/* * (C) Copyright 2003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * (C) Copyright 2010 * Thomas Langer, Ralph Hempel * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <command.h> #include <netdev.h> #include <miiphy.h> #include <asm/addrspace.h> #include <asm/danube.h> #include <asm/reboot.h> #include <asm/io.h> #if defined(CONFIG_CMD_HTTPD) #include <httpd.h> #endif #if defined(CONFIG_PCI) #include <pci.h> #endif #if defined(CONFIG_AR8216_SWITCH) #include "athrs26_phy.h" #endif extern ulong ifx_get_ddr_hz(void); extern ulong ifx_get_cpuclk(void); /* IDs and registers of known external switches */ void _machine_restart(void) { *DANUBE_RCU_RST_REQ |=1<<30; } #ifdef CONFIG_SYS_RAMBOOT phys_size_t initdram(int board_type) { return get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_MAX_RAM); } #elif defined(CONFIG_USE_DDR_RAM) phys_size_t initdram(int board_type) { return (CONFIG_SYS_MAX_RAM); } #else static ulong max_sdram_size(void) /* per Chip Select */ { /* The only supported SDRAM data width is 16bit. */ #define CFG_DW 4 /* The only supported number of SDRAM banks is 4. */ #define CFG_NB 4 ulong cfgpb0 = *DANUBE_SDRAM_MC_CFGPB0; int cols = cfgpb0 & 0xF; int rows = (cfgpb0 & 0xF0) >> 4; ulong size = (1 << (rows + cols)) * CFG_DW * CFG_NB; return size; } /* * Check memory range for valid RAM. A simple memory test determines * the actually available RAM size between addresses `base' and * `base + maxsize'. */ static long int dram_size(long int *base, long int maxsize) { volatile long int *addr; ulong cnt, val; ulong save[32]; /* to make test non-destructive */ unsigned char i = 0; for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) { addr = base + cnt; /* pointer arith! */ save[i++] = *addr; *addr = ~cnt; } /* write 0 to base address */ addr = base; save[i] = *addr; *addr = 0; /* check at base address */ if ((val = *addr) != 0) { *addr = save[i]; return (0); } for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) { addr = base + cnt; /* pointer arith! */ val = *addr; *addr = save[--i]; if (val != (~cnt)) { return (cnt * sizeof (long)); } } return (maxsize); } phys_size_t initdram(int board_type) { int rows, cols, best_val = *DANUBE_SDRAM_MC_CFGPB0; ulong size, max_size = 0; ulong our_address; /* load t9 into our_address */ asm volatile ("move %0, $25" : "=r" (our_address) :); /* Can't probe for RAM size unless we are running from Flash. * find out whether running from DRAM or Flash. */ if (CPHYSADDR(our_address) < CPHYSADDR(PHYS_FLASH_1)) { return max_sdram_size(); } for (cols = 0x8; cols <= 0xC; cols++) { for (rows = 0xB; rows <= 0xD; rows++) { *DANUBE_SDRAM_MC_CFGPB0 = (0x14 << 8) | (rows << 4) | cols; size = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, max_sdram_size()); if (size > max_size) { best_val = *DANUBE_SDRAM_MC_CFGPB0; max_size = size; } } } *DANUBE_SDRAM_MC_CFGPB0 = best_val; return max_size; } #endif static void gpio_default(void) { #ifdef CONFIG_SWITCH_PORT0 *DANUBE_GPIO_P0_ALTSEL0 &= ~(1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P0_ALTSEL1 &= ~(1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P0_OD |= (1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P0_DIR |= (1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P0_OUT |= (1<<CONFIG_SWITCH_PIN); #elif defined(CONFIG_SWITCH_PORT1) *DANUBE_GPIO_P1_ALTSEL0 &= ~(1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P1_ALTSEL1 &= ~(1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P1_OD |= (1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P1_DIR |= (1<<CONFIG_SWITCH_PIN); *DANUBE_GPIO_P1_OUT |= (1<<CONFIG_SWITCH_PIN); #endif #ifdef CONFIG_EBU_GPIO { int i = 0; printf ("bring up ebu gpio\n"); *DANUBE_EBU_BUSCON1 = 0x1e7ff; *DANUBE_EBU_ADDSEL1 = 0x14000001; *((volatile u16*)0xb4000000) = 0x0; for(i = 0; i < 1000; i++) udelay(1000); *((volatile u16*)0xb4000000) = CONFIG_EBU_GPIO; *DANUBE_EBU_BUSCON1 = 0x8001e7ff; } #endif #ifdef CONFIG_BUTTON_PORT0 *DANUBE_GPIO_P0_ALTSEL0 &= ~(1<<CONFIG_BUTTON_PIN); *DANUBE_GPIO_P0_ALTSEL1 &= ~(1<<CONFIG_BUTTON_PIN); *DANUBE_GPIO_P0_DIR &= ~(1<<CONFIG_BUTTON_PIN); if(!!(*DANUBE_GPIO_P0_IN & (1<<CONFIG_BUTTON_PIN)) == CONFIG_BUTTON_LEVEL) { printf("button is pressed\n"); setenv("bootdelay", "0"); setenv("bootcmd", "httpd"); } #elif defined(CONFIG_BUTTON_PORT1) *DANUBE_GPIO_P1_ALTSEL0 &= ~(1<<CONFIG_BUTTON_PIN); *DANUBE_GPIO_P1_ALTSEL1 &= ~(1<<CONFIG_BUTTON_PIN); *DANUBE_GPIO_P1_DIR &= ~(1<<CONFIG_BUTTON_PIN); if(!!(*DANUBE_GPIO_P1_IN & (1<<CONFIG_BUTTON_PIN)) == CONFIG_BUTTON_LEVEL) { printf("button is pressed\n"); setenv("bootdelay", "0"); setenv("bootcmd", "httpd"); } #endif #ifdef CONFIG_ARV4525 *DANUBE_GPIO_P0_ALTSEL0 &= ~((1<<4)|(1<<5)|(1<<6)|(1<<8)|(1<<9)); *DANUBE_GPIO_P0_ALTSEL1 &= ~((1<<4)|(1<<5)|(1<<6)|(1<<8)|(1<<9)); *DANUBE_GPIO_P0_OD |= ((1<<4)|(1<<5)|(1<<6)|(1<<8)|(1<<9)); *DANUBE_GPIO_P0_DIR |= ((1<<4)|(1<<5)|(1<<6)|(1<<8)|(1<<9)); *DANUBE_GPIO_P0_OUT &= ~((1<<4)|(1<<5)|(1<<6)|(1<<8)|(1<<9)); #endif } int checkboard (void) { unsigned long chipid = *DANUBE_MPS_CHIPID; int part_num; puts ("Board: "CONFIG_ARCADYAN"\n"); puts ("SoC: "); part_num = DANUBE_MPS_CHIPID_PARTNUM_GET(chipid); switch (part_num) { case 0x129: case 0x12D: case 0x12b: puts("Danube/Twinpass/Vinax-VE "); break; default: printf ("unknown, chip part number 0x%03X ", part_num); break; } printf ("V1.