--- a/drivers/Makefile
+++ b/drivers/Makefile
@@ -65,6 +65,7 @@ obj-$(CONFIG_PARIDE) 		+= block/paride/
 obj-$(CONFIG_TC)		+= tc/
 obj-$(CONFIG_UWB)		+= uwb/
 obj-$(CONFIG_USB_OTG_UTILS)	+= usb/otg/
+obj-$(CONFIG_USB_DWC_OTG)	+= usb/dwc/
 obj-$(CONFIG_USB)		+= usb/
 obj-$(CONFIG_USB_MUSB_HDRC)	+= usb/musb/
 obj-$(CONFIG_PCI)		+= usb/
--- a/drivers/usb/Kconfig
+++ b/drivers/usb/Kconfig
@@ -116,6 +116,8 @@ source "drivers/usb/host/Kconfig"
 
 source "drivers/usb/musb/Kconfig"
 
+source "drivers/usb/dwc/Kconfig"
+
 source "drivers/usb/class/Kconfig"
 
 source "drivers/usb/storage/Kconfig"
--- /dev/null
+++ b/drivers/usb/dwc/Kconfig
@@ -0,0 +1,44 @@
+#
+# USB Dual Role (OTG-ready) Controller Drivers
+# for silicon based on Synopsys DesignWare IP
+#
+
+comment "Enable Host or Gadget support for DesignWare OTG controller"
+depends on !USB && USB_GADGET=n
+
+config USB_DWC_OTG
+	tristate "Synopsys DWC OTG Controller"
+	depends on USB
+	help
+	   This driver provides USB Device Controller support for the
+	   Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
+
+config DWC_DEBUG
+	bool "Enable DWC Debugging"
+	depends on USB_DWC_OTG
+	default n
+	help
+	   Enable DWC driver debugging
+
+choice
+	prompt "DWC Mode Selection"
+	depends on USB_DWC_OTG
+	default DWC_HOST_ONLY
+	help
+	   Select the DWC Core in OTG, Host only, or Device only mode.
+
+config DWC_HOST_ONLY
+	bool "DWC Host Only Mode"
+
+config DWC_OTG_MODE
+	bool "DWC OTG Mode"
+	select USB_GADGET
+	select USB_GADGET_SELECTED
+
+config DWC_DEVICE_ONLY
+	bool "DWC Device Only Mode"
+	select USB_GADGET
+	select USB_GADGET_SELECTED
+
+endchoice
+
--- /dev/null
+++ b/drivers/usb/dwc/Makefile
@@ -0,0 +1,26 @@
+#
+# Makefile for DWC_otg Highspeed USB controller driver
+#
+
+EXTRA_CFLAGS	+= -DDWC_HS_ELECT_TST
+#EXTRA_CFLAGS	+= -Dlinux -DDWC_HS_ELECT_TST
+#EXTRA_CFLAGS	+= -DDWC_EN_ISOC
+
+ifneq ($(CONFIG_DWC_HOST_ONLY),)
+EXTRA_CFLAGS    += -DDWC_HOST_ONLY
+endif
+
+ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
+EXTRA_CFLAGS    += -DDWC_DEVICE_ONLY
+endif
+
+ifneq ($(CONFIG_DWC_DEBUG),)
+EXTRA_CFLAGS	+= -DDEBUG
+endif
+
+obj-$(CONFIG_USB_DWC_OTG)	:= dwc_otg.o
+
+dwc_otg-objs	:= otg_driver.o otg_attr.o
+dwc_otg-objs	+= otg_cil.o otg_cil_intr.o
+dwc_otg-objs	+= otg_pcd.o otg_pcd_intr.o
+dwc_otg-objs	+= otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
--- /dev/null
+++ b/drivers/usb/dwc/otg_attr.c
@@ -0,0 +1,886 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
+ * $Revision: #31 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The diagnostic interface will provide access to the controller for
+ * bringing up the hardware and testing.  The Linux driver attributes
+ * feature will be used to provide the Linux Diagnostic
+ * Interface. These attributes are accessed through sysfs.
+ */
+
+/** @page "Linux Module Attributes"
+ *
+ * The Linux module attributes feature is used to provide the Linux
+ * Diagnostic Interface.  These attributes are accessed through sysfs.
+ * The diagnostic interface will provide access to the controller for
+ * bringing up the hardware and testing.
+
+
+ The following table shows the attributes.
+ <table>
+ <tr>
+ <td><b> Name</b></td>
+ <td><b> Description</b></td>
+ <td><b> Access</b></td>
+ </tr>
+
+ <tr>
+ <td> mode </td>
+ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hnpcapable </td>
+ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
+ Read returns the current value.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> srpcapable </td>
+ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
+ Read returns the current value.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> hnp </td>
+ <td> Initiates the Host Negotiation Protocol.  Read returns the status.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> srp </td>
+ <td> Initiates the Session Request Protocol.  Read returns the status.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> buspower </td>
+ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> bussuspend </td>
+ <td> Suspends the USB bus.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> busconnected </td>
+ <td> Gets the connection status of the bus</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> gotgctl </td>
+ <td> Gets or sets the Core Control Status Register.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gusbcfg </td>
+ <td> Gets or sets the Core USB Configuration Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> grxfsiz </td>
+ <td> Gets or sets the Receive FIFO Size Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gnptxfsiz </td>
+ <td> Gets or sets the non-periodic Transmit Size Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gpvndctl </td>
+ <td> Gets or sets the PHY Vendor Control Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> ggpio </td>
+ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
+ or sets the upper 16 bits.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> guid </td>
+ <td> Gets or sets the value of the User ID Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gsnpsid </td>
+ <td> Gets the value of the Synopsys ID Regester</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> devspeed </td>
+ <td> Gets or sets the device speed setting in the DCFG register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> enumspeed </td>
+ <td> Gets the device enumeration Speed.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hptxfsiz </td>
+ <td> Gets the value of the Host Periodic Transmit FIFO</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hprt0 </td>
+ <td> Gets or sets the value in the Host Port Control and Status Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regoffset </td>
+ <td> Sets the register offset for the next Register Access</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regvalue </td>
+ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> remote_wakeup </td>
+ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
+ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
+ Wakeup signalling bit in the Device Control Register is set for 1
+ milli-second.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regdump </td>
+ <td> Dumps the contents of core registers.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> spramdump </td>
+ <td> Dumps the contents of core registers.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hcddump </td>
+ <td> Dumps the current HCD state.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hcd_frrem </td>
+ <td> Shows the average value of the Frame Remaining
+ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
+ occurs. This can be used to determine the average interrupt latency. Also
+ shows the average Frame Remaining value for start_transfer and the "a" and
+ "b" sample points. The "a" and "b" sample points may be used during debugging
+ bto determine how long it takes to execute a section of the HCD code.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> rd_reg_test </td>
+ <td> Displays the time required to read the GNPTXFSIZ register many times
+ (the output shows the number of times the register is read).
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> wr_reg_test </td>
+ <td> Displays the time required to write the GNPTXFSIZ register many times
+ (the output shows the number of times the register is written).
+ <td> Read</td>
+ </tr>
+
+ </table>
+
+ Example usage:
+ To get the current mode:
+ cat /sys/devices/lm0/mode
+
+ To power down the USB:
+ echo 0 > /sys/devices/lm0/buspower
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/stat.h>  /* permission constants */
+#include <linux/version.h>
+
+#include <asm/sizes.h>
+#include <asm/io.h>
+#include <asm/sizes.h>
+
+#include "otg_plat.h"
+#include "otg_attr.h"
+#include "otg_driver.h"
+#include "otg_pcd.h"
+#include "otg_hcd.h"
+
+/*
+ * MACROs for defining sysfs attribute
+ */
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
+{ \
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t val; \
+	val = dwc_read_reg32 (_addr_); \
+	val = (val & (_mask_)) >> _shift_; \
+	return sprintf (buf, "%s = 0x%x\n", _string_, val); \
+}
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
+					const char *buf, size_t count) \
+{ \
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t set = simple_strtoul(buf, NULL, 16); \
+	uint32_t clear = set; \
+	clear = ((~clear) << _shift_) & _mask_; \
+	set = (set << _shift_) & _mask_; \
+	dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
+	dwc_modify_reg32(_addr_, clear, set); \
+	return count; \
+}
+
+/*
+ * MACROs for defining sysfs attribute for 32-bit registers
+ */
+#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
+{ \
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t val; \
+	val = dwc_read_reg32 (_addr_); \
+	return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
+}
+#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
+					const char *buf, size_t count) \
+{ \
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t val = simple_strtoul(buf, NULL, 16); \
+	dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
+	dwc_write_reg32(_addr_, val); \
+	return count; \
+}
+
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
+
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
+
+#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
+
+#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
+
+
+/** @name Functions for Show/Store of Attributes */
+/**@{*/
+
+/**
+ * Show the register offset of the Register Access.
+ */
+static ssize_t regoffset_show( struct device *_dev,
+			       struct device_attribute *attr,
+			       char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
+}
+
+/**
+ * Set the register offset for the next Register Access 	Read/Write
+ */
+static ssize_t regoffset_store( struct device *_dev,
+				struct device_attribute *attr,
+				const char *buf,
+				size_t count )
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t offset = simple_strtoul(buf, NULL, 16);
+	//dev_dbg(_dev, "Offset=0x%08x\n", offset);
+	if (offset < SZ_256K ) {
+		otg_dev->reg_offset = offset;
+	}
+	else {
+		dev_err( _dev, "invalid offset\n" );
+	}
+
+	return count;
+}
+DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
+
+
+/**
+ * Show the value of the register at the offset in the reg_offset
+ * attribute.
+ */
+static ssize_t regvalue_show( struct device *_dev,
+			      struct device_attribute *attr,
+			      char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t val;
+	volatile uint32_t *addr;
+
+	if (otg_dev->reg_offset != 0xFFFFFFFF &&
+	    0 != otg_dev->base) {
+		/* Calculate the address */
+		addr = (uint32_t*)(otg_dev->reg_offset +
+				   (uint8_t*)otg_dev->base);
+		//dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
+		val = dwc_read_reg32( addr );
+		return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
+				"Reg@0x%06x = 0x%08x\n",
+				otg_dev->reg_offset, val);
+	}
+	else {
+		dev_err(_dev, "Invalid offset (0x%0x)\n",
+			otg_dev->reg_offset);
+		return sprintf(buf, "invalid offset\n" );
+	}
+}
+
+/**
+ * Store the value in the register at the offset in the reg_offset
+ * attribute.
+ *
+ */
+static ssize_t regvalue_store( struct device *_dev,
+			       struct device_attribute *attr,
+			       const char *buf,
+			       size_t count )
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	volatile uint32_t * addr;
+	uint32_t val = simple_strtoul(buf, NULL, 16);
+	//dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
+	if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
+		/* Calculate the address */
+		addr = (uint32_t*)(otg_dev->reg_offset +
+				   (uint8_t*)otg_dev->base);
+		//dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
+		dwc_write_reg32( addr, val );
+	}
+	else {
+		dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
+			otg_dev->reg_offset);
+	}
+	return count;
+}
+DEVICE_ATTR(regvalue,  S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
+
+/*
+ * Attributes
+ */
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
+
+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
+
+DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
+DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
+DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
+DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
+DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
+
+DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
+
+
+/**
+ * @todo Add code to initiate the HNP.
+ */
+/**
+ * Show the HNP status bit
+ */
+static ssize_t hnp_show( struct device *_dev,
+			 struct device_attribute *attr,
+			 char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	gotgctl_data_t val;
+	val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
+	return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
+}
+
+/**
+ * Set the HNP Request bit
+ */
+static ssize_t hnp_store( struct device *_dev,
+			  struct device_attribute *attr,
+			  const char *buf,
+			  size_t count )
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t in = simple_strtoul(buf, NULL, 16);
+	uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
+	gotgctl_data_t mem;
+	mem.d32 = dwc_read_reg32(addr);
+	mem.b.hnpreq = in;
+	dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+	dwc_write_reg32(addr, mem.d32);
+	return count;
+}
+DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
+
+/**
+ * @todo Add code to initiate the SRP.
+ */
+/**
+ * Show the SRP status bit
+ */
+static ssize_t srp_show( struct device *_dev,
+			 struct device_attribute *attr,
+			 char *buf)
+{
+#ifndef DWC_HOST_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	gotgctl_data_t val;
+	val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
+	return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
+#else
+	return sprintf(buf, "Host Only Mode!\n");
+#endif
+}
+
+
+
+/**
+ * Set the SRP Request bit
+ */
+static ssize_t srp_store( struct device *_dev,
+			  struct device_attribute *attr,
+			  const char *buf,
+			  size_t count )
+{
+#ifndef DWC_HOST_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	dwc_otg_pcd_initiate_srp(otg_dev->pcd);
+#endif
+	return count;
+}
+DEVICE_ATTR(srp, 0644, srp_show, srp_store);
+
+/**
+ * @todo Need to do more for power on/off?
+ */
+/**
+ * Show the Bus Power status
+ */
+static ssize_t buspower_show( struct device *_dev,
+			      struct device_attribute *attr,
+			      char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	hprt0_data_t val;
+	val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
+	return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
+}
+
+
+/**
+ * Set the Bus Power status
+ */
+static ssize_t buspower_store( struct device *_dev,
+			       struct device_attribute *attr,
+			       const char *buf,
+			       size_t count )
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t on = simple_strtoul(buf, NULL, 16);
+	uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
+	hprt0_data_t mem;
+
+	mem.d32 = dwc_read_reg32(addr);
+	mem.b.prtpwr = on;
+
+	//dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+	dwc_write_reg32(addr, mem.d32);
+
+	return count;
+}
+DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
+
+/**
+ * @todo Need to do more for suspend?
+ */
+/**
+ * Show the Bus Suspend status
+ */
+static ssize_t bussuspend_show( struct device *_dev,
+				struct device_attribute *attr,
+				char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	hprt0_data_t val;
+	val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
+	return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
+}
+
+/**
+ * Set the Bus Suspend status
+ */
+static ssize_t bussuspend_store( struct device *_dev,
+				 struct device_attribute *attr,
+				 const char *buf,
+				 size_t count )
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t in = simple_strtoul(buf, NULL, 16);
+	uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
+	hprt0_data_t mem;
+	mem.d32 = dwc_read_reg32(addr);
+	mem.b.prtsusp = in;
+	dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+	dwc_write_reg32(addr, mem.d32);
+	return count;
+}
+DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
+
+/**
+ * Show the status of Remote Wakeup.
+ */
+static ssize_t remote_wakeup_show( struct device *_dev,
+				   struct device_attribute *attr,
+				   char *buf)
+{
+#ifndef DWC_HOST_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	dctl_data_t val;
+	val.d32 =
+		dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
+	return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
+			val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
+#else
+	return sprintf(buf, "Host Only Mode!\n");
+#endif
+}
+/**
+ * Initiate a remote wakeup of the host.  The Device control register
+ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
+ * flag is set.
+ *
+ */
+static ssize_t remote_wakeup_store( struct device *_dev,
+				    struct device_attribute *attr,
+				    const char *buf,
+				    size_t count )
+{
+#ifndef DWC_HOST_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t val = simple_strtoul(buf, NULL, 16);
+	if (val&1) {
+		dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
+	}
+	else {
+		dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
+	}
+#endif
+	return count;
+}
+DEVICE_ATTR(remote_wakeup,  S_IRUGO|S_IWUSR, remote_wakeup_show,
+	    remote_wakeup_store);
+
+/**
+ * Dump global registers and either host or device registers (depending on the
+ * current mode of the core).
+ */
+static ssize_t regdump_show( struct device *_dev,
+			     struct device_attribute *attr,
+			     char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+        dwc_otg_dump_global_registers( otg_dev->core_if);
+        if (dwc_otg_is_host_mode(otg_dev->core_if)) {
+                dwc_otg_dump_host_registers( otg_dev->core_if);
+        } else {
+                dwc_otg_dump_dev_registers( otg_dev->core_if);
+
+        }
+   	return sprintf( buf, "Register Dump\n" );
+}
+
+DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
+
+/**
+ * Dump global registers and either host or device registers (depending on the
+ * current mode of the core).
+ */
+static ssize_t spramdump_show( struct device *_dev,
+			       struct device_attribute *attr,
+			       char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+        dwc_otg_dump_spram( otg_dev->core_if);
+
+        return sprintf( buf, "SPRAM Dump\n" );
+}
+
+DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
+
+/**
+ * Dump the current hcd state.
+ */
+static ssize_t hcddump_show( struct device *_dev,
+			     struct device_attribute *attr,
+			     char *buf)
+{
+#ifndef DWC_DEVICE_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	dwc_otg_hcd_dump_state(otg_dev->hcd);
+#endif
+   	return sprintf( buf, "HCD Dump\n" );
+}
+
+DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
+
+/**
+ * Dump the average frame remaining at SOF. This can be used to
+ * determine average interrupt latency. Frame remaining is also shown for
+ * start transfer and two additional sample points.
+ */
+static ssize_t hcd_frrem_show( struct device *_dev,
+			       struct device_attribute *attr,
+			       char *buf)
+{
+#ifndef DWC_DEVICE_ONLY
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	dwc_otg_hcd_dump_frrem(otg_dev->hcd);
+#endif
+   	return sprintf( buf, "HCD Dump Frame Remaining\n" );
+}
+
+DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
+
+/**
+ * Displays the time required to read the GNPTXFSIZ register many times (the
+ * output shows the number of times the register is read).
+ */
+#define RW_REG_COUNT 10000000
+#define MSEC_PER_JIFFIE 1000/HZ
+static ssize_t rd_reg_test_show( struct device *_dev,
+				 struct device_attribute *attr,
+				 char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	int i;
+	int time;
+	int start_jiffies;
+
+	printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
+	       HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
+	start_jiffies = jiffies;
+	for (i = 0; i < RW_REG_COUNT; i++) {
+		dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
+	}
+	time = jiffies - start_jiffies;
+   	return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
+			RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
+}
+
+DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
+
+/**
+ * Displays the time required to write the GNPTXFSIZ register many times (the
+ * output shows the number of times the register is written).
+ */
+static ssize_t wr_reg_test_show( struct device *_dev,
+				 struct device_attribute *attr,
+				 char *buf)
+{
+	struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);		\
+	uint32_t reg_val;
+	int i;
+	int time;
+	int start_jiffies;
+
+	printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
+	       HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
+	reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
+	start_jiffies = jiffies;
+	for (i = 0; i < RW_REG_COUNT; i++) {
+		dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
+	}
+	time = jiffies - start_jiffies;
+   	return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
+			RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
+}
+
+DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
+/**@}*/
+
+/**
+ * Create the device files
+ */
+void dwc_otg_attr_create (struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	int error;
+
+	error = device_create_file(dev, &dev_attr_regoffset);
+	error = device_create_file(dev, &dev_attr_regvalue);
+	error = device_create_file(dev, &dev_attr_mode);
+	error = device_create_file(dev, &dev_attr_hnpcapable);
+	error = device_create_file(dev, &dev_attr_srpcapable);
+	error = device_create_file(dev, &dev_attr_hnp);
+	error = device_create_file(dev, &dev_attr_srp);
+	error = device_create_file(dev, &dev_attr_buspower);
+	error = device_create_file(dev, &dev_attr_bussuspend);
+	error = device_create_file(dev, &dev_attr_busconnected);
+	error = device_create_file(dev, &dev_attr_gotgctl);
+	error = device_create_file(dev, &dev_attr_gusbcfg);
+	error = device_create_file(dev, &dev_attr_grxfsiz);
+	error = device_create_file(dev, &dev_attr_gnptxfsiz);
+	error = device_create_file(dev, &dev_attr_gpvndctl);
+	error = device_create_file(dev, &dev_attr_ggpio);
+	error = device_create_file(dev, &dev_attr_guid);
+	error = device_create_file(dev, &dev_attr_gsnpsid);
+	error = device_create_file(dev, &dev_attr_devspeed);
+	error = device_create_file(dev, &dev_attr_enumspeed);
+	error = device_create_file(dev, &dev_attr_hptxfsiz);
+	error = device_create_file(dev, &dev_attr_hprt0);
+	error = device_create_file(dev, &dev_attr_remote_wakeup);
+	error = device_create_file(dev, &dev_attr_regdump);
+	error = device_create_file(dev, &dev_attr_spramdump);
+	error = device_create_file(dev, &dev_attr_hcddump);
+	error = device_create_file(dev, &dev_attr_hcd_frrem);
+	error = device_create_file(dev, &dev_attr_rd_reg_test);
+	error = device_create_file(dev, &dev_attr_wr_reg_test);
+}
+
+/**
+ * Remove the device files
+ */
+void dwc_otg_attr_remove (struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+
+	device_remove_file(dev, &dev_attr_regoffset);
+	device_remove_file(dev, &dev_attr_regvalue);
+	device_remove_file(dev, &dev_attr_mode);
+	device_remove_file(dev, &dev_attr_hnpcapable);
+	device_remove_file(dev, &dev_attr_srpcapable);
+	device_remove_file(dev, &dev_attr_hnp);
+	device_remove_file(dev, &dev_attr_srp);
+	device_remove_file(dev, &dev_attr_buspower);
+	device_remove_file(dev, &dev_attr_bussuspend);
+	device_remove_file(dev, &dev_attr_busconnected);
+	device_remove_file(dev, &dev_attr_gotgctl);
+	device_remove_file(dev, &dev_attr_gusbcfg);
+	device_remove_file(dev, &dev_attr_grxfsiz);
+	device_remove_file(dev, &dev_attr_gnptxfsiz);
+	device_remove_file(dev, &dev_attr_gpvndctl);
+	device_remove_file(dev, &dev_attr_ggpio);
+	device_remove_file(dev, &dev_attr_guid);
+	device_remove_file(dev, &dev_attr_gsnpsid);
+	device_remove_file(dev, &dev_attr_devspeed);
+	device_remove_file(dev, &dev_attr_enumspeed);
+	device_remove_file(dev, &dev_attr_hptxfsiz);
+	device_remove_file(dev, &dev_attr_hprt0);
+	device_remove_file(dev, &dev_attr_remote_wakeup);
+	device_remove_file(dev, &dev_attr_regdump);
+	device_remove_file(dev, &dev_attr_spramdump);
+	device_remove_file(dev, &dev_attr_hcddump);
+	device_remove_file(dev, &dev_attr_hcd_frrem);
+	device_remove_file(dev, &dev_attr_rd_reg_test);
+	device_remove_file(dev, &dev_attr_wr_reg_test);
+}
--- /dev/null
+++ b/drivers/usb/dwc/otg_attr.h
@@ -0,0 +1,67 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
+ * $Revision: #7 $
+ * $Date: 2005/03/28 $
+ * $Change: 477051 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_OTG_ATTR_H__)
+#define __DWC_OTG_ATTR_H__
+
+/** @file
+ * This file contains the interface to the Linux device attributes.
+ */
+extern struct device_attribute dev_attr_regoffset;
+extern struct device_attribute dev_attr_regvalue;
+
+extern struct device_attribute dev_attr_mode;
+extern struct device_attribute dev_attr_hnpcapable;
+extern struct device_attribute dev_attr_srpcapable;
+extern struct device_attribute dev_attr_hnp;
+extern struct device_attribute dev_attr_srp;
+extern struct device_attribute dev_attr_buspower;
+extern struct device_attribute dev_attr_bussuspend;
+extern struct device_attribute dev_attr_busconnected;
+extern struct device_attribute dev_attr_gotgctl;
+extern struct device_attribute dev_attr_gusbcfg;
+extern struct device_attribute dev_attr_grxfsiz;
+extern struct device_attribute dev_attr_gnptxfsiz;
+extern struct device_attribute dev_attr_gpvndctl;
+extern struct device_attribute dev_attr_ggpio;
+extern struct device_attribute dev_attr_guid;
+extern struct device_attribute dev_attr_gsnpsid;
+extern struct device_attribute dev_attr_devspeed;
+extern struct device_attribute dev_attr_enumspeed;
+extern struct device_attribute dev_attr_hptxfsiz;
+extern struct device_attribute dev_attr_hprt0;
+
+void dwc_otg_attr_create (struct platform_device *pdev);
+void dwc_otg_attr_remove (struct platform_device *pdev);
+
+#endif
--- /dev/null
+++ b/drivers/usb/dwc/otg_cil.c
@@ -0,0 +1,3831 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
+ * $Revision: #147 $
+ * $Date: 2008/10/16 $
+ * $Change: 1117667 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * The CIL manages the memory map for the core so that the HCD and PCD
+ * don't have to do this separately. It also handles basic tasks like
+ * reading/writing the registers and data FIFOs in the controller.
+ * Some of the data access functions provide encapsulation of several
+ * operations required to perform a task, such as writing multiple
+ * registers to start a transfer. Finally, the CIL performs basic
+ * services that are not specific to either the host or device modes
+ * of operation. These services include management of the OTG Host
+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
+ * Diagnostic API is also provided to allow testing of the controller
+ * hardware.
+ *
+ * The Core Interface Layer has the following requirements:
+ * - Provides basic controller operations.
+ * - Minimal use of OS services.
+ * - The OS services used will be abstracted by using inline functions
+ *	 or macros.
+ *
+ */
+#include <asm/unaligned.h>
+#include <linux/dma-mapping.h>
+#ifdef DEBUG
+#include <linux/jiffies.h>
+#endif
+
+#include "otg_plat.h"
+#include "otg_regs.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+
+
+/**
+ * This function is called to initialize the DWC_otg CSR data
+ * structures.	The register addresses in the device and host
+ * structures are initialized from the base address supplied by the
+ * caller.	The calling function must make the OS calls to get the
+ * base address of the DWC_otg controller registers.  The core_params
+ * argument holds the parameters that specify how the core should be
+ * configured.
+ *
+ * @param[in] reg_base_addr Base address of DWC_otg core registers
+ * @param[in] core_params Pointer to the core configuration parameters
+ *
+ */
+dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
+					dwc_otg_core_params_t *core_params)
+{
+	dwc_otg_core_if_t *core_if = 0;
+	dwc_otg_dev_if_t *dev_if = 0;
+	dwc_otg_host_if_t *host_if = 0;
+	uint8_t *reg_base = (uint8_t *)reg_base_addr;
+	int i = 0;
+
+	DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
+
+	core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
+
+	if (core_if == 0) {
+		DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
+		return 0;
+	}
+
+	memset(core_if, 0, sizeof(dwc_otg_core_if_t));
+
+	core_if->core_params = core_params;
+	core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
+
+	/*
+	 * Allocate the Device Mode structures.
+	 */
+	dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
+
+	if (dev_if == 0) {
+		DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
+		kfree(core_if);
+		return 0;
+	}
+
+	dev_if->dev_global_regs =
+			(dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
+
+	for (i=0; i<MAX_EPS_CHANNELS; i++)
+	{
+		dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
+				(reg_base + DWC_DEV_IN_EP_REG_OFFSET +
+				 (i * DWC_EP_REG_OFFSET));
+
+		dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
+				(reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
+				 (i * DWC_EP_REG_OFFSET));
+		DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
+					i, &dev_if->in_ep_regs[i]->diepctl);
+		DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
+					i, &dev_if->out_ep_regs[i]->doepctl);
+	}
+
+	dev_if->speed = 0; // unknown
+
+	core_if->dev_if = dev_if;
+
+	/*
+	 * Allocate the Host Mode structures.
+	 */
+	host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
+
+	if (host_if == 0) {
+		DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
+		kfree(dev_if);
+		kfree(core_if);
+		return 0;
+	}
+
+	host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
+			(reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
+
+	host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
+
+	for (i=0; i<MAX_EPS_CHANNELS; i++)
+	{
+		host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
+				(reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
+				 (i * DWC_OTG_CHAN_REGS_OFFSET));
+		DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
+					i, &host_if->hc_regs[i]->hcchar);
+	}
+
+	host_if->num_host_channels = MAX_EPS_CHANNELS;
+	core_if->host_if = host_if;
+
+	for (i=0; i<MAX_EPS_CHANNELS; i++)
+	{
+		core_if->data_fifo[i] =
+				(uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
+							 (i * DWC_OTG_DATA_FIFO_SIZE));
+		DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
+					i, (unsigned)core_if->data_fifo[i]);
+	}
+
+	core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
+
+	/*
+	 * Store the contents of the hardware configuration registers here for
+	 * easy access later.
+	 */
+	core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
+	core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
+	core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
+	core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
+
+	DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
+	DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
+	DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
+	DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
+
+	core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
+	core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+
+	DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
+	DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
+
+	DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
+	DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
+	DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
+	DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
+	DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
+	DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
+	DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
+
+	DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
+	DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
+
+	/*
+	 * Set the SRP sucess bit for FS-I2c
+	 */
+	core_if->srp_success = 0;
+	core_if->srp_timer_started = 0;
+
+
+	/*
+	 * Create new workqueue and init works
+	 */
+	core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
+	if(core_if->wq_otg == 0) {
+		DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
+		kfree(host_if);
+		kfree(dev_if);
+		kfree(core_if);
+		return 0 * HZ;
+	}
+	INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
+	INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
+
+	return core_if;
+}
+
+/**
+ * This function frees the structures allocated by dwc_otg_cil_init().
+ *
+ * @param[in] core_if The core interface pointer returned from
+ * dwc_otg_cil_init().
+ *
+ */
+void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
+{
+	/* Disable all interrupts */
+	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
+	dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
+
+	if (core_if->wq_otg) {
+		destroy_workqueue(core_if->wq_otg);
+	}
+	if (core_if->dev_if) {
+		kfree(core_if->dev_if);
+	}
+	if (core_if->host_if) {
+		kfree(core_if->host_if);
+	}
+	kfree(core_if);
+}
+
+/**
+ * This function enables the controller's Global Interrupt in the AHB Config
+ * register.
+ *
+ * @param[in] core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
+{
+	gahbcfg_data_t ahbcfg = { .d32 = 0};
+	ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
+	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
+}
+
+/**
+ * This function disables the controller's Global Interrupt in the AHB Config
+ * register.
+ *
+ * @param[in] core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
+{
+	gahbcfg_data_t ahbcfg = { .d32 = 0};
+	ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
+	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
+}
+
+/**
+ * This function initializes the commmon interrupts, used in both
+ * device and host modes.
+ *
+ * @param[in] core_if Programming view of the DWC_otg controller
+ *
+ */
+static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs =
+			core_if->core_global_regs;
+	gintmsk_data_t intr_mask = { .d32 = 0};
+
+	/* Clear any pending OTG Interrupts */
+	dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
+
+	/* Clear any pending interrupts */
+	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+	/*
+	 * Enable the interrupts in the GINTMSK.
+	 */
+	intr_mask.b.modemismatch = 1;
+	intr_mask.b.otgintr = 1;
+
+	if (!core_if->dma_enable) {
+		intr_mask.b.rxstsqlvl = 1;
+	}
+
+	intr_mask.b.conidstschng = 1;
+	intr_mask.b.wkupintr = 1;
+	intr_mask.b.disconnect = 1;
+	intr_mask.b.usbsuspend = 1;
+	intr_mask.b.sessreqintr = 1;
+	dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
+}
+
+/**
+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
+ * type.
+ */
+static void init_fslspclksel(dwc_otg_core_if_t *core_if)
+{
+	uint32_t	val;
+	hcfg_data_t		hcfg;
+
+	if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
+		 (core_if->hwcfg2.b.fs_phy_type == 1) &&
+		 (core_if->core_params->ulpi_fs_ls)) ||
+		(core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+		/* Full speed PHY */
+		val = DWC_HCFG_48_MHZ;
+	}
+	else {
+		/* High speed PHY running at full speed or high speed */
+		val = DWC_HCFG_30_60_MHZ;
+	}
+
+	DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
+	hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
+	hcfg.b.fslspclksel = val;
+	dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
+}
+
+/**
+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
+ * and the enumeration speed of the device.
