/*
 * BCM47XX Sonics SiliconBackplane MIPS core routines
 *
 * Copyright 2007, Broadcom Corporation
 * All Rights Reserved.
 * 
 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
 *
 * $Id$
 */

#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <bcmnvram.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbextif.h>
#include <sbmemc.h>
#include <mipsinc.h>
#include <sbhndmips.h>
#include <hndcpu.h>
#include <hndmips.h>

/* sbipsflag register format, indexed by irq. */
static const uint32 sbips_int_mask[] = {
	0,			/* placeholder */
	SBIPS_INT1_MASK,
	SBIPS_INT2_MASK,
	SBIPS_INT3_MASK,
	SBIPS_INT4_MASK
};

static const uint32 sbips_int_shift[] = {
	0,			/* placeholder */
	SBIPS_INT1_SHIFT,
	SBIPS_INT2_SHIFT,
	SBIPS_INT3_SHIFT,
	SBIPS_INT4_SHIFT
};

/*
 * Map SB cores sharing the MIPS hardware IRQ0 to virtual dedicated OS IRQs.
 * Per-port BSP code is required to provide necessary translations between
 * the shared MIPS IRQ and the virtual OS IRQs based on SB core flag.
 *
 * See sb_irq() for the mapping.
 */
static uint shirq_map_base = 0;

/* Returns the SB interrupt flag of the current core. */
static uint32 sb_getflag(sb_t * sbh)
{
	osl_t *osh;
	void *regs;
	sbconfig_t *sb;

	osh = sb_osh(sbh);
	regs = sb_coreregs(sbh);
	sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);

	return (R_REG(osh, &sb->sbtpsflag) & SBTPS_NUM0_MASK);
}

/*
 * Returns the MIPS IRQ assignment of the current core. If unassigned,
 * 0 is returned.
 */
uint sb_irq(sb_t * sbh)
{
	osl_t *osh;
	uint idx;
	void *regs;
	sbconfig_t *sb;
	uint32 flag, sbipsflag;
	uint irq = 0;

	osh = sb_osh(sbh);
	flag = sb_getflag(sbh);

	idx = sb_coreidx(sbh);

	if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
	    (regs = sb_setcore(sbh, SB_MIPS33, 0))) {
		sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);

		/* sbipsflag specifies which core is routed to interrupts 1 to 4 */
		sbipsflag = R_REG(osh, &sb->sbipsflag);
		for (irq = 1; irq <= 4; irq++) {
			if (((sbipsflag & sbips_int_mask[irq]) >>
			     sbips_int_shift[irq]) == flag)
				break;
		}
		if (irq == 5)
			irq = 0;
	}

	sb_setcoreidx(sbh, idx);

	return irq;
}

/* Clears the specified MIPS IRQ. */
static void BCMINITFN(sb_clearirq) (sb_t * sbh, uint irq) {
	osl_t *osh;
	void *regs;
	sbconfig_t *sb;

	osh = sb_osh(sbh);

	if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
	    !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
		ASSERT(regs);
	sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);

	if (irq == 0)
		W_REG(osh, &sb->sbintvec, 0);
	else
		OR_REG(osh, &sb->sbipsflag, sbips_int_mask[irq]);
}

/*
 * Assigns the specified MIPS IRQ to the specified core. Shared MIPS
 * IRQ 0 may be assigned more than once.
 *
 * The old assignment to the specified core is removed first.
 */
static void
BCMINITFN(sb_setirq) (sb_t * sbh, uint irq, uint coreid, uint coreunit) {
	osl_t *osh;
	void *regs;
	sbconfig_t *sb;
	uint32 flag;
	uint oldirq;

	osh = sb_osh(sbh);

	regs = sb_setcore(sbh, coreid, coreunit);
	ASSERT(regs);
	flag = sb_getflag(sbh);
	oldirq = sb_irq(sbh);
	if (oldirq)
		sb_clearirq(sbh, oldirq);

	if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
	    !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
		ASSERT(regs);
	sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);

	if (!oldirq)
		AND_REG(osh, &sb->sbintvec, ~(1 << flag));

	if (irq == 0)
		OR_REG(osh, &sb->sbintvec, 1 << flag);
	else {
		flag <<= sbips_int_shift[irq];
		ASSERT(!(flag & ~sbips_int_mask[irq]));
		flag |= R_REG(osh, &sb->sbipsflag) & ~sbips_int_mask[irq];
		W_REG(osh, &sb->sbipsflag, flag);
	}
}

/*
 * Initializes clocks and interrupts. SB and NVRAM access must be
 * initialized prior to calling.
 *
 * 'shirqmap' enables virtual dedicated OS IRQ mapping if non-zero.
 */
void BCMINITFN(sb_mips_init) (sb_t * sbh, uint shirqmap) {
	osl_t *osh;
	ulong hz, ns, tmp;
	extifregs_t *eir;
	chipcregs_t *cc;
	char *value;
	uint irq;

	osh = sb_osh(sbh);

	/* Figure out current SB clock speed */
	if ((hz = sb_clock(sbh)) == 0)
		hz = 100000000;
	ns = 1000000000 / hz;

	/* Setup external interface timing */
	if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
		/* Initialize extif so we can get to the LEDs and external UART */
		W_REG(osh, &eir->prog_config, CF_EN);

		/* Set timing for the flash */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT);	/* W1 = 40nS */
		tmp = tmp | CEIL(120, ns);	/* W0 = 120nS */
		W_REG(osh, &eir->prog_waitcount, tmp);	/* 0x01020a0c for a 100Mhz clock */