%ld, ", DANUBE_MPS_CHIPID_VERSION_GET(chipid)); printf("DDR Speed %ld MHz, ", ifx_get_ddr_hz()/1000000); printf("CPU Speed %ld MHz\n", ifx_get_cpuclk()/1000000); return 0; } #ifdef CONFIG_SKIP_LOWLEVEL_INIT int board_early_init_f(void) { #ifdef CONFIG_EBU_ADDSEL0 (*DANUBE_EBU_ADDSEL0) = CONFIG_EBU_ADDSEL0; #endif #ifdef CONFIG_EBU_ADDSEL1 (*DANUBE_EBU_ADDSEL1) = CONFIG_EBU_ADDSEL1; #endif #ifdef CONFIG_EBU_ADDSEL2 (*DANUBE_EBU_ADDSEL2) = CONFIG_EBU_ADDSEL2; #endif #ifdef CONFIG_EBU_ADDSEL3 (*DANUBE_EBU_ADDSEL3) = CONFIG_EBU_ADDSEL3; #endif #ifdef CONFIG_EBU_BUSCON0 (*DANUBE_EBU_BUSCON0) = CONFIG_EBU_BUSCON0; #endif #ifdef CONFIG_EBU_BUSCON1 (*DANUBE_EBU_BUSCON1) = CONFIG_EBU_BUSCON1; #endif #ifdef CONFIG_EBU_BUSCON2 (*DANUBE_EBU_BUSCON2) = CONFIG_EBU_BUSCON2; #endif #ifdef CONFIG_EBU_BUSCON3 (*DANUBE_EBU_BUSCON3) = CONFIG_EBU_BUSCON3; #endif return 0; } #endif /* CONFIG_SKIP_LOWLEVEL_INIT */ #ifdef CONFIG_RTL8306_SWITCH #define ID_RTL8306 0x5988 static int external_switch_rtl8306(void) { unsigned short chipid; static char * const name = "lq_cpe_eth"; udelay(100000); puts("\nsearching for rtl8306 switch ... "); if (miiphy_read(name, 4, 30, &chipid) == 0) { if (chipid == ID_RTL8306) { puts("found"); /* set led mode */ miiphy_write(name, 0, 19, 0xffff); /* magic */ miiphy_write(name, 4, 22, 0x877f); puts("\n"); return 0; } puts("failed\n"); } puts("\nno known switch found ... \n"); return 0; } #endif #ifdef CONFIG_AR8216_SWITCH static int external_switch_ar8216(void) { puts("initializing ar8216 switch... "); if (athrs26_phy_setup(0)==0) { printf("initialized\n"); return 0; } puts("failed ... \n"); return 0; } #endif int board_eth_init(bd_t *bis) { gpio_default(); #if defined(CONFIG_IFX_ETOP) uchar enetaddr[6]; if (!eth_getenv_enetaddr("ethaddr", enetaddr)) eth_setenv_enetaddr("ethaddr", (uchar *)0xb03f0016); *DANUBE_PMU_PWDCR &= 0xFFFFEFDF; *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/ if (lq_eth_initialize(bis)) return -1; *DANUBE_RCU_RST_REQ |=1; udelay(200000); *DANUBE_RCU_RST_REQ &=(unsigned long)~1; udelay(1000); #ifdef CONFIG_RTL8306_SWITCH if (external_switch_rtl8306()<0) return -1; #endif #ifdef CONFIG_AR8216_SWITCH if (external_switch_ar8216()<0) return -1; #endif #endif return 0; } #if defined(CONFIG_CMD_HTTPD) int do_http_upgrade(const unsigned char *data, const ulong size) { char buf[128]; if(getenv ("ram_addr") == NULL) return -1; if(getenv ("kernel_addr") == NULL) return -1; /* check the image */ if(run_command("imi ${ram_addr}", 0) < 0) { return -1; } /* write the image to the flash */ puts("http ugrade ...\n"); sprintf(buf, "era ${kernel_addr} +0x%lx; cp.b ${ram_addr} ${kernel_addr} 0x%lx", size, size); return run_command(buf, 0); } int do_http_progress(const int state) { /* toggle LED's here */ switch(state) { case HTTP_PROGRESS_START: puts("http start\n"); break; case HTTP_PROGRESS_TIMEOUT: puts("."); break; case HTTP_PROGRESS_UPLOAD_READY: puts("http upload ready\n"); break; case HTTP_PROGRESS_UGRADE_READY: puts("http ugrade ready\n"); break; case HTTP_PROGRESS_UGRADE_FAILED: puts("http ugrade failed\n"); break; } return 0; } unsigned long do_http_tmp_address(void) { char *s = getenv ("ram_addr"); if (s) { ulong tmp = simple_strtoul (s, NULL, 16); return tmp; } return 0 /*0x80a00000*/; } #endif