+ */
+static void init_devspd(dwc_otg_core_if_t *core_if)
+{
+	uint32_t	val;
+	dcfg_data_t		dcfg;
+
+	if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
+		 (core_if->hwcfg2.b.fs_phy_type == 1) &&
+		 (core_if->core_params->ulpi_fs_ls)) ||
+		(core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+		/* Full speed PHY */
+		val = 0x3;
+	}
+	else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
+		/* High speed PHY running at full speed */
+		val = 0x1;
+	}
+	else {
+		/* High speed PHY running at high speed */
+		val = 0x0;
+	}
+
+	DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
+
+	dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+	dcfg.b.devspd = val;
+	dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
+}
+
+/**
+ * This function calculates the number of IN EPS
+ * using GHWCFG1 and GHWCFG2 registers values
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ */
+static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
+{
+	uint32_t num_in_eps = 0;
+	uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
+	uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
+	uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
+	int i;
+
+
+	for(i = 0; i < num_eps; ++i)
+	{
+		if(!(hwcfg1 & 0x1))
+			num_in_eps++;
+
+		hwcfg1 >>= 2;
+	}
+
+	if(core_if->hwcfg4.b.ded_fifo_en) {
+		num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
+	}
+
+	return num_in_eps;
+}
+
+
+/**
+ * This function calculates the number of OUT EPS
+ * using GHWCFG1 and GHWCFG2 registers values
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ */
+static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
+{
+	uint32_t num_out_eps = 0;
+	uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
+	uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
+	int i;
+
+	for(i = 0; i < num_eps; ++i)
+	{
+		if(!(hwcfg1 & 0x2))
+			num_out_eps++;
+
+		hwcfg1 >>= 2;
+	}
+	return num_out_eps;
+}
+/**
+ * This function initializes the DWC_otg controller registers and
+ * prepares the core for device mode or host mode operation.
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ *
+ */
+void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
+{
+	int i = 0;
+	dwc_otg_core_global_regs_t *global_regs =
+			core_if->core_global_regs;
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	gahbcfg_data_t ahbcfg = { .d32 = 0 };
+	gusbcfg_data_t usbcfg = { .d32 = 0 };
+	gi2cctl_data_t i2cctl = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
+
+	/* Common Initialization */
+
+	usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+//	usbcfg.b.tx_end_delay = 1;
+	/* Program the ULPI External VBUS bit if needed */
+	usbcfg.b.ulpi_ext_vbus_drv =
+		(core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
+
+	/* Set external TS Dline pulsing */
+	usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
+	dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+
+	/* Reset the Controller */
+	dwc_otg_core_reset(core_if);
+
+	/* Initialize parameters from Hardware configuration registers. */
+	dev_if->num_in_eps = calc_num_in_eps(core_if);
+	dev_if->num_out_eps = calc_num_out_eps(core_if);
+
+
+	DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
+
+	for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
+	{
+		dev_if->perio_tx_fifo_size[i] =
+			dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+		DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
+				i, dev_if->perio_tx_fifo_size[i]);
+	}
+
+	for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
+	{
+		dev_if->tx_fifo_size[i] =
+			dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+		DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
+			i, dev_if->perio_tx_fifo_size[i]);
+	}
+
+	core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
+	core_if->rx_fifo_size =
+			dwc_read_reg32(&global_regs->grxfsiz);
+	core_if->nperio_tx_fifo_size =
+			dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
+
+	DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
+	DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
+	DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
+
+	/* This programming sequence needs to happen in FS mode before any other
+	 * programming occurs */
+	if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
+		(core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+			/* If FS mode with FS PHY */
+
+			/* core_init() is now called on every switch so only call the
+			 * following for the first time through. */
+			if (!core_if->phy_init_done) {
+				core_if->phy_init_done = 1;
+				DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
+				usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+				usbcfg.b.physel = 1;
+				dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+				/* Reset after a PHY select */
+				dwc_otg_core_reset(core_if);
+			}
+
+			/* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS.	Also
+			 * do this on HNP Dev/Host mode switches (done in dev_init and
+			 * host_init). */
+			if (dwc_otg_is_host_mode(core_if)) {
+				init_fslspclksel(core_if);
+			}
+			else {
+				init_devspd(core_if);
+			}
+
+			if (core_if->core_params->i2c_enable) {
+				DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
+				/* Program GUSBCFG.OtgUtmifsSel to I2C */
+				usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+				usbcfg.b.otgutmifssel = 1;
+				dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+				/* Program GI2CCTL.I2CEn */
+				i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
+				i2cctl.b.i2cdevaddr = 1;
+				i2cctl.b.i2cen = 0;
+				dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
+				i2cctl.b.i2cen = 1;
+				dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
+			}
+
+		} /* endif speed == DWC_SPEED_PARAM_FULL */
+
+		else {
+			/* High speed PHY. */
+			if (!core_if->phy_init_done) {
+				core_if->phy_init_done = 1;
+				/* HS PHY parameters.  These parameters are preserved
+				 * during soft reset so only program the first time.  Do
+				 * a soft reset immediately after setting phyif.  */
+				usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
+				if (usbcfg.b.ulpi_utmi_sel == 1) {
+					/* ULPI interface */
+					usbcfg.b.phyif = 0;
+					usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
+				}
+				else {
+					/* UTMI+ interface */
+					if (core_if->core_params->phy_utmi_width == 16) {
+						usbcfg.b.phyif = 1;
+				}
+				else {
+					usbcfg.b.phyif = 0;
+				}
+			}
+
+			dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+			/* Reset after setting the PHY parameters */
+			dwc_otg_core_reset(core_if);
+		}
+	}
+
+	if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
+		(core_if->hwcfg2.b.fs_phy_type == 1) &&
+		(core_if->core_params->ulpi_fs_ls)) {
+		DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
+		usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+		usbcfg.b.ulpi_fsls = 1;
+		usbcfg.b.ulpi_clk_sus_m = 1;
+		dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+	}
+	else {
+		usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+		usbcfg.b.ulpi_fsls = 0;
+		usbcfg.b.ulpi_clk_sus_m = 0;
+		dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+	}
+
+	/* Program the GAHBCFG Register.*/
+	switch (core_if->hwcfg2.b.architecture) {
+
+	case DWC_SLAVE_ONLY_ARCH:
+		DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
+		ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+		ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+		core_if->dma_enable = 0;
+		core_if->dma_desc_enable = 0;
+		break;
+
+	case DWC_EXT_DMA_ARCH:
+		DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
+		ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
+		core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+		core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
+		break;
+
+	case DWC_INT_DMA_ARCH:
+		DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
+		ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
+		core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+		core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
+		break;
+
+	}
+	ahbcfg.b.dmaenable = core_if->dma_enable;
+	dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
+
+	core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
+
+	core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
+	core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
+	DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
+	DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
+
+	/*
+	 * Program the GUSBCFG register.
+	 */
+	usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+	switch (core_if->hwcfg2.b.op_mode) {
+	case DWC_MODE_HNP_SRP_CAPABLE:
+		usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
+		   DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
+		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+		   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+		break;
+
+	case DWC_MODE_SRP_ONLY_CAPABLE:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+		   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+		break;
+
+	case DWC_MODE_NO_HNP_SRP_CAPABLE:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = 0;
+		break;
+
+	case DWC_MODE_SRP_CAPABLE_DEVICE:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+		DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+		break;
+
+	case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = 0;
+		break;
+
+	case DWC_MODE_SRP_CAPABLE_HOST:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+		DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+		break;
+
+	case DWC_MODE_NO_SRP_CAPABLE_HOST:
+		usbcfg.b.hnpcap = 0;
+		usbcfg.b.srpcap = 0;
+		break;
+	}
+
+	dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+	/* Enable common interrupts */
+	dwc_otg_enable_common_interrupts(core_if);
+
+	/* Do device or host intialization based on mode during PCD
+	 * and HCD initialization  */
+	if (dwc_otg_is_host_mode(core_if)) {
+		DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
+		core_if->op_state = A_HOST;
+	}
+	else {
+		DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
+		core_if->op_state = B_PERIPHERAL;
+#ifdef DWC_DEVICE_ONLY
+		dwc_otg_core_dev_init(core_if);
+#endif
+	}
+}
+
+
+/**
+ * This function enables the Device mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
+{
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	dwc_otg_core_global_regs_t *global_regs =
+		core_if->core_global_regs;
+
+	DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
+
+	/* Disable all interrupts. */
+	dwc_write_reg32(&global_regs->gintmsk, 0);
+
+	/* Clear any pending interrupts */
+	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+	/* Enable the common interrupts */
+	dwc_otg_enable_common_interrupts(core_if);
+
+	/* Enable interrupts */
+	intr_mask.b.usbreset = 1;
+	intr_mask.b.enumdone = 1;
+
+	if(!core_if->multiproc_int_enable) {
+		intr_mask.b.inepintr = 1;
+		intr_mask.b.outepintr = 1;
+	}
+
+	intr_mask.b.erlysuspend = 1;
+
+	if(core_if->en_multiple_tx_fifo == 0) {
+		intr_mask.b.epmismatch = 1;
+	}
+
+
+#ifdef DWC_EN_ISOC
+	if(core_if->dma_enable) {
+		if(core_if->dma_desc_enable == 0) {
+			if(core_if->pti_enh_enable) {
+				dctl_data_t dctl = { .d32 = 0 };
+				dctl.b.ifrmnum = 1;
+				dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
+			} else {
+				intr_mask.b.incomplisoin = 1;
+				intr_mask.b.incomplisoout = 1;
+			}
+		}
+	} else {
+		intr_mask.b.incomplisoin = 1;
+		intr_mask.b.incomplisoout = 1;
+	}
+#endif // DWC_EN_ISOC
+
+/** @todo NGS: Should this be a module parameter? */
+#ifdef USE_PERIODIC_EP
+	intr_mask.b.isooutdrop = 1;
+	intr_mask.b.eopframe = 1;
+	intr_mask.b.incomplisoin = 1;
+	intr_mask.b.incomplisoout = 1;
+#endif
+
+	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+
+	DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
+		dwc_read_reg32(&global_regs->gintmsk));
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * device mode.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ *
+ */
+void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
+{
+	int i,size;
+	u_int32_t *default_value_array;
+
+	dwc_otg_core_global_regs_t *global_regs =
+		core_if->core_global_regs;
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	dwc_otg_core_params_t *params = core_if->core_params;
+	dcfg_data_t dcfg = { .d32 = 0};
+	grstctl_t resetctl = { .d32 = 0 };
+	uint32_t rx_fifo_size;
+	fifosize_data_t nptxfifosize;
+	fifosize_data_t txfifosize;
+	dthrctl_data_t dthrctl;
+
+	/* Restart the Phy Clock */
+	dwc_write_reg32(core_if->pcgcctl, 0);
+
+	/* Device configuration register */
+	init_devspd(core_if);
+	dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
+	dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
+	dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
+
+	dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
+
+	/* Configure data FIFO sizes */
+	if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+		DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
+		DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
+		DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
+
+		/* Rx FIFO */
+		DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
+						dwc_read_reg32(&global_regs->grxfsiz));
+
+		rx_fifo_size = params->dev_rx_fifo_size;
+		dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
+
+		DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
+			dwc_read_reg32(&global_regs->grxfsiz));
+
+		/** Set Periodic Tx FIFO Mask all bits 0 */
+		core_if->p_tx_msk = 0;
+
+		/** Set Tx FIFO Mask all bits 0 */
+		core_if->tx_msk = 0;
+
+		/* Non-periodic Tx FIFO */
+		DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
+				dwc_read_reg32(&global_regs->gnptxfsiz));
+
+		nptxfifosize.b.depth  = params->dev_nperio_tx_fifo_size;
+		nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
+
+		dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+
+		DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
+				dwc_read_reg32(&global_regs->gnptxfsiz));
+
+		txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
+		if(core_if->en_multiple_tx_fifo == 0) {
+			//core_if->hwcfg4.b.ded_fifo_en==0
+
+			/**@todo NGS: Fix Periodic FIFO Sizing! */
+			/*
+			 * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
+			 * Indexes of the FIFO size module parameters in the
+			 * dev_perio_tx_fifo_size array and the FIFO size registers in
+			 * the dptxfsiz array run from 0 to 14.
+			 */
+			/** @todo Finish debug of this */
+			size=core_if->hwcfg4.b.num_dev_perio_in_ep;
+			default_value_array=params->dev_perio_tx_fifo_size;
+
+		}
+		else {
+			//core_if->hwcfg4.b.ded_fifo_en==1
+			/*
+			 * Tx FIFOs These FIFOs are numbered from 1 to 15.
+			 * Indexes of the FIFO size module parameters in the
+			 * dev_tx_fifo_size array and the FIFO size registers in
+			 * the dptxfsiz_dieptxf array run from 0 to 14.
+			 */
+
+			size=core_if->hwcfg4.b.num_in_eps;
+			default_value_array=params->dev_tx_fifo_size;
+
+		}
+		for (i=0; i < size; i++)
+		{
+
+			txfifosize.b.depth = default_value_array[i];
+			DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
+				dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
+			dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
+				txfifosize.d32);
+			DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
+				dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
+			txfifosize.b.startaddr += txfifosize.b.depth;
+		}
+	}
+	/* Flush the FIFOs */
+	dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
+	dwc_otg_flush_rx_fifo(core_if);
+
+	/* Flush the Learning Queue. */
+	resetctl.b.intknqflsh = 1;
+	dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
+
+	/* Clear all pending Device Interrupts */
+
+	if(core_if->multiproc_int_enable) {
+	}
+
+	/** @todo - if the condition needed to be checked
+	 *  or in any case all pending interrutps should be cleared?
+         */
+	if(core_if->multiproc_int_enable) {
+		for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
+		        dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
+		}
+
+		for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
+		        dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
+		}
+
+		dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
+		dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
+	} else {
+                dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
+                dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
+                dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
+                dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
+	}
+
+	for (i=0; i <= dev_if->num_in_eps; i++)
+	{
+		depctl_data_t depctl;
+		depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+		if (depctl.b.epena) {
+			depctl.d32 = 0;
+			depctl.b.epdis = 1;
+			depctl.b.snak = 1;
+		}
+		else {
+			depctl.d32 = 0;
+		}
+
+		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
+
+
+		dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
+		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
+		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
+	}
+
+	for (i=0; i <= dev_if->num_out_eps; i++)
+	{
+		depctl_data_t depctl;
+		depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
+		if (depctl.b.epena) {
+			depctl.d32 = 0;
+			depctl.b.epdis = 1;
+			depctl.b.snak = 1;
+		}
+		else {
+			depctl.d32 = 0;
+		}
+
+		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
+
+		dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
+		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
+		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
+	}
+
+	if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
+		dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
+		dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
+		dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
+
+		dev_if->rx_thr_length = params->rx_thr_length;
+		dev_if->tx_thr_length = params->tx_thr_length;
+
+		dev_if->setup_desc_index = 0;
+
+		dthrctl.d32 = 0;
+		dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
+		dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
+		dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
+		dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
+		dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
+
+		dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
+
+		DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
+			dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
+
+	}
+
+	dwc_otg_enable_device_interrupts(core_if);
+
+	{
+		diepmsk_data_t msk = { .d32 = 0 };
+		msk.b.txfifoundrn = 1;
+	        if(core_if->multiproc_int_enable) {
+			dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
+	        } else {
+			dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
+	        }
+	}
+
+
+	if(core_if->multiproc_int_enable) {
+		/* Set NAK on Babble */
+		dctl_data_t dctl = { .d32 = 0};
+		dctl.b.nakonbble = 1;
+		dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
+	}
+}
+
+/**
+ * This function enables the Host mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	gintmsk_data_t intr_mask = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
+
+	/* Disable all interrupts. */
+	dwc_write_reg32(&global_regs->gintmsk, 0);
+
+	/* Clear any pending interrupts. */
+	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+	/* Enable the common interrupts */
+	dwc_otg_enable_common_interrupts(core_if);
+
+	/*
+	 * Enable host mode interrupts without disturbing common
+	 * interrupts.
+	 */
+	intr_mask.b.sofintr = 1;
+	intr_mask.b.portintr = 1;
+	intr_mask.b.hcintr = 1;
+
+	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+}
+
+/**
+ * This function disables the Host Mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs =
+	core_if->core_global_regs;
+	gintmsk_data_t intr_mask = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
+
+	/*
+	 * Disable host mode interrupts without disturbing common
+	 * interrupts.
+	 */
+	intr_mask.b.sofintr = 1;
+	intr_mask.b.portintr = 1;
+	intr_mask.b.hcintr = 1;
+	intr_mask.b.ptxfempty = 1;
+	intr_mask.b.nptxfempty = 1;
+
+	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * host mode.
+ *
+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
+ * request queues. Host channels are reset to ensure that they are ready for
+ * performing transfers.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ *
+ */
+void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	dwc_otg_host_if_t	*host_if = core_if->host_if;
+	dwc_otg_core_params_t	*params = core_if->core_params;
+	hprt0_data_t		hprt0 = { .d32 = 0 };
+	fifosize_data_t		nptxfifosize;
+	fifosize_data_t		ptxfifosize;
+	int			i;
+	hcchar_data_t		hcchar;
+	hcfg_data_t		hcfg;
+	dwc_otg_hc_regs_t	*hc_regs;
+	int			num_channels;
+	gotgctl_data_t	gotgctl = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
+
+	/* Restart the Phy Clock */
+	dwc_write_reg32(core_if->pcgcctl, 0);
+
+	/* Initialize Host Configuration Register */
+	init_fslspclksel(core_if);
+	if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
+	{
+		hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+		hcfg.b.fslssupp = 1;
+		dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
+	}
+
+	/* Configure data FIFO sizes */
+	if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+		DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
+		DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
+		DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
+		DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
+
+		/* Rx FIFO */
+		DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
+		dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
+		DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
+
+		/* Non-periodic Tx FIFO */
+		DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
+		nptxfifosize.b.depth  = params->host_nperio_tx_fifo_size;
+		nptxfifosize.b.startaddr = params->host_rx_fifo_size;
+		dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+		DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
+
+		/* Periodic Tx FIFO */
+		DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
+		ptxfifosize.b.depth	 = params->host_perio_tx_fifo_size;
+		ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
+		dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
+		DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
+	}
+
+	/* Clear Host Set HNP Enable in the OTG Control Register */
+	gotgctl.b.hstsethnpen = 1;
+	dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+
+	/* Make sure the FIFOs are flushed. */
+	dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
+	dwc_otg_flush_rx_fifo(core_if);
+
+	/* Flush out any leftover queued requests. */
+	num_channels = core_if->core_params->host_channels;
+	for (i = 0; i < num_channels; i++)
+	{
+		hc_regs = core_if->host_if->hc_regs[i];
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hcchar.b.chen = 0;
+		hcchar.b.chdis = 1;
+		hcchar.b.epdir = 0;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+	}
+
+	/* Halt all channels to put them into a known state. */
+	for (i = 0; i < num_channels; i++)
+	{
+		int count = 0;
+		hc_regs = core_if->host_if->hc_regs[i];
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hcchar.b.chen = 1;
+		hcchar.b.chdis = 1;
+		hcchar.b.epdir = 0;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+		DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
+		do {
+			hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+			if (++count > 1000)
+			{
+				DWC_ERROR("%s: Unable to clear halt on channel %d\n",
+					  __func__, i);
+				break;
+			}
+		}
+		while (hcchar.b.chen);
+	}
+
+	/* Turn on the vbus power. */
+	DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
+	if (core_if->op_state == A_HOST) {
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
+		if (hprt0.b.prtpwr == 0) {
+			hprt0.b.prtpwr = 1;
+			dwc_write_reg32(host_if->hprt0, hprt0.d32);
+		}
+	}
+
+	dwc_otg_enable_host_interrupts(core_if);
+}
+
+/**
+ * Prepares a host channel for transferring packets to/from a specific
+ * endpoint. The HCCHARn register is set up with the characteristics specified
+ * in _hc. Host channel interrupts that may need to be serviced while this
+ * transfer is in progress are enabled.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ * @param hc Information needed to initialize the host channel
+ */
+void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	uint32_t intr_enable;
+	hcintmsk_data_t hc_intr_mask;
+	gintmsk_data_t gintmsk = { .d32 = 0 };
+	hcchar_data_t hcchar;
+	hcsplt_data_t hcsplt;
+
+	uint8_t hc_num = hc->hc_num;
+	dwc_otg_host_if_t *host_if = core_if->host_if;
+	dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
+
+	/* Clear old interrupt conditions for this host channel. */
+	hc_intr_mask.d32 = 0xFFFFFFFF;
+	hc_intr_mask.b.reserved = 0;
+	dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
+
+	/* Enable channel interrupts required for this transfer. */
+	hc_intr_mask.d32 = 0;
+	hc_intr_mask.b.chhltd = 1;
+	if (core_if->dma_enable) {
+		hc_intr_mask.b.ahberr = 1;
+		if (hc->error_state && !hc->do_split &&
+			hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+			hc_intr_mask.b.ack = 1;
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.datatglerr = 1;
+				if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
+					hc_intr_mask.b.nak = 1;
+				}
+			}
+		}
+	}
+	else {
+		switch (hc->ep_type) {
+		case DWC_OTG_EP_TYPE_CONTROL:
+		case DWC_OTG_EP_TYPE_BULK:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.stall = 1;
+			hc_intr_mask.b.xacterr = 1;
+			hc_intr_mask.b.datatglerr = 1;
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.bblerr = 1;
+			}
+			else {
+				hc_intr_mask.b.nak = 1;
+				hc_intr_mask.b.nyet = 1;
+				if (hc->do_ping) {
+					hc_intr_mask.b.ack = 1;
+				}
+			}
+
+			if (hc->do_split) {
+				hc_intr_mask.b.nak = 1;
+				if (hc->complete_split) {
+					hc_intr_mask.b.nyet = 1;
+				}
+				else {
+					hc_intr_mask.b.ack = 1;
+				}
+			}
+
+			if (hc->error_state) {
+				hc_intr_mask.b.ack = 1;
+			}
+			break;
+		case DWC_OTG_EP_TYPE_INTR:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.nak = 1;
+			hc_intr_mask.b.stall = 1;
+			hc_intr_mask.b.xacterr = 1;
+			hc_intr_mask.b.datatglerr = 1;
+			hc_intr_mask.b.frmovrun = 1;
+
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.bblerr = 1;
+			}
+			if (hc->error_state) {
+				hc_intr_mask.b.ack = 1;
+			}
+			if (hc->do_split) {
+				if (hc->complete_split) {
+					hc_intr_mask.b.nyet = 1;
+				}
+				else {
+					hc_intr_mask.b.ack = 1;
+				}
+			}
+			break;
+		case DWC_OTG_EP_TYPE_ISOC:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.frmovrun = 1;
+			hc_intr_mask.b.ack = 1;
+
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.xacterr = 1;
+				hc_intr_mask.b.bblerr = 1;
+			}
+			break;
+		}
+	}
+	dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
+
+//	if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
+//			hc->max_packet = 512;
+	/* Enable the top level host channel interrupt. */
+	intr_enable = (1 << hc_num);
+	dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
+
+	/* Make sure host channel interrupts are enabled. */
+	gintmsk.b.hcintr = 1;
+	dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
+
+	/*
+	 * Program the HCCHARn register with the endpoint characteristics for
+	 * the current transfer.
+	 */
+	hcchar.d32 = 0;
+	hcchar.b.devaddr = hc->dev_addr;
+	hcchar.b.epnum = hc->ep_num;
+	hcchar.b.epdir = hc->ep_is_in;
+	hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
+	hcchar.b.eptype = hc->ep_type;
+	hcchar.b.mps = hc->max_packet;
+
+	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
+
+	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+	DWC_DEBUGPL(DBG_HCDV, "	 Dev Addr: %d\n", hcchar.b.devaddr);
+	DWC_DEBUGPL(DBG_HCDV, "	 Ep Num: %d\n", hcchar.b.epnum);
+	DWC_DEBUGPL(DBG_HCDV, "	 Is In: %d\n", hcchar.b.epdir);
+	DWC_DEBUGPL(DBG_HCDV, "	 Is Low Speed: %d\n", hcchar.b.lspddev);
+	DWC_DEBUGPL(DBG_HCDV, "	 Ep Type: %d\n", hcchar.b.eptype);
+	DWC_DEBUGPL(DBG_HCDV, "	 Max Pkt: %d\n", hcchar.b.mps);
+	DWC_DEBUGPL(DBG_HCDV, "	 Multi Cnt: %d\n", hcchar.b.multicnt);
+
+	/*
+	 * Program the HCSPLIT register for SPLITs
+	 */
+	hcsplt.d32 = 0;
+	if (hc->do_split) {
+		DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
+			   hc->complete_split ? "CSPLIT" : "SSPLIT");
+		hcsplt.b.compsplt = hc->complete_split;
+		hcsplt.b.xactpos = hc->xact_pos;
+		hcsplt.b.hubaddr = hc->hub_addr;
+		hcsplt.b.prtaddr = hc->port_addr;
+		DWC_DEBUGPL(DBG_HCDV, "	  comp split %d\n", hc->complete_split);
+		DWC_DEBUGPL(DBG_HCDV, "	  xact pos %d\n", hc->xact_pos);
+		DWC_DEBUGPL(DBG_HCDV, "	  hub addr %d\n", hc->hub_addr);
+		DWC_DEBUGPL(DBG_HCDV, "	  port addr %d\n", hc->port_addr);
+		DWC_DEBUGPL(DBG_HCDV, "	  is_in %d\n", hc->ep_is_in);
+		DWC_DEBUGPL(DBG_HCDV, "	  Max Pkt: %d\n", hcchar.b.mps);
+		DWC_DEBUGPL(DBG_HCDV, "	  xferlen: %d\n", hc->xfer_len);
+	}
+	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
+
+}
+
+/**
+ * Attempts to halt a host channel. This function should only be called in
+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
+ * normal circumstances in DMA mode, the controller halts the channel when the
+ * transfer is complete or a condition occurs that requires application
+ * intervention.
+ *
+ * In slave mode, checks for a free request queue entry, then sets the Channel
+ * Enable and Channel Disable bits of the Host Channel Characteristics
+ * register of the specified channel to intiate the halt. If there is no free
+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
+ * register to flush requests for this channel. In the latter case, sets a
+ * flag to indicate that the host channel needs to be halted when a request
+ * queue slot is open.
+ *
+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
+ * HCCHARn register. The controller ensures there is space in the request
+ * queue before submitting the halt request.
+ *
+ * Some time may elapse before the core flushes any posted requests for this
+ * host channel and halts. The Channel Halted interrupt handler completes the
+ * deactivation of the host channel.
+ *
+ * @param core_if Controller register interface.
+ * @param hc Host channel to halt.
+ * @param halt_status Reason for halting the channel.
+ */
+void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
+			 dwc_hc_t *hc,
+			 dwc_otg_halt_status_e halt_status)
+{
+	gnptxsts_data_t			nptxsts;
+	hptxsts_data_t			hptxsts;
+	hcchar_data_t			hcchar;
+	dwc_otg_hc_regs_t		*hc_regs;
+	dwc_otg_core_global_regs_t	*global_regs;
+	dwc_otg_host_global_regs_t	*host_global_regs;
+
+	hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+	global_regs = core_if->core_global_regs;
+	host_global_regs = core_if->host_if->host_global_regs;
+
+	WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
+
+	if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+		halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
+		/*
+		 * Disable all channel interrupts except Ch Halted. The QTD
+		 * and QH state associated with this transfer has been cleared
+		 * (in the case of URB_DEQUEUE), so the channel needs to be
+		 * shut down carefully to prevent crashes.
+		 */
+		hcintmsk_data_t hcintmsk;
+		hcintmsk.d32 = 0;
+		hcintmsk.b.chhltd = 1;
+		dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
+
+		/*
+		 * Make sure no other interrupts besides halt are currently
+		 * pending. Handling another interrupt could cause a crash due
+		 * to the QTD and QH state.
+		 */
+		dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
+
+		/*
+		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
+		 * even if the channel was already halted for some other
+		 * reason.
+		 */
+		hc->halt_status = halt_status;
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		if (hcchar.b.chen == 0) {
+			/*
+			 * The channel is either already halted or it hasn't
+			 * started yet. In DMA mode, the transfer may halt if
+			 * it finishes normally or a condition occurs that
+			 * requires driver intervention. Don't want to halt
+			 * the channel again. In either Slave or DMA mode,
+			 * it's possible that the transfer has been assigned
+			 * to a channel, but not started yet when an URB is
+			 * dequeued. Don't want to halt a channel that hasn't
+			 * started yet.
+			 */
+			return;
+		}
+	}
+
+	if (hc->halt_pending) {
+		/*
+		 * A halt has already been issued for this channel. This might
+		 * happen when a transfer is aborted by a higher level in
+		 * the stack.
+		 */
+#ifdef DEBUG
+		DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
+			  __func__, hc->hc_num);
+
+/*		dwc_otg_dump_global_registers(core_if); */
+/*		dwc_otg_dump_host_registers(core_if); */
+#endif
+		return;
+	}
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 1;
+
+	if (!core_if->dma_enable) {
+		/* Check for space in the request queue to issue the halt. */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+			hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+			nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+			if (nptxsts.b.nptxqspcavail == 0) {
+				hcchar.b.chen = 0;
+			}
+		}
+		else {
+			hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
+			if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
+				hcchar.b.chen = 0;
+			}
+		}
+	}
+
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	hc->halt_status = halt_status;
+
+	if (hcchar.b.chen) {
+		hc->halt_pending = 1;
+		hc->halt_on_queue = 0;
+	}
+	else {
+		hc->halt_on_queue = 1;
+	}
+
+	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+	DWC_DEBUGPL(DBG_HCDV, "	 hcchar: 0x%08x\n", hcchar.d32);
+	DWC_DEBUGPL(DBG_HCDV, "	 halt_pending: %d\n", hc->halt_pending);
+	DWC_DEBUGPL(DBG_HCDV, "	 halt_on_queue: %d\n", hc->halt_on_queue);
+	DWC_DEBUGPL(DBG_HCDV, "	 halt_status: %d\n", hc->halt_status);
+
+	return;
+}
+
+/**
+ * Clears the transfer state for a host channel. This function is normally
+ * called after a transfer is done and the host channel is being released.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Identifies the host channel to clean up.
+ */
+void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	dwc_otg_hc_regs_t *hc_regs;
+
+	hc->xfer_started = 0;
+
+	/*
+	 * Clear channel interrupt enables and any unhandled channel interrupt
+	 * conditions.
+	 */
+	hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+	dwc_write_reg32(&hc_regs->hcintmsk, 0);
+	dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
+
+#ifdef DEBUG
+	del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
+	{
+		hcchar_data_t hcchar;
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		if (hcchar.b.chdis) {
+			DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
+				 __func__, hc->hc_num, hcchar.d32);
+		}
+	}
+#endif
+}
+
+/**
+ * Sets the channel property that indicates in which frame a periodic transfer
+ * should occur. This is always set to the _next_ frame. This function has no
+ * effect on non-periodic transfers.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Identifies the host channel to set up and its properties.
+ * @param hcchar Current value of the HCCHAR register for the specified host
+ * channel.
+ */
+static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
+					 dwc_hc_t *hc,
+					 hcchar_data_t *hcchar)
+{
+	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+		hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+		hfnum_data_t	hfnum;
+		hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
+
+		/* 1 if _next_ frame is odd, 0 if it's even */
+		hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
+#ifdef DEBUG
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
+			switch (hfnum.b.frnum & 0x7) {
+			case 7:
+				core_if->hfnum_7_samples++;
+				core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
+				break;
+			case 0:
+				core_if->hfnum_0_samples++;
+				core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
+				break;
+			default:
+				core_if->hfnum_other_samples++;
+				core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
+				break;
+			}
+		}
+#endif
+	}
+}
+
+#ifdef DEBUG
+static void hc_xfer_timeout(unsigned long ptr)
+{
+	hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
+	int hc_num = xfer_info->hc->hc_num;
+	DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
+	DWC_WARN("	start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
+}
+#endif
+
+/*
+ * This function does the setup for a data transfer for a host channel and
+ * starts the transfer. May be called in either Slave mode or DMA mode. In
+ * Slave mode, the caller must ensure that there is sufficient space in the
+ * request queue and Tx Data FIFO.