		/* Set programmable interface timing for external uart */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT);	/* W2 = 20nS */
		tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT);	/* W1 = 100nS */
		tmp = tmp | CEIL(120, ns);	/* W0 = 120nS */
		W_REG(osh, &eir->prog_waitcount, tmp);	/* 0x01020a0c for a 100Mhz clock */
	} else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
		/* Set timing for the flash */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp |= CEIL(10, ns) << FW_W1_SHIFT;	/* W1 = 10nS */
		tmp |= CEIL(120, ns);	/* W0 = 120nS */
		if ((sb_corerev(sbh) < 9) || (sb_chip(sbh) == 0x5365))
			W_REG(osh, &cc->flash_waitcount, tmp);

		if ((sb_corerev(sbh) < 9) ||
		    ((sb_chip(sbh) == BCM5350_CHIP_ID) && sb_chiprev(sbh) == 0)
		    || (sb_chip(sbh) == 0x5365)) {
			W_REG(osh, &cc->pcmcia_memwait, tmp);
		}

		/* Save shared IRQ mapping base */
		shirq_map_base = shirqmap;
	}

	/* Chip specific initialization */
	switch (sb_chip(sbh)) {
	case BCM4710_CHIP_ID:
		/* Clear interrupt map */
		for (irq = 0; irq <= 4; irq++)
			sb_clearirq(sbh, irq);
		sb_setirq(sbh, 0, SB_CODEC, 0);
		sb_setirq(sbh, 0, SB_EXTIF, 0);
		sb_setirq(sbh, 2, SB_ENET, 1);
		sb_setirq(sbh, 3, SB_ILINE20, 0);
		sb_setirq(sbh, 4, SB_PCI, 0);
		ASSERT(eir);
		value = nvram_get("et0phyaddr");
		if (value && !strcmp(value, "31")) {
			/* Enable internal UART */
			W_REG(osh, &eir->corecontrol, CC_UE);
			/* Give USB its own interrupt */
			sb_setirq(sbh, 1, SB_USB, 0);
		} else {
			/* Disable internal UART */
			W_REG(osh, &eir->corecontrol, 0);
			/* Give Ethernet its own interrupt */
			sb_setirq(sbh, 1, SB_ENET, 0);
			sb_setirq(sbh, 0, SB_USB, 0);
		}
		break;
	case BCM5350_CHIP_ID:
		/* Clear interrupt map */
		for (irq = 0; irq <= 4; irq++)
			sb_clearirq(sbh, irq);
		sb_setirq(sbh, 0, SB_CC, 0);
		sb_setirq(sbh, 0, SB_MIPS33, 0);
		sb_setirq(sbh, 1, SB_D11, 0);
		sb_setirq(sbh, 2, SB_ENET, 0);
		sb_setirq(sbh, 3, SB_PCI, 0);
		sb_setirq(sbh, 4, SB_USB, 0);
		break;
	case BCM4785_CHIP_ID:
		/* Reassign PCI to irq 4 */
		sb_setirq(sbh, 4, SB_PCI, 0);
		break;
	}
}

uint32
BCMINITFN(sb_cpu_clock)(sb_t *sbh)
{
	extifregs_t *eir;
	chipcregs_t *cc;
	uint32 n, m;
	uint idx;
	uint32 pll_type, rate = 0;

	/* get index of the current core */
	idx = sb_coreidx(sbh);
	pll_type = PLL_TYPE1;

	/* switch to extif or chipc core */
	if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
		n = R_REG(osh, &eir->clockcontrol_n);
		m = R_REG(osh, &eir->clockcontrol_sb);
	} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
		/* 5354 chip uses a non programmable PLL of frequency 240MHz */
		if (sb_chip(sbh) == BCM5354_CHIP_ID) {
			rate = 240000000;
			goto out;
		}
		pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
		n = R_REG(osh, &cc->clockcontrol_n);
		if ((pll_type == PLL_TYPE2) ||
		    (pll_type == PLL_TYPE4) ||
		    (pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7))
			m = R_REG(osh, &cc->clockcontrol_m3);
		else if (pll_type == PLL_TYPE5) {
			rate = 200000000;
			goto out;
		} else if (pll_type == PLL_TYPE3) {
			if (sb_chip(sbh) == BCM5365_CHIP_ID) {
				rate = 200000000;
				goto out;
			}
			/* 5350 uses m2 to control mips */
			else
				m = R_REG(osh, &cc->clockcontrol_m2);
		} else
			m = R_REG(osh, &cc->clockcontrol_sb);
	} else
		goto out;

	/* calculate rate */
	if (sb_chip(sbh) == 0x5365)
		rate = 100000000;
	else
		rate = sb_clock_rate(pll_type, n, m);

	if (pll_type == PLL_TYPE6)
		rate = SB2MIPS_T6(rate);

      out:
	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return rate;
}

#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)

static void BCMINITFN(handler) (void) {
	__asm__(".set\tmips32\n\t" "ssnop\n\t" "ssnop\n\t"
		/* Disable interrupts */
		/*      MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
		"mfc0 $15, $12\n\t"
		/* Just a Hack to not to use reg 'at' which was causing problems on 4704 A2 */
		"li $14, -31746\n\t"
		"and $15, $15, $14\n\t"
		"mtc0 $15, $12\n\t" "eret\n\t" "nop\n\t" "nop\n\t"
		".set\tmips0");
}

/* The following MUST come right after handler() */
static void BCMINITFN(afterhandler) (void) {
}

