0x4000; *AR9_GPIO_P0_ALTSEL1 = *AR9_GPIO_P0_ALTSEL1 & ~0x4000; *AR9_GPIO_P0_DIR = *AR9_GPIO_P0_DIR | 0x4000; *AR9_GPIO_P0_OD = *AR9_GPIO_P0_OD | 0x4000; for(j=0;j<5;j++) { *AR9_GPIO_P0_OUT = *AR9_GPIO_P0_OUT & ~0x4000; for(i=0;i<0x10000;i++); *AR9_GPIO_P0_OUT = *AR9_GPIO_P0_OUT | 0x4000; for(i=0;i<0x10000;i++); } *AR9_GPIO_P0_DIR = *AR9_GPIO_P0_DIR & ~0x4000; *AR9_GPIO_P1_DIR = *AR9_GPIO_P1_DIR & ~0x8; #endif } static u16 ar9_smi_reg_read(u16 reg) { int i; while(REG32(AR9_SW_MDIO_CTL) & 0x8000); REG32(AR9_SW_MDIO_CTL) = 0x8000| 0x2<<10 | ((u32) (reg&0x3ff)) ; /*0x10=MDIO_OP_READ*/ for(i=0;i<0x3fff;i++); udelay(50); while(REG32(AR9_SW_MDIO_CTL) & 0x8000); return((u16) (REG32(AR9_SW_MDIO_DATA))); } static u16 ar9_smi_reg_write(u16 reg, u16 data) { int i; while(REG32(AR9_SW_MDIO_CTL) & 0x8000); REG32(AR9_SW_MDIO_CTL) = 0x8000| (((u32) data)<<16) | 0x01<<10 | ((u32) (reg&0x3ff)) ; /*0x01=MDIO_OP_WRITE*/ for(i=0;i<0x3fff;i++); udelay(50); return 0; } static void ar9_sw_chip_init(u8 port, u8 mode) { int i; u16 chipid; debug("\nsearching for switches ... "); asm("sync"); pci_reset(); /* 25mhz clock out */ *AR9_CGU_IFCCR &= ~(3<<10); *AR9_GPIO_P0_ALTSEL0 = *AR9_GPIO_P0_ALTSEL0 | (1<<3); *AR9_GPIO_P0_ALTSEL1 = *AR9_GPIO_P0_ALTSEL1 & ~(1<<3); *AR9_GPIO_P0_DIR = *AR9_GPIO_P0_DIR | (1<<3); *AR9_GPIO_P0_OD = *AR9_GPIO_P0_OD | (1<<3); *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 & ~(1<<0); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(1<<0); *AR9_GPIO_P2_DIR = *AR9_GPIO_P2_DIR | (1<<0); *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | (1<<0); *AR9_PMU_PWDCR = (*AR9_PMU_PWDCR & 0xFFFBDFDF) ; *AR9_PMU_PWDCR = (*AR9_PMU_PWDCR & ~(AR9_PMU_DMA | AR9_PMU_SWITCH)); *AR9_PMU_PWDCR = (*AR9_PMU_PWDCR | AR9_PMU_USB0 | AR9_PMU_USB0_P); *AR9_GPIO_P2_OUT &= ~(1<<0); asm("sync"); ar9_configure_sw_port(port, mode); ar9_enable_sw_port(port, mode); REG32(AR9_SW_P0_CTL) |= 0x400000; /* disable mdio polling for tantos */ asm("sync"); /*GPIO 55(P3.7) used as output, set high*/ *AR9_GPIO_P3_OD |=(1<<7); *AR9_GPIO_P3_DIR |= (1<<7); *AR9_GPIO_P3_ALTSEL0 &=~(1<<7); *AR9_GPIO_P3_ALTSEL1 &=~(1<<7); asm("sync"); udelay(10); *AR9_GPIO_P3_OUT &= ~(1<<7); for(i=0;i<1000;i++) udelay(110); *AR9_GPIO_P3_OUT |=(1<<7); udelay(100); if(port==0) REG32(AR9_SW_P0_CTL) |= 0x40001; else REG32(AR9_SW_P1_CTL) |= 0x40001; REG32(AR9_SW_P2_CTL) |= 0x40001; REG32(AR9_SW_PMAC_HD_CTL) |= 0x40000; /* enable CRC */ *AR9_GPIO_P2_ALTSEL0 = *AR9_GPIO_P2_ALTSEL0 | (0xc00); *AR9_GPIO_P2_ALTSEL1 = *AR9_GPIO_P2_ALTSEL1 & ~(0xc00); *AR9_GPIO_P2_DIR = *AR9_GPIO_P2_DIR | 0xc00; *AR9_GPIO_P2_OD = *AR9_GPIO_P2_OD | 0xc00; asm("sync"); chipid = (unsigned short)(ar9_smi_reg_read(0x101)); printf("\nswitch chip id=%08x\n",chipid); if (chipid != ID_TANTOS) { debug("whatever detected\n"); ar9_smi_reg_write(0x1,0x840f); ar9_smi_reg_write(0x3,0x840f); ar9_smi_reg_write(0x5,0x840f); ar9_smi_reg_write(0x7,0x840f); ar9_smi_reg_write(0x8,0x840f); ar9_smi_reg_write(0x12,0x3602); #ifdef