+ *
+ * For an OUT transfer in Slave mode, it loads a data packet into the
+ * appropriate FIFO. If necessary, additional data packets will be loaded in
+ * the Host ISR.
+ *
+ * For an IN transfer in Slave mode, a data packet is requested. The data
+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
+ * additional data packets are requested in the Host ISR.
+ *
+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
+ * register along with a packet count of 1 and the channel is enabled. This
+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
+ * simply set to 0 since no data transfer occurs in this case.
+ *
+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
+ * all the information required to perform the subsequent data transfer. In
+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
+ * controller performs the entire PING protocol, then starts the data
+ * transfer.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Information needed to initialize the host channel. The xfer_len
+ * value may be reduced to accommodate the max widths of the XferSize and
+ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
+ * to reflect the final xfer_len value.
+ */
+void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	hcchar_data_t hcchar;
+	hctsiz_data_t hctsiz;
+	uint16_t num_packets;
+	uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
+	uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
+	dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+	hctsiz.d32 = 0;
+
+	if (hc->do_ping) {
+		if (!core_if->dma_enable) {
+			dwc_otg_hc_do_ping(core_if, hc);
+			hc->xfer_started = 1;
+			return;
+		}
+		else {
+			hctsiz.b.dopng = 1;
+		}
+	}
+
+	if (hc->do_split) {
+		num_packets = 1;
+
+		if (hc->complete_split && !hc->ep_is_in) {
+			/* For CSPLIT OUT Transfer, set the size to 0 so the
+			 * core doesn't expect any data written to the FIFO */
+			hc->xfer_len = 0;
+		}
+		else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
+			hc->xfer_len = hc->max_packet;
+		}
+		else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
+			hc->xfer_len = 188;
+		}
+
+		hctsiz.b.xfersize = hc->xfer_len;
+	}
+	else {
+		/*
+		 * Ensure that the transfer length and packet count will fit
+		 * in the widths allocated for them in the HCTSIZn register.
+		 */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+			hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+			/*
+			 * Make sure the transfer size is no larger than one
+			 * (micro)frame's worth of data. (A check was done
+			 * when the periodic transfer was accepted to ensure
+			 * that a (micro)frame's worth of data can be
+			 * programmed into a channel.)
+			 */
+			uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
+			if (hc->xfer_len > max_periodic_len) {
+				hc->xfer_len = max_periodic_len;
+			}
+			else {
+			}
+		}
+		else if (hc->xfer_len > max_hc_xfer_size) {
+			/* Make sure that xfer_len is a multiple of max packet size. */
+			hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
+		}
+
+		if (hc->xfer_len > 0) {
+			num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
+			if (num_packets > max_hc_pkt_count) {
+				num_packets = max_hc_pkt_count;
+				hc->xfer_len = num_packets * hc->max_packet;
+			}
+		}
+		else {
+			/* Need 1 packet for transfer length of 0. */
+			num_packets = 1;
+		}
+
+#if 0
+//host testusb item 10, would do series of Control transfer
+//with URB_SHORT_NOT_OK set in transfer_flags ,
+//changing the xfer_len would cause the test fail
+		if (hc->ep_is_in) {
+			/* Always program an integral # of max packets for IN transfers. */
+			hc->xfer_len = num_packets * hc->max_packet;
+		}
+#endif
+
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+			hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+			/*
+			 * Make sure that the multi_count field matches the
+			 * actual transfer length.
+			 */
+			hc->multi_count = num_packets;
+		}
+
+		if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+			/* Set up the initial PID for the transfer. */
+			if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
+				if (hc->ep_is_in) {
+					if (hc->multi_count == 1) {
+						hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+					}
+					else if (hc->multi_count == 2) {
+						hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+					}
+					else {
+						hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
+					}
+				}
+				else {
+					if (hc->multi_count == 1) {
+						hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+					}
+					else {
+						hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
+					}
+				}
+			}
+			else {
+				hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+			}
+		}
+
+		hctsiz.b.xfersize = hc->xfer_len;
+	}
+
+	hc->start_pkt_count = num_packets;
+	hctsiz.b.pktcnt = num_packets;
+	hctsiz.b.pid = hc->data_pid_start;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+	DWC_DEBUGPL(DBG_HCDV, "	 Xfer Size: %d\n", hctsiz.b.xfersize);
+	DWC_DEBUGPL(DBG_HCDV, "	 Num Pkts: %d\n", hctsiz.b.pktcnt);
+	DWC_DEBUGPL(DBG_HCDV, "	 Start PID: %d\n", hctsiz.b.pid);
+
+	if (core_if->dma_enable) {
+		dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
+	}
+
+	/* Start the split */
+	if (hc->do_split) {
+		hcsplt_data_t hcsplt;
+		hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
+		hcsplt.b.spltena = 1;
+		dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
+	}
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.multicnt = hc->multi_count;
+	hc_set_even_odd_frame(core_if, hc, &hcchar);
+#ifdef DEBUG
+	core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
+	if (hcchar.b.chdis) {
+		DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
+			 __func__, hc->hc_num, hcchar.d32);
+	}
+#endif
+
+	/* Set host channel enable after all other setup is complete. */
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 0;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	hc->xfer_started = 1;
+	hc->requests++;
+
+	if (!core_if->dma_enable &&
+		!hc->ep_is_in && hc->xfer_len > 0) {
+		/* Load OUT packet into the appropriate Tx FIFO. */
+		dwc_otg_hc_write_packet(core_if, hc);
+	}
+
+#ifdef DEBUG
+	/* Start a timer for this transfer. */
+	core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
+	core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
+	core_if->hc_xfer_info[hc->hc_num].hc = hc;
+	core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
+	core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
+	add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
+#endif
+}
+
+/**
+ * This function continues a data transfer that was started by previous call
+ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
+ * sufficient space in the request queue and Tx Data FIFO. This function
+ * should only be called in Slave mode. In DMA mode, the controller acts
+ * autonomously to complete transfers programmed to a host channel.
+ *
+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
+ * if there is any data remaining to be queued. For an IN transfer, another
+ * data packet is always requested. For the SETUP phase of a control transfer,
+ * this function does nothing.
+ *
+ * @return 1 if a new request is queued, 0 if no more requests are required
+ * for this transfer.
+ */
+int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+
+	if (hc->do_split) {
+		/* SPLITs always queue just once per channel */
+		return 0;
+	}
+	else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+		/* SETUPs are queued only once since they can't be NAKed. */
+		return 0;
+	}
+	else if (hc->ep_is_in) {
+		/*
+		 * Always queue another request for other IN transfers. If
+		 * back-to-back INs are issued and NAKs are received for both,
+		 * the driver may still be processing the first NAK when the
+		 * second NAK is received. When the interrupt handler clears
+		 * the NAK interrupt for the first NAK, the second NAK will
+		 * not be seen. So we can't depend on the NAK interrupt
+		 * handler to requeue a NAKed request. Instead, IN requests
+		 * are issued each time this function is called. When the
+		 * transfer completes, the extra requests for the channel will
+		 * be flushed.
+		 */
+		hcchar_data_t hcchar;
+		dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hc_set_even_odd_frame(core_if, hc, &hcchar);
+		hcchar.b.chen = 1;
+		hcchar.b.chdis = 0;
+		DWC_DEBUGPL(DBG_HCDV, "	 IN xfer: hcchar = 0x%08x\n", hcchar.d32);
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+		hc->requests++;
+		return 1;
+	}
+	else {
+		/* OUT transfers. */
+		if (hc->xfer_count < hc->xfer_len) {
+			if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+				hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+				hcchar_data_t hcchar;
+				dwc_otg_hc_regs_t *hc_regs;
+				hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+				hc_set_even_odd_frame(core_if, hc, &hcchar);
+			}
+
+			/* Load OUT packet into the appropriate Tx FIFO. */
+			dwc_otg_hc_write_packet(core_if, hc);
+			hc->requests++;
+			return 1;
+		}
+		else {
+			return 0;
+		}
+	}
+}
+
+/**
+ * Starts a PING transfer. This function should only be called in Slave mode.
+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
+ */
+void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	hcchar_data_t hcchar;
+	hctsiz_data_t hctsiz;
+	dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+
+	hctsiz.d32 = 0;
+	hctsiz.b.dopng = 1;
+	hctsiz.b.pktcnt = 1;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 0;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+}
+
+/*
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+	uint32_t i;
+	uint32_t remaining_count;
+	uint32_t byte_count;
+	uint32_t dword_count;
+
+	uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
+	uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
+
+	remaining_count = hc->xfer_len - hc->xfer_count;
+	if (remaining_count > hc->max_packet) {
+		byte_count = hc->max_packet;
+	}
+	else {
+		byte_count = remaining_count;
+	}
+
+	dword_count = (byte_count + 3) / 4;
+
+	if ((((unsigned long)data_buff) & 0x3) == 0) {
+		/* xfer_buff is DWORD aligned. */
+		for (i = 0; i < dword_count; i++, data_buff++)
+		{
+			dwc_write_reg32(data_fifo, *data_buff);
+		}
+	}
+	else {
+		/* xfer_buff is not DWORD aligned. */
+		for (i = 0; i < dword_count; i++, data_buff++)
+		{
+			dwc_write_reg32(data_fifo, get_unaligned(data_buff));
+		}
+	}
+
+	hc->xfer_count += byte_count;
+	hc->xfer_buff += byte_count;
+}
+
+/**
+ * Gets the current USB frame number. This is the frame number from the last
+ * SOF packet.
+ */
+uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
+{
+	dsts_data_t dsts;
+	dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+	/* read current frame/microframe number from DSTS register */
+	return dsts.b.soffn;
+}
+
+/**
+ * This function reads a setup packet from the Rx FIFO into the destination
+ * buffer.	This function is called from the Rx Status Queue Level (RxStsQLvl)
+ * Interrupt routine when a SETUP packet has been received in Slave mode.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dest Destination buffer for packet data.
+ */
+void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
+{
+	/* Get the 8 bytes of a setup transaction data */
+
+	/* Pop 2 DWORDS off the receive data FIFO into memory */
+	dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
+	dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
+}
+
+
+/**
+ * This function enables EP0 OUT to receive SETUP packets and configures EP0
+ * IN for transmitting packets.	 It is normally called when the
+ * "Enumeration Done" interrupt occurs.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	dsts_data_t dsts;
+	depctl_data_t diepctl;
+	depctl_data_t doepctl;
+	dctl_data_t dctl = { .d32 = 0 };
+
+	/* Read the Device Status and Endpoint 0 Control registers */
+	dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
+	diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
+	doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
+
+	/* Set the MPS of the IN EP based on the enumeration speed */
+	switch (dsts.b.enumspd) {
+	case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
+	case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
+	case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
+		diepctl.b.mps = DWC_DEP0CTL_MPS_64;
+		break;
+	case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
+		diepctl.b.mps = DWC_DEP0CTL_MPS_8;
+		break;
+	}
+
+	dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
+
+	/* Enable OUT EP for receive */
+	doepctl.b.epena = 1;
+	dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
+
+#ifdef VERBOSE
+	DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
+		dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+	DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
+		dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
+#endif
+	dctl.b.cgnpinnak = 1;
+
+	dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
+	DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
+		dwc_read_reg32(&dev_if->dev_global_regs->dctl));
+}
+
+/**
+ * This function activates an EP.  The Device EP control register for
+ * the EP is configured as defined in the ep structure.	 Note: This
+ * function is not used for EP0.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to activate.
+ */
+void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	depctl_data_t depctl;
+	volatile uint32_t *addr;
+	daint_data_t daintmsk = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
+		(ep->is_in?"IN":"OUT"));
+
+	/* Read DEPCTLn register */
+	if (ep->is_in == 1) {
+		addr = &dev_if->in_ep_regs[ep->num]->diepctl;
+		daintmsk.ep.in = 1<<ep->num;
+	}
+	else {
+		addr = &dev_if->out_ep_regs[ep->num]->doepctl;
+		daintmsk.ep.out = 1<<ep->num;
+	}
+
+	/* If the EP is already active don't change the EP Control
+	 * register. */
+	depctl.d32 = dwc_read_reg32(addr);
+	if (!depctl.b.usbactep) {
+		depctl.b.mps = ep->maxpacket;
+		depctl.b.eptype = ep->type;
+		depctl.b.txfnum = ep->tx_fifo_num;
+
+		if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
+			depctl.b.setd0pid = 1; // ???
+		}
+		else {
+			depctl.b.setd0pid = 1;
+		}
+		depctl.b.usbactep = 1;
+
+		dwc_write_reg32(addr, depctl.d32);
+		DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
+	}
+
+	/* Enable the Interrupt for this EP */
+	if(core_if->multiproc_int_enable) {
+		if (ep->is_in == 1) {
+			diepmsk_data_t diepmsk = { .d32 = 0};
+			diepmsk.b.xfercompl = 1;
+			diepmsk.b.timeout = 1;
+			diepmsk.b.epdisabled = 1;
+			diepmsk.b.ahberr = 1;
+			diepmsk.b.intknepmis = 1;
+			diepmsk.b.txfifoundrn = 1; //?????
+
+
+			if(core_if->dma_desc_enable) {
+				diepmsk.b.bna = 1;
+			}
+/*
+			if(core_if->dma_enable) {
+				doepmsk.b.nak = 1;
+			}
+*/
+			dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
+
+		} else {
+			doepmsk_data_t doepmsk = { .d32 = 0};
+			doepmsk.b.xfercompl = 1;
+			doepmsk.b.ahberr = 1;
+			doepmsk.b.epdisabled = 1;
+
+
+			if(core_if->dma_desc_enable) {
+				doepmsk.b.bna = 1;
+			}
+/*
+			doepmsk.b.babble = 1;
+			doepmsk.b.nyet = 1;
+			doepmsk.b.nak = 1;
+*/
+			dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
+		}
+		dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
+			 0, daintmsk.d32);
+	} else {
+		dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
+				 0, daintmsk.d32);
+	}
+
+	DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
+		dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
+
+	ep->stall_clear_flag = 0;
+	return;
+}
+
+/**
+ * This function deactivates an EP. This is done by clearing the USB Active
+ * EP bit in the Device EP control register. Note: This function is not used
+ * for EP0. EP0 cannot be deactivated.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to deactivate.
+ */
+void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl = { .d32 = 0 };
+	volatile uint32_t *addr;
+	daint_data_t daintmsk = { .d32 = 0};
+
+	/* Read DEPCTLn register */
+	if (ep->is_in == 1) {
+		addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+		daintmsk.ep.in = 1<<ep->num;
+	}
+	else {
+		addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+		daintmsk.ep.out = 1<<ep->num;
+	}
+
+	//disabled ep only when ep is enabled
+	//or got halt in the loop in test in cv9
+	depctl.d32=dwc_read_reg32(addr);
+	if(depctl.b.epena){
+		if (ep->is_in == 1) {
+			diepint_data_t diepint;
+			dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
+
+			//Set ep nak
+			depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+			depctl.b.snak=1;
+			dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+			//wait for diepint.b.inepnakeff
+			diepint.d32=dwc_read_reg32(&in_reg->diepint);
+			while(!diepint.b.inepnakeff){
+				udelay(1);
+				diepint.d32=dwc_read_reg32(&in_reg->diepint);
+			}
+			diepint.d32=0;
+			diepint.b.inepnakeff=1;
+			dwc_write_reg32(&in_reg->diepint,diepint.d32);
+
+			//set ep disable and snak
+			depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+			depctl.b.snak=1;
+			depctl.b.epdis=1;
+			dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+			//wait for diepint.b.epdisabled
+			diepint.d32=dwc_read_reg32(&in_reg->diepint);
+			while(!diepint.b.epdisabled){
+				udelay(1);
+				diepint.d32=dwc_read_reg32(&in_reg->diepint);
+			}
+			diepint.d32=0;
+			diepint.b.epdisabled=1;
+			dwc_write_reg32(&in_reg->diepint,diepint.d32);
+
+			//clear ep enable and disable bit
+			depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+			depctl.b.epena=0;
+			depctl.b.epdis=0;
+			dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+		}
+#if 0
+//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
+//but this doesn't work, the old code do.
+		else {
+			doepint_data_t doepint;
+			dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
+			dctl_data_t dctl;
+			gintsts_data_t gintsts;
+
+			//set dctl global out nak
+			dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
+			dctl.b.sgoutnak=1;
+			dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
+
+			//wait for gintsts.goutnakeff
+			gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
+			while(!gintsts.b.goutnakeff){
+				udelay(1);
+				gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
+			}
+			gintsts.d32=0;
+			gintsts.b.goutnakeff=1;
+			dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+			//set ep disable and snak
+			depctl.d32=dwc_read_reg32(&out_reg->doepctl);
+			depctl.b.snak=1;
+			depctl.b.epdis=1;
+			dwc_write_reg32(&out_reg->doepctl,depctl.d32);
+
+			//wait for diepint.b.epdisabled
+			doepint.d32=dwc_read_reg32(&out_reg->doepint);
+			while(!doepint.b.epdisabled){
+				udelay(1);
+				doepint.d32=dwc_read_reg32(&out_reg->doepint);
+			}
+			doepint.d32=0;
+			doepint.b.epdisabled=1;
+			dwc_write_reg32(&out_reg->doepint,doepint.d32);
+
+			//clear ep enable and disable bit
+			depctl.d32=dwc_read_reg32(&out_reg->doepctl);
+			depctl.b.epena=0;
+			depctl.b.epdis=0;
+			dwc_write_reg32(&out_reg->doepctl,depctl.d32);
+		}
+#endif
+
+		depctl.d32=0;
+		depctl.b.usbactep = 0;
+
+		if (ep->is_in == 0) {
+			if(core_if->dma_enable||core_if->dma_desc_enable)
+				depctl.b.epdis = 1;
+		}
+
+		dwc_write_reg32(addr, depctl.d32);
+	}
+
+	/* Disable the Interrupt for this EP */
+	if(core_if->multiproc_int_enable) {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
+				 daintmsk.d32, 0);
+
+		if (ep->is_in == 1) {
+			dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
+		} else {
+			dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
+		}
+	} else {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
+					 daintmsk.d32, 0);
+	}
+
+	if (ep->is_in == 1) {
+		DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
+			(u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
+			dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
+			dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
+			dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
+			dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
+			dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
+		DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+			dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+			dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+	}
+	else {
+		DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
+			(u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
+			dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
+			dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
+			dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
+			dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
+
+		DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+			dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+			dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+	}
+
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer.	 For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR.  the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	dwc_otg_dma_desc_t* dma_desc;
+	uint32_t offset;
+	uint32_t xfer_est;
+	int i;
+
+	ep->desc_cnt = ( ep->total_len / ep->maxxfer)  +
+		((ep->total_len % ep->maxxfer) ? 1 : 0);
+	if(!ep->desc_cnt)
+		ep->desc_cnt = 1;
+
+	dma_desc = ep->desc_addr;
+	xfer_est = ep->total_len;
+	offset = 0;
+	for( i = 0; i < ep->desc_cnt; ++i) {
+		/** DMA Descriptor Setup */
+		if(xfer_est > ep->maxxfer) {
+			dma_desc->status.b.bs = BS_HOST_BUSY;
+			dma_desc->status.b.l = 0;
+			dma_desc->status.b.ioc = 0;
+			dma_desc->status.b.sp = 0;
+			dma_desc->status.b.bytes = ep->maxxfer;
+			dma_desc->buf = ep->dma_addr + offset;
+			dma_desc->status.b.bs = BS_HOST_READY;
+
+			xfer_est -= ep->maxxfer;
+			offset += ep->maxxfer;
+		} else {
+			dma_desc->status.b.bs = BS_HOST_BUSY;
+			dma_desc->status.b.l = 1;
+			dma_desc->status.b.ioc = 1;
+			if(ep->is_in) {
+				dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
+					1 : ((ep->sent_zlp) ? 1 : 0);
+				dma_desc->status.b.bytes = xfer_est;
+			} else 	{
+				dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
+			}
+
+			dma_desc->buf = ep->dma_addr + offset;
+			dma_desc->status.b.bs = BS_HOST_READY;
+		}
+		dma_desc ++;
+	}
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer.	 For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR.  the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t 	depctl;
+	deptsiz_data_t	deptsiz;
+	gintmsk_data_t 	intr_mask = { .d32 = 0};
+
+	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
+
+	DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
+		"xfer_buff=%p start_xfer_buff=%p\n",
+		ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
+		ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
+
+	/* IN endpoint */
+	if (ep->is_in == 1) {
+		dwc_otg_dev_in_ep_regs_t *in_regs =
+			core_if->dev_if->in_ep_regs[ep->num];
+
+		gnptxsts_data_t gtxstatus;
+
+		gtxstatus.d32 =
+			dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+
+		if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
+#ifdef DEBUG
+			DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
+#endif
+			return;
+		}
+
+		depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
+		deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
+
+		ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
+				ep->maxxfer : (ep->total_len - ep->xfer_len);
+
+		/* Zero Length Packet? */
+		if ((ep->xfer_len - ep->xfer_count) == 0) {
+			deptsiz.b.xfersize = 0;
+			deptsiz.b.pktcnt = 1;
+		}
+		else {
+			/* Program the transfer size and packet count
+			 *	as follows: xfersize = N * maxpacket +
+			 *	short_packet pktcnt = N + (short_packet
+			 *	exist ? 1 : 0)
+			 */
+			deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
+			deptsiz.b.pktcnt =
+				(ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
+				ep->maxpacket;
+		}
+
+
+		/* Write the DMA register */
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
+
+			if (core_if->dma_desc_enable == 0) {
+				dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(in_regs->diepdma),
+						 (uint32_t)ep->dma_addr);
+			}
+			else {
+				init_dma_desc_chain(core_if, ep);
+				/** DIEPDMAn Register write */
+
+					VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
+					dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
+			}
+		}
+		else
+		{
+			dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+			if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
+				/**
+				 * Enable the Non-Periodic Tx FIFO empty interrupt,
+				 * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
+				 * the data will be written into the fifo by the ISR.
+				 */
+				if(core_if->en_multiple_tx_fifo == 0) {
+					intr_mask.b.nptxfempty = 1;
+					dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+						intr_mask.d32, intr_mask.d32);
+				}
+				else {
+					/* Enable the Tx FIFO Empty Interrupt for this EP */
+					if(ep->xfer_len > 0) {
+						uint32_t fifoemptymsk = 0;
+						fifoemptymsk = 1 << ep->num;
+						dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+						0, fifoemptymsk);
+
+					}
+				}
+			}
+		}
+
+		/* EP enable, IN data in FIFO */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+		depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
+		depctl.b.nextep = ep->num;
+		dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
+
+		DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
+			(u32)&in_regs->diepctl,
+			dwc_read_reg32(&in_regs->diepctl),
+			dwc_read_reg32(&in_regs->dieptsiz),
+			dwc_read_reg32(&in_regs->diepint),
+			dwc_read_reg32(&in_regs->diepdma),
+			dwc_read_reg32(&in_regs->dtxfsts));
+		DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+			dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+			dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+
+	}
+	else {
+		/* OUT endpoint */
+		dwc_otg_dev_out_ep_regs_t *out_regs =
+		core_if->dev_if->out_ep_regs[ep->num];
+
+		depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
+		deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
+
+		ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
+				ep->maxxfer : (ep->total_len - ep->xfer_len);
+
+		/* Program the transfer size and packet count as follows:
+		 *
+		 *	pktcnt = N
+		 *	xfersize = N * maxpacket
+		 */
+		if ((ep->xfer_len - ep->xfer_count) == 0) {
+			/* Zero Length Packet */
+			deptsiz.b.xfersize = ep->maxpacket;
+			deptsiz.b.pktcnt = 1;
+		}
+		else {
+			deptsiz.b.pktcnt =
+					(ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
+					ep->maxpacket;
+			ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
+			deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
+		}
+
+		DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
+			ep->num,
+			deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
+				ep->num,
+				ep->dma_addr);
+			if (!core_if->dma_desc_enable) {
+				dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(out_regs->doepdma),
+					(uint32_t)ep->dma_addr);
+			}
+			else {
+				init_dma_desc_chain(core_if, ep);
+
+				/** DOEPDMAn Register write */
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
+				dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
+			}
+		}
+		else {
+			dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+		}
+
+		/* EP enable */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+
+		dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+		DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
+			(u32)&out_regs->doepctl,
+			dwc_read_reg32(&out_regs->doepctl),
+			dwc_read_reg32(&out_regs->doeptsiz),
+			dwc_read_reg32(&out_regs->doepint),
+			dwc_read_reg32(&out_regs->doepdma));
+
+		DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+			dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+			dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+	}
+}
+
+/**
+ * This function setup a zero length transfer in Buffer DMA and
+ * Slave modes for usb requests with zero field set
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+
+ 	depctl_data_t depctl;
+	deptsiz_data_t deptsiz;
+	gintmsk_data_t intr_mask = { .d32 = 0};
+
+	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
+
+	/* IN endpoint */
+	if (ep->is_in == 1) {
+		dwc_otg_dev_in_ep_regs_t *in_regs =
+			core_if->dev_if->in_ep_regs[ep->num];
+
+		depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
+		deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
+
+		deptsiz.b.xfersize = 0;
+		deptsiz.b.pktcnt = 1;
+
+
+		/* Write the DMA register */
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			if (core_if->dma_desc_enable == 0) {
+				dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(in_regs->diepdma),
+						 (uint32_t)ep->dma_addr);
+			}
+		}
+		else {
+			dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+			/**
+			 * Enable the Non-Periodic Tx FIFO empty interrupt,
+			 * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
+			 * the data will be written into the fifo by the ISR.
+			 */
+			if(core_if->en_multiple_tx_fifo == 0) {
+				intr_mask.b.nptxfempty = 1;
+				dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+					intr_mask.d32, intr_mask.d32);
+			}
+			else {
+				/* Enable the Tx FIFO Empty Interrupt for this EP */
+				if(ep->xfer_len > 0) {
+					uint32_t fifoemptymsk = 0;
+					fifoemptymsk = 1 << ep->num;
+					dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+					0, fifoemptymsk);
+				}
+			}
+		}
+
+		/* EP enable, IN data in FIFO */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+		depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
+		depctl.b.nextep = ep->num;
+		dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
+
+	}
+	else {
+		/* OUT endpoint */
+		dwc_otg_dev_out_ep_regs_t *out_regs =
+		core_if->dev_if->out_ep_regs[ep->num];
+
+		depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
+		deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
+
+		/* Zero Length Packet */
+		deptsiz.b.xfersize = ep->maxpacket;
+		deptsiz.b.pktcnt = 1;
+
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			if (!core_if->dma_desc_enable) {
+				dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(out_regs->doepdma),
+					(uint32_t)ep->dma_addr);
+			}
+		}
+		else {
+			dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+		}
+
+		/* EP enable */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+
+		dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+	}
+}
+
+/**
+ * This function does the setup for a data transfer for EP0 and starts
+ * the transfer.  For an IN transfer, the packets will be loaded into
+ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
+ * unloaded from the Rx FIFO in the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl;
+	deptsiz0_data_t deptsiz;
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	dwc_otg_dma_desc_t* dma_desc;
+
+	DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
+	"xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
+	ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
+	ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
+
+	ep->total_len = ep->xfer_len;
+
+	/* IN endpoint */
+	if (ep->is_in == 1) {
+		dwc_otg_dev_in_ep_regs_t *in_regs =
+		core_if->dev_if->in_ep_regs[0];
+
+		gnptxsts_data_t gtxstatus;
+
+		gtxstatus.d32 =
+			dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+
+		if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
+#ifdef DEBUG
+			deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+			DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
+				dwc_read_reg32(&in_regs->diepctl));
+			DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
+				deptsiz.d32,
+				deptsiz.b.xfersize, deptsiz.b.pktcnt);
+			DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
+				  gtxstatus.d32);
+#endif
+			return;
+		}
+
+
+		depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
+		deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+
+		/* Zero Length Packet? */
+		if (ep->xfer_len == 0) {
+			deptsiz.b.xfersize = 0;
+			deptsiz.b.pktcnt = 1;
+		}
+		else {
+			/* Program the transfer size and packet count
+			 *	as follows: xfersize = N * maxpacket +
+			 *	short_packet pktcnt = N + (short_packet
+			 *	exist ? 1 : 0)
+			 */
+			if (ep->xfer_len > ep->maxpacket) {
+				ep->xfer_len = ep->maxpacket;
+				deptsiz.b.xfersize = ep->maxpacket;
+			}
+			else {
+				deptsiz.b.xfersize = ep->xfer_len;
+			}
+			deptsiz.b.pktcnt = 1;
+
+		}
+		DWC_DEBUGPL(DBG_PCDV, "IN len=%d  xfersize=%d pktcnt=%d [%08x]\n",
+			ep->xfer_len,
+			deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+		/* Write the DMA register */
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			if(core_if->dma_desc_enable == 0) {
+				dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(in_regs->diepdma),
+				(uint32_t)ep->dma_addr);
+			}
+			else {
+				dma_desc = core_if->dev_if->in_desc_addr;
+
+				/** DMA Descriptor Setup */
+				dma_desc->status.b.bs = BS_HOST_BUSY;
+				dma_desc->status.b.l = 1;
+				dma_desc->status.b.ioc = 1;
+				dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
+				dma_desc->status.b.bytes = ep->xfer_len;
+				dma_desc->buf = ep->dma_addr;
+				dma_desc->status.b.bs = BS_HOST_READY;
+
+				/** DIEPDMA0 Register write */
+
+				VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
+					dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
+			}
+		}
+		else {
+			dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+		}
+
+		/* EP enable, IN data in FIFO */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+		/**
+		 * Enable the Non-Periodic Tx FIFO empty interrupt, the
+		 * data will be written into the fifo by the ISR.