/*
 * Set the MIPS, backplane and PCI clocks as closely as possible.
 *
 * MIPS clocks synchronization function has been moved from PLL in chipcommon
 * core rev. 15 to a DLL inside the MIPS core in 4785.
 */
bool
BCMINITFN(sb_mips_setclock) (sb_t * sbh, uint32 mipsclock, uint32 sbclock,
			     uint32 pciclock) {
	extifregs_t *eir = NULL;
	chipcregs_t *cc = NULL;
	mipsregs_t *mipsr = NULL;
	volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci,
	    *clockcontrol_m2;
	uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm,
	    orig_ratio_cfg;
	uint32 pll_type, sync_mode;
	uint ic_size, ic_lsize;
	uint idx, i;

	/* PLL configuration: type 1 */
	typedef struct {
		uint32 mipsclock;
		uint16 n;
		uint32 sb;
		uint32 pci33;
		uint32 pci25;
	} n3m_table_t;
	static n3m_table_t BCMINITDATA(type1_table)[] = {
		/* 96.000 32.000 24.000 */
		{
		96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011},
		    /* 100.000 33.333 25.000 */
		{
		100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011},
		    /* 104.000 31.200 24.960 */
		{
		104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009},
		    /* 108.000 32.400 24.923 */
		{
		108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802},
		    /* 112.000 32.000 24.889 */
		{
		112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403},
		    /* 115.200 32.000 24.000 */
		{
		115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011},
		    /* 120.000 30.000 24.000 */
		{
		120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011},
		    /* 124.800 31.200 24.960 */
		{
		124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009},
		    /* 128.000 32.000 24.000 */
		{
		128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305},
		    /* 132.000 33.000 24.750 */
		{
		132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305},
		    /* 136.000 32.640 24.727 */
		{
		136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603},
		    /* 140.000 30.000 24.706 */
		{
		140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02},
		    /* 144.000 30.857 24.686 */
		{
		144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021},
		    /* 150.857 33.000 24.000 */
		{
		150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605},
		    /* 152.000 32.571 24.000 */
		{
		152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02},
		    /* 156.000 31.200 24.960 */
		{
		156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009},
		    /* 160.000 32.000 24.000 */
		{
		160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309},
		    /* 163.200 32.640 24.727 */
		{
		163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603},
		    /* 168.000 32.000 24.889 */
		{
		168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403},
		    /* 176.000 33.000 24.000 */
		{
	176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602},};

	/* PLL configuration: type 3 */
	typedef struct {
		uint32 mipsclock;
		uint16 n;
		uint32 m2;	/* that is the clockcontrol_m2 */
	} type3_table_t;
	static type3_table_t type3_table[] = {
		/* for 5350, mips clock is always double sb clock */
		{150000000, 0x311, 0x4020005},
		{200000000, 0x311, 0x4020003},
	};