CLK_OUT2_25MHZ ar9_smi_reg_write(0x33,0x4000); #endif } else { // Tantos switch ship debug("Tantos switch detected\n"); ar9_smi_reg_write(0xa1,0x0004); /*port 5 force link up*/ ar9_smi_reg_write(0xc1,0x0004); /*port 6 force link up*/ ar9_smi_reg_write(0xf5,0x0BBB); /*port 4 duplex mode, flow control enable,1000Mbit/s*/ /*port 5 duplex mode, flow control enable, 1000Mbit/s*/ /*port 6 duplex mode, flow control enable, 1000Mbit/s*/ } asm("sync"); /*reset GPHY*/ mdelay(200); *AR9_RCU_RST_REQ |= (AR9_RCU_RST_REQ_DMA | AR9_RCU_RST_REQ_PPE) ; udelay(50); *AR9_GPIO_P2_OUT |= (1<<0); } static void ar9_dma_init(void) { /* select port */ *AR9_DMA_PS = 0; /* TXWGT 14:12 rw Port Weight for Transmit Direction (the default value �001�) TXENDI 11:10 rw Endianness for Transmit Direction Determine a byte swap between memory interface (left hand side) and peripheral interface (right hand side). 00B B0_B1_B2_B3 No byte switching 01B B1_B0_B3_B2 B0B1B2B3 => B1B0B3B2 10B B2_B3_B0_B1 B0B1B2B3 => B2B3B0B1 RXENDI 9:8 rw Endianness for Receive Direction Determine a byte swap between peripheral (left hand side) and memory interface (right hand side). 00B B0_B1_B2_B3 No byte switching 01B B1_B0_B3_B2 B0B1B2B3 => B1B0B3B2 10B B2_B3_B0_B1 B0B1B2B3 => B2B3B0B1 11B B3_B2_B1_B0 B0B1B2B3 => B3B2B1B0 TXBL 5:4 rw Burst Length for Transmit Direction Selects burst length for TX direction. Others are reserved and will result in 2_WORDS burst length. 01B 2_WORDS 2 words 10B 4_WORDS 4 words 11B 8_WORDS 8 words RXBL 3:2 rw Burst Length for Receive Direction Selects burst length for RX direction. Others are reserved and will result in 2_WORDS burst length. 01B 2_WORDS 2 words 10B 4_WORDS 4 words 11B 8_WORDS 8 words */ *AR9_DMA_PCTRL = 0x1f28; } #ifdef CONFIG_EXTRA_SWITCH static int external_switch_init(void) { ar9_sw_chip_init(0, RGMII_MODE); ar9_dma_init(); return 0; } #endif /* CONFIG_EXTRA_SWITCH */ #if defined(CONFIG_CMD_HTTPD) int do_http_upgrade(const unsigned char *data, const ulong size) { char buf[128]; if(getenv ("ram_addr") == NULL) return -1; if(getenv ("kernel_addr") == NULL) return -1; /* check the image */ if(run_command("imi ${ram_addr}", 0) < 0) { return -1; } /* write the image to the flash */ puts("http ugrade ...\n"); sprintf(buf, "era ${kernel_addr} +0x%x; cp.b ${ram_addr} ${kernel_addr} 0x%x", size, size); return run_command(buf, 0); } int do_http_progress(const int state) { /* toggle LED's here */ switch(state) { case HTTP_PROGRESS_START: puts("http start\n"); break; case HTTP_PROGRESS_TIMEOUT: puts("."); break; case HTTP_PROGRESS_UPLOAD_READY: puts("http upload ready\n"); break; case HTTP_PROGRESS_UGRADE_READY: puts("http ugrade ready\n"); break; case HTTP_PROGRESS_UGRADE_FAILED: puts("http ugrade failed\n"); break; } return 0; } unsigned long do_http_tmp_address(void) { char *s = getenv ("ram_addr"); if (s) { ulong tmp = simple_strtoul (s, NULL, 16); return tmp; } return 0 /*0x80a00000*/; } #endif