+		 */
+		if (!core_if->dma_enable) {
+			if(core_if->en_multiple_tx_fifo == 0) {
+				intr_mask.b.nptxfempty = 1;
+				dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+					intr_mask.d32, intr_mask.d32);
+			}
+			else {
+				/* Enable the Tx FIFO Empty Interrupt for this EP */
+				if(ep->xfer_len > 0) {
+					uint32_t fifoemptymsk = 0;
+					fifoemptymsk |= 1 << ep->num;
+					dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+						0, fifoemptymsk);
+				}
+			}
+		}
+	}
+	else {
+		/* OUT endpoint */
+		dwc_otg_dev_out_ep_regs_t *out_regs =
+			core_if->dev_if->out_ep_regs[0];
+
+		depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
+		deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
+
+		/* Program the transfer size and packet count as follows:
+		 *	xfersize = N * (maxpacket + 4 - (maxpacket % 4))
+		 *	pktcnt = N											*/
+		/* Zero Length Packet */
+		deptsiz.b.xfersize = ep->maxpacket;
+		deptsiz.b.pktcnt = 1;
+
+		DWC_DEBUGPL(DBG_PCDV, "len=%d  xfersize=%d pktcnt=%d\n",
+			ep->xfer_len,
+			deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+		if (core_if->dma_enable) {
+			if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+                                ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+			}
+			if(!core_if->dma_desc_enable) {
+				dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(out_regs->doepdma),
+				 (uint32_t)ep->dma_addr);
+			}
+			else {
+				dma_desc = core_if->dev_if->out_desc_addr;
+
+				/** DMA Descriptor Setup */
+				dma_desc->status.b.bs = BS_HOST_BUSY;
+				dma_desc->status.b.l = 1;
+				dma_desc->status.b.ioc = 1;
+				dma_desc->status.b.bytes = ep->maxpacket;
+				dma_desc->buf = ep->dma_addr;
+				dma_desc->status.b.bs = BS_HOST_READY;
+
+			/** DOEPDMA0 Register write */
+				VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
+				dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
+			}
+		}
+		else {
+			dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+		}
+
+		/* EP enable */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
+	}
+}
+
+/**
+ * This function continues control IN transfers started by
+ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
+ * single packet.  NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
+ * bit for the packet count.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl;
+	deptsiz0_data_t deptsiz;
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	dwc_otg_dma_desc_t* dma_desc;
+
+	if (ep->is_in == 1) {
+		dwc_otg_dev_in_ep_regs_t *in_regs =
+			core_if->dev_if->in_ep_regs[0];
+		gnptxsts_data_t tx_status = { .d32 = 0 };
+
+		tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+		/** @todo Should there be check for room in the Tx
+		 * Status Queue.  If not remove the code above this comment. */
+
+		depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
+		deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+
+		/* Program the transfer size and packet count
+		 *	as follows: xfersize = N * maxpacket +
+		 *	short_packet pktcnt = N + (short_packet
+		 *	exist ? 1 : 0)
+		 */
+
+
+		if(core_if->dma_desc_enable == 0) {
+			deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
+					(ep->total_len - ep->xfer_count);
+			deptsiz.b.pktcnt = 1;
+			if(core_if->dma_enable == 0) {
+				ep->xfer_len += deptsiz.b.xfersize;
+			} else {
+				ep->xfer_len = deptsiz.b.xfersize;
+			}
+			dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+		}
+		else {
+			ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
+				(ep->total_len - ep->xfer_count);
+
+			dma_desc = core_if->dev_if->in_desc_addr;
+
+			/** DMA Descriptor Setup */
+			dma_desc->status.b.bs = BS_HOST_BUSY;
+			dma_desc->status.b.l = 1;
+			dma_desc->status.b.ioc = 1;
+			dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
+			dma_desc->status.b.bytes = ep->xfer_len;
+			dma_desc->buf = ep->dma_addr;
+			dma_desc->status.b.bs = BS_HOST_READY;
+
+
+			/** DIEPDMA0 Register write */
+				VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
+				dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
+		}
+
+
+		DWC_DEBUGPL(DBG_PCDV, "IN len=%d  xfersize=%d pktcnt=%d [%08x]\n",
+			ep->xfer_len,
+			deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+
+		/* Write the DMA register */
+		if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
+			if(core_if->dma_desc_enable == 0){
+
+					VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+					dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
+			}
+		}
+
+		/* EP enable, IN data in FIFO */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+		/**
+		 * Enable the Non-Periodic Tx FIFO empty interrupt, the
+		 * data will be written into the fifo by the ISR.
+		 */
+		if (!core_if->dma_enable) {
+			if(core_if->en_multiple_tx_fifo == 0) {
+				/* First clear it from GINTSTS */
+				intr_mask.b.nptxfempty = 1;
+				dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+					intr_mask.d32, intr_mask.d32);
+
+			}
+			else {
+				/* Enable the Tx FIFO Empty Interrupt for this EP */
+				if(ep->xfer_len > 0) {
+					uint32_t fifoemptymsk = 0;
+					fifoemptymsk |= 1 << ep->num;
+					dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+						0, fifoemptymsk);
+				}
+			}
+		}
+	}
+	else {
+		dwc_otg_dev_out_ep_regs_t *out_regs =
+			core_if->dev_if->out_ep_regs[0];
+
+
+		depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
+		deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
+
+		/* Program the transfer size and packet count
+		 *	as follows: xfersize = N * maxpacket +
+		 *	short_packet pktcnt = N + (short_packet
+		 *	exist ? 1 : 0)
+		 */
+		deptsiz.b.xfersize = ep->maxpacket;
+		deptsiz.b.pktcnt = 1;
+
+
+		if(core_if->dma_desc_enable == 0) {
+			dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+		}
+		else {
+			dma_desc = core_if->dev_if->out_desc_addr;
+
+			/** DMA Descriptor Setup */
+			dma_desc->status.b.bs = BS_HOST_BUSY;
+			dma_desc->status.b.l = 1;
+			dma_desc->status.b.ioc = 1;
+			dma_desc->status.b.bytes = ep->maxpacket;
+			dma_desc->buf = ep->dma_addr;
+			dma_desc->status.b.bs = BS_HOST_READY;
+
+			/** DOEPDMA0 Register write */
+			VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
+			dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
+		}
+
+
+		DWC_DEBUGPL(DBG_PCDV, "IN len=%d  xfersize=%d pktcnt=%d [%08x]\n",
+			ep->xfer_len,
+			deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+
+		/* Write the DMA register */
+		if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
+			if(core_if->dma_desc_enable == 0){
+
+				VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+				dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
+			}
+		}
+
+		/* EP enable, IN data in FIFO */
+		depctl.b.cnak = 1;
+		depctl.b.epena = 1;
+		dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+	}
+}
+
+#ifdef DEBUG
+void dump_msg(const u8 *buf, unsigned int length)
+{
+	unsigned int	start, num, i;
+	char		line[52], *p;
+
+	if (length >= 512)
+		return;
+	start = 0;
+	while (length > 0) {
+		num = min(length, 16u);
+		p = line;
+		for (i = 0; i < num; ++i)
+		{
+			if (i == 8)
+				*p++ = ' ';
+			sprintf(p, " %02x", buf[i]);
+			p += 3;
+		}
+		*p = 0;
+		DWC_PRINT("%6x: %s\n", start, line);
+		buf += num;
+		start += num;
+		length -= num;
+	}
+}
+#else
+static inline void dump_msg(const u8 *buf, unsigned int length)
+{
+}
+#endif
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the
+ * EP.	For non-periodic EPs the non-periodic Tx FIFO is written.  For
+ * periodic EPs the periodic Tx FIFO associated with the EP is written
+ * with all packets for the next micro-frame.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to write packet for.
+ * @param dma Indicates if DMA is being used.
+ */
+void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
+{
+	/**
+	 * The buffer is padded to DWORD on a per packet basis in
+	 * slave/dma mode if the MPS is not DWORD aligned.	The last
+	 * packet, if short, is also padded to a multiple of DWORD.
+	 *
+	 * ep->xfer_buff always starts DWORD aligned in memory and is a
+	 * multiple of DWORD in length
+	 *
+	 * ep->xfer_len can be any number of bytes
+	 *
+	 * ep->xfer_count is a multiple of ep->maxpacket until the last
+	 *	packet
+	 *
+	 * FIFO access is DWORD */
+
+	uint32_t i;
+	uint32_t byte_count;
+	uint32_t dword_count;
+	uint32_t *fifo;
+	uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
+
+	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
+	if (ep->xfer_count >= ep->xfer_len) {
+			DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
+			return;
+	}
+
+	/* Find the byte length of the packet either short packet or MPS */
+	if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
+		byte_count = ep->xfer_len - ep->xfer_count;
+	}
+	else {
+		byte_count = ep->maxpacket;
+	}
+
+	/* Find the DWORD length, padded by extra bytes as neccessary if MPS
+	 * is not a multiple of DWORD */
+	dword_count =  (byte_count + 3) / 4;
+
+#ifdef VERBOSE
+	dump_msg(ep->xfer_buff, byte_count);
+#endif
+
+	/**@todo NGS Where are the Periodic Tx FIFO addresses
+	 * intialized?	What should this be? */
+
+	fifo = core_if->data_fifo[ep->num];
+
+
+	DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
+
+	if (!dma) {
+		for (i=0; i<dword_count; i++, data_buff++) {
+			dwc_write_reg32(fifo, *data_buff);
+		}
+	}
+
+	ep->xfer_count += byte_count;
+	ep->xfer_buff += byte_count;
+	ep->dma_addr += byte_count;
+}
+
+/**
+ * Set the EP STALL.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to set the stall on.
+ */
+void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl;
+	volatile uint32_t *depctl_addr;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
+		(ep->is_in?"IN":"OUT"));
+
+	DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
+		(ep->is_in?"in":"out"));
+
+	if (ep->is_in == 1) {
+		depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
+		depctl.d32 = dwc_read_reg32(depctl_addr);
+
+		/* set the disable and stall bits */
+#if 0
+//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
+//which cause the testusb item 13 failed(Host:pc, device: otg device)
+		if (depctl.b.epena) {
+			depctl.b.epdis = 1;
+		}
+#endif
+		depctl.b.stall = 1;
+		dwc_write_reg32(depctl_addr, depctl.d32);
+	}
+	else {
+		depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
+		depctl.d32 = dwc_read_reg32(depctl_addr);
+
+		/* set the stall bit */
+		depctl.b.stall = 1;
+		dwc_write_reg32(depctl_addr, depctl.d32);
+	}
+
+	DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
+
+	return;
+}
+
+/**
+ * Clear the EP STALL.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to clear stall from.
+ */
+void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl;
+	volatile uint32_t *depctl_addr;
+
+	DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
+		(ep->is_in?"IN":"OUT"));
+
+	if (ep->is_in == 1) {
+		depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
+	}
+	else {
+		depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
+	}
+
+	depctl.d32 = dwc_read_reg32(depctl_addr);
+
+	/* clear the stall bits */
+	depctl.b.stall = 0;
+
+	/*
+	 * USB Spec 9.4.5: For endpoints using data toggle, regardless
+	 * of whether an endpoint has the Halt feature set, a
+	 * ClearFeature(ENDPOINT_HALT) request always results in the
+	 * data toggle being reinitialized to DATA0.
+	 */
+	if (ep->type == DWC_OTG_EP_TYPE_INTR ||
+		ep->type == DWC_OTG_EP_TYPE_BULK) {
+		depctl.b.setd0pid = 1; /* DATA0 */
+	}
+
+	dwc_write_reg32(depctl_addr, depctl.d32);
+	DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
+	return;
+}
+
+/**
+ * This function reads a packet from the Rx FIFO into the destination
+ * buffer.	To read SETUP data use dwc_otg_read_setup_packet.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dest	  Destination buffer for the packet.
+ * @param bytes  Number of bytes to copy to the destination.
+ */
+void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
+			 uint8_t *dest,
+			 uint16_t bytes)
+{
+	int i;
+	int word_count = (bytes + 3) / 4;
+
+	volatile uint32_t *fifo = core_if->data_fifo[0];
+	uint32_t *data_buff = (uint32_t *)dest;
+
+	/**
+	 * @todo Account for the case where _dest is not dword aligned. This
+	 * requires reading data from the FIFO into a uint32_t temp buffer,
+	 * then moving it into the data buffer.
+	 */
+
+	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
+					core_if, dest, bytes);
+
+	for (i=0; i<word_count; i++, data_buff++)
+	{
+		*data_buff = dwc_read_reg32(fifo);
+	}
+
+	return;
+}
+
+
+
+/**
+ * This functions reads the device registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
+{
+	int i;
+	volatile uint32_t *addr;
+
+	DWC_PRINT("Device Global Registers\n");
+	addr=&core_if->dev_if->dev_global_regs->dcfg;
+	DWC_PRINT("DCFG          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->dctl;
+	DWC_PRINT("DCTL          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->dsts;
+	DWC_PRINT("DSTS          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->diepmsk;
+	DWC_PRINT("DIEPMSK       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->doepmsk;
+	DWC_PRINT("DOEPMSK       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->daint;
+	DWC_PRINT("DAINT         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->daintmsk;
+	DWC_PRINT("DAINTMSK      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->dtknqr1;
+	DWC_PRINT("DTKNQR1       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
+		addr=&core_if->dev_if->dev_global_regs->dtknqr2;
+		DWC_PRINT("DTKNQR2       @0x%08X : 0x%08X\n",
+		  (uint32_t)addr,dwc_read_reg32(addr));
+	}
+
+	addr=&core_if->dev_if->dev_global_regs->dvbusdis;
+	DWC_PRINT("DVBUSID       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+	addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
+	DWC_PRINT("DVBUSPULSE    @0x%08X : 0x%08X\n",
+				  (uint32_t)addr,dwc_read_reg32(addr));
+
+	if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
+		addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
+		DWC_PRINT("DTKNQR3_DTHRCTL       @0x%08X : 0x%08X\n",
+		  (uint32_t)addr, dwc_read_reg32(addr));
+	}
+/*
+	if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
+		addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
+		DWC_PRINT("DTKNQR4	 @0x%08X : 0x%08X\n",
+				  (uint32_t)addr, dwc_read_reg32(addr));
+	}
+*/
+	addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
+	DWC_PRINT("FIFOEMPMSK    @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
+
+	addr=&core_if->dev_if->dev_global_regs->deachint;
+	DWC_PRINT("DEACHINT      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->dev_if->dev_global_regs->deachintmsk;
+	DWC_PRINT("DEACHINTMSK   @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+	for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
+		addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
+		DWC_PRINT("DIEPEACHINTMSK[%d]    @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
+	}
+
+
+	for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
+		addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
+		DWC_PRINT("DOEPEACHINTMSK[%d]    @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
+	}
+
+	for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
+		DWC_PRINT("Device IN EP %d Registers\n", i);
+		addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
+		DWC_PRINT("DIEPCTL       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->in_ep_regs[i]->diepint;
+		DWC_PRINT("DIEPINT       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
+		DWC_PRINT("DIETSIZ       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
+		DWC_PRINT("DIEPDMA       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
+		DWC_PRINT("DTXFSTS       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		//reading depdmab in non desc dma mode would halt the ahb bus...
+		if(core_if->dma_desc_enable){
+			addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
+			DWC_PRINT("DIEPDMAB      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		}
+	}
+
+
+	for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
+		DWC_PRINT("Device OUT EP %d Registers\n", i);
+		addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
+		DWC_PRINT("DOEPCTL       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
+		DWC_PRINT("DOEPFN        @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->out_ep_regs[i]->doepint;
+		DWC_PRINT("DOEPINT       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
+		DWC_PRINT("DOETSIZ       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
+		DWC_PRINT("DOEPDMA       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+		//reading depdmab in non desc dma mode would halt the ahb bus...
+		if(core_if->dma_desc_enable){
+			addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
+			DWC_PRINT("DOEPDMAB      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		}
+
+	}
+
+
+
+	return;
+}
+
+/**
+ * This functions reads the SPRAM and prints its content
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
+{
+	volatile uint8_t *addr, *start_addr, *end_addr;
+
+	DWC_PRINT("SPRAM Data:\n");
+	start_addr = (void*)core_if->core_global_regs;
+	DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
+	start_addr += 0x00028000;
+	end_addr=(void*)core_if->core_global_regs;
+	end_addr += 0x000280e0;
+
+	for(addr = start_addr; addr < end_addr; addr+=16)
+	{
+		DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
+			addr[0],
+			addr[1],
+			addr[2],
+			addr[3],
+			addr[4],
+			addr[5],
+			addr[6],
+			addr[7],
+			addr[8],
+			addr[9],
+			addr[10],
+			addr[11],
+			addr[12],
+			addr[13],
+			addr[14],
+			addr[15]
+			);
+	}
+
+	return;
+}
+/**
+ * This function reads the host registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
+{
+	int i;
+	volatile uint32_t *addr;
+
+	DWC_PRINT("Host Global Registers\n");
+	addr=&core_if->host_if->host_global_regs->hcfg;
+	DWC_PRINT("HCFG          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->host_if->host_global_regs->hfir;
+	DWC_PRINT("HFIR          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->host_if->host_global_regs->hfnum;
+	DWC_PRINT("HFNUM         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->host_if->host_global_regs->hptxsts;
+	DWC_PRINT("HPTXSTS       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->host_if->host_global_regs->haint;
+	DWC_PRINT("HAINT         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->host_if->host_global_regs->haintmsk;
+	DWC_PRINT("HAINTMSK      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=core_if->host_if->hprt0;
+	DWC_PRINT("HPRT0         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+	for (i=0; i<core_if->core_params->host_channels; i++)
+	{
+		DWC_PRINT("Host Channel %d Specific Registers\n", i);
+		addr=&core_if->host_if->hc_regs[i]->hcchar;
+		DWC_PRINT("HCCHAR        @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->host_if->hc_regs[i]->hcsplt;
+		DWC_PRINT("HCSPLT        @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->host_if->hc_regs[i]->hcint;
+		DWC_PRINT("HCINT         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->host_if->hc_regs[i]->hcintmsk;
+		DWC_PRINT("HCINTMSK      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->host_if->hc_regs[i]->hctsiz;
+		DWC_PRINT("HCTSIZ        @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+		addr=&core_if->host_if->hc_regs[i]->hcdma;
+		DWC_PRINT("HCDMA         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	}
+	return;
+}
+
+/**
+ * This function reads the core global registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
+{
+	int i,size;
+	char* str;
+	volatile uint32_t *addr;
+
+	DWC_PRINT("Core Global Registers\n");
+	addr=&core_if->core_global_regs->gotgctl;
+	DWC_PRINT("GOTGCTL       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gotgint;
+	DWC_PRINT("GOTGINT       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gahbcfg;
+	DWC_PRINT("GAHBCFG       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gusbcfg;
+	DWC_PRINT("GUSBCFG       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->grstctl;
+	DWC_PRINT("GRSTCTL       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gintsts;
+	DWC_PRINT("GINTSTS       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gintmsk;
+	DWC_PRINT("GINTMSK       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->grxstsr;
+	DWC_PRINT("GRXSTSR       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	//addr=&core_if->core_global_regs->grxstsp;
+	//DWC_PRINT("GRXSTSP   @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->grxfsiz;
+	DWC_PRINT("GRXFSIZ       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gnptxfsiz;
+	DWC_PRINT("GNPTXFSIZ     @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gnptxsts;
+	DWC_PRINT("GNPTXSTS      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gi2cctl;
+	DWC_PRINT("GI2CCTL       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gpvndctl;
+	DWC_PRINT("GPVNDCTL      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->ggpio;
+	DWC_PRINT("GGPIO         @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->guid;
+	DWC_PRINT("GUID          @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->gsnpsid;
+	DWC_PRINT("GSNPSID       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->ghwcfg1;
+	DWC_PRINT("GHWCFG1       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->ghwcfg2;
+	DWC_PRINT("GHWCFG2       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->ghwcfg3;
+	DWC_PRINT("GHWCFG3       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->ghwcfg4;
+	DWC_PRINT("GHWCFG4       @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+	addr=&core_if->core_global_regs->hptxfsiz;
+	DWC_PRINT("HPTXFSIZ      @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+	size=(core_if->hwcfg4.b.ded_fifo_en)?
+		core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
+	str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
+	for (i=0; i<size; i++)
+	{
+		addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
+		DWC_PRINT("%s[%d]        @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
+	}
+}
+
+/**
+ * Flush a Tx FIFO.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param num Tx FIFO to flush.
+ */
+void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
+					   const int num)
+{
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	volatile grstctl_t greset = { .d32 = 0};
+	int count = 0;
+
+	DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
+
+	greset.b.txfflsh = 1;
+	greset.b.txfnum = num;
+	dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+	do {
+		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+		if (++count > 10000) {
+			DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
+					  __func__, greset.d32,
+			dwc_read_reg32(&global_regs->gnptxsts));
+			break;
+		}
+	}
+	while (greset.b.txfflsh == 1);
+
+	/* Wait for 3 PHY Clocks*/
+	UDELAY(1);
+}
+
+/**
+ * Flush Rx FIFO.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	volatile grstctl_t greset = { .d32 = 0};
+	int count = 0;
+
+	DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
+	/*
+	 *
+	 */
+	greset.b.rxfflsh = 1;
+	dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+	do {
+		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+		if (++count > 10000) {
+			DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
+				greset.d32);
+			break;
+		}
+	}
+	while (greset.b.rxfflsh == 1);
+
+	/* Wait for 3 PHY Clocks*/
+	UDELAY(1);
+}
+
+/**
+ * Do core a soft reset of the core.  Be careful with this because it
+ * resets all the internal state machines of the core.
+ */
+void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	volatile grstctl_t greset = { .d32 = 0};
+	int count = 0;
+
+	DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
+	/* Wait for AHB master IDLE state. */
+	do {
+		UDELAY(10);
+		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+		if (++count > 100000) {
+			DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
+				greset.d32);
+			return;
+		}
+	}
+	while (greset.b.ahbidle == 0);
+
+	/* Core Soft Reset */
+	count = 0;
+	greset.b.csftrst = 1;
+	dwc_write_reg32(&global_regs->grstctl, greset.d32);
+	do {
+		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+		if (++count > 10000) {
+			DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
+				greset.d32);
+			break;
+		}
+	}
+	while (greset.b.csftrst == 1);
+
+	/* Wait for 3 PHY Clocks*/
+	MDELAY(100);
+
+	DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+	DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+	DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+
+}
+
+
+
+/**
+ * Register HCD callbacks.	The callbacks are used to start and stop
+ * the HCD for interrupt processing.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param cb the HCD callback structure.
+ * @param p pointer to be passed to callback function (usb_hcd*).
+ */
+void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
+						dwc_otg_cil_callbacks_t *cb,
+						void *p)
+{
+	core_if->hcd_cb = cb;
+	cb->p = p;
+}
+
+/**
+ * Register PCD callbacks.	The callbacks are used to start and stop
+ * the PCD for interrupt processing.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param cb the PCD callback structure.
+ * @param p pointer to be passed to callback function (pcd*).
+ */
+void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
+						dwc_otg_cil_callbacks_t *cb,
+						void *p)
+{
+	core_if->pcd_cb = cb;
+	cb->p = p;
+}
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function writes isoc data per 1 (micro)frame into tx fifo
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	dwc_otg_dev_in_ep_regs_t *ep_regs;
+	dtxfsts_data_t txstatus = {.d32 = 0};
+	uint32_t len = 0;
+	uint32_t dwords;
+
+	ep->xfer_len = ep->data_per_frame;
+	ep->xfer_count = 0;
+
+	ep_regs = core_if->dev_if->in_ep_regs[ep->num];
+
+	len = ep->xfer_len - ep->xfer_count;
+
+	if (len > ep->maxpacket) {
+		len = ep->maxpacket;
+	}
+
+	dwords = (len + 3)/4;
+
+	/* While there is space in the queue and space in the FIFO and
+	 * More data to tranfer, Write packets to the Tx FIFO */
+	txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
+	DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
+
+	while  (txstatus.b.txfspcavail > dwords &&
+		ep->xfer_count < ep->xfer_len &&
+		ep->xfer_len != 0) {
+		/* Write the FIFO */
+		dwc_otg_ep_write_packet(core_if, ep, 0);
+
+		len = ep->xfer_len - ep->xfer_count;
+		if (len > ep->maxpacket) {
+			len = ep->maxpacket;
+		}
+
+		dwords = (len + 3)/4;
+		txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
+		DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
+	}
+}
+
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	deptsiz_data_t		deptsiz = { .d32 = 0 };
+	depctl_data_t 		depctl = { .d32 = 0 };
+	dsts_data_t		dsts = { .d32 = 0 };
+	volatile uint32_t 	*addr;
+
+	if(ep->is_in) {
+		addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+	} else {
+		addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+	}
+
+	ep->xfer_len = ep->data_per_frame;
+	ep->xfer_count = 0;
+	ep->xfer_buff = ep->cur_pkt_addr;
+	ep->dma_addr = ep->cur_pkt_dma_addr;
+
+	if(ep->is_in) {
+		/* Program the transfer size and packet count
+		 *	as follows: xfersize = N * maxpacket +
+		 *	short_packet pktcnt = N + (short_packet
+		 *	exist ? 1 : 0)
+		 */
+		deptsiz.b.xfersize = ep->xfer_len;
+		deptsiz.b.pktcnt =
+			(ep->xfer_len - 1 + ep->maxpacket) /
+			ep->maxpacket;
+		deptsiz.b.mc = deptsiz.b.pktcnt;
+		dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
+
+		/* Write the DMA register */
+		if (core_if->dma_enable) {
+			dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
+		}
+	} else {
+		deptsiz.b.pktcnt =
+				(ep->xfer_len + (ep->maxpacket - 1)) /
+				ep->maxpacket;
+		deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
+
+		dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
+
+		if (core_if->dma_enable) {
+				dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
+					(uint32_t)ep->dma_addr);
+		}
+	}
+
+
+	/** Enable endpoint, clear nak  */
+
+	depctl.d32 = 0;
+	if(ep->bInterval == 1) {
+		dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+		ep->next_frame = dsts.b.soffn + ep->bInterval;
+
+		if(ep->next_frame & 0x1) {
+			depctl.b.setd1pid = 1;
+		} else {
+			depctl.b.setd0pid = 1;
+		}
+	} else {
+		ep->next_frame += ep->bInterval;
+
+		if(ep->next_frame & 0x1) {
+			depctl.b.setd1pid = 1;
+		} else {
+			depctl.b.setd0pid = 1;
+		}
+	}
+	depctl.b.epena = 1;
+	depctl.b.cnak = 1;
+
+	dwc_modify_reg32(addr, 0, depctl.d32);
+	depctl.d32 = dwc_read_reg32(addr);
+
+	if(ep->is_in && core_if->dma_enable == 0) {
+		write_isoc_frame_data(core_if, ep);
+	}
+
+}
+
+#endif //DWC_EN_ISOC
--- /dev/null
+++ b/drivers/usb/dwc/otg_cil.h
@@ -0,0 +1,1106 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
+ * $Revision: #91 $
+ * $Date: 2008/09/19 $
+ * $Change: 1099526 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_CIL_H__)
+#define __DWC_CIL_H__
+
+#include <linux/workqueue.h>
+#include <linux/version.h>
+#include <asm/param.h>
+//#include <asm/arch/regs-irq.h>
+
+#include "otg_plat.h"
+#include "otg_regs.h"
+#ifdef DEBUG
+#include "linux/timer.h"
+#endif
+
+/**
+ * @file
+ * This file contains the interface to the Core Interface Layer.
+ */
+
+
+/** Macros defined for DWC OTG HW Release verison */
+#define OTG_CORE_REV_2_00	0x4F542000
+#define OTG_CORE_REV_2_60a	0x4F54260A
+#define OTG_CORE_REV_2_71a	0x4F54271A
+#define OTG_CORE_REV_2_72a	0x4F54272A
+
+/**
+*/
+typedef struct iso_pkt_info
+{
+	uint32_t	offset;
+	uint32_t 	length;
+	int32_t 	status;
+} iso_pkt_info_t;
+/**
+ * The <code>dwc_ep</code> structure represents the state of a single
+ * endpoint when acting in device mode. It contains the data items
+ * needed for an endpoint to be activated and transfer packets.
+ */
+typedef struct dwc_ep
+{
+	/** EP number used for register address lookup */
+	uint8_t	 num;
+	/** EP direction 0 = OUT */
+	unsigned is_in : 1;
+	/** EP active. */
+	unsigned active : 1;
+
+	/** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
+		If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
+	unsigned tx_fifo_num : 4;
+	/** EP type: 0 - Control, 1 - ISOC,	 2 - BULK,	3 - INTR */
+	unsigned type : 2;
+#define DWC_OTG_EP_TYPE_CONTROL	   0
+#define DWC_OTG_EP_TYPE_ISOC	   1
+#define DWC_OTG_EP_TYPE_BULK	   2
+#define DWC_OTG_EP_TYPE_INTR	   3
+
+	/** DATA start PID for INTR and BULK EP */
+	unsigned data_pid_start : 1;
+	/** Frame (even/odd) for ISOC EP */
+	unsigned even_odd_frame : 1;
+	/** Max Packet bytes */
+	unsigned maxpacket : 11;
+
+	/** Max Transfer size */
+	unsigned maxxfer : 16;
+
+	/** @name Transfer state */
+	/** @{ */
+
+	/**
+	 * Pointer to the beginning of the transfer buffer -- do not modify
+	 * during transfer.
+	 */
+
+	uint32_t dma_addr;
+
+	uint32_t dma_desc_addr;
+	dwc_otg_dma_desc_t* desc_addr;
+
+
+	uint8_t *start_xfer_buff;
+	/** pointer to the transfer buffer */
+	uint8_t *xfer_buff;
+	/** Number of bytes to transfer */
+	unsigned xfer_len : 19;
+	/** Number of bytes transferred. */
+	unsigned xfer_count : 19;
+	/** Sent ZLP */
+	unsigned sent_zlp : 1;
+	/** Total len for control transfer */
+	unsigned total_len : 19;
+
+	/** stall clear flag */
+	unsigned stall_clear_flag : 1;
+
+	/** Allocated DMA Desc count */
+	uint32_t 	desc_cnt;
+
+	uint32_t aligned_dma_addr;
+	uint32_t aligned_buf_size;
+	uint8_t *aligned_buf;
+
+
+#ifdef DWC_EN_ISOC
+	/**
+	 * Variables specific for ISOC EPs
+	 *
+	 */
+	/** DMA addresses of ISOC buffers */
+	uint32_t 	dma_addr0;
+	uint32_t	dma_addr1;
+
+	uint32_t 	iso_dma_desc_addr;
+	dwc_otg_dma_desc_t* iso_desc_addr;
+
+	/** pointer to the transfer buffers */
+	uint8_t		*xfer_buff0;
+	uint8_t		*xfer_buff1;
+
+	/** number of ISOC Buffer is processing */
+	uint32_t 	proc_buf_num;
+	/** Interval of ISOC Buffer processing */
+	uint32_t 	buf_proc_intrvl;
+	/** Data size for regular frame */
+	uint32_t 	data_per_frame;
+
+	/* todo - pattern data support is to be implemented in the future */
+	/** Data size for pattern frame */
+	uint32_t 	data_pattern_frame;
+	/** Frame number of pattern data */
+	uint32_t 	sync_frame;
+
+	/** bInterval */
+	uint32_t 	bInterval;
+	/** ISO Packet number per frame */
+	uint32_t 	pkt_per_frm;
+	/** Next frame num for which will be setup DMA Desc */
+	uint32_t 	next_frame;
+	/** Number of packets per buffer processing */
+	uint32_t	pkt_cnt;
+	/** Info for all isoc packets */
+	iso_pkt_info_t	*pkt_info;
+	/** current pkt number */
+	uint32_t	cur_pkt;
+	/** current pkt number */
+	uint8_t 	*cur_pkt_addr;
+	/** current pkt number */
+	uint32_t	cur_pkt_dma_addr;
+#endif //DWC_EN_ISOC
+/** @} */
+} dwc_ep_t;
+
+/*
+ * Reasons for halting a host channel.
+ */
+typedef enum dwc_otg_halt_status
+{
+	DWC_OTG_HC_XFER_NO_HALT_STATUS,
+	DWC_OTG_HC_XFER_COMPLETE,
+	DWC_OTG_HC_XFER_URB_COMPLETE,
+	DWC_OTG_HC_XFER_ACK,
+	DWC_OTG_HC_XFER_NAK,
+	DWC_OTG_HC_XFER_NYET,
+	DWC_OTG_HC_XFER_STALL,
+	DWC_OTG_HC_XFER_XACT_ERR,
+	DWC_OTG_HC_XFER_FRAME_OVERRUN,
+	DWC_OTG_HC_XFER_BABBLE_ERR,
+	DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
+	DWC_OTG_HC_XFER_AHB_ERR,
+	DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
+	DWC_OTG_HC_XFER_URB_DEQUEUE
+} dwc_otg_halt_status_e;
+
+/**
+ * Host channel descriptor. This structure represents the state of a single
+ * host channel when acting in host mode. It contains the data items needed to
+ * transfer packets to an endpoint via a host channel.
+ */
+typedef struct dwc_hc
+{
+	/** Host channel number used for register address lookup */
+	uint8_t	 hc_num;
+
+	/** Device to access */
+	unsigned dev_addr : 7;
+
+	/** EP to access */
+	unsigned ep_num : 4;
+
+	/** EP direction. 0: OUT, 1: IN */
+	unsigned ep_is_in : 1;
+
+	/**
+	 * EP speed.