	/* PLL configuration: type 2, 4, 7 */
	typedef struct {
		uint32 mipsclock;
		uint32 sbclock;
		uint32 pciclock;
		uint16 n;
		uint32 sb;
		uint32 pci33;
		uint32 m2;
		uint32 m3;
		uint32 ratio_cfg;
		uint32 ratio_parm;
		uint32 d11_r1;
		uint32 d11_r2;
	} n4m_table_t;
	static n4m_table_t BCMINITDATA(type2_table)[] = {
		{
			120000000, 60000000, 32000000, 0x0303, 0x01000200,
			    0x01000600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			150000000, 75000000, 33333333, 0x0303, 0x01000100,
			    0x01000600, 0x01000100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			180000000, 80000000, 30000000, 0x0403, 0x01010000,
			    0x01020300, 0x01020600, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			180000000, 90000000, 30000000, 0x0403, 0x01000100,
			    0x01020300, 0x01000100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			200000000, 100000000, 33333333, 0x0303, 0x02010000,
			    0x02040001, 0x02010000, 0x06000001, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			211200000, 105600000, 30171428, 0x0902, 0x01000200,
			    0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			220800000, 110400000, 31542857, 0x1500, 0x01000200,
			    0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			230400000, 115200000, 32000000, 0x0604, 0x01000200,
			    0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			234000000, 104000000, 31200000, 0x0b01, 0x01010000,
			    0x01010700, 0x01020600, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			240000000, 120000000, 33333333, 0x0803, 0x01000200,
			    0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			252000000, 126000000, 33333333, 0x0504, 0x01000100,
			    0x01020500, 0x01000100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			264000000, 132000000, 33000000, 0x0903, 0x01000200,
			    0x01020700, 0x01000200, 0x05000200, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			270000000, 120000000, 30000000, 0x0703, 0x01010000,
			    0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			276000000, 122666666, 31542857, 0x1500, 0x01010000,
			    0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			280000000, 140000000, 31111111, 0x0503, 0x01000000,
			    0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			288000000, 128000000, 32914285, 0x0604, 0x01010000,
			    0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			288000000, 144000000, 32000000, 0x0404, 0x01000000,
			    0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			300000000, 133333333, 33333333, 0x0803, 0x01010000,
			    0x01020600, 0x01010100, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			300000000, 133333333, 37500000, 0x0803, 0x01010000,
			    0x01020500, 0x01010100, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			300000000, 133333333, 42857142, 0x0803, 0x01010000,
			    0x01020400, 0x01010100, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			300000000, 133333333, 50000000, 0x0803, 0x01010000,
			    0x01020300, 0x01010100, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			300000000, 133333333, 60000000, 0x0803, 0x01010000,
			    0x01020200, 0x01010100, 0x05000100, 8, 0x012a00a9,
			    9 /* ratio  4/9 */ ,
		0x012a00a9}, {
			300000000, 150000000, 33333333, 0x0803, 0x01000100,
			    0x01020600, 0x01010100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			300000000, 150000000, 37500000, 0x0803, 0x01000100,
			    0x01020500, 0x01010100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			300000000, 150000000, 42857142, 0x0803, 0x01000100,
			    0x01020400, 0x01010100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			300000000, 150000000, 50000000, 0x0803, 0x01000100,
			    0x01020300, 0x01010100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
			300000000, 150000000, 60000000, 0x0803, 0x01000100,
			    0x01020200, 0x01010100, 0x05000100, 11, 0x0aaa0555,
			    8 /* ratio  4/8 */ ,
		0x00aa0055}, {
		330000000, 132000000, 33000000, 0x0903, 0x01000200,
			    0x00020200, 0x01010100, 0x05000100, 0, 0,
			    10 /* ratio 4/10 */ , 0x02520129},
		{
		330000000, 146666666, 33000000, 0x0903, 0x01010000,
			    0x00020200, 0x01010100, 0x05000100, 0, 0,
			    9 /* ratio 4/9 */ , 0x012a00a9},
		{
		330000000, 165000000, 33000000, 0x0903, 0x01000100,
			    0x00020200, 0x01010100, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		330000000, 165000000, 41250000, 0x0903, 0x01000100,
			    0x00020100, 0x01010100, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		330000000, 165000000, 55000000, 0x0903, 0x01000100,
			    0x00020000, 0x01010100, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		360000000, 120000000, 32000000, 0x0a03, 0x01000300,
			    0x00010201, 0x01010200, 0x05000100, 0, 0,
			    12 /* ratio 4/12 */ , 0x04920492},
		{
		360000000, 144000000, 32000000, 0x0a03, 0x01000200,
			    0x00010201, 0x01010200, 0x05000100, 0, 0,
			    10 /* ratio 4/10 */ , 0x02520129},
		{
		360000000, 160000000, 32000000, 0x0a03, 0x01010000,
			    0x00010201, 0x01010200, 0x05000100, 0, 0,
			    9 /* ratio 4/9 */ , 0x012a00a9},
		{
		360000000, 180000000, 32000000, 0x0a03, 0x01000100,
			    0x00010201, 0x01010200, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		360000000, 180000000, 40000000, 0x0a03, 0x01000100,
			    0x00010101, 0x01010200, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		360000000, 180000000, 53333333, 0x0a03, 0x01000100,
			    0x00010001, 0x01010200, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
		{
		390000000, 130000000, 32500000, 0x0b03, 0x01010100,
			    0x00020101, 0x01020100, 0x05000100, 0, 0,
			    12 /* ratio 4/12 */ , 0x04920492},
		{
		390000000, 156000000, 32500000, 0x0b03, 0x01000200,
			    0x00020101, 0x01020100, 0x05000100, 0, 0,
			    10 /* ratio 4/10 */ , 0x02520129},
		{
		390000000, 173000000, 32500000, 0x0b03, 0x01010000,
			    0x00020101, 0x01020100, 0x05000100, 0, 0,
			    9 /* ratio 4/9 */ , 0x012a00a9},
		{
		390000000, 195000000, 32500000, 0x0b03, 0x01000100,
			    0x00020101, 0x01020100, 0x05000100, 0, 0,
			    8 /* ratio 4/8 */ , 0x00aa0055},
	};
	static n4m_table_t BCMINITDATA(type4_table)[] = {
		{
		120000000, 60000000, 0, 0x0009, 0x11020009, 0x01030203,
			    0x11020009, 0x04000009, 11, 0x0aaa0555}, {
		150000000, 75000000, 0, 0x0009, 0x11050002, 0x01030203,
			    0x11050002, 0x04000005, 11, 0x0aaa0555}, {
		192000000, 96000000, 0, 0x0702, 0x04000011, 0x11030011,
			    0x04000011, 0x04000003, 11, 0x0aaa0555}, {
		198000000, 99000000, 0, 0x0603, 0x11020005, 0x11030011,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		200000000, 100000000, 0, 0x0009, 0x04020011, 0x11030011,
			    0x04020011, 0x04020003, 11, 0x0aaa0555}, {
		204000000, 102000000, 0, 0x0c02, 0x11020005, 0x01030303,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		208000000, 104000000, 0, 0x0802, 0x11030002, 0x11090005,
			    0x11030002, 0x04000003, 11, 0x0aaa0555}, {
		210000000, 105000000, 0, 0x0209, 0x11020005, 0x01030303,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		216000000, 108000000, 0, 0x0111, 0x11020005, 0x01030303,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		224000000, 112000000, 0, 0x0205, 0x11030002, 0x02002103,
			    0x11030002, 0x04000003, 11, 0x0aaa0555}, {
		228000000, 101333333, 0, 0x0e02, 0x11030003, 0x11210005,
			    0x01030305, 0x04000005, 8, 0x012a00a9}, {
		228000000, 114000000, 0, 0x0e02, 0x11020005, 0x11210005,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		240000000, 102857143, 0, 0x0109, 0x04000021, 0x01050203,
			    0x11030021, 0x04000003, 13, 0x254a14a9}, {
		240000000, 120000000, 0, 0x0109, 0x11030002, 0x01050203,
			    0x11030002, 0x04000003, 11, 0x0aaa0555}, {
		252000000, 100800000, 0, 0x0203, 0x04000009, 0x11050005,
			    0x02000209, 0x04000002, 9, 0x02520129}, {
		252000000, 126000000, 0, 0x0203, 0x04000005, 0x11050005,
			    0x04000005, 0x04000002, 11, 0x0aaa0555}, {
		264000000, 132000000, 0, 0x0602, 0x04000005, 0x11050005,
			    0x04000005, 0x04000002, 11, 0x0aaa0555}, {
		272000000, 116571428, 0, 0x0c02, 0x04000021, 0x02000909,
			    0x02000221, 0x04000003, 13, 0x254a14a9}, {
		280000000, 120000000, 0, 0x0209, 0x04000021, 0x01030303,
			    0x02000221, 0x04000003, 13, 0x254a14a9}, {
		288000000, 123428571, 0, 0x0111, 0x04000021, 0x01030303,
			    0x02000221, 0x04000003, 13, 0x254a14a9}, {
		300000000, 120000000, 0, 0x0009, 0x04000009, 0x01030203,
			    0x02000902, 0x04000002, 9, 0x02520129}, {
		300000000, 150000000, 0, 0x0009, 0x04000005, 0x01030203,
			    0x04000005, 0x04000002, 11, 0x0aaa0555}
	};
	static n4m_table_t BCMINITDATA(type7_table)[] = {
		{
		183333333, 91666666, 0, 0x0605, 0x04000011, 0x11030011,
			    0x04000011, 0x04000003, 11, 0x0aaa0555}, {
		187500000, 93750000, 0, 0x0a03, 0x04000011, 0x11030011,
			    0x04000011, 0x04000003, 11, 0x0aaa0555}, {
		196875000, 98437500, 0, 0x1003, 0x11020005, 0x11050011,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		200000000, 100000000, 0, 0x0311, 0x04000011, 0x11030011,
			    0x04000009, 0x04000003, 11, 0x0aaa0555}, {
		200000000, 100000000, 0, 0x0311, 0x04020011, 0x11030011,
			    0x04020011, 0x04020003, 11, 0x0aaa0555}, {
		206250000, 103125000, 0, 0x1103, 0x11020005, 0x11050011,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		212500000, 106250000, 0, 0x0c05, 0x11020005, 0x01030303,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		215625000, 107812500, 0, 0x1203, 0x11090009, 0x11050005,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		216666666, 108333333, 0, 0x0805, 0x11020003, 0x11030011,
			    0x11020003, 0x04000003, 11, 0x0aaa0555}, {
		225000000, 112500000, 0, 0x0d03, 0x11020003, 0x11030011,
			    0x11020003, 0x04000003, 11, 0x0aaa0555}, {
		233333333, 116666666, 0, 0x0905, 0x11020003, 0x11030011,
			    0x11020003, 0x04000003, 11, 0x0aaa0555}, {
		237500000, 118750000, 0, 0x0e05, 0x11020005, 0x11210005,
			    0x11020005, 0x04000005, 11, 0x0aaa0555}, {
		240000000, 120000000, 0, 0x0b11, 0x11020009, 0x11210009,
			    0x11020009, 0x04000009, 11, 0x0aaa0555}, {
		250000000, 125000000, 0, 0x0f03, 0x11020003, 0x11210003,
			    0x11020003, 0x04000003, 11, 0x0aaa0555}
	};

	ulong start, end, dst;
	bool ret = FALSE;

	volatile uint32 *dll_ctrl = (volatile uint32 *)0xff400008;
	volatile uint32 *dll_r1 = (volatile uint32 *)0xff400010;
	volatile uint32 *dll_r2 = (volatile uint32 *)0xff400018;

	/* get index of the current core */
	idx = sb_coreidx(sbh);
	clockcontrol_m2 = NULL;

	/* switch to chipc core */
	/* switch to extif or chipc core */
	if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
		pll_type = PLL_TYPE1;
		clockcontrol_n = &eir->clockcontrol_n;
		clockcontrol_sb = &eir->clockcontrol_sb;
		clockcontrol_pci = &eir->clockcontrol_pci;
		clockcontrol_m2 = &cc->clockcontrol_m2;
	} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
		/* 5354 chipcommon pll setting can't be changed. 
		 * The PMU on power up comes up with the default clk frequency
		 * of 240MHz
		 */
		if (sb_chip(sbh) == BCM5354_CHIP_ID) {
			ret = TRUE;
			goto done;
		}
		pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
		if (pll_type == PLL_TYPE6) {
			clockcontrol_n = NULL;
			clockcontrol_sb = NULL;
			clockcontrol_pci = NULL;
		} else {
			clockcontrol_n = &cc->clockcontrol_n;
			clockcontrol_sb = &cc->clockcontrol_sb;
			clockcontrol_pci = &cc->clockcontrol_pci;
			clockcontrol_m2 = &cc->clockcontrol_m2;
		}
	} else
		goto done;

	if (pll_type == PLL_TYPE6) {
		/* Silence compilers */
		orig_n = orig_sb = orig_pci = 0;
	} else {
		/* Store the current clock register values */
		orig_n = R_REG(osh, clockcontrol_n);
		orig_sb = R_REG(osh, clockcontrol_sb);
		orig_pci = R_REG(osh, clockcontrol_pci);
	}

	if (pll_type == PLL_TYPE1) {
		/* Keep the current PCI clock if not specified */
		if (pciclock == 0) {
			pciclock =
			    sb_clock_rate(pll_type, R_REG(osh, clockcontrol_n),
					  R_REG(osh, clockcontrol_pci));
			pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
		}

		/* Search for the closest MIPS clock less than or equal to a preferred value */
		for (i = 0; i < ARRAYSIZE(type1_table); i++) {
			ASSERT(type1_table[i].mipsclock ==
			       sb_clock_rate(pll_type, type1_table[i].n,
					     type1_table[i].sb));
			if (type1_table[i].mipsclock > mipsclock)
				break;
		}
		if (i == 0) {
			ret = FALSE;
			goto done;
		} else {
			ret = TRUE;
			i--;
		}
		ASSERT(type1_table[i].mipsclock <= mipsclock);