+	 * One of the following values:
+	 *	- DWC_OTG_EP_SPEED_LOW
+	 *	- DWC_OTG_EP_SPEED_FULL
+	 *	- DWC_OTG_EP_SPEED_HIGH
+	 */
+	unsigned speed : 2;
+#define DWC_OTG_EP_SPEED_LOW	0
+#define DWC_OTG_EP_SPEED_FULL	1
+#define DWC_OTG_EP_SPEED_HIGH	2
+
+	/**
+	 * Endpoint type.
+	 * One of the following values:
+	 *	- DWC_OTG_EP_TYPE_CONTROL: 0
+	 *	- DWC_OTG_EP_TYPE_ISOC: 1
+	 *	- DWC_OTG_EP_TYPE_BULK: 2
+	 *	- DWC_OTG_EP_TYPE_INTR: 3
+	 */
+	unsigned ep_type : 2;
+
+	/** Max packet size in bytes */
+	unsigned max_packet : 11;
+
+	/**
+	 * PID for initial transaction.
+	 * 0: DATA0,<br>
+	 * 1: DATA2,<br>
+	 * 2: DATA1,<br>
+	 * 3: MDATA (non-Control EP),
+	 *	  SETUP (Control EP)
+	 */
+	unsigned data_pid_start : 2;
+#define DWC_OTG_HC_PID_DATA0 0
+#define DWC_OTG_HC_PID_DATA2 1
+#define DWC_OTG_HC_PID_DATA1 2
+#define DWC_OTG_HC_PID_MDATA 3
+#define DWC_OTG_HC_PID_SETUP 3
+
+	/** Number of periodic transactions per (micro)frame */
+	unsigned multi_count: 2;
+
+	/** @name Transfer State */
+	/** @{ */
+
+	/** Pointer to the current transfer buffer position. */
+	uint8_t *xfer_buff;
+	/** Total number of bytes to transfer. */
+	uint32_t xfer_len;
+	/** Number of bytes transferred so far. */
+	uint32_t xfer_count;
+	/** Packet count at start of transfer.*/
+	uint16_t start_pkt_count;
+
+	/**
+	 * Flag to indicate whether the transfer has been started. Set to 1 if
+	 * it has been started, 0 otherwise.
+	 */
+	uint8_t xfer_started;
+
+	/**
+	 * Set to 1 to indicate that a PING request should be issued on this
+	 * channel. If 0, process normally.
+	 */
+	uint8_t do_ping;
+
+	/**
+	 * Set to 1 to indicate that the error count for this transaction is
+	 * non-zero. Set to 0 if the error count is 0.
+	 */
+	uint8_t error_state;
+
+	/**
+	 * Set to 1 to indicate that this channel should be halted the next
+	 * time a request is queued for the channel. This is necessary in
+	 * slave mode if no request queue space is available when an attempt
+	 * is made to halt the channel.
+	 */
+	uint8_t halt_on_queue;
+
+	/**
+	 * Set to 1 if the host channel has been halted, but the core is not
+	 * finished flushing queued requests. Otherwise 0.
+	 */
+	uint8_t halt_pending;
+
+	/**
+	 * Reason for halting the host channel.
+	 */
+	dwc_otg_halt_status_e	halt_status;
+
+	/*
+	 * Split settings for the host channel
+	 */
+	uint8_t do_split;		   /**< Enable split for the channel */
+	uint8_t complete_split;	   /**< Enable complete split */
+	uint8_t hub_addr;		   /**< Address of high speed hub */
+
+	uint8_t port_addr;		   /**< Port of the low/full speed device */
+	/** Split transaction position
+	 * One of the following values:
+	 *	  - DWC_HCSPLIT_XACTPOS_MID
+	 *	  - DWC_HCSPLIT_XACTPOS_BEGIN
+	 *	  - DWC_HCSPLIT_XACTPOS_END
+	 *	  - DWC_HCSPLIT_XACTPOS_ALL */
+	uint8_t xact_pos;
+
+	/** Set when the host channel does a short read. */
+	uint8_t short_read;
+
+	/**
+	 * Number of requests issued for this channel since it was assigned to
+	 * the current transfer (not counting PINGs).
+	 */
+	uint8_t requests;
+
+	/**
+	 * Queue Head for the transfer being processed by this channel.
+	 */
+	struct dwc_otg_qh *qh;
+
+	/** @} */
+
+	/** Entry in list of host channels. */
+	struct list_head	hc_list_entry;
+} dwc_hc_t;
+
+/**
+ * The following parameters may be specified when starting the module. These
+ * parameters define how the DWC_otg controller should be configured.
+ * Parameter values are passed to the CIL initialization function
+ * dwc_otg_cil_init.
+ */
+typedef struct dwc_otg_core_params
+{
+	int32_t opt;
+#define dwc_param_opt_default 1
+
+	/**
+	 * Specifies the OTG capabilities. The driver will automatically
+	 * detect the value for this parameter if none is specified.
+	 * 0 - HNP and SRP capable (default)
+	 * 1 - SRP Only capable
+	 * 2 - No HNP/SRP capable
+	 */
+	int32_t otg_cap;
+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
+//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
+
+	/**
+	 * Specifies whether to use slave or DMA mode for accessing the data
+	 * FIFOs. The driver will automatically detect the value for this
+	 * parameter if none is specified.
+	 * 0 - Slave
+	 * 1 - DMA (default, if available)
+	 */
+	int32_t dma_enable;
+#define dwc_param_dma_enable_default 1
+
+	/**
+	 * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
+	 * FIFOs in device mode. The driver will automatically detect the value for this
+	 * parameter if none is specified.
+	 * 0 - address DMA
+	 * 1 - DMA Descriptor(default, if available)
+	 */
+	int32_t dma_desc_enable;
+#define dwc_param_dma_desc_enable_default 0
+	/** The DMA Burst size (applicable only for External DMA
+	 * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
+	 */
+	int32_t dma_burst_size;	 /* Translate this to GAHBCFG values */
+//#define dwc_param_dma_burst_size_default 32
+#define dwc_param_dma_burst_size_default 1
+
+	/**
+	 * Specifies the maximum speed of operation in host and device mode.
+	 * The actual speed depends on the speed of the attached device and
+	 * the value of phy_type. The actual speed depends on the speed of the
+	 * attached device.
+	 * 0 - High Speed (default)
+	 * 1 - Full Speed
+	 */
+	int32_t speed;
+#define dwc_param_speed_default 0
+#define DWC_SPEED_PARAM_HIGH 0
+#define DWC_SPEED_PARAM_FULL 1
+
+	/** Specifies whether low power mode is supported when attached
+	 *	to a Full Speed or Low Speed device in host mode.
+	 * 0 - Don't support low power mode (default)
+	 * 1 - Support low power mode
+	 */
+	int32_t host_support_fs_ls_low_power;
+#define dwc_param_host_support_fs_ls_low_power_default 0
+
+	/** Specifies the PHY clock rate in low power mode when connected to a
+	 * Low Speed device in host mode. This parameter is applicable only if
+	 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled.	 If PHY_TYPE is set to FS
+	 * then defaults to 6 MHZ otherwise 48 MHZ.
+	 *
+	 * 0 - 48 MHz
+	 * 1 - 6 MHz
+	 */
+	int32_t host_ls_low_power_phy_clk;
+#define dwc_param_host_ls_low_power_phy_clk_default 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
+
+	/**
+	 * 0 - Use cC FIFO size parameters
+	 * 1 - Allow dynamic FIFO sizing (default)
+	 */
+	int32_t enable_dynamic_fifo;
+#define dwc_param_enable_dynamic_fifo_default 1
+
+	/** Total number of 4-byte words in the data FIFO memory. This
+	 * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
+	 * Tx FIFOs.
+	 * 32 to 32768 (default 8192)
+	 * Note: The total FIFO memory depth in the FPGA configuration is 8192.
+	 */
+	int32_t data_fifo_size;
+#define dwc_param_data_fifo_size_default 8192
+
+	/** Number of 4-byte words in the Rx FIFO in device mode when dynamic
+	 * FIFO sizing is enabled.
+	 * 16 to 32768 (default 1064)
+	 */
+	int32_t dev_rx_fifo_size;
+//#define dwc_param_dev_rx_fifo_size_default  1064
+#define dwc_param_dev_rx_fifo_size_default  0x100
+
+	/**
+	 * Specifies whether dedicated transmit FIFOs are
+	 * enabled for non periodic IN endpoints in device mode
+	 * 0 - No
+	 * 1 - Yes
+	 */
+	 int32_t en_multiple_tx_fifo;
+#define dwc_param_en_multiple_tx_fifo_default 1
+
+	/** Number of 4-byte words in each of the Tx FIFOs in device
+	 * mode when dynamic FIFO sizing is enabled.
+	 * 4 to 768 (default 256)
+	 */
+	uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
+//#define dwc_param_dev_tx_fifo_size_default 256
+#define dwc_param_dev_tx_fifo_size_default 0x80
+
+	/** Number of 4-byte words in the non-periodic Tx FIFO in device mode
+	 * when dynamic FIFO sizing is enabled.
+	 * 16 to 32768 (default 1024)
+	 */
+	int32_t dev_nperio_tx_fifo_size;
+//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
+#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
+
+	/** Number of 4-byte words in each of the periodic Tx FIFOs in device
+	 * mode when dynamic FIFO sizing is enabled.
+	 * 4 to 768 (default 256)
+	 */
+	uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
+//#define dwc_param_dev_perio_tx_fifo_size_default 256
+#define dwc_param_dev_perio_tx_fifo_size_default 0x80
+
+	/** Number of 4-byte words in the Rx FIFO in host mode when dynamic
+	 * FIFO sizing is enabled.
+	 * 16 to 32768 (default 1024)
+	 */
+	int32_t host_rx_fifo_size;
+//#define dwc_param_host_rx_fifo_size_default 1024
+#define dwc_param_host_rx_fifo_size_default 0x292
+
+	/** Number of 4-byte words in the non-periodic Tx FIFO in host mode
+	 * when Dynamic FIFO sizing is enabled in the core.
+	 * 16 to 32768 (default 1024)
+	 */
+	int32_t host_nperio_tx_fifo_size;
+//#define dwc_param_host_nperio_tx_fifo_size_default 1024
+//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
+#define dwc_param_host_nperio_tx_fifo_size_default 0x80
+
+	/** Number of 4-byte words in the host periodic Tx FIFO when dynamic
+	 * FIFO sizing is enabled.
+	 * 16 to 32768 (default 1024)
+	 */
+	int32_t host_perio_tx_fifo_size;
+//#define dwc_param_host_perio_tx_fifo_size_default 1024
+#define dwc_param_host_perio_tx_fifo_size_default 0x292
+
+	/** The maximum transfer size supported in bytes.
+	 * 2047 to 65,535  (default 65,535)
+	 */
+	int32_t max_transfer_size;
+#define dwc_param_max_transfer_size_default 65535
+
+	/** The maximum number of packets in a transfer.
+	 * 15 to 511  (default 511)
+	 */
+	int32_t max_packet_count;
+#define dwc_param_max_packet_count_default 511
+
+	/** The number of host channel registers to use.
+	 * 1 to 16 (default 12)
+	 * Note: The FPGA configuration supports a maximum of 12 host channels.
+	 */
+	int32_t host_channels;
+//#define dwc_param_host_channels_default 12
+#define dwc_param_host_channels_default 16
+
+	/** The number of endpoints in addition to EP0 available for device
+	 * mode operations.
+	 * 1 to 15 (default 6 IN and OUT)
+	 * Note: The FPGA configuration supports a maximum of 6 IN and OUT
+	 * endpoints in addition to EP0.
+	 */
+	int32_t dev_endpoints;
+//#define dwc_param_dev_endpoints_default 6
+#define dwc_param_dev_endpoints_default 8
+
+		/**
+		 * Specifies the type of PHY interface to use. By default, the driver
+		 * will automatically detect the phy_type.
+		 *
+		 * 0 - Full Speed PHY
+		 * 1 - UTMI+ (default)
+		 * 2 - ULPI
+		 */
+	int32_t phy_type;
+#define DWC_PHY_TYPE_PARAM_FS 0
+#define DWC_PHY_TYPE_PARAM_UTMI 1
+#define DWC_PHY_TYPE_PARAM_ULPI 2
+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
+
+	/**
+	 * Specifies the UTMI+ Data Width.	This parameter is
+	 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
+	 * PHY_TYPE, this parameter indicates the data width between
+	 * the MAC and the ULPI Wrapper.) Also, this parameter is
+	 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
+	 * to "8 and 16 bits", meaning that the core has been
+	 * configured to work at either data path width.
+	 *
+	 * 8 or 16 bits (default 16)
+	 */
+	int32_t phy_utmi_width;
+#define dwc_param_phy_utmi_width_default 16
+
+	/**
+	 * Specifies whether the ULPI operates at double or single
+	 * data rate. This parameter is only applicable if PHY_TYPE is
+	 * ULPI.
+	 *
+	 * 0 - single data rate ULPI interface with 8 bit wide data
+	 * bus (default)
+	 * 1 - double data rate ULPI interface with 4 bit wide data
+	 * bus
+	 */
+	int32_t phy_ulpi_ddr;
+#define dwc_param_phy_ulpi_ddr_default 0
+
+	/**
+	 * Specifies whether to use the internal or external supply to
+	 * drive the vbus with a ULPI phy.
+	 */
+	int32_t phy_ulpi_ext_vbus;
+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
+
+	/**
+	 * Specifies whether to use the I2Cinterface for full speed PHY. This
+	 * parameter is only applicable if PHY_TYPE is FS.
+	 * 0 - No (default)
+	 * 1 - Yes
+	 */
+	int32_t i2c_enable;
+#define dwc_param_i2c_enable_default 0
+
+	int32_t ulpi_fs_ls;
+#define dwc_param_ulpi_fs_ls_default 0
+
+	int32_t ts_dline;
+#define dwc_param_ts_dline_default 0
+
+	/** Thresholding enable flag-
+	 * bit 0 - enable non-ISO Tx thresholding
+	 * bit 1 - enable ISO Tx thresholding
+	 * bit 2 - enable Rx thresholding
+	 */
+	uint32_t thr_ctl;
+#define dwc_param_thr_ctl_default 0
+
+	/** Thresholding length for Tx
+	 *	FIFOs in 32 bit DWORDs
+	 */
+	uint32_t tx_thr_length;
+#define dwc_param_tx_thr_length_default 64
+
+	/** Thresholding length for Rx
+	 *	FIFOs in 32 bit DWORDs
+	 */
+	uint32_t rx_thr_length;
+#define dwc_param_rx_thr_length_default 64
+
+	/** Per Transfer Interrupt
+	 *	mode enable flag
+	 * 1 - Enabled
+	 * 0 - Disabled
+	 */
+	uint32_t pti_enable;
+#define dwc_param_pti_enable_default 0
+
+	/** Molti Processor Interrupt
+	 *	mode enable flag
+	 * 1 - Enabled
+	 * 0 - Disabled
+	 */
+	uint32_t mpi_enable;
+#define dwc_param_mpi_enable_default 0
+
+} dwc_otg_core_params_t;
+
+#ifdef DEBUG
+struct dwc_otg_core_if;
+typedef struct hc_xfer_info
+{
+	struct dwc_otg_core_if	*core_if;
+	dwc_hc_t		*hc;
+} hc_xfer_info_t;
+#endif
+
+/**
+ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
+ * the DWC_otg controller acting in either host or device mode. It
+ * represents the programming view of the controller as a whole.
+ */
+typedef struct dwc_otg_core_if
+{
+	/** Parameters that define how the core should be configured.*/
+	dwc_otg_core_params_t	   *core_params;
+
+	/** Core Global registers starting at offset 000h. */
+	dwc_otg_core_global_regs_t *core_global_regs;
+
+	/** Device-specific information */
+	dwc_otg_dev_if_t		   *dev_if;
+	/** Host-specific information */
+	dwc_otg_host_if_t		   *host_if;
+
+	/** Value from SNPSID register */
+	uint32_t snpsid;
+
+	/*
+	 * Set to 1 if the core PHY interface bits in USBCFG have been
+	 * initialized.
+	 */
+	uint8_t phy_init_done;
+
+	/*
+	 * SRP Success flag, set by srp success interrupt in FS I2C mode
+	 */
+	uint8_t srp_success;
+	uint8_t srp_timer_started;
+
+	/* Common configuration information */
+	/** Power and Clock Gating Control Register */
+	volatile uint32_t *pcgcctl;
+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
+
+	/** Push/pop addresses for endpoints or host channels.*/
+	uint32_t *data_fifo[MAX_EPS_CHANNELS];
+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
+
+	/** Total RAM for FIFOs (Bytes) */
+	uint16_t total_fifo_size;
+	/** Size of Rx FIFO (Bytes) */
+	uint16_t rx_fifo_size;
+	/** Size of Non-periodic Tx FIFO (Bytes) */
+	uint16_t nperio_tx_fifo_size;
+
+
+	/** 1 if DMA is enabled, 0 otherwise. */
+	uint8_t dma_enable;
+
+	/** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
+	uint8_t dma_desc_enable;
+
+	/** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
+	uint8_t pti_enh_enable;
+
+	/** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
+	uint8_t multiproc_int_enable;
+
+	/** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
+	uint8_t en_multiple_tx_fifo;
+
+	/** Set to 1 if multiple packets of a high-bandwidth transfer is in
+	 * process of being queued */
+	uint8_t queuing_high_bandwidth;
+
+	/** Hardware Configuration -- stored here for convenience.*/
+	hwcfg1_data_t hwcfg1;
+	hwcfg2_data_t hwcfg2;
+	hwcfg3_data_t hwcfg3;
+	hwcfg4_data_t hwcfg4;
+
+	/** Host and Device Configuration -- stored here for convenience.*/
+	hcfg_data_t hcfg;
+	dcfg_data_t dcfg;
+
+	/** The operational State, during transations
+	 * (a_host>>a_peripherial and b_device=>b_host) this may not
+	 * match the core but allows the software to determine
+	 * transitions.
+	 */
+	uint8_t op_state;
+
+	/**
+	 * Set to 1 if the HCD needs to be restarted on a session request
+	 * interrupt. This is required if no connector ID status change has
+	 * occurred since the HCD was last disconnected.
+	 */
+	uint8_t restart_hcd_on_session_req;
+
+	/** HCD callbacks */
+	/** A-Device is a_host */
+#define A_HOST		(1)
+	/** A-Device is a_suspend */
+#define A_SUSPEND	(2)
+	/** A-Device is a_peripherial */
+#define A_PERIPHERAL	(3)
+	/** B-Device is operating as a Peripheral. */
+#define B_PERIPHERAL	(4)
+	/** B-Device is operating as a Host. */
+#define B_HOST		(5)
+
+	/** HCD callbacks */
+	struct dwc_otg_cil_callbacks *hcd_cb;
+	/** PCD callbacks */
+	struct dwc_otg_cil_callbacks *pcd_cb;
+
+	/** Device mode Periodic Tx FIFO Mask */
+	uint32_t p_tx_msk;
+	/** Device mode Periodic Tx FIFO Mask */
+	uint32_t tx_msk;
+
+	/** Workqueue object used for handling several interrupts */
+	struct workqueue_struct *wq_otg;
+
+	/** Work object used for handling "Connector ID Status Change" Interrupt */
+	struct work_struct 	w_conn_id;
+
+	/** Work object used for handling "Wakeup Detected" Interrupt */
+	struct delayed_work	w_wkp;
+
+#ifdef DEBUG
+	uint32_t		start_hcchar_val[MAX_EPS_CHANNELS];
+
+	hc_xfer_info_t		hc_xfer_info[MAX_EPS_CHANNELS];
+	struct timer_list	hc_xfer_timer[MAX_EPS_CHANNELS];
+
+	uint32_t		hfnum_7_samples;
+	uint64_t		hfnum_7_frrem_accum;
+	uint32_t		hfnum_0_samples;
+	uint64_t		hfnum_0_frrem_accum;
+	uint32_t		hfnum_other_samples;
+	uint64_t		hfnum_other_frrem_accum;
+#endif
+
+
+} dwc_otg_core_if_t;
+
+/*We must clear S3C24XX_EINTPEND external interrupt register
+ * because after clearing in this register trigerred IRQ from
+ * H/W core in kernel interrupt can be occured again before OTG
+ * handlers clear all IRQ sources of Core registers because of
+ * timing latencies and Low Level IRQ Type.
+ */
+
+#ifdef CONFIG_MACH_IPMATE
+#define  S3C2410X_CLEAR_EINTPEND()   \
+do { \
+	if (!dwc_otg_read_core_intr(core_if)) { \
+	__raw_writel(1UL << 11,S3C24XX_EINTPEND); \
+	} \
+} while (0)
+#else
+#define  S3C2410X_CLEAR_EINTPEND()   do { } while (0)
+#endif
+
+/*
+ * The following functions are functions for works
+ * using during handling some interrupts
+ */
+extern void w_conn_id_status_change(struct work_struct *p);
+extern void w_wakeup_detected(struct work_struct *p);
+
+
+/*
+ * The following functions support initialization of the CIL driver component
+ * and the DWC_otg controller.
+ */
+extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
+					   dwc_otg_core_params_t *_core_params);
+extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
+extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
+
+/** @name Device CIL Functions
+ * The following functions support managing the DWC_otg controller in device
+ * mode.
+ */
+/**@{*/
+extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
+extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
+extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
+#ifdef DWC_EN_ISOC
+extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
+extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
+#endif //DWC_EN_ISOC
+/**@}*/
+
+/** @name Host CIL Functions
+ * The following functions support managing the DWC_otg controller in host
+ * mode.
+ */
+/**@{*/
+extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
+				dwc_hc_t *_hc,
+				dwc_otg_halt_status_e _halt_status);
+extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
+
+/**
+ * This function Reads HPRT0 in preparation to modify.	It keeps the
+ * WC bits 0 so that if they are read as 1, they won't clear when you
+ * write it back
+ */
+static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
+{
+	hprt0_data_t hprt0;
+	hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
+	hprt0.b.prtena = 0;
+	hprt0.b.prtconndet = 0;
+	hprt0.b.prtenchng = 0;
+	hprt0.b.prtovrcurrchng = 0;
+	return hprt0.d32;
+}
+
+extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
+/**@}*/
+
+/** @name Common CIL Functions
+ * The following functions support managing the DWC_otg controller in either
+ * device or host mode.
+ */
+/**@{*/
+
+extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
+				uint8_t *dest,
+				uint16_t bytes);
+
+extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
+
+extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
+								   const int _num );
+extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
+extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
+
+extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
+extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
+
+/**
+ * This function returns the Core Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
+		dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
+}
+
+/**
+ * This function returns the OTG Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
+}
+
+/**
+ * This function reads the Device All Endpoints Interrupt register and
+ * returns the IN endpoint interrupt bits.
+ */
+static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
+{
+	uint32_t v;
+
+	if(core_if->multiproc_int_enable) {
+		v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
+				dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
+	} else {
+		v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
+				dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
+	}
+	return (v & 0xffff);
+
+}
+
+/**
+ * This function reads the Device All Endpoints Interrupt register and
+ * returns the OUT endpoint interrupt bits.
+ */
+static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
+{
+	uint32_t v;
+
+	if(core_if->multiproc_int_enable) {
+		v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
+				dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
+	} else {
+		v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
+				dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
+	}
+
+	return ((v & 0xffff0000) >> 16);
+}
+
+/**
+ * This function returns the Device IN EP Interrupt register
+ */
+static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
+							dwc_ep_t *ep)
+{
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	uint32_t v, msk, emp;
+
+	if(core_if->multiproc_int_enable) {
+		msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
+		emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+		msk |= ((emp >> ep->num) & 0x1) << 7;
+		v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
+	} else {
+		msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
+		emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+		msk |= ((emp >> ep->num) & 0x1) << 7;
+		v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
+	}
+
+
+	return v;
+}
+/**
+ * This function returns the Device OUT EP Interrupt register
+ */
+static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
+							dwc_ep_t *_ep)
+{
+	dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
+	uint32_t v;
+	doepmsk_data_t msk = { .d32 = 0 };
+
+	if(_core_if->multiproc_int_enable) {
+		msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
+		if(_core_if->pti_enh_enable) {
+			msk.b.pktdrpsts = 1;
+		}
+		v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
+	} else {
+		msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
+		if(_core_if->pti_enh_enable) {
+			msk.b.pktdrpsts = 1;
+		}
+		v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
+	}
+	return v;
+}
+
+/**
+ * This function returns the Host All Channel Interrupt register
+ */
+static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
+}
+
+static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
+{
+	return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
+}
+
+
+/**
+ * This function returns the mode of the operation, host or device.
+ *
+ * @return 0 - Device Mode, 1 - Host Mode
+ */
+static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
+}
+
+static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
+}
+static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
+{
+	return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
+}
+
+extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
+
+
+/**@}*/
+
+/**
+ * DWC_otg CIL callback structure.	This structure allows the HCD and
+ * PCD to register functions used for starting and stopping the PCD
+ * and HCD for role change on for a DRD.
+ */
+typedef struct dwc_otg_cil_callbacks
+{
+	/** Start function for role change */
+	int (*start) (void *_p);
+	/** Stop Function for role change */
+	int (*stop) (void *_p);
+	/** Disconnect Function for role change */
+	int (*disconnect) (void *_p);
+	/** Resume/Remote wakeup Function */
+	int (*resume_wakeup) (void *_p);
+	/** Suspend function */
+	int (*suspend) (void *_p);
+	/** Session Start (SRP) */
+	int (*session_start) (void *_p);
+	/** Pointer passed to start() and stop() */
+	void *p;
+} dwc_otg_cil_callbacks_t;
+
+extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
+						dwc_otg_cil_callbacks_t *_cb,
+						void *_p);
+extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
+						dwc_otg_cil_callbacks_t *_cb,
+						void *_p);
+#ifndef warn
+#define warn printk
+#endif
+
+#endif
+
--- /dev/null
+++ b/drivers/usb/dwc/otg_cil_intr.c
@@ -0,0 +1,852 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
+ * $Revision: #10 $
+ * $Date: 2008/07/16 $
+ * $Change: 1065567 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * This file contains the Common Interrupt handlers.
+ */
+#include "otg_plat.h"
+#include "otg_regs.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+
+#ifdef DEBUG
+inline const char *op_state_str(dwc_otg_core_if_t *core_if)
+{
+        return (core_if->op_state==A_HOST?"a_host":
+                (core_if->op_state==A_SUSPEND?"a_suspend":
+                 (core_if->op_state==A_PERIPHERAL?"a_peripheral":
+                  (core_if->op_state==B_PERIPHERAL?"b_peripheral":
+                   (core_if->op_state==B_HOST?"b_host":
+                    "unknown")))));
+}
+#endif
+
+/** This function will log a debug message
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
+{
+	gintsts_data_t gintsts;
+	DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
+		 dwc_otg_mode(core_if) ? "Host" : "Device");
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.modemismatch = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+	return 1;
+}
+
+/** Start the HCD.  Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_start(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->hcd_cb && core_if->hcd_cb->start) {
+                core_if->hcd_cb->start(core_if->hcd_cb->p);
+        }
+}
+/** Stop the HCD.  Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_stop(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->hcd_cb && core_if->hcd_cb->stop) {
+                core_if->hcd_cb->stop(core_if->hcd_cb->p);
+        }
+}
+/** Disconnect the HCD.  Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
+                core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
+        }
+}
+/** Inform the HCD the a New Session has begun.  Helper function for
+ * using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
+                core_if->hcd_cb->session_start(core_if->hcd_cb->p);
+        }
+}
+
+/** Start the PCD.  Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_start(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->pcd_cb && core_if->pcd_cb->start) {
+                core_if->pcd_cb->start(core_if->pcd_cb->p);
+        }
+}
+/** Stop the PCD.  Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_stop(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->pcd_cb && core_if->pcd_cb->stop) {
+                core_if->pcd_cb->stop(core_if->pcd_cb->p);
+        }
+}
+/** Suspend the PCD.  Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
+                core_if->pcd_cb->suspend(core_if->pcd_cb->p);
+        }
+}
+/** Resume the PCD.  Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_resume(dwc_otg_core_if_t *core_if)
+{
+        if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+                core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+        }
+}
+
+/**
+ * This function handles the OTG Interrupts. It reads the OTG
+ * Interrupt Register (GOTGINT) to determine what interrupt has
+ * occurred.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
+{
+        dwc_otg_core_global_regs_t *global_regs =
+                core_if->core_global_regs;
+	gotgint_data_t gotgint;
+        gotgctl_data_t gotgctl;
+	gintmsk_data_t gintmsk;
+	gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
+        gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+	DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
+                    op_state_str(core_if));
+        //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
+
+	if (gotgint.b.sesenddet) {
+		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+			    "Session End Detected++ (%s)\n",
+                            op_state_str(core_if));
+                gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+
+                if (core_if->op_state == B_HOST) {
+
+			dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_start(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+                        core_if->op_state = B_PERIPHERAL;
+                } else {
+			dwc_otg_pcd_t *pcd;
+
+                        /* If not B_HOST and Device HNP still set. HNP
+                         * Did not succeed!*/
+                        if (gotgctl.b.devhnpen) {
+                                DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
+                                DWC_ERROR("Device Not Connected/Responding!\n");
+                        }
+
+                        /* If Session End Detected the B-Cable has
+                         * been disconnected. */
+                        /* Reset PCD and Gadget driver to a
+                         * clean state. */
+
+			pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_stop(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+                }
+                gotgctl.d32 = 0;
+                gotgctl.b.devhnpen = 1;
+                dwc_modify_reg32(&global_regs->gotgctl,
+                                  gotgctl.d32, 0);
+        }
+	if (gotgint.b.sesreqsucstschng) {
+		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+			    "Session Reqeust Success Status Change++\n");
+                gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+                if (gotgctl.b.sesreqscs) {
+			if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+			    (core_if->core_params->i2c_enable)) {
+				core_if->srp_success = 1;
+			}
+			else {
+				dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+				if(unlikely(!pcd)) {
+					DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+					BUG();
+				}
+				SPIN_LOCK(&pcd->lock);
+
+				pcd_resume(core_if);
+
+				SPIN_UNLOCK(&pcd->lock);
+				/* Clear Session Request */
+				gotgctl.d32 = 0;
+				gotgctl.b.sesreq = 1;
+				dwc_modify_reg32(&global_regs->gotgctl,
+						  gotgctl.d32, 0);
+			}
+                }
+	}
+	if (gotgint.b.hstnegsucstschng) {
+                /* Print statements during the HNP interrupt handling
+                 * can cause it to fail.*/
+                gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+                if (gotgctl.b.hstnegscs) {
+                        if (dwc_otg_is_host_mode(core_if)) {
+				dwc_otg_pcd_t *pcd;
+
+                                core_if->op_state = B_HOST;
+				/*
+				 * Need to disable SOF interrupt immediately.
+				 * When switching from device to host, the PCD
+				 * interrupt handler won't handle the
+				 * interrupt if host mode is already set. The
+				 * HCD interrupt handler won't get called if
+				 * the HCD state is HALT. This means that the
+				 * interrupt does not get handled and Linux
+				 * complains loudly.
+				 */
+				gintmsk.d32 = 0;
+				gintmsk.b.sofintr = 1;
+				dwc_modify_reg32(&global_regs->gintmsk,
+						 gintmsk.d32, 0);
+
+				pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+				if(unlikely(!pcd)) {
+					DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+					BUG();
+				}
+				SPIN_LOCK(&pcd->lock);
+
+                                pcd_stop(core_if);
+
+				SPIN_UNLOCK(&pcd->lock);
+                                /*
+                                 * Initialize the Core for Host mode.