		/* No PLL change */
		if ((orig_n == type1_table[i].n) &&
		    (orig_sb == type1_table[i].sb) &&
		    (orig_pci == type1_table[i].pci33))
			goto done;

		/* Set the PLL controls */
		W_REG(osh, clockcontrol_n, type1_table[i].n);
		W_REG(osh, clockcontrol_sb, type1_table[i].sb);
		if (pciclock == 25000000)
			W_REG(osh, clockcontrol_pci, type1_table[i].pci25);
		else
			W_REG(osh, clockcontrol_pci, type1_table[i].pci33);

		/* Reset */
		sb_watchdog(sbh, 1);
		while (1) ;
	} else if (pll_type == PLL_TYPE3) {
		/* 5350 */
		if (sb_chip(sbh) != BCM5365_CHIP_ID) {
			/*
			 * Search for the closest MIPS clock less than or equal to
			 * a preferred value.
			 */
			for (i = 0; i < ARRAYSIZE(type3_table); i++) {
				if (type3_table[i].mipsclock > mipsclock)
					break;
			}
			if (i == 0) {
				ret = FALSE;
				goto done;
			} else {
				ret = TRUE;
				i--;
			}
			ASSERT(type3_table[i].mipsclock <= mipsclock);

			/* No PLL change */
			orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
			if ((orig_n == type3_table[i].n)
			    && (orig_m2 == type3_table[i].m2)) {
				goto done;
			}

			/* Set the PLL controls */
			W_REG(osh, clockcontrol_n, type3_table[i].n);
			W_REG(osh, clockcontrol_m2, type3_table[i].m2);

			/* Reset */
			sb_watchdog(sbh, 1);
			while (1) ;
		}
	} else if ((pll_type == PLL_TYPE2) ||
		   (pll_type == PLL_TYPE4) ||
		   (pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7)) {
		n4m_table_t *table = NULL, *te;
		uint tabsz = 0;

		ASSERT(cc);

		orig_mips = R_REG(osh, &cc->clockcontrol_m3);

		switch (pll_type) {
		case PLL_TYPE6:
			{
				uint32 new_mips = 0;

				ret = TRUE;
				if (mipsclock <= SB2MIPS_T6(CC_T6_M1))
					new_mips = CC_T6_MMASK;

				if (orig_mips == new_mips)
					goto done;

				W_REG(osh, &cc->clockcontrol_m3, new_mips);
				goto end_fill;
			}
		case PLL_TYPE2:
			table = type2_table;
			tabsz = ARRAYSIZE(type2_table);
			break;
		case PLL_TYPE4:
			table = type4_table;
			tabsz = ARRAYSIZE(type4_table);
			break;
		case PLL_TYPE7:
			table = type7_table;
			tabsz = ARRAYSIZE(type7_table);
			break;
		default:
			ASSERT("No table for plltype" == NULL);
			break;
		}

		/* Store the current clock register values */
		orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
		orig_ratio_parm = 0;
		orig_ratio_cfg = 0;

		/* Look up current ratio */
		for (i = 0; i < tabsz; i++) {
			if ((orig_n == table[i].n) &&
			    (orig_sb == table[i].sb) &&
			    (orig_pci == table[i].pci33) &&
			    (orig_m2 == table[i].m2)
			    && (orig_mips == table[i].m3)) {
				orig_ratio_parm = table[i].ratio_parm;
				orig_ratio_cfg = table[i].ratio_cfg;
				break;
			}
		}

		/* Search for the closest MIPS clock greater or equal to a preferred value */
		for (i = 0; i < tabsz; i++) {
			ASSERT(table[i].mipsclock ==
			       sb_clock_rate(pll_type, table[i].n,
					     table[i].m3));
			if ((mipsclock <= table[i].mipsclock)
			    && ((sbclock == 0) || (sbclock <= table[i].sbclock))
			    && ((pciclock == 0)
				|| (pciclock <= table[i].pciclock)))
				break;
		}
		if (i == tabsz) {
			ret = FALSE;
			goto done;
		} else {
			te = &table[i];
			ret = TRUE;
		}

		/* No PLL change */
		if ((orig_n == te->n) &&
		    (orig_sb == te->sb) &&
		    (orig_pci == te->pci33) &&
		    (orig_m2 == te->m2) && (orig_mips == te->m3))
			goto done;

		/* Set the PLL controls */
		W_REG(osh, clockcontrol_n, te->n);
		W_REG(osh, clockcontrol_sb, te->sb);
		W_REG(osh, clockcontrol_pci, te->pci33);
		W_REG(osh, &cc->clockcontrol_m2, te->m2);
		W_REG(osh, &cc->clockcontrol_m3, te->m3);

		/* Set the chipcontrol bit to change mipsref to the backplane divider if needed */
		if ((pll_type == PLL_TYPE7) && (te->sb != te->m2) &&
		    (sb_clock_rate(pll_type, te->n, te->m2) == 120000000))
			W_REG(osh, &cc->chipcontrol,
			      R_REG(osh, &cc->chipcontrol) | 0x100);

		/* No ratio change */
		if (sb_chip(sbh) != BCM4785_CHIP_ID) {
			if (orig_ratio_parm == te->ratio_parm)
				goto end_fill;
		}

		/* Preload the code into the cache */
		icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);
		if (sb_chip(sbh) == BCM4785_CHIP_ID) {
			start = ((ulong) && start_fill_4785) & ~(ic_lsize - 1);
			end = ((ulong)
			       && end_fill_4785 + (ic_lsize - 1)) & ~(ic_lsize -
								      1);
		} else {
			start = ((ulong) && start_fill) & ~(ic_lsize - 1);
			end = ((ulong)
			       && end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
		}
		while (start < end) {
			cache_op(start, Fill_I);
			start += ic_lsize;
		}