+                                 */
+                                hcd_start(core_if);
+                                core_if->op_state = B_HOST;
+                        }
+                } else {
+                        gotgctl.d32 = 0;
+                        gotgctl.b.hnpreq = 1;
+                        gotgctl.b.devhnpen = 1;
+                        dwc_modify_reg32(&global_regs->gotgctl,
+                                          gotgctl.d32, 0);
+                        DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
+                        DWC_ERROR("Device Not Connected/Responding\n");
+                }
+	}
+	if (gotgint.b.hstnegdet) {
+                /* The disconnect interrupt is set at the same time as
+		 * Host Negotiation Detected.  During the mode
+		 * switch all interrupts are cleared so the disconnect
+		 * interrupt handler will not get executed.
+                 */
+		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+			    "Host Negotiation Detected++ (%s)\n",
+                            (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
+                if (dwc_otg_is_device_mode(core_if)){
+			dwc_otg_pcd_t *pcd;
+
+                	DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
+                        hcd_disconnect(core_if);
+
+			pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_start(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+                        core_if->op_state = A_PERIPHERAL;
+                } else {
+			dwc_otg_pcd_t *pcd;
+
+			/*
+			 * Need to disable SOF interrupt immediately. When
+			 * switching from device to host, the PCD interrupt
+			 * handler won't handle the interrupt if host mode is
+			 * already set. The HCD interrupt handler won't get
+			 * called if the HCD state is HALT. This means that
+			 * the interrupt does not get handled and Linux
+			 * complains loudly.
+			 */
+			gintmsk.d32 = 0;
+			gintmsk.b.sofintr = 1;
+			dwc_modify_reg32(&global_regs->gintmsk,
+					 gintmsk.d32, 0);
+
+			pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_stop(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+                        hcd_start(core_if);
+                        core_if->op_state = A_HOST;
+                }
+	}
+	if (gotgint.b.adevtoutchng) {
+		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+			    "A-Device Timeout Change++\n");
+	}
+	if (gotgint.b.debdone) {
+		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+			    "Debounce Done++\n");
+	}
+
+	/* Clear GOTGINT */
+	dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
+
+	return 1;
+}
+
+
+void w_conn_id_status_change(struct work_struct *p)
+{
+	dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
+
+	uint32_t count = 0;
+        gotgctl_data_t gotgctl = { .d32 = 0 };
+
+        gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
+	DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
+	DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
+
+        /* B-Device connector (Device Mode) */
+        if (gotgctl.b.conidsts) {
+		dwc_otg_pcd_t *pcd;
+
+                /* Wait for switch to device mode. */
+                while (!dwc_otg_is_device_mode(core_if)){
+                        DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
+                                  (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
+                        MDELAY(100);
+                        if (++count > 10000) *(uint32_t*)NULL=0;
+                }
+                core_if->op_state = B_PERIPHERAL;
+		dwc_otg_core_init(core_if);
+		dwc_otg_enable_global_interrupts(core_if);
+
+		pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+		if(unlikely(!pcd)) {
+			DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+			BUG();
+		}
+		SPIN_LOCK(&pcd->lock);
+
+                pcd_start(core_if);
+
+		SPIN_UNLOCK(&pcd->lock);
+        } else {
+                /* A-Device connector (Host Mode) */
+                while (!dwc_otg_is_host_mode(core_if)) {
+                        DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
+                                  (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
+                        MDELAY(100);
+                        if (++count > 10000) *(uint32_t*)NULL=0;
+                }
+                core_if->op_state = A_HOST;
+                /*
+                 * Initialize the Core for Host mode.
+                 */
+		dwc_otg_core_init(core_if);
+		dwc_otg_enable_global_interrupts(core_if);
+                hcd_start(core_if);
+        }
+}
+
+
+/**
+ * This function handles the Connector ID Status Change Interrupt.  It
+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
+ * is a Device to Host Mode transition or a Host Mode to Device
+ * Transition.
+ *
+ * This only occurs when the cable is connected/removed from the PHY
+ * connector.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
+{
+
+	/*
+	 * Need to disable SOF interrupt immediately. If switching from device
+	 * to host, the PCD interrupt handler won't handle the interrupt if
+	 * host mode is already set. The HCD interrupt handler won't get
+	 * called if the HCD state is HALT. This means that the interrupt does
+	 * not get handled and Linux complains loudly.
+	 */
+	gintmsk_data_t gintmsk = { .d32 = 0 };
+	gintsts_data_t gintsts = { .d32 = 0 };
+
+	gintmsk.b.sofintr = 1;
+	dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
+
+	DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++  (%s)\n",
+                    (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
+
+	/*
+	 * Need to schedule a work, as there are possible DELAY function calls
+ 	*/
+	queue_work(core_if->wq_otg, &core_if->w_conn_id);
+
+	/* Set flag and clear interrupt */
+	gintsts.b.conidstschng = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This interrupt indicates that a device is initiating the Session
+ * Request Protocol to request the host to turn on bus power so a new
+ * session can begin. The handler responds by turning on bus power. If
+ * the DWC_otg controller is in low power mode, the handler brings the
+ * controller out of low power mode before turning on bus power.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
+{
+        hprt0_data_t hprt0;
+	gintsts_data_t gintsts;
+
+#ifndef DWC_HOST_ONLY
+	DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
+
+        if (dwc_otg_is_device_mode(core_if)) {
+                DWC_PRINT("SRP: Device mode\n");
+        } else {
+		DWC_PRINT("SRP: Host mode\n");
+
+		/* Turn on the port power bit. */
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtpwr = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+		/* Start the Connection timer. So a message can be displayed
+		 * if connect does not occur within 10 seconds. */
+		hcd_session_start(core_if);
+        }
+#endif
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.sessreqintr = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+
+void w_wakeup_detected(struct work_struct *p)
+{
+	struct delayed_work *dw = container_of(p, struct delayed_work, work);
+	dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
+
+        /*
+	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
+	 * so that OPT tests pass with all PHYs).
+	 */
+        hprt0_data_t hprt0 = {.d32=0};
+        hprt0.d32 = dwc_otg_read_hprt0(core_if);
+        DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
+//      MDELAY(70);
+        hprt0.b.prtres = 0; /* Resume */
+        dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+        DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
+}
+/**
+ * This interrupt indicates that the DWC_otg controller has detected a
+ * resume or remote wakeup sequence. If the DWC_otg controller is in
+ * low power mode, the handler must brings the controller out of low
+ * power mode. The controller automatically begins resume
+ * signaling. The handler schedules a time to stop resume signaling.
+ */
+int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
+{
+	gintsts_data_t gintsts;
+
+	DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
+
+        if (dwc_otg_is_device_mode(core_if)) {
+                dctl_data_t dctl = {.d32=0};
+                DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
+                            dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
+#ifdef PARTIAL_POWER_DOWN
+                if (core_if->hwcfg4.b.power_optimiz) {
+                        pcgcctl_data_t power = {.d32=0};
+
+                        power.d32 = dwc_read_reg32(core_if->pcgcctl);
+                        DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
+
+                        power.b.stoppclk = 0;
+                        dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+                        power.b.pwrclmp = 0;
+                        dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+                        power.b.rstpdwnmodule = 0;
+                        dwc_write_reg32(core_if->pcgcctl, power.d32);
+                }
+#endif
+                /* Clear the Remote Wakeup Signalling */
+                dctl.b.rmtwkupsig = 1;
+                dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
+                                  dctl.d32, 0);
+
+                if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+                        core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+                }
+
+        } else {
+		pcgcctl_data_t pcgcctl = {.d32=0};
+
+		/* Restart the Phy Clock */
+	        pcgcctl.b.stoppclk = 1;
+	        dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
+
+	        queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
+        }
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.wkupintr = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This interrupt indicates that a device has been disconnected from
+ * the root port.
+ */
+int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
+{
+	gintsts_data_t gintsts;
+
+	DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
+                    (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
+                    op_state_str(core_if));
+
+/** @todo Consolidate this if statement. */
+#ifndef DWC_HOST_ONLY
+        if (core_if->op_state == B_HOST) {
+		dwc_otg_pcd_t *pcd;
+
+                /* If in device mode Disconnect and stop the HCD, then
+                 * start the PCD. */
+                hcd_disconnect(core_if);
+
+		pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+		if(unlikely(!pcd)) {
+			DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+			BUG();
+		}
+		SPIN_LOCK(&pcd->lock);
+
+                pcd_start(core_if);
+
+		SPIN_UNLOCK(&pcd->lock);
+                core_if->op_state = B_PERIPHERAL;
+        } else if (dwc_otg_is_device_mode(core_if)) {
+                gotgctl_data_t gotgctl = { .d32 = 0 };
+                gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
+                if (gotgctl.b.hstsethnpen==1) {
+                        /* Do nothing, if HNP in process the OTG
+                         * interrupt "Host Negotiation Detected"
+                         * interrupt will do the mode switch.
+                         */
+                } else if (gotgctl.b.devhnpen == 0) {
+			dwc_otg_pcd_t *pcd;
+
+                        /* If in device mode Disconnect and stop the HCD, then
+                         * start the PCD. */
+                        hcd_disconnect(core_if);
+
+			pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_start(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+
+                        core_if->op_state = B_PERIPHERAL;
+                } else {
+                        DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
+                }
+        } else {
+                if (core_if->op_state == A_HOST) {
+                        /* A-Cable still connected but device disconnected. */
+                        hcd_disconnect(core_if);
+                }
+        }
+#endif
+
+	gintsts.d32 = 0;
+	gintsts.b.disconnect = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+	return 1;
+}
+/**
+ * This interrupt indicates that SUSPEND state has been detected on
+ * the USB.
+ *
+ * For HNP the USB Suspend interrupt signals the change from
+ * "a_peripheral" to "a_host".
+ *
+ * When power management is enabled the core will be put in low power
+ * mode.
+ */
+int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
+{
+        dsts_data_t dsts;
+        gintsts_data_t gintsts;
+
+        DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
+
+        if (dwc_otg_is_device_mode(core_if)) {
+		dwc_otg_pcd_t *pcd;
+
+                /* Check the Device status register to determine if the Suspend
+                 * state is active. */
+                dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+                DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
+                DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
+                            "HWCFG4.power Optimize=%d\n",
+                            dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
+
+
+#ifdef PARTIAL_POWER_DOWN
+/** @todo Add a module parameter for power management. */
+                if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
+                        pcgcctl_data_t power = {.d32=0};
+                        DWC_DEBUGPL(DBG_CIL, "suspend\n");
+
+                        power.b.pwrclmp = 1;
+                        dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+                        power.b.rstpdwnmodule = 1;
+                        dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
+
+                        power.b.stoppclk = 1;
+                        dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
+                } else {
+                        DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
+                }
+#endif
+                /* PCD callback for suspend. */
+		pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+		if(unlikely(!pcd)) {
+			DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+			BUG();
+		}
+		SPIN_LOCK(&pcd->lock);
+
+                pcd_suspend(core_if);
+
+		SPIN_UNLOCK(&pcd->lock);
+        } else {
+                if (core_if->op_state == A_PERIPHERAL) {
+			dwc_otg_pcd_t *pcd;
+
+                        DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
+                        /* Clear the a_peripheral flag, back to a_host. */
+
+			pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+			if(unlikely(!pcd)) {
+				DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+				BUG();
+			}
+			SPIN_LOCK(&pcd->lock);
+
+                        pcd_stop(core_if);
+
+			SPIN_UNLOCK(&pcd->lock);
+
+                        hcd_start(core_if);
+                        core_if->op_state = A_HOST;
+                }
+        }
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.usbsuspend = 1;
+	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+
+        return 1;
+}
+
+
+/**
+ * This function returns the Core Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
+{
+        gintsts_data_t gintsts;
+        gintmsk_data_t gintmsk;
+        gintmsk_data_t gintmsk_common = {.d32=0};
+	gintmsk_common.b.wkupintr = 1;
+	gintmsk_common.b.sessreqintr = 1;
+	gintmsk_common.b.conidstschng = 1;
+	gintmsk_common.b.otgintr = 1;
+	gintmsk_common.b.modemismatch = 1;
+        gintmsk_common.b.disconnect = 1;
+        gintmsk_common.b.usbsuspend = 1;
+        /** @todo: The port interrupt occurs while in device
+         * mode. Added code to CIL to clear the interrupt for now!
+         */
+        gintmsk_common.b.portintr = 1;
+
+        gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
+        gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
+#ifdef DEBUG
+        /* if any common interrupts set */
+        if (gintsts.d32 & gintmsk_common.d32) {
+                DWC_DEBUGPL(DBG_ANY, "gintsts=%08x  gintmsk=%08x\n",
+                            gintsts.d32, gintmsk.d32);
+        }
+#endif
+
+        return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
+
+}
+
+/**
+ * Common interrupt handler.
+ *
+ * The common interrupts are those that occur in both Host and Device mode.
+ * This handler handles the following interrupts:
+ * - Mode Mismatch Interrupt
+ * - Disconnect Interrupt
+ * - OTG Interrupt
+ * - Connector ID Status Change Interrupt
+ * - Session Request Interrupt.
+ * - Resume / Remote Wakeup Detected Interrupt.
+ *
+ */
+int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
+{
+	int retval = 0;
+        gintsts_data_t gintsts;
+
+        gintsts.d32 = dwc_otg_read_common_intr(core_if);
+
+        if (gintsts.b.modemismatch) {
+                retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
+        }
+        if (gintsts.b.otgintr) {
+                retval |= dwc_otg_handle_otg_intr(core_if);
+        }
+        if (gintsts.b.conidstschng) {
+                retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
+        }
+        if (gintsts.b.disconnect) {
+                retval |= dwc_otg_handle_disconnect_intr(core_if);
+        }
+        if (gintsts.b.sessreqintr) {
+                retval |= dwc_otg_handle_session_req_intr(core_if);
+        }
+        if (gintsts.b.wkupintr) {
+                retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
+        }
+        if (gintsts.b.usbsuspend) {
+                retval |= dwc_otg_handle_usb_suspend_intr(core_if);
+        }
+        if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
+                /* The port interrupt occurs while in device mode with HPRT0
+                 * Port Enable/Disable.
+                 */
+                gintsts.d32 = 0;
+                gintsts.b.portintr = 1;
+                dwc_write_reg32(&core_if->core_global_regs->gintsts,
+                                gintsts.d32);
+                retval |= 1;
+
+        }
+
+	S3C2410X_CLEAR_EINTPEND();
+
+        return retval;
+}
--- /dev/null
+++ b/drivers/usb/dwc/otg_driver.c
@@ -0,0 +1,960 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
+ * $Revision: #63 $
+ * $Date: 2008/09/24 $
+ * $Change: 1101777 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ * The dwc_otg_driver module provides the initialization and cleanup entry
+ * points for the DWC_otg driver. This module will be dynamically installed
+ * after Linux is booted using the insmod command. When the module is
+ * installed, the dwc_otg_driver_init function is called. When the module is
+ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
+ *
+ * This module also defines a data structure for the dwc_otg_driver, which is
+ * used in conjunction with the standard ARM lm_device structure. These
+ * structures allow the OTG driver to comply with the standard Linux driver
+ * model in which devices and drivers are registered with a bus driver. This
+ * has the benefit that Linux can expose attributes of the driver and device
+ * in its special sysfs file system. Users can then read or write files in
+ * this file system to perform diagnostics on the driver components or the
+ * device.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/stat.h>	 /* permission constants */
+#include <linux/version.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <asm/io.h>
+
+#include <asm/sizes.h>
+#include <mach/pm.h>
+
+#include "otg_plat.h"
+#include "otg_attr.h"
+#include "otg_driver.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+#include "otg_hcd.h"
+
+#define DWC_DRIVER_VERSION	"2.72a 24-JUN-2008"
+#define DWC_DRIVER_DESC		"HS OTG USB Controller driver"
+
+static const char dwc_driver_name[] = "dwc_otg";
+
+/*-------------------------------------------------------------------------*/
+/* Encapsulate the module parameter settings */
+
+static dwc_otg_core_params_t dwc_otg_module_params = {
+	.opt = -1,
+	.otg_cap = -1,
+	.dma_enable = -1,
+	.dma_desc_enable = -1,
+	.dma_burst_size = -1,
+	.speed = -1,
+	.host_support_fs_ls_low_power = -1,
+	.host_ls_low_power_phy_clk = -1,
+	.enable_dynamic_fifo = -1,
+	.data_fifo_size = -1,
+	.dev_rx_fifo_size = -1,
+	.dev_nperio_tx_fifo_size = -1,
+	.dev_perio_tx_fifo_size = {
+		/* dev_perio_tx_fifo_size_1 */
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1
+		/* 15 */
+	},
+	.host_rx_fifo_size = -1,
+	.host_nperio_tx_fifo_size = -1,
+	.host_perio_tx_fifo_size = -1,
+	.max_transfer_size = -1,
+	.max_packet_count = -1,
+	.host_channels = -1,
+	.dev_endpoints = -1,
+	.phy_type = -1,
+	.phy_utmi_width = -1,
+	.phy_ulpi_ddr = -1,
+	.phy_ulpi_ext_vbus = -1,
+	.i2c_enable = -1,
+	.ulpi_fs_ls = -1,
+	.ts_dline = -1,
+	.en_multiple_tx_fifo = -1,
+	.dev_tx_fifo_size = {
+		/* dev_tx_fifo_size */
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1,
+		-1
+		/* 15 */
+	},
+	.thr_ctl = -1,
+	.tx_thr_length = -1,
+	.rx_thr_length = -1,
+	.pti_enable = -1,
+	.mpi_enable = -1,
+};
+
+/**
+ * Global Debug Level Mask.
+ */
+uint32_t g_dbg_lvl = 0; /* OFF */
+
+/**
+ * This function is called during module intialization to verify that
+ * the module parameters are in a valid state.
+ */
+static int check_parameters(dwc_otg_core_if_t *core_if)
+{
+	int i;
+	int retval = 0;
+
+/* Checks if the parameter is outside of its valid range of values */
+#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
+		((dwc_otg_module_params._param_ < (_low_)) || \
+		(dwc_otg_module_params._param_ > (_high_)))
+
+/* If the parameter has been set by the user, check that the parameter value is
+ * within the value range of values.  If not, report a module error. */
+#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
+		do { \
+			if (dwc_otg_module_params._param_ != -1) { \
+				if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
+					DWC_ERROR("`%d' invalid for parameter `%s'\n", \
+						  dwc_otg_module_params._param_, _string_); \
+					dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
+					retval++; \
+				} \
+			} \
+		} while (0)
+
+	DWC_OTG_PARAM_ERR(opt,0,1,"opt");
+	DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
+	DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
+	DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
+	DWC_OTG_PARAM_ERR(speed,0,1,"speed");
+	DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
+	DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
+	DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
+	DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
+	DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
+	DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
+	DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
+	DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
+	DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
+	DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
+	DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
+	DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
+	DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
+	DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
+	DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
+	DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
+	DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
+	DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
+	DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
+
+	if (dwc_otg_module_params.dma_burst_size != -1) {
+		if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
+		    DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
+			DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
+				  dwc_otg_module_params.dma_burst_size);
+			dwc_otg_module_params.dma_burst_size = 32;
+			retval++;
+		}
+
+		{
+			uint8_t brst_sz = 0;
+			while(dwc_otg_module_params.dma_burst_size > 1) {
+				brst_sz ++;
+				dwc_otg_module_params.dma_burst_size >>= 1;
+			}
+			dwc_otg_module_params.dma_burst_size = brst_sz;
+		}
+	}
+
+	if (dwc_otg_module_params.phy_utmi_width != -1) {
+		if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
+		    DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
+			DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
+				  dwc_otg_module_params.phy_utmi_width);
+			dwc_otg_module_params.phy_utmi_width = 16;
+			retval++;
+		}
+	}
+
+	for (i = 0; i < 15; i++) {
+		/** @todo should be like above */
+		//DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
+		if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
+			if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
+				DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
+					  dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
+				dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
+				retval++;
+			}
+		}
+	}
+
+	DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
+
+	for (i = 0; i < 15; i++) {
+		/** @todo should be like above */
+		//DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
+		if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
+			if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
+				DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
+					  dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
+				dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
+				retval++;
+			}
+		}
+	}
+
+	DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
+	DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
+	DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
+
+	DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
+	DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
+
+	/* At this point, all module parameters that have been set by the user
+	 * are valid, and those that have not are left unset.  Now set their
+	 * default values and/or check the parameters against the hardware
+	 * configurations of the OTG core. */
+
+/* This sets the parameter to the default value if it has not been set by the
+ * user */
+#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
+	({ \
+		int changed = 1; \
+		if (dwc_otg_module_params._param_ == -1) { \
+			changed = 0; \
+			dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
+		} \
+		changed; \
+	})
+
+/* This checks the macro agains the hardware configuration to see if it is
+ * valid.  It is possible that the default value could be invalid. In this
+ * case, it will report a module error if the user touched the parameter.
+ * Otherwise it will adjust the value without any error. */
+#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
+	({ \
+		int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
+		int error = 0; \
+		if (!(_is_valid_)) { \
+			if (changed) { \
+				DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
+				error = 1; \
+			} \
+			dwc_otg_module_params._param_ = (_set_valid_); \
+		} \
+		error; \
+	})
+
+	/* OTG Cap */
+	retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
+				({
+					int valid;
+					valid = 1;
+					switch (dwc_otg_module_params.otg_cap) {
+					case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
+						if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
+							valid = 0;
+						break;
+					case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
+						if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
+						    (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
+						    (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
+						    (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
+							valid = 0;
+						}
+						break;
+					case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
+						/* always valid */
+						break;
+					}
+					valid;
+				}),
+				(((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
+				  (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
+				  (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
+				  (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
+				 DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
+				 DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
+				((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
+				0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
+				((dwc_otg_module_params.dma_desc_enable == 1) &&
+				 ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
+				0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
+
+	DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
+				"host_support_fs_ls_low_power",
+				1, 0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
+					"enable_dynamic_fifo",
+					((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
+					(core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
+					"data_fifo_size",
+					(dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
+					core_if->hwcfg3.b.dfifo_depth);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
+					"dev_rx_fifo_size",
+					(dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+					dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
+					"dev_nperio_tx_fifo_size",
+					(dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
+					(dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
+					"host_rx_fifo_size",
+					(dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+					dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
+					"host_nperio_tx_fifo_size",
+					(dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
+					(dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
+					"host_perio_tx_fifo_size",
+					(dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
+					((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
+					"max_transfer_size",
+					(dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
+					((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
+					"max_packet_count",
+					(dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
+					((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
+					"host_channels",
+					(dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
+					(core_if->hwcfg2.b.num_host_chan + 1));
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
+					"dev_endpoints",
+					(dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
+					core_if->hwcfg2.b.num_dev_ep);
+
+/*
+ * Define the following to disable the FS PHY Hardware checking.  This is for
+ * internal testing only.
+ *
+ * #define NO_FS_PHY_HW_CHECKS
+ */
+
+#ifdef NO_FS_PHY_HW_CHECKS
+	retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
+				"phy_type", 1, 0);
+#else
+	retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
+				"phy_type",
+				({
+					int valid = 0;
+					if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
+					((core_if->hwcfg2.b.hs_phy_type == 1) ||
+					 (core_if->hwcfg2.b.hs_phy_type == 3))) {
+						valid = 1;
+					}
+					else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
+						 ((core_if->hwcfg2.b.hs_phy_type == 2) ||
+						  (core_if->hwcfg2.b.hs_phy_type == 3))) {
+						valid = 1;
+					}
+					else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+						 (core_if->hwcfg2.b.fs_phy_type == 1)) {
+						valid = 1;
+					}
+					valid;
+				}),
+				({
+					int set = DWC_PHY_TYPE_PARAM_FS;
+					if (core_if->hwcfg2.b.hs_phy_type) {
+						if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
+						(core_if->hwcfg2.b.hs_phy_type == 1)) {
+							set = DWC_PHY_TYPE_PARAM_UTMI;
+						}
+						else {
+							set = DWC_PHY_TYPE_PARAM_ULPI;
+						}
+					}
+					set;
+				}));
+#endif
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
+				(dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
+				dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
+				"host_ls_low_power_phy_clk",
+				((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
+				((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
+
+	DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
+	DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
+	DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
+	DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
+	DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
+
+#ifdef NO_FS_PHY_HW_CHECKS
+	retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
+#else
+	retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
+				"i2c_enable",
+				(dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
+				0);
+#endif
+
+	for (i = 0; i < 15; i++) {
+		int changed = 1;
+		int error = 0;
+
+		if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
+			changed = 0;
+			dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
+		}
+		if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
+			if (changed) {
+				DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
+				error = 1;
+			}
+			dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
+		}
+		retval += error;
+	}
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
+						((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
+						0);
+
+	for (i = 0; i < 15; i++) {
+		int changed = 1;
+		int error = 0;
+
+		if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
+			changed = 0;
+			dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
+		}
+		if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
+			if (changed) {
+				DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
+				error = 1;
+			}
+			dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
+		}
+		retval += error;
+	}
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
+				((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
+				0);
+
+	DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
+	DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
+		((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
+			0);
+
+	retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
+			((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
+			0);
+	return retval;
+}
+
+/**
+ * This function is the top level interrupt handler for the Common
+ * (Device and host modes) interrupts.
+ */
+static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
+{
+	dwc_otg_device_t *otg_dev = dev;
+	int32_t retval = IRQ_NONE;
+
+	retval = dwc_otg_handle_common_intr(otg_dev->core_if);
+	return IRQ_RETVAL(retval);
+}
+
+/**
+ * This function is called when a lm_device is unregistered with the
+ * dwc_otg_driver. This happens, for example, when the rmmod command is
+ * executed. The device may or may not be electrically present. If it is
+ * present, the driver stops device processing. Any resources used on behalf
+ * of this device are freed.
+ *
+ * @param[in] lmdev
+ */
+static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
+{
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+	DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
+
+	if (!otg_dev) {
+		/* Memory allocation for the dwc_otg_device failed. */
+		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
+		return 0;
+	}
+
+	/*
+	 * Free the IRQ
+	 */
+	if (otg_dev->common_irq_installed) {
+		free_irq(otg_dev->irq, otg_dev);
+	}
+
+#ifndef DWC_DEVICE_ONLY
+	if (otg_dev->hcd) {
+		dwc_otg_hcd_remove(pdev);
+	} else {
+		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
+		return 0;
+	}
+#endif
+
+#ifndef DWC_HOST_ONLY
+	if (otg_dev->pcd) {
+		dwc_otg_pcd_remove(pdev);
+	}
+#endif
+	if (otg_dev->core_if) {
+		dwc_otg_cil_remove(otg_dev->core_if);
+	}
+
+	/*
+	 * Remove the device attributes
+	 */
+	dwc_otg_attr_remove(pdev);
+
+	/*
+	 * Return the memory.
+	 */
+	if (otg_dev->base) {
+		iounmap(otg_dev->base);
+	}
+	kfree(otg_dev);
+
+	/*
+	 * Clear the drvdata pointer.
+	 */
+	platform_set_drvdata(pdev, 0);
+
+	return 0;
+}
+
+/**
+ * This function is called when an lm_device is bound to a
+ * dwc_otg_driver. It creates the driver components required to
+ * control the device (CIL, HCD, and PCD) and it initializes the
+ * device. The driver components are stored in a dwc_otg_device
+ * structure. A reference to the dwc_otg_device is saved in the
+ * lm_device. This allows the driver to access the dwc_otg_device
+ * structure on subsequent calls to driver methods for this device.
+ *
+ * @param[in] lmdev  lm_device definition
+ */
+static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	int retval = 0;
+	uint32_t snpsid;
+	dwc_otg_device_t *dwc_otg_device;
+	struct resource *res;
+
+	dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
+
+	dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
+
+	if (!dwc_otg_device) {
+		dev_err(dev, "kmalloc of dwc_otg_device failed\n");
+		retval = -ENOMEM;
+		goto fail;
+	}
+
+	memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
+	dwc_otg_device->reg_offset = 0xFFFFFFFF;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(dev, "Found OTG with no register addr.\n");
+		retval = -ENODEV;
+		goto fail;
+	}
+	dwc_otg_device->rsrc_start = res->start;
+	dwc_otg_device->rsrc_len = res->end - res->start + 1;
+
+	dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
+
+	if (!dwc_otg_device->base) {
+		dev_err(dev, "ioremap() failed\n");
+		retval = -ENOMEM;
+		goto fail;
+	}
+	dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
+
+	/*
+	 * Attempt to ensure this device is really a DWC_otg Controller.
+	 * Read and verify the SNPSID register contents. The value should be
+	 * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
+	 */
+	snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
+
+	if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
+		dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
+		retval = -EINVAL;
+		goto fail;
+	}
+
+	DWC_PRINT("Core Release: %x.%x%x%x\n",
+			(snpsid >> 12 & 0xF),
+			(snpsid >> 8 & 0xF),
+			(snpsid >> 4 & 0xF),
+			(snpsid & 0xF));
+
+	/*
+	 * Initialize driver data to point to the global DWC_otg
+	 * Device structure.
+	 */
+	platform_set_drvdata(pdev, dwc_otg_device);
+
+	dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
+
+	dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
+						   &dwc_otg_module_params);
+
+	dwc_otg_device->core_if->snpsid = snpsid;
+
+	if (!dwc_otg_device->core_if) {
+		dev_err(dev, "CIL initialization failed!\n");
+		retval = -ENOMEM;
+		goto fail;
+	}
+
+	/*
+	 * Validate parameter values.
+	 */
+	if (check_parameters(dwc_otg_device->core_if)) {
+		retval = -EINVAL;
+		goto fail;
+	}
+
+	/*
+	 * Create Device Attributes in sysfs
+	 */
+	dwc_otg_attr_create(pdev);
+
+	/*
+	 * Disable the global interrupt until all the interrupt
+	 * handlers are installed.
+	 */
+	dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
+
+	/*
+	 * Install the interrupt handler for the common interrupts before
+	 * enabling common interrupts in core_init below.
+	 */
+	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+	if (!res) {
+		dev_err(dev, "Fount OTG with to IRQ.\n");
+		retval = -ENODEV;
+		goto fail;
+	}
+	dwc_otg_device->irq = res->start;
+
+	retval = request_irq(res->start, dwc_otg_common_irq,
+			     IRQF_SHARED, "dwc_otg", dwc_otg_device);
+	if (retval) {
+		DWC_ERROR("request of irq%d failed\n", res->start);
+		retval = -EBUSY;
+		goto fail;
+	} else {
+		dwc_otg_device->common_irq_installed = 1;
+	}
+
+	/*
+	 * Initialize the DWC_otg core.
+	 */
+	dwc_otg_core_init(dwc_otg_device->core_if);
+
+#ifndef DWC_HOST_ONLY
+	/*
+	 * Initialize the PCD
+	 */
+	retval = dwc_otg_pcd_init(pdev);
+	if (retval != 0) {
+		DWC_ERROR("dwc_otg_pcd_init failed\n");
+		dwc_otg_device->pcd = NULL;
+		goto fail;
+	}
+#endif
+#ifndef DWC_DEVICE_ONLY
+	/*
+	 * Initialize the HCD
+	 */
+	retval = dwc_otg_hcd_init(pdev);
+	if (retval != 0) {
+		DWC_ERROR("dwc_otg_hcd_init failed\n");
+		dwc_otg_device->hcd = NULL;
+		goto fail;
+	}
+#endif
+
+	/*
+	 * Enable the global interrupt after all the interrupt
+	 * handlers are installed.
+	 */
+	dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
+
+	return 0;
+
+ fail:
+	dwc_otg_driver_remove(pdev);
+	return retval;
+}
+
+static struct platform_driver dwc_otg_platform_driver = {
+	.driver.name = "dwc_otg",
+	.probe = dwc_otg_driver_probe,
+	.remove = dwc_otg_driver_remove,
+};
+
+static int __init dwc_otg_init_module(void)
+{
+	return platform_driver_register(&dwc_otg_platform_driver);
+}
+
+static void __exit dwc_otg_cleanup_module(void)
+{
+	platform_driver_unregister(&dwc_otg_platform_driver);
+}
+
+module_init(dwc_otg_init_module);
+module_exit(dwc_otg_cleanup_module);
+
+/**
+ * This function is called when the driver is removed from the kernel
+ * with the rmmod command. The driver unregisters itself with its bus
+ * driver.
+ *
+ */
+
+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
+MODULE_AUTHOR("Synopsys Inc.");
+MODULE_LICENSE("GPL");
+
+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
+MODULE_PARM_DESC(opt, "OPT Mode");
+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
+
+module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
+MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
+
+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
+MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
+module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
+MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
+module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
+MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
+module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
+module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
+MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
+module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
+module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
+/** @todo Set the max to 512K, modify checks */
+MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
+MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
+module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
+MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
+MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
+module_param_named(debug, g_dbg_lvl, int, 0444);
+MODULE_PARM_DESC(debug, "");
+
+module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
+MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
+module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
+
+module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
+MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
+module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
+MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
+module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
+MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
+
+module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
+MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
+
+module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
+MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
--- /dev/null
+++ b/drivers/usb/dwc/otg_driver.h
@@ -0,0 +1,62 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
+ * $Revision: #12 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#ifndef __DWC_OTG_DRIVER_H__
+#define __DWC_OTG_DRIVER_H__
+
+/** @file
+ * This file contains the interface to the Linux driver.
+ */
+#include "otg_cil.h"
+
+/* Type declarations */
+struct dwc_otg_pcd;
+struct dwc_otg_hcd;
+
+/**
+ * This structure is a wrapper that encapsulates the driver components used to
+ * manage a single DWC_otg controller.
+ */
+typedef struct dwc_otg_device {
+	void *base;
+	dwc_otg_core_if_t *core_if;
+	uint32_t reg_offset;
+	struct dwc_otg_pcd *pcd;
+	struct dwc_otg_hcd *hcd;
+	uint8_t common_irq_installed;
+	int irq;
+	uint32_t rsrc_start;
+	uint32_t rsrc_len;
+} dwc_otg_device_t;
+
+#endif
--- /dev/null
+++ b/drivers/usb/dwc/otg_hcd.c
@@ -0,0 +1,2735 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
+ * $Revision: #75 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064940 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+/**
+ * @file
+ *
+ * This file contains the implementation of the HCD. In Linux, the HCD
+ * implements the hc_driver API.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
+
+static const struct hc_driver dwc_otg_hc_driver = {
+
+	.description =		dwc_otg_hcd_name,
+	.product_desc = 	"DWC OTG Controller",
+	.hcd_priv_size = 	sizeof(dwc_otg_hcd_t),
+	.irq =			dwc_otg_hcd_irq,
+	.flags =		HCD_MEMORY | HCD_USB2,
+	.start =		dwc_otg_hcd_start,
+	.stop =			dwc_otg_hcd_stop,
+	.urb_enqueue =		dwc_otg_hcd_urb_enqueue,
+	.urb_dequeue =		dwc_otg_hcd_urb_dequeue,
+	.endpoint_disable =	dwc_otg_hcd_endpoint_disable,
+	.get_frame_number =	dwc_otg_hcd_get_frame_number,
+	.hub_status_data =	dwc_otg_hcd_hub_status_data,
+	.hub_control =		dwc_otg_hcd_hub_control,
+};
+
+/**
+ * Work queue function for starting the HCD when A-Cable is connected.
+ * The dwc_otg_hcd_start() must be called in a process context.
+ */
+static void hcd_start_func(struct work_struct *_work)
+{
+	struct delayed_work *dw = container_of(_work, struct delayed_work, work);
+	struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
+	struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
+	DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
+	if (usb_hcd) {
+		dwc_otg_hcd_start(usb_hcd);
+	}
+}
+
+/**
+ * HCD Callback function for starting the HCD when A-Cable is
+ * connected.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_start_cb(void *p)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+	hprt0_data_t hprt0;
+
+	if (core_if->op_state == B_HOST) {
+		/*
+		 * Reset the port.  During a HNP mode switch the reset
+		 * needs to occur within 1ms and have a duration of at
+		 * least 50ms.
+		 */
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtrst = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		((struct usb_hcd *)p)->self.is_b_host = 1;
+	} else {
+		((struct usb_hcd *)p)->self.is_b_host = 0;
+	}
+
+	/* Need to start the HCD in a non-interrupt context. */
+//	INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
+	INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
+//	schedule_work(&dwc_otg_hcd->start_work);
+	queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
+
+	return 1;
+}
+
+/**
+ * HCD Callback function for stopping the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_stop_cb(void *p)
+{
+	struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
+	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+	dwc_otg_hcd_stop(usb_hcd);
+	return 1;
+}
+
+static void del_xfer_timers(dwc_otg_hcd_t *hcd)
+{
+#ifdef DEBUG
+	int i;
+	int num_channels = hcd->core_if->core_params->host_channels;
+	for (i = 0; i < num_channels; i++) {
+		del_timer(&hcd->core_if->hc_xfer_timer[i]);
+	}
+#endif
+}
+
+static void del_timers(dwc_otg_hcd_t *hcd)
+{
+	del_xfer_timers(hcd);
+	del_timer(&hcd->conn_timer);
+}
+
+/**
+ * Processes all the URBs in a single list of QHs. Completes them with
+ * -ETIMEDOUT and frees the QTD.
+ */
+static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
+{
+	struct list_head	*qh_item;
+	dwc_otg_qh_t		*qh;
+	struct list_head	*qtd_item;
+	dwc_otg_qtd_t		*qtd;
+
+	list_for_each(qh_item, qh_list) {
+		qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
+		for (qtd_item = qh->qtd_list.next;
+		     qtd_item != &qh->qtd_list;
+		     qtd_item = qh->qtd_list.next) {
+			qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
+			if (qtd->urb != NULL) {
+				dwc_otg_hcd_complete_urb(hcd, qtd->urb,
+							 -ETIMEDOUT);
+			}
+			dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
+		}
+	}
+}
+
+/**
+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
+ * and periodic schedules. The QTD associated with each URB is removed from
+ * the schedule and freed. This function may be called when a disconnect is
+ * detected or when the HCD is being stopped.
+ */
+static void kill_all_urbs(dwc_otg_hcd_t *hcd)
+{
+	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
+	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_disconnect_cb(void *p)
+{
+	gintsts_data_t 	intr;
+	dwc_otg_hcd_t 	*dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+
+	//DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+
+	/*
+	 * Set status flags for the hub driver.
+	 */
+	dwc_otg_hcd->flags.b.port_connect_status_change = 1;
+	dwc_otg_hcd->flags.b.port_connect_status = 0;
+
+	/*
+	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
+	 * interrupt mask and status bits and disabling subsequent host
+	 * channel interrupts.
+	 */
+	intr.d32 = 0;
+	intr.b.nptxfempty = 1;
+	intr.b.ptxfempty = 1;
+	intr.b.hcintr = 1;
+	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
+	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
+
+	del_timers(dwc_otg_hcd);
+
+	/*
+	 * Turn off the vbus power only if the core has transitioned to device
+	 * mode. If still in host mode, need to keep power on to detect a
+	 * reconnection.
+	 */
+	if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
+		if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
+			hprt0_data_t hprt0 = { .d32=0 };
+			DWC_PRINT("Disconnect: PortPower off\n");
+			hprt0.b.prtpwr = 0;
+			dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
+		}
+
+		dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
+	}
+
+	/* Respond with an error status to all URBs in the schedule. */
+	kill_all_urbs(dwc_otg_hcd);
+
+	if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
+		/* Clean up any host channels that were in use. */
+		int			num_channels;
+		int			i;
+		dwc_hc_t		*channel;
+		dwc_otg_hc_regs_t	*hc_regs;
+		hcchar_data_t		hcchar;
+
+		num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
+
+		if (!dwc_otg_hcd->core_if->dma_enable) {
+			/* Flush out any channel requests in slave mode. */
+			for (i = 0; i < num_channels; i++) {
+				channel = dwc_otg_hcd->hc_ptr_array[i];
+				if (list_empty(&channel->hc_list_entry)) {
+					hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
+					hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+					if (hcchar.b.chen) {
+						hcchar.b.chen = 0;
+						hcchar.b.chdis = 1;
+						hcchar.b.epdir = 0;
+						dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+					}
+				}
+			}
+		}
+
+		for (i = 0; i < num_channels; i++) {
+			channel = dwc_otg_hcd->hc_ptr_array[i];
+			if (list_empty(&channel->hc_list_entry)) {
+				hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
+				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+				if (hcchar.b.chen) {
+					/* Halt the channel. */
+					hcchar.b.chdis = 1;
+					dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+				}
+
+				dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
+				list_add_tail(&channel->hc_list_entry,
+					      &dwc_otg_hcd->free_hc_list);
+			}
+		}
+	}
+
+	/* A disconnect will end the session so the B-Device is no
+	 * longer a B-host. */
+	((struct usb_hcd *)p)->self.is_b_host = 0;
+	return 1;
+}
+
+/**
+ * Connection timeout function.  An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.
+ */
+void dwc_otg_hcd_connect_timeout(unsigned long ptr)
+{
+	DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
+	DWC_PRINT("Connect Timeout\n");
+	DWC_ERROR("Device Not Connected/Responding\n");
+}
+
+/**
+ * Start the connection timer.  An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.  The
+ * timer is deleted if a port connect interrupt occurs before the
+ * timer expires.
+ */
+static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
+{
+	init_timer(&hcd->conn_timer);
+	hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
+	hcd->conn_timer.data = 0;
+	hcd->conn_timer.expires = jiffies + (HZ * 10);
+	add_timer(&hcd->conn_timer);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_session_start_cb(void *p)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+	dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
+	return 1;
+}
+
+/**
+ * HCD Callback structure for handling mode switching.
+ */
+static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
+	.start = dwc_otg_hcd_start_cb,
+	.stop = dwc_otg_hcd_stop_cb,
+	.disconnect = dwc_otg_hcd_disconnect_cb,
+	.session_start = dwc_otg_hcd_session_start_cb,
+	.p = 0,
+};
+
+/**
+ * Reset tasklet function
+ */
+static void reset_tasklet_func(unsigned long data)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
+	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+	hprt0_data_t hprt0;
+
+	DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
+
+	hprt0.d32 = dwc_otg_read_hprt0(core_if);
+	hprt0.b.prtrst = 1;
+	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+	mdelay(60);
+
+	hprt0.b.prtrst = 0;
+	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+	dwc_otg_hcd->flags.b.port_reset_change = 1;
+}
+
+static struct tasklet_struct reset_tasklet = {
+	.next = NULL,
+	.state = 0,
+	.count = ATOMIC_INIT(0),
+	.func = reset_tasklet_func,
+	.data = 0,
+};
+
+/**
+ * Initializes the HCD. This function allocates memory for and initializes the
+ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
+ * USB bus with the core and calls the hc_driver->start() function. It returns
+ * a negative error on failure.
+ */
+int dwc_otg_hcd_init(struct platform_device *pdev)
+{
+	struct usb_hcd *hcd = NULL;
+	dwc_otg_hcd_t *dwc_otg_hcd = NULL;
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+
+	int 		num_channels;
+	int 		i;
+	dwc_hc_t	*channel;
+
+	int retval = 0;
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
+
+	/* Set device flags indicating whether the HCD supports DMA. */
+	if (otg_dev->core_if->dma_enable) {
+		DWC_PRINT("Using DMA mode\n");
+
+		if (otg_dev->core_if->dma_desc_enable) {
+			DWC_PRINT("Device using Descriptor DMA mode\n");
+		} else {
+			DWC_PRINT("Device using Buffer DMA mode\n");
+		}
+	}
+	/*
+	 * Allocate memory for the base HCD plus the DWC OTG HCD.
+	 * Initialize the base HCD.
+	 */
+
+	hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
+	if (!hcd) {
+		retval = -ENOMEM;
+		goto error1;
+	}
+
+	hcd->regs = otg_dev->base;
+	hcd->self.otg_port = 1;
+
+	/* Initialize the DWC OTG HCD. */
+	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_otg_hcd->core_if = otg_dev->core_if;
+	otg_dev->hcd = dwc_otg_hcd;
+
+	/* */
+	spin_lock_init(&dwc_otg_hcd->lock);
+
+	/* Register the HCD CIL Callbacks */
+	dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
+					   &hcd_cil_callbacks, hcd);
+
+	/* Initialize the non-periodic schedule. */
+	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
+	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
+
+	/* Initialize the periodic schedule. */
+	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
+	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
+	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
+	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
+
+	/*
+	 * Create a host channel descriptor for each host channel implemented
+	 * in the controller. Initialize the channel descriptor array.
+	 */
+	INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
+	num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
+	memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
+	for (i = 0; i < num_channels; i++) {
+		channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
+		if (channel == NULL) {
+			retval = -ENOMEM;
+			DWC_ERROR("%s: host channel allocation failed\n", __func__);
+			goto error2;
+		}
+		memset(channel, 0, sizeof(dwc_hc_t));
+		channel->hc_num = i;
+		dwc_otg_hcd->hc_ptr_array[i] = channel;
+#ifdef DEBUG
+		init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
+#endif
+		DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
+	}
+
+	/* Initialize the Connection timeout timer. */
+	init_timer(&dwc_otg_hcd->conn_timer);
+
+	/* Initialize reset tasklet. */
+	reset_tasklet.data = (unsigned long) dwc_otg_hcd;
+	dwc_otg_hcd->reset_tasklet = &reset_tasklet;
+
+	/*
+	 * Finish generic HCD initialization and start the HCD. This function
+	 * allocates the DMA buffer pool, registers the USB bus, requests the
+	 * IRQ line, and calls dwc_otg_hcd_start method.
+	 */
+	retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
+	if (retval < 0) {
+		goto error2;
+	}
+
+	/*
+	 * Allocate space for storing data on status transactions. Normally no
+	 * data is sent, but this space acts as a bit bucket. This must be
+	 * done after usb_add_hcd since that function allocates the DMA buffer
+	 * pool.
+	 */
+	if (otg_dev->core_if->dma_enable) {
+		dwc_otg_hcd->status_buf =
+			dma_alloc_coherent(&pdev->dev,
+					   DWC_OTG_HCD_STATUS_BUF_SIZE,
+					   &dwc_otg_hcd->status_buf_dma,
+					   GFP_KERNEL | GFP_DMA);
+	} else {
+		dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
+						  GFP_KERNEL);
+	}
+	if (!dwc_otg_hcd->status_buf) {
+		retval = -ENOMEM;
+		DWC_ERROR("%s: status_buf allocation failed\n", __func__);
+		goto error3;
+	}
+
+	dwc_otg_hcd->otg_dev = otg_dev;
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
+		    hcd->self.busnum);
+	return 0;
+
+	/* Error conditions */
+ error3:
+	usb_remove_hcd(hcd);
+ error2:
+	dwc_otg_hcd_free(hcd);
+	usb_put_hcd(hcd);
+ error1:
+	return retval;
+}
+
+/**
+ * Removes the HCD.
+ * Frees memory and resources associated with the HCD and deregisters the bus.
+ */
+void dwc_otg_hcd_remove(struct platform_device *pdev)
+{
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+	dwc_otg_hcd_t *dwc_otg_hcd;
+	struct usb_hcd *hcd;
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
+
+	if (!otg_dev) {
+		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
+		return;
+	}
+
+	dwc_otg_hcd = otg_dev->hcd;
+
+	if (!dwc_otg_hcd) {
+		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
+		return;
+	}
+
+	hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
+
+	if (!hcd) {
+		DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
+		return;
+	}
+
+	/* Turn off all interrupts */
+	dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
+	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
+
+	usb_remove_hcd(hcd);
+	dwc_otg_hcd_free(hcd);
+	usb_put_hcd(hcd);
+}
+
+/* =========================================================================
+ *  Linux HC Driver Functions
+ * ========================================================================= */
+
+/**
+ * Initializes dynamic portions of the DWC_otg HCD state.
+ */
+static void hcd_reinit(dwc_otg_hcd_t *hcd)
+{
+	struct list_head 	*item;
+	int			num_channels;
+	int			i;
+	dwc_hc_t		*channel;
+
+	hcd->flags.d32 = 0;
+
+	hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
+	hcd->non_periodic_channels = 0;
+	hcd->periodic_channels = 0;
+
+	/*
+	 * Put all channels in the free channel list and clean up channel
+	 * states.
+	 */
+	item = hcd->free_hc_list.next;
+	while (item != &hcd->free_hc_list) {
+		list_del(item);
+		item = hcd->free_hc_list.next;
+	}
+	num_channels = hcd->core_if->core_params->host_channels;
+	for (i = 0; i < num_channels; i++) {
+		channel = hcd->hc_ptr_array[i];
+		list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
+		dwc_otg_hc_cleanup(hcd->core_if, channel);
+	}
+
+	/* Initialize the DWC core for host mode operation. */
+	dwc_otg_core_host_init(hcd->core_if);
+}
+
+/** Initializes the DWC_otg controller and its root hub and prepares it for host
+ * mode operation. Activates the root port. Returns 0 on success and a negative
+ * error code on failure. */
+int dwc_otg_hcd_start(struct usb_hcd *hcd)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+  	struct usb_bus *bus;
+
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
+
+	bus = hcd_to_bus(hcd);
+
+	/* Initialize the bus state.  If the core is in Device Mode
+	 * HALT the USB bus and return. */
+	if (dwc_otg_is_device_mode(core_if)) {
+		hcd->state = HC_STATE_RUNNING;
+		return 0;
+	}
+	hcd->state = HC_STATE_RUNNING;
+
+	/* Initialize and connect root hub if one is not already attached */
+	if (bus->root_hub) {
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
+		/* Inform the HUB driver to resume. */
+		usb_hcd_resume_root_hub(hcd);
+	}
+	else {
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
+	}
+
+	hcd_reinit(dwc_otg_hcd);
+
+	return 0;
+}
+
+static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
+{
+	struct list_head 	*item;
+	dwc_otg_qh_t		*qh;
+
+	if (!qh_list->next) {
+		/* The list hasn't been initialized yet. */
+		return;
+	}
+
+	/* Ensure there are no QTDs or URBs left. */
+	kill_urbs_in_qh_list(hcd, qh_list);
+
+	for (item = qh_list->next; item != qh_list; item = qh_list->next) {
+		qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+		dwc_otg_hcd_qh_remove_and_free(hcd, qh);
+	}
+}
+
+/**
+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
+ * stopped.
+ */
+void dwc_otg_hcd_stop(struct usb_hcd *hcd)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	hprt0_data_t hprt0 = { .d32=0 };
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
+
+	/* Turn off all host-specific interrupts. */
+	dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
+
+	/*
+	 * The root hub should be disconnected before this function is called.
+	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
+	 * and the QH lists (via ..._hcd_endpoint_disable).
+	 */
+
+	/* Turn off the vbus power */
+	DWC_PRINT("PortPower off\n");
+	hprt0.b.prtpwr = 0;
+	dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
+}
+
+/** Returns the current frame number. */
+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	hfnum_data_t hfnum;
+
+	hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
+				   host_if->host_global_regs->hfnum);
+
+#ifdef DEBUG_SOF
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
+#endif
+	return hfnum.b.frnum;
+}
+
+/**
+ * Frees secondary storage associated with the dwc_otg_hcd structure contained
+ * in the struct usb_hcd field.
+ */
+void dwc_otg_hcd_free(struct usb_hcd *hcd)
+{
+	dwc_otg_hcd_t 	*dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	int		i;
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
+
+	del_timers(dwc_otg_hcd);
+
+	/* Free memory for QH/QTD lists */
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
+	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
+
+	/* Free memory for the host channels. */
+	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+		dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
+		if (hc != NULL) {
+			DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
+			kfree(hc);
+		}
+	}
+
+	if (dwc_otg_hcd->core_if->dma_enable) {
+		if (dwc_otg_hcd->status_buf_dma) {
+			dma_free_coherent(hcd->self.controller,
+					  DWC_OTG_HCD_STATUS_BUF_SIZE,
+					  dwc_otg_hcd->status_buf,
+					  dwc_otg_hcd->status_buf_dma);
+		}
+	} else if (dwc_otg_hcd->status_buf != NULL) {
+		kfree(dwc_otg_hcd->status_buf);
+	}
+}
+
+#ifdef DEBUG
+static void dump_urb_info(struct urb *urb, char* fn_name)
+{
+	DWC_PRINT("%s, urb %p\n", fn_name, urb);
+	DWC_PRINT("  Device address: %d\n", usb_pipedevice(urb->pipe));
+	DWC_PRINT("  Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
+		  (usb_pipein(urb->pipe) ? "IN" : "OUT"));
+	DWC_PRINT("  Endpoint type: %s\n",
+		  ({char *pipetype;
+		    switch (usb_pipetype(urb->pipe)) {
+		    case PIPE_CONTROL: pipetype = "CONTROL"; break;
+		    case PIPE_BULK: pipetype = "BULK"; break;
+		    case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
+		    case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
+		    default: pipetype = "UNKNOWN"; break;
+		   }; pipetype;}));
+	DWC_PRINT("  Speed: %s\n",
+		  ({char *speed;
+		    switch (urb->dev->speed) {
+		    case USB_SPEED_HIGH: speed = "HIGH"; break;
+		    case USB_SPEED_FULL: speed = "FULL"; break;
+		    case USB_SPEED_LOW: speed = "LOW"; break;
+		    default: speed = "UNKNOWN"; break;
+		   }; speed;}));
+	DWC_PRINT("  Max packet size: %d\n",
+		  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+	DWC_PRINT("  Data buffer length: %d\n", urb->transfer_buffer_length);
+	DWC_PRINT("  Transfer buffer: %p, Transfer DMA: %p\n",
+		  urb->transfer_buffer, (void *)urb->transfer_dma);
+	DWC_PRINT("  Setup buffer: %p, Setup DMA: %p\n",
+		  urb->setup_packet, (void *)urb->setup_dma);
+	DWC_PRINT("  Interval: %d\n", urb->interval);
+	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
+		int i;
+		for (i = 0; i < urb->number_of_packets;  i++) {
+			DWC_PRINT("  ISO Desc %d:\n", i);
+			DWC_PRINT("    offset: %d, length %d\n",
+				  urb->iso_frame_desc[i].offset,
+				  urb->iso_frame_desc[i].length);
+		}
+	}
+}
+
+static void dump_channel_info(dwc_otg_hcd_t *hcd,
+			      dwc_otg_qh_t *qh)
+{
+	if (qh->channel != NULL) {
+		dwc_hc_t *hc = qh->channel;
+		struct list_head *item;
+		dwc_otg_qh_t *qh_item;
+		int num_channels = hcd->core_if->core_params->host_channels;
+		int i;
+
+		dwc_otg_hc_regs_t *hc_regs;
+		hcchar_data_t 	hcchar;
+		hcsplt_data_t	hcsplt;
+		hctsiz_data_t 	hctsiz;
+		uint32_t	hcdma;
+
+		hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+		hcdma = dwc_read_reg32(&hc_regs->hcdma);
+
+		DWC_PRINT("  Assigned to channel %p:\n", hc);
+		DWC_PRINT("    hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
+		DWC_PRINT("    hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
+		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
+			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
+		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
+		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
+		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
+		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
+		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
+		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
+		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
+		DWC_PRINT("    qh: %p\n", hc->qh);
+		DWC_PRINT("  NP inactive sched:\n");
+		list_for_each(item, &hcd->non_periodic_sched_inactive) {
+			qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+			DWC_PRINT("    %p\n", qh_item);
+		}
+		DWC_PRINT("  NP active sched:\n");
+		list_for_each(item, &hcd->non_periodic_sched_active) {
+			qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+			DWC_PRINT("    %p\n", qh_item);
+		}
+		DWC_PRINT("  Channels: \n");
+		for (i = 0; i < num_channels; i++) {
+			dwc_hc_t *hc = hcd->hc_ptr_array[i];
+			DWC_PRINT("    %2d: %p\n", i, hc);
+		}
+	}
+}
+#endif
+
+
+//OTG host require the DMA addr is DWORD-aligned,
+//patch it if the buffer is not DWORD-aligned
+inline
+void hcd_check_and_patch_dma_addr(struct urb *urb){
+
+	if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
+		return;
+
+	if(((u32)urb->transfer_buffer)& 0x3){
+		/*
+		printk("%s: "
+			"urb(%.8x) "
+			"transfer_buffer=%.8x, "
+			"transfer_dma=%.8x, "
+			"transfer_buffer_length=%d, "
+			"actual_length=%d(%x), "
+			"\n",
+			((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
+			urb,
+			urb->transfer_buffer,
+			urb->transfer_dma,
+			urb->transfer_buffer_length,
+			urb->actual_length,urb->actual_length
+		);
+		*/
+		if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
+			urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
+			if(urb->aligned_transfer_buffer) {
+				kfree(urb->aligned_transfer_buffer);
+			}
+			urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
+			urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
+			if(!urb->aligned_transfer_buffer){
+				DWC_ERROR("Cannot alloc required buffer!!\n");
+				BUG();
+			}
+			//printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
+		}
+		urb->transfer_dma=urb->aligned_transfer_dma;
+		if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
+			memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
+			dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
+		}
+	}
+}
+
+
+
+/** Starts processing a USB transfer request specified by a USB Request Block
+ * (URB). mem_flags indicates the type of memory allocation to use while
+ * processing this URB. */
+int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
+//			    struct usb_host_endpoint *ep,
+			    struct urb *urb,
+			    gfp_t mem_flags
+			  )
+{
+	int retval = 0;
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_otg_qtd_t *qtd;
+
+#ifdef DEBUG
+	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+		dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
+	}
+#endif
+	if (!dwc_otg_hcd->flags.b.port_connect_status) {
+		/* No longer connected. */
+		return -ENODEV;
+	}
+
+	hcd_check_and_patch_dma_addr(urb);
+	qtd = dwc_otg_hcd_qtd_create(urb);
+	if (qtd == NULL) {
+		DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
+		return -ENOMEM;
+	}
+
+	retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
+	if (retval < 0) {
+		DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
+			  "Error status %d\n", retval);
+		dwc_otg_hcd_qtd_free(qtd);
+	}
+
+	return retval;
+}
+
+/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
+ * success.  */
+int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
+			    struct urb *urb, int status)
+{
+	unsigned long flags;
+	dwc_otg_hcd_t *dwc_otg_hcd;
+	dwc_otg_qtd_t *urb_qtd;
+	dwc_otg_qh_t *qh;
+	struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
+
+	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+
+	SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+
+	urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
+	qh = (dwc_otg_qh_t *)ep->hcpriv;
+
+#ifdef DEBUG
+	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+		dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
+		if (urb_qtd == qh->qtd_in_process) {
+			dump_channel_info(dwc_otg_hcd, qh);
+		}
+	}
+#endif
+
+	if (urb_qtd == qh->qtd_in_process) {
+		/* The QTD is in process (it has been assigned to a channel). */
+
+		if (dwc_otg_hcd->flags.b.port_connect_status) {
+			/*
+			 * If still connected (i.e. in host mode), halt the
+			 * channel so it can be used for other transfers. If
+			 * no longer connected, the host registers can't be
+			 * written to halt the channel since the core is in
+			 * device mode.
+			 */
+			dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
+					DWC_OTG_HC_XFER_URB_DEQUEUE);
+		}
+	}
+
+	/*
+	 * Free the QTD and clean up the associated QH. Leave the QH in the
+	 * schedule if it has any remaining QTDs.
+	 */
+	dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
+	if (urb_qtd == qh->qtd_in_process) {
+		dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
+		qh->channel = NULL;
+		qh->qtd_in_process = NULL;
+	} else if (list_empty(&qh->qtd_list)) {
+		dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+
+	urb->hcpriv = NULL;
+
+	/* Higher layer software sets URB status. */
+	usb_hcd_giveback_urb(hcd, urb, status);
+	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+		DWC_PRINT("Called usb_hcd_giveback_urb()\n");
+		DWC_PRINT("  urb->status = %d\n", urb->status);
+	}
+
+	return 0;
+}
+
+/** Frees resources in the DWC_otg controller related to a given endpoint. Also
+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
+ * must already be dequeued. */
+void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+				  struct usb_host_endpoint *ep)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_otg_qh_t *qh;
+
+	unsigned long flags;
+	int retry = 0;
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
+		    "endpoint=%d\n", ep->desc.bEndpointAddress,
+		    dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
+
+rescan:
+	SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+	qh = (dwc_otg_qh_t *)(ep->hcpriv);
+	if (!qh)
+		goto done;
+
+	/** Check that the QTD list is really empty */
+	if (!list_empty(&qh->qtd_list)) {
+		if (retry++ < 250) {
+			SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+			schedule_timeout_uninterruptible(1);
+			goto rescan;
+		}
+
+		DWC_WARN("DWC OTG HCD EP DISABLE:"
+			 " QTD List for this endpoint is not empty\n");
+	}
+
+	dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
+	ep->hcpriv = NULL;
+done:
+	SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+
+}
+
+/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
+ * interrupt.
+ *
+ * This function is called by the USB core when an interrupt occurs */
+irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
+{
+        int retVal = 0;
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
+        if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
+        	usb_hcd_poll_rh_status(hcd);
+	return IRQ_RETVAL(retVal);
+}
+
+/** Creates Status Change bitmap for the root hub and root port. The bitmap is
+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
+ * is the status change indicator for the single root port. Returns 1 if either
+ * change indicator is 1, otherwise returns 0. */
+int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
+{
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+
+	buf[0] = 0;
+	buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
+		    dwc_otg_hcd->flags.b.port_reset_change ||
+		    dwc_otg_hcd->flags.b.port_enable_change ||
+		    dwc_otg_hcd->flags.b.port_suspend_change ||
+		    dwc_otg_hcd->flags.b.port_over_current_change) << 1;
+
+#ifdef DEBUG
+	if (buf[0]) {
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
+			    " Root port status changed\n");
+		DWC_DEBUGPL(DBG_HCDV, "  port_connect_status_change: %d\n",
+			    dwc_otg_hcd->flags.b.port_connect_status_change);
+		DWC_DEBUGPL(DBG_HCDV, "  port_reset_change: %d\n",
+			    dwc_otg_hcd->flags.b.port_reset_change);
+		DWC_DEBUGPL(DBG_HCDV, "  port_enable_change: %d\n",
+			    dwc_otg_hcd->flags.b.port_enable_change);
+		DWC_DEBUGPL(DBG_HCDV, "  port_suspend_change: %d\n",
+			    dwc_otg_hcd->flags.b.port_suspend_change);
+		DWC_DEBUGPL(DBG_HCDV, "  port_over_current_change: %d\n",
+			    dwc_otg_hcd->flags.b.port_over_current_change);
+	}
+#endif
+	return (buf[0] != 0);
+}
+
+#ifdef DWC_HS_ELECT_TST
+/*
+ * Quick and dirty hack to implement the HS Electrical Test
+ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
+ *
+ * This code was copied from our userspace app "hset". It sends a
+ * Get Device Descriptor control sequence in two parts, first the
+ * Setup packet by itself, followed some time later by the In and
+ * Ack packets. Rather than trying to figure out how to add this
+ * functionality to the normal driver code, we just hijack the
+ * hardware, using these two function to drive the hardware
+ * directly.