		/* 4785 clock freq change procedures */
		if (sb_chip(sbh) == BCM4785_CHIP_ID) {
		      start_fill_4785:
			/* Switch to async */
			MTC0(C0_BROADCOM, 4, (1 << 22));

			/* Set clock ratio in MIPS */
			*dll_r1 = (*dll_r1 & 0xfffffff0) | (te->d11_r1 - 1);
			*dll_r2 = te->d11_r2;

			/* Enable new settings in MIPS */
			*dll_r1 = *dll_r1 | 0xc0000000;

			/* Set active cfg */
			MTC0(C0_BROADCOM, 2,
			     MFC0(C0_BROADCOM, 2) | (1 << 3) | 1);

			/* Fake soft reset (clock cfg registers not reset) */
			MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));

			/* Clear active cfg */
			MTC0(C0_BROADCOM, 2, MFC0(C0_BROADCOM, 2) & ~(1 << 3));

			/* set watchdog timer */
			W_REG(osh, &cc->watchdog, 20);
			(void)R_REG(osh, &cc->chipid);

			/* wait for timer interrupt */
			__asm__ __volatile__(".set\tmips3\n\t"
					     "sync\n\t" "wait\n\t"
					     ".set\tmips0");
		      end_fill_4785:
			while (1) ;
		}
		/* Generic clock freq change procedures */
		else {
			/* Copy the handler */
			start = (ulong) & handler;
			end = (ulong) & afterhandler;
			dst = KSEG1ADDR(0x180);
			for (i = 0; i < (end - start); i += 4)
				*((ulong *) (dst + i)) =
				    *((ulong *) (start + i));

			/* Preload the handler into the cache one line at a time */
			for (i = 0; i < (end - start); i += ic_lsize)
				cache_op(dst + i, Fill_I);

			/* Clear BEV bit */
			MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);

			/* Enable interrupts */
			MTC0(C0_STATUS, 0,
			     MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));

			/* Enable MIPS timer interrupt */
			if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
			    !(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
				ASSERT(mipsr);
			W_REG(osh, &mipsr->intmask, 1);

		      start_fill:
			/* step 1, set clock ratios */
			MTC0(C0_BROADCOM, 3, te->ratio_parm);
			MTC0(C0_BROADCOM, 1, te->ratio_cfg);

			/* step 2: program timer intr */
			W_REG(osh, &mipsr->timer, 100);
			(void)R_REG(osh, &mipsr->timer);

			/* step 3, switch to async */
			sync_mode = MFC0(C0_BROADCOM, 4);
			MTC0(C0_BROADCOM, 4, 1 << 22);

			/* step 4, set cfg active */
			MTC0(C0_BROADCOM, 2, (1 << 3) | 1);

			/* steps 5 & 6 */
			__asm__ __volatile__(".set\tmips3\n\t" "wait\n\t"
					     ".set\tmips0");

			/* step 7, clear cfg active */
			MTC0(C0_BROADCOM, 2, 0);

			/* Additional Step: set back to orig sync mode */
			MTC0(C0_BROADCOM, 4, sync_mode);

			/* step 8, fake soft reset */
			MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));

		      end_fill:
			/* set watchdog timer */
			W_REG(osh, &cc->watchdog, 20);
			(void)R_REG(osh, &cc->chipid);

			/* wait for timer interrupt */
			__asm__ __volatile__(".set\tmips3\n\t"
					     "sync\n\t" "wait\n\t"
					     ".set\tmips0");
			while (1) ;
		}
	}

      done:
	/* Enable 4785 DLL */
	if (sb_chip(sbh) == BCM4785_CHIP_ID) {
		uint32 tmp;

		/* set mask to 1e, enable DLL (bit 0) */
		*dll_ctrl |= 0x0041e021;

		/* enable aggressive hardware mode */
		*dll_ctrl |= 0x00000080;

		/* wait for lock flag to clear */
		while ((*dll_ctrl & 0x2) == 0) ;

		/* clear sticky flags (clear on write 1) */
		tmp = *dll_ctrl;
		*dll_ctrl = tmp;

		/* set mask to 5b'10001 */
		*dll_ctrl = (*dll_ctrl & 0xfffc1fff) | 0x00022000;

		/* enable sync mode */
		MTC0(C0_BROADCOM, 4, MFC0(C0_BROADCOM, 4) & 0xfe3fffff);
		(void)MFC0(C0_BROADCOM, 4);
	}

	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return ret;
}

void BCMINITFN(enable_pfc) (uint32 mode) {
	ulong start, end;
	uint ic_size, ic_lsize;

	/* If auto then choose the correct mode for this
	 * platform, currently we only ever select one mode
	 */
	if (mode == PFC_AUTO)
		mode = PFC_INST;

	icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);

	/* enable prefetch cache if available */
	if (MFC0(C0_BROADCOM, 0) & BRCM_PFC_AVAIL) {
		start = ((ulong) && setpfc_start) & ~(ic_lsize - 1);
		end = ((ulong)
		       && setpfc_end + (ic_lsize - 1)) & ~(ic_lsize - 1);

		/* Preload setpfc code into the cache one line at a time */
		while (start < end) {
			cache_op(start, Fill_I);
			start += ic_lsize;
		}

		/* Now set the pfc */
	      setpfc_start:
		/* write range */
		*(volatile uint32 *)PFC_CR1 = 0xffff0000;