+ */
+
+dwc_otg_core_global_regs_t *global_regs;
+dwc_otg_host_global_regs_t *hc_global_regs;
+dwc_otg_hc_regs_t *hc_regs;
+uint32_t *data_fifo;
+
+static void do_setup(void)
+{
+	gintsts_data_t gintsts;
+	hctsiz_data_t hctsiz;
+	hcchar_data_t hcchar;
+	haint_data_t haint;
+	hcint_data_t hcint;
+
+	/* Enable HAINTs */
+	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
+
+	/* Enable HCINTs */
+	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+	/*
+	 * Send Setup packet (Get Device Descriptor)
+	 */
+
+	/* Make sure channel is disabled */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	if (hcchar.b.chen) {
+		//fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
+		hcchar.b.chdis = 1;
+//		hcchar.b.chen = 1;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+		//sleep(1);
+		mdelay(1000);
+
+		/* Read GINTSTS */
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+		/* Read HAINT */
+		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+		//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+		/* Read HCINT */
+		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+		/* Read HCCHAR */
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+		/* Clear HCINT */
+		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+		/* Clear HAINT */
+		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+		/* Clear GINTSTS */
+		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//if (hcchar.b.chen) {
+		//	fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
+		//}
+	}
+
+	/* Set HCTSIZ */
+	hctsiz.d32 = 0;
+	hctsiz.b.xfersize = 8;
+	hctsiz.b.pktcnt = 1;
+	hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	/* Set HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+	hcchar.b.epdir = 0;
+	hcchar.b.epnum = 0;
+	hcchar.b.mps = 8;
+	hcchar.b.chen = 1;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	/* Fill FIFO with Setup data for Get Device Descriptor */
+	data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+	dwc_write_reg32(data_fifo++, 0x01000680);
+	dwc_write_reg32(data_fifo++, 0x00080000);
+
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Wait for host channel interrupt */
+	do {
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	} while (gintsts.b.hcintr == 0);
+
+	//fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Disable HCINTs */
+	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
+
+	/* Disable HAINTs */
+	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+}
+
+static void do_in_ack(void)
+{
+	gintsts_data_t gintsts;
+	hctsiz_data_t hctsiz;
+	hcchar_data_t hcchar;
+	haint_data_t haint;
+	hcint_data_t hcint;
+	host_grxsts_data_t grxsts;
+
+	/* Enable HAINTs */
+	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
+
+	/* Enable HCINTs */
+	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+	/*
+	 * Receive Control In packet
+	 */
+
+	/* Make sure channel is disabled */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	if (hcchar.b.chen) {
+		//fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
+		hcchar.b.chdis = 1;
+		hcchar.b.chen = 1;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+		//sleep(1);
+		mdelay(1000);
+
+		/* Read GINTSTS */
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+		/* Read HAINT */
+		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+		//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+		/* Read HCINT */
+		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+		/* Read HCCHAR */
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+		/* Clear HCINT */
+		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+		/* Clear HAINT */
+		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+		/* Clear GINTSTS */
+		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//if (hcchar.b.chen) {
+		//	fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
+		//}
+	}
+
+	/* Set HCTSIZ */
+	hctsiz.d32 = 0;
+	hctsiz.b.xfersize = 8;
+	hctsiz.b.pktcnt = 1;
+	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	/* Set HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+	hcchar.b.epdir = 1;
+	hcchar.b.epnum = 0;
+	hcchar.b.mps = 8;
+	hcchar.b.chen = 1;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Wait for receive status queue interrupt */
+	do {
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	} while (gintsts.b.rxstsqlvl == 0);
+
+	//fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Read RXSTS */
+	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
+	//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
+
+	/* Clear RXSTSQLVL in GINTSTS */
+	gintsts.d32 = 0;
+	gintsts.b.rxstsqlvl = 1;
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	switch (grxsts.b.pktsts) {
+	case DWC_GRXSTS_PKTSTS_IN:
+		/* Read the data into the host buffer */
+		if (grxsts.b.bcnt > 0) {
+			int i;
+			int word_count = (grxsts.b.bcnt + 3) / 4;
+
+			data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+
+			for (i = 0; i < word_count; i++) {
+				(void)dwc_read_reg32(data_fifo++);
+			}
+		}
+
+		//fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
+	break;
+
+	default:
+		//fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
+	break;
+	}
+
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Wait for receive status queue interrupt */
+	do {
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	} while (gintsts.b.rxstsqlvl == 0);
+
+	//fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Read RXSTS */
+	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
+	//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
+
+	/* Clear RXSTSQLVL in GINTSTS */
+	gintsts.d32 = 0;
+	gintsts.b.rxstsqlvl = 1;
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	switch (grxsts.b.pktsts) {
+	case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
+	break;
+
+	default:
+		//fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
+	break;
+	}
+
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Wait for host channel interrupt */
+	do {
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	} while (gintsts.b.hcintr == 0);
+
+	//fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+//	usleep(100000);
+//	mdelay(100);
+	mdelay(1);
+
+	/*
+	 * Send handshake packet
+	 */
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+	/* Make sure channel is disabled */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	if (hcchar.b.chen) {
+		//fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
+		hcchar.b.chdis = 1;
+		hcchar.b.chen = 1;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+		//sleep(1);
+		mdelay(1000);
+
+		/* Read GINTSTS */
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+		/* Read HAINT */
+		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+		//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+		/* Read HCINT */
+		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+		/* Read HCCHAR */
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+		/* Clear HCINT */
+		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+		/* Clear HAINT */
+		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+		/* Clear GINTSTS */
+		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		//if (hcchar.b.chen) {
+		//	fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
+		//}
+	}
+
+	/* Set HCTSIZ */
+	hctsiz.d32 = 0;
+	hctsiz.b.xfersize = 0;
+	hctsiz.b.pktcnt = 1;
+	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	/* Set HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+	hcchar.b.epdir = 0;
+	hcchar.b.epnum = 0;
+	hcchar.b.mps = 8;
+	hcchar.b.chen = 1;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Wait for host channel interrupt */
+	do {
+		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	} while (gintsts.b.hcintr == 0);
+
+	//fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
+
+	/* Disable HCINTs */
+	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
+
+	/* Disable HAINTs */
+	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
+
+	/* Read HAINT */
+	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+	//fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+	/* Read HCINT */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+	/* Read HCCHAR */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+	/* Clear HCINT */
+	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+	/* Clear HAINT */
+	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+	/* Clear GINTSTS */
+	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+	/* Read GINTSTS */
+	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+}
+#endif /* DWC_HS_ELECT_TST */
+
+/** Handles hub class-specific requests. */
+int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
+			    u16 typeReq,
+			    u16 wValue,
+			    u16 wIndex,
+			    char *buf,
+			    u16 wLength)
+{
+	int retval = 0;
+
+	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+	struct usb_hub_descriptor *desc;
+	hprt0_data_t hprt0 = {.d32 = 0};
+
+	uint32_t port_status;
+
+	switch (typeReq) {
+	case ClearHubFeature:
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+			    "ClearHubFeature 0x%x\n", wValue);
+		switch (wValue) {
+		case C_HUB_LOCAL_POWER:
+		case C_HUB_OVER_CURRENT:
+			/* Nothing required here */
+			break;
+		default:
+			retval = -EINVAL;
+			DWC_ERROR("DWC OTG HCD - "
+				  "ClearHubFeature request %xh unknown\n", wValue);
+		}
+		break;
+	case ClearPortFeature:
+		if (!wIndex || wIndex > 1)
+			goto error;
+
+		switch (wValue) {
+		case USB_PORT_FEAT_ENABLE:
+			DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			hprt0.b.prtena = 1;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			break;
+		case USB_PORT_FEAT_SUSPEND:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			hprt0.b.prtres = 1;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			/* Clear Resume bit */
+			mdelay(100);
+			hprt0.b.prtres = 0;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			break;
+		case USB_PORT_FEAT_POWER:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_POWER\n");
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			hprt0.b.prtpwr = 0;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			break;
+		case USB_PORT_FEAT_INDICATOR:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
+			/* Port inidicator not supported */
+			break;
+		case USB_PORT_FEAT_C_CONNECTION:
+			/* Clears drivers internal connect status change
+			 * flag */
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
+			dwc_otg_hcd->flags.b.port_connect_status_change = 0;
+			break;
+		case USB_PORT_FEAT_C_RESET:
+			/* Clears the driver's internal Port Reset Change
+			 * flag */
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
+			dwc_otg_hcd->flags.b.port_reset_change = 0;
+			break;
+		case USB_PORT_FEAT_C_ENABLE:
+			/* Clears the driver's internal Port
+			 * Enable/Disable Change flag */
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
+			dwc_otg_hcd->flags.b.port_enable_change = 0;
+			break;
+		case USB_PORT_FEAT_C_SUSPEND:
+			/* Clears the driver's internal Port Suspend
+			 * Change flag, which is set when resume signaling on
+			 * the host port is complete */
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
+			dwc_otg_hcd->flags.b.port_suspend_change = 0;
+			break;
+		case USB_PORT_FEAT_C_OVER_CURRENT:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
+			dwc_otg_hcd->flags.b.port_over_current_change = 0;
+			break;
+		default:
+			retval = -EINVAL;
+			DWC_ERROR("DWC OTG HCD - "
+				  "ClearPortFeature request %xh "
+				  "unknown or unsupported\n", wValue);
+		}
+		break;
+	case GetHubDescriptor:
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+			    "GetHubDescriptor\n");
+		desc = (struct usb_hub_descriptor *)buf;
+		desc->bDescLength = 9;
+		desc->bDescriptorType = 0x29;
+		desc->bNbrPorts = 1;
+		desc->wHubCharacteristics = 0x08;
+		desc->bPwrOn2PwrGood = 1;
+		desc->bHubContrCurrent = 0;
+		desc->u.hs.DeviceRemovable[0] = 0;
+		desc->u.hs.DeviceRemovable[1] = 0xff;
+		break;
+	case GetHubStatus:
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+			    "GetHubStatus\n");
+		memset(buf, 0, 4);
+		break;
+	case GetPortStatus:
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+			    "GetPortStatus\n");
+
+		if (!wIndex || wIndex > 1)
+			goto error;
+
+		port_status = 0;
+
+		if (dwc_otg_hcd->flags.b.port_connect_status_change)
+			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
+
+		if (dwc_otg_hcd->flags.b.port_enable_change)
+			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
+
+		if (dwc_otg_hcd->flags.b.port_suspend_change)
+			port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
+
+		if (dwc_otg_hcd->flags.b.port_reset_change)
+			port_status |= (1 << USB_PORT_FEAT_C_RESET);
+
+		if (dwc_otg_hcd->flags.b.port_over_current_change) {
+			DWC_ERROR("Device Not Supported\n");
+			port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
+		}
+
+		if (!dwc_otg_hcd->flags.b.port_connect_status) {
+			/*
+			 * The port is disconnected, which means the core is
+			 * either in device mode or it soon will be. Just
+			 * return 0's for the remainder of the port status
+			 * since the port register can't be read if the core
+			 * is in device mode.
+			 */
+			*((__le32 *) buf) = cpu_to_le32(port_status);
+			break;
+		}
+
+		hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
+		DWC_DEBUGPL(DBG_HCDV, "  HPRT0: 0x%08x\n", hprt0.d32);
+
+		if (hprt0.b.prtconnsts)
+			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
+
+		if (hprt0.b.prtena)
+			port_status |= (1 << USB_PORT_FEAT_ENABLE);
+
+		if (hprt0.b.prtsusp)
+			port_status |= (1 << USB_PORT_FEAT_SUSPEND);
+
+		if (hprt0.b.prtovrcurract)
+			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
+
+		if (hprt0.b.prtrst)
+			port_status |= (1 << USB_PORT_FEAT_RESET);
+
+		if (hprt0.b.prtpwr)
+			port_status |= (1 << USB_PORT_FEAT_POWER);
+
+		if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
+			port_status |= (USB_PORT_STAT_HIGH_SPEED);
+		else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
+			port_status |= (USB_PORT_STAT_LOW_SPEED);
+
+		if (hprt0.b.prttstctl)
+			port_status |= (1 << USB_PORT_FEAT_TEST);
+
+		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
+
+		*((__le32 *) buf) = cpu_to_le32(port_status);
+
+		break;
+	case SetHubFeature:
+		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+			    "SetHubFeature\n");
+		/* No HUB features supported */
+		break;
+	case SetPortFeature:
+		if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
+			goto error;
+
+		if (!dwc_otg_hcd->flags.b.port_connect_status) {
+			/*
+			 * The port is disconnected, which means the core is
+			 * either in device mode or it soon will be. Just
+			 * return without doing anything since the port
+			 * register can't be written if the core is in device
+			 * mode.
+			 */
+			break;
+		}
+
+		switch (wValue) {
+		case USB_PORT_FEAT_SUSPEND:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
+			if (hcd->self.otg_port == wIndex &&
+			    hcd->self.b_hnp_enable) {
+				gotgctl_data_t  gotgctl = {.d32=0};
+				gotgctl.b.hstsethnpen = 1;
+				dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+						  0, gotgctl.d32);
+				core_if->op_state = A_SUSPEND;
+			}
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			hprt0.b.prtsusp = 1;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			//DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
+			/* Suspend the Phy Clock */
+			{
+				pcgcctl_data_t pcgcctl = {.d32=0};
+				pcgcctl.b.stoppclk = 1;
+				dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
+			}
+
+			/* For HNP the bus must be suspended for at least 200ms. */
+			if (hcd->self.b_hnp_enable) {
+				mdelay(200);
+				//DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
+			}
+			break;
+		case USB_PORT_FEAT_POWER:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "SetPortFeature - USB_PORT_FEAT_POWER\n");
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			hprt0.b.prtpwr = 1;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			break;
+		case USB_PORT_FEAT_RESET:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "SetPortFeature - USB_PORT_FEAT_RESET\n");
+			hprt0.d32 = dwc_otg_read_hprt0(core_if);
+			/* When B-Host the Port reset bit is set in
+			 * the Start HCD Callback function, so that
+			 * the reset is started within 1ms of the HNP
+			 * success interrupt. */
+			if (!hcd->self.is_b_host) {
+				hprt0.b.prtrst = 1;
+				dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			}
+			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
+			MDELAY(60);
+			hprt0.b.prtrst = 0;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			break;
+
+#ifdef DWC_HS_ELECT_TST
+		case USB_PORT_FEAT_TEST:
+		{
+			uint32_t t;
+			gintmsk_data_t gintmsk;
+
+			t = (wIndex >> 8); /* MSB wIndex USB */
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
+			warn("USB_PORT_FEAT_TEST %d\n", t);
+			if (t < 6) {
+				hprt0.d32 = dwc_otg_read_hprt0(core_if);
+				hprt0.b.prttstctl = t;
+				dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+			} else {
+				/* Setup global vars with reg addresses (quick and
+				 * dirty hack, should be cleaned up)
+				 */
+				global_regs = core_if->core_global_regs;
+				hc_global_regs = core_if->host_if->host_global_regs;
+				hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
+				data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+
+				if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
+					/* Save current interrupt mask */
+					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+					/* Disable all interrupts while we muck with
+					 * the hardware directly
+					 */
+					dwc_write_reg32(&global_regs->gintmsk, 0);
+
+					/* 15 second delay per the test spec */
+					mdelay(15000);
+
+					/* Drive suspend on the root port */
+					hprt0.d32 = dwc_otg_read_hprt0(core_if);
+					hprt0.b.prtsusp = 1;
+					hprt0.b.prtres = 0;
+					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+					/* 15 second delay per the test spec */
+					mdelay(15000);
+
+					/* Drive resume on the root port */
+					hprt0.d32 = dwc_otg_read_hprt0(core_if);
+					hprt0.b.prtsusp = 0;
+					hprt0.b.prtres = 1;
+					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+					mdelay(100);
+
+					/* Clear the resume bit */
+					hprt0.b.prtres = 0;
+					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+					/* Restore interrupts */
+					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+				} else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
+					/* Save current interrupt mask */
+					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+					/* Disable all interrupts while we muck with
+					 * the hardware directly
+					 */
+					dwc_write_reg32(&global_regs->gintmsk, 0);
+
+					/* 15 second delay per the test spec */
+					mdelay(15000);
+
+					/* Send the Setup packet */
+					do_setup();
+
+					/* 15 second delay so nothing else happens for awhile */
+					mdelay(15000);
+
+					/* Restore interrupts */
+					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+				} else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
+					/* Save current interrupt mask */
+					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+					/* Disable all interrupts while we muck with
+					 * the hardware directly
+					 */
+					dwc_write_reg32(&global_regs->gintmsk, 0);
+
+					/* Send the Setup packet */
+					do_setup();
+
+					/* 15 second delay so nothing else happens for awhile */
+					mdelay(15000);
+
+					/* Send the In and Ack packets */
+					do_in_ack();
+
+					/* 15 second delay so nothing else happens for awhile */
+					mdelay(15000);
+
+					/* Restore interrupts */
+					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+				}
+			}
+			break;
+		}
+#endif /* DWC_HS_ELECT_TST */
+
+		case USB_PORT_FEAT_INDICATOR:
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+				    "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
+			/* Not supported */
+			break;
+		default:
+			retval = -EINVAL;
+			DWC_ERROR("DWC OTG HCD - "
+				  "SetPortFeature request %xh "
+				  "unknown or unsupported\n", wValue);
+			break;
+		}
+		break;
+	default:
+	error:
+		retval = -EINVAL;
+		DWC_WARN("DWC OTG HCD - "
+			 "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
+			 typeReq, wIndex, wValue);
+		break;
+	}
+
+	return retval;
+}
+
+/**
+ * Assigns transactions from a QTD to a free host channel and initializes the
+ * host channel to perform the transactions. The host channel is removed from
+ * the free list.
+ *
+ * @param hcd The HCD state structure.
+ * @param qh Transactions from the first QTD for this QH are selected and
+ * assigned to a free host channel.
+ */
+static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	dwc_hc_t	*hc;
+	dwc_otg_qtd_t	*qtd;
+	struct urb	*urb;
+
+	DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
+
+	hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
+
+	/* Remove the host channel from the free list. */
+	list_del_init(&hc->hc_list_entry);
+
+	qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+	urb = qtd->urb;
+	qh->channel = hc;
+	qh->qtd_in_process = qtd;
+
+	/*
+	 * Use usb_pipedevice to determine device address. This address is
+	 * 0 before the SET_ADDRESS command and the correct address afterward.
+	 */
+	hc->dev_addr = usb_pipedevice(urb->pipe);
+	hc->ep_num = usb_pipeendpoint(urb->pipe);
+
+	if (urb->dev->speed == USB_SPEED_LOW) {
+		hc->speed = DWC_OTG_EP_SPEED_LOW;
+	} else if (urb->dev->speed == USB_SPEED_FULL) {
+		hc->speed = DWC_OTG_EP_SPEED_FULL;
+	} else {
+		hc->speed = DWC_OTG_EP_SPEED_HIGH;
+	}
+
+	hc->max_packet = dwc_max_packet(qh->maxp);
+
+	hc->xfer_started = 0;
+	hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
+	hc->error_state = (qtd->error_count > 0);
+	hc->halt_on_queue = 0;
+	hc->halt_pending = 0;
+	hc->requests = 0;
+
+	/*
+	 * The following values may be modified in the transfer type section
+	 * below. The xfer_len value may be reduced when the transfer is
+	 * started to accommodate the max widths of the XferSize and PktCnt
+	 * fields in the HCTSIZn register.
+	 */
+	hc->do_ping = qh->ping_state;
+	hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
+	hc->data_pid_start = qh->data_toggle;
+	hc->multi_count = 1;
+
+	if (hcd->core_if->dma_enable) {
+		hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
+	} else {
+		hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
+	}
+	hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
+	hc->xfer_count = 0;
+
+	/*
+	 * Set the split attributes
+	 */
+	hc->do_split = 0;
+	if (qh->do_split) {
+		hc->do_split = 1;
+		hc->xact_pos = qtd->isoc_split_pos;
+		hc->complete_split = qtd->complete_split;
+		hc->hub_addr = urb->dev->tt->hub->devnum;
+		hc->port_addr = urb->dev->ttport;
+	}
+
+	switch (usb_pipetype(urb->pipe)) {
+	case PIPE_CONTROL:
+		hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
+		switch (qtd->control_phase) {
+		case DWC_OTG_CONTROL_SETUP:
+			DWC_DEBUGPL(DBG_HCDV, "  Control setup transaction\n");
+			hc->do_ping = 0;
+			hc->ep_is_in = 0;
+			hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
+			if (hcd->core_if->dma_enable) {
+				hc->xfer_buff = (uint8_t *)urb->setup_dma;
+			} else {
+				hc->xfer_buff = (uint8_t *)urb->setup_packet;
+			}
+			hc->xfer_len = 8;
+			break;
+		case DWC_OTG_CONTROL_DATA:
+			DWC_DEBUGPL(DBG_HCDV, "  Control data transaction\n");
+			hc->data_pid_start = qtd->data_toggle;
+			break;
+		case DWC_OTG_CONTROL_STATUS:
+			/*
+			 * Direction is opposite of data direction or IN if no
+			 * data.
+			 */
+			DWC_DEBUGPL(DBG_HCDV, "  Control status transaction\n");
+			if (urb->transfer_buffer_length == 0) {
+				hc->ep_is_in = 1;
+			} else {
+				hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
+			}
+			if (hc->ep_is_in) {
+				hc->do_ping = 0;
+			}
+			hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+			hc->xfer_len = 0;
+			if (hcd->core_if->dma_enable) {
+				hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
+			} else {
+				hc->xfer_buff = (uint8_t *)hcd->status_buf;
+			}
+			break;
+		}
+		break;
+	case PIPE_BULK:
+		hc->ep_type = DWC_OTG_EP_TYPE_BULK;
+		break;
+	case PIPE_INTERRUPT:
+		hc->ep_type = DWC_OTG_EP_TYPE_INTR;
+		break;
+	case PIPE_ISOCHRONOUS:
+		{
+			struct usb_iso_packet_descriptor *frame_desc;
+			frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+			hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
+			if (hcd->core_if->dma_enable) {
+				hc->xfer_buff = (uint8_t *)urb->transfer_dma;
+			} else {
+				hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
+			}
+			hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
+			hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
+
+			if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+				if (hc->xfer_len <= 188) {
+					hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
+				}
+				else {
+					hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
+				}
+			}
+		}
+		break;
+	}
+
+	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+	    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+		/*
+		 * This value may be modified when the transfer is started to
+		 * reflect the actual transfer length.
+		 */
+		hc->multi_count = dwc_hb_mult(qh->maxp);
+	}
+
+	dwc_otg_hc_init(hcd->core_if, hc);
+	hc->qh = qh;
+}
+
+/**
+ * This function selects transactions from the HCD transfer schedule and
+ * assigns them to available host channels. It is called from HCD interrupt
+ * handler functions.
+ *
+ * @param hcd The HCD state structure.
+ *
+ * @return The types of new transactions that were assigned to host channels.
+ */
+dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
+{
+	struct list_head 		*qh_ptr;
+	dwc_otg_qh_t 			*qh;
+	int				num_channels;
+	dwc_otg_transaction_type_e	ret_val = DWC_OTG_TRANSACTION_NONE;
+
+#ifdef DEBUG_SOF
+	DWC_DEBUGPL(DBG_HCD, "  Select Transactions\n");
+#endif
+
+	/* Process entries in the periodic ready list. */
+	qh_ptr = hcd->periodic_sched_ready.next;
+	while (qh_ptr != &hcd->periodic_sched_ready &&
+	       !list_empty(&hcd->free_hc_list)) {
+
+		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+		assign_and_init_hc(hcd, qh);
+
+		/*
+		 * Move the QH from the periodic ready schedule to the
+		 * periodic assigned schedule.
+		 */
+		qh_ptr = qh_ptr->next;
+		list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
+
+		ret_val = DWC_OTG_TRANSACTION_PERIODIC;
+	}
+
+	/*
+	 * Process entries in the inactive portion of the non-periodic
+	 * schedule. Some free host channels may not be used if they are
+	 * reserved for periodic transfers.
+	 */
+	qh_ptr = hcd->non_periodic_sched_inactive.next;
+	num_channels = hcd->core_if->core_params->host_channels;
+	while (qh_ptr != &hcd->non_periodic_sched_inactive &&
+	       (hcd->non_periodic_channels <
+		num_channels - hcd->periodic_channels) &&
+	       !list_empty(&hcd->free_hc_list)) {
+
+		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+		assign_and_init_hc(hcd, qh);
+
+		/*
+		 * Move the QH from the non-periodic inactive schedule to the
+		 * non-periodic active schedule.
+		 */
+		qh_ptr = qh_ptr->next;
+		list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
+
+		if (ret_val == DWC_OTG_TRANSACTION_NONE) {
+			ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
+		} else {
+			ret_val = DWC_OTG_TRANSACTION_ALL;
+		}
+
+		hcd->non_periodic_channels++;
+	}
+
+	return ret_val;
+}
+
+/**
+ * Attempts to queue a single transaction request for a host channel
+ * associated with either a periodic or non-periodic transfer. This function
+ * assumes that there is space available in the appropriate request queue. For
+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
+ * is available in the appropriate Tx FIFO.
+ *
+ * @param hcd The HCD state structure.
+ * @param hc Host channel descriptor associated with either a periodic or
+ * non-periodic transfer.
+ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
+ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
+ * transfers.
+ *
+ * @return 1 if a request is queued and more requests may be needed to
+ * complete the transfer, 0 if no more requests are required for this
+ * transfer, -1 if there is insufficient space in the Tx FIFO.
+ */
+static int queue_transaction(dwc_otg_hcd_t *hcd,
+			     dwc_hc_t *hc,
+			     uint16_t fifo_dwords_avail)
+{
+	int retval;
+
+	if (hcd->core_if->dma_enable) {
+		if (!hc->xfer_started) {
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+			hc->qh->ping_state = 0;
+		}
+		retval = 0;
+	} else if (hc->halt_pending) {
+		/* Don't queue a request if the channel has been halted. */
+		retval = 0;
+	} else if (hc->halt_on_queue) {
+		dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
+		retval = 0;
+	} else if (hc->do_ping) {
+		if (!hc->xfer_started) {
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+		}
+		retval = 0;
+	} else if (!hc->ep_is_in ||
+		   hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+		if ((fifo_dwords_avail * 4) >= hc->max_packet) {
+			if (!hc->xfer_started) {
+				dwc_otg_hc_start_transfer(hcd->core_if, hc);
+				retval = 1;
+			} else {
+				retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+			}
+		} else {
+			retval = -1;
+		}
+	} else {
+		if (!hc->xfer_started) {
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+			retval = 1;
+		} else {
+			retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+		}
+	}
+
+	return retval;
+}
+
+/**
+ * Processes active non-periodic channels and queues transactions for these
+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
+ * FIFO Empty interrupt is disabled.
+ */
+static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
+{
+	gnptxsts_data_t		tx_status;
+	struct list_head	*orig_qh_ptr;
+	dwc_otg_qh_t		*qh;
+	int			status;
+	int			no_queue_space = 0;
+	int			no_fifo_space = 0;
+	int			more_to_do = 0;
+
+	dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
+
+	DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
+#ifdef DEBUG
+	tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+	DWC_DEBUGPL(DBG_HCDV, "  NP Tx Req Queue Space Avail (before queue): %d\n",
+		    tx_status.b.nptxqspcavail);
+	DWC_DEBUGPL(DBG_HCDV, "  NP Tx FIFO Space Avail (before queue): %d\n",
+		    tx_status.b.nptxfspcavail);
+#endif
+	/*
+	 * Keep track of the starting point. Skip over the start-of-list
+	 * entry.
+	 */
+	if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
+		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+	}
+	orig_qh_ptr = hcd->non_periodic_qh_ptr;
+
+	/*
+	 * Process once through the active list or until no more space is
+	 * available in the request queue or the Tx FIFO.
+	 */
+	do {
+		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+		if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
+			no_queue_space = 1;
+			break;
+		}
+
+		qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
+		status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
+
+		if (status > 0) {
+			more_to_do = 1;
+		} else if (status < 0) {
+			no_fifo_space = 1;
+			break;
+		}
+
+		/* Advance to next QH, skipping start-of-list entry. */
+		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+		if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
+			hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+		}
+
+	} while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
+
+	if (!hcd->core_if->dma_enable) {
+		gintmsk_data_t intr_mask = {.d32 = 0};
+		intr_mask.b.nptxfempty = 1;
+
+#ifdef DEBUG
+		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+		DWC_DEBUGPL(DBG_HCDV, "  NP Tx Req Queue Space Avail (after queue): %d\n",
+			    tx_status.b.nptxqspcavail);
+		DWC_DEBUGPL(DBG_HCDV, "  NP Tx FIFO Space Avail (after queue): %d\n",
+			    tx_status.b.nptxfspcavail);
+#endif
+		if (more_to_do || no_queue_space || no_fifo_space) {
+			/*
+			 * May need to queue more transactions as the request
+			 * queue or Tx FIFO empties. Enable the non-periodic
+			 * Tx FIFO empty interrupt. (Always use the half-empty
+			 * level to ensure that new requests are loaded as
+			 * soon as possible.)
+			 */
+			dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
+		} else {
+			/*
+			 * Disable the Tx FIFO empty interrupt since there are
+			 * no more transactions that need to be queued right
+			 * now. This function is called from interrupt
+			 * handlers to queue more transactions as transfer
+			 * states change.
+			 */
+			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+		}
+	}
+}
+
+/**
+ * Processes periodic channels for the next frame and queues transactions for
+ * these channels to the DWC_otg controller. After queueing transactions, the
+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
+ * to queue as Periodic Tx FIFO or request queue space becomes available.
+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
+ */
+static void process_periodic_channels(dwc_otg_hcd_t *hcd)
+{
+	hptxsts_data_t		tx_status;
+	struct list_head	*qh_ptr;
+	dwc_otg_qh_t		*qh;
+	int			status;
+	int 			no_queue_space = 0;
+	int			no_fifo_space = 0;
+
+	dwc_otg_host_global_regs_t *host_regs;
+	host_regs = hcd->core_if->host_if->host_global_regs;
+
+	DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
+#ifdef DEBUG
+	tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+	DWC_DEBUGPL(DBG_HCDV, "  P Tx Req Queue Space Avail (before queue): %d\n",
+		    tx_status.b.ptxqspcavail);
+	DWC_DEBUGPL(DBG_HCDV, "  P Tx FIFO Space Avail (before queue): %d\n",
+		    tx_status.b.ptxfspcavail);
+#endif
+
+	qh_ptr = hcd->periodic_sched_assigned.next;
+	while (qh_ptr != &hcd->periodic_sched_assigned) {
+		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+		if (tx_status.b.ptxqspcavail == 0) {
+			no_queue_space = 1;
+			break;
+		}
+
+		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+
+		/*
+		 * Set a flag if we're queuing high-bandwidth in slave mode.
+		 * The flag prevents any halts to get into the request queue in
+		 * the middle of multiple high-bandwidth packets getting queued.
+		 */
+		if (!hcd->core_if->dma_enable &&
+		    qh->channel->multi_count > 1)
+		{
+			hcd->core_if->queuing_high_bandwidth = 1;
+		}
+
+		status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
+		if (status < 0) {
+			no_fifo_space = 1;
+			break;
+		}
+
+		/*
+		 * In Slave mode, stay on the current transfer until there is
+		 * nothing more to do or the high-bandwidth request count is
+		 * reached. In DMA mode, only need to queue one request. The
+		 * controller automatically handles multiple packets for
+		 * high-bandwidth transfers.
+		 */
+		if (hcd->core_if->dma_enable || status == 0 ||
+		    qh->channel->requests == qh->channel->multi_count) {
+			qh_ptr = qh_ptr->next;
+			/*
+			 * Move the QH from the periodic assigned schedule to
+			 * the periodic queued schedule.
+			 */
+			list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
+
+			/* done queuing high bandwidth */
+			hcd->core_