		/* enable */
		*(volatile uint32 *)PFC_CR0 = mode;
	      setpfc_end:
		/* Compiler foder */
		ic_size = 0;
	}
}

/* returns the ncdl value to be programmed into sdram_ncdl for calibration */
uint32 BCMINITFN(sb_memc_get_ncdl) (sb_t * sbh) {
	osl_t *osh;
	sbmemcregs_t *memc;
	uint32 ret = 0;
	uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
	uint idx, rev;

	osh = sb_osh(sbh);

	idx = sb_coreidx(sbh);

	memc = (sbmemcregs_t *) sb_setcore(sbh, SB_MEMC, 0);
	if (memc == 0)
		goto out;

	rev = sb_corerev(sbh);

	config = R_REG(osh, &memc->config);
	wr = R_REG(osh, &memc->wrncdlcor);
	rd = R_REG(osh, &memc->rdncdlcor);
	misc = R_REG(osh, &memc->miscdlyctl);
	dqsg = R_REG(osh, &memc->dqsgatencdl);

	rd &= MEMC_RDNCDLCOR_RD_MASK;
	wr &= MEMC_WRNCDLCOR_WR_MASK;
	dqsg &= MEMC_DQSGATENCDL_G_MASK;

	if (config & MEMC_CONFIG_DDR) {
		ret = (wr << 16) | (rd << 8) | dqsg;
	} else {
		if (rev > 0)
			cd = rd;
		else
			cd = (rd ==
			      MEMC_CD_THRESHOLD) ? rd : (wr +
							 MEMC_CD_THRESHOLD);
		sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
		sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
		ret = (sm << 16) | (sd << 8) | cd;
	}

      out:
	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return ret;
}

void hnd_cpu_reset(sb_t * sbh)
{
	if (sb_chip(sbh) == BCM4785_CHIP_ID)
		MTC0(C0_BROADCOM, 4, (1 << 22));
	sb_watchdog(sbh, 1);
	if (sb_chip(sbh) == BCM4785_CHIP_ID) {
		__asm__ __volatile__(".set\tmips3\n\t"
				     "sync\n\t" "wait\n\t" ".set\tmips0");
	}
	while (1) ;
}

#if defined(BCMPERFSTATS)
/*
 * CP0 Register 25 supports 4 semi-independent 32bit performance counters.
 * $25 select 0, 1, 2, and 3 are the counters.  The counters *decrement* (who thought this one up?)
 * $25 select 4 and 5 each contain 2-16bit control fields, one for each of the 4 counters
 * $25 select 6 is the global perf control register.
 */
/* enable and start instruction counting */

void hndmips_perf_cyclecount_enable(void)
{
	MTC0(C0_PERFORMANCE, 6, 0x80000200);	/* global enable perf counters */
	MTC0(C0_PERFORMANCE, 4, 0x8048 | MFC0(C0_PERFORMANCE, 4));	/* enable cycles counting for counter 0 */
	MTC0(C0_PERFORMANCE, 0, 0);	/* zero counter zero */
}

void hndmips_perf_instrcount_enable(void)
{
	MTC0(C0_PERFORMANCE, 6, 0x80000200);	/* global enable perf counters */
	MTC0(C0_PERFORMANCE, 4, 0x8044 | MFC0(C0_PERFORMANCE, 4));	/* enable instructions counting for counter 0 */
	MTC0(C0_PERFORMANCE, 0, 0);	/* zero counter zero */
}

/* enable and start I$ hit and I$ miss counting */
void hndmips_perf_icachecount_enable(void)
{
	MTC0(C0_PERFORMANCE, 6, 0x80000218);	/* enable I$ counting */
	MTC0(C0_PERFORMANCE, 4, 0x80148018);	/* count I$ hits in cntr 0 and misses in cntr 1 */
	MTC0(C0_PERFORMANCE, 0, 0);	/* zero counter 0 - # I$ hits */
	MTC0(C0_PERFORMANCE, 1, 0);	/* zero counter 1 - # I$ misses */
}

/* enable and start D$ hit and I$ miss counting */
void hndmips_perf_dcachecount_enable(void)
{
	MTC0(C0_PERFORMANCE, 6, 0x80000211);	/* enable D$ counting */
	MTC0(C0_PERFORMANCE, 4, 0x80248028);	/* count D$ hits in cntr 0 and misses in cntr 1 */
	MTC0(C0_PERFORMANCE, 0, 0);	/* zero counter 0 - # D$ hits */
	MTC0(C0_PERFORMANCE, 1, 0);	/* zero counter 1 - # D$ misses */
}

void hndmips_perf_icache_miss_enable()
{
	MTC0(C0_PERFORMANCE, 4, 0x80140000 | MFC0(C0_PERFORMANCE, 4));	/* enable cache misses counting for counter 1 */
	MTC0(C0_PERFORMANCE, 1, 0);	/* zero counter one */
}

void hndmips_perf_icache_hit_enable()
{
	MTC0(C0_PERFORMANCE, 5, 0x8018 | MFC0(C0_PERFORMANCE, 5));
	/* enable cache hits counting for counter 2 */
	MTC0(C0_PERFORMANCE, 2, 0);	/* zero counter 2 */
}

uint32 hndmips_perf_read_instrcount()
{
	return -(long)(MFC0(C0_PERFORMANCE, 0));
}

uint32 hndmips_perf_read_cache_miss()
{
	return -(long)(MFC0(C0_PERFORMANCE, 1));
}

uint32 hndmips_perf_read_cache_hit()
{
	return -(long)(MFC0(C0_PERFORMANCE, 2));
}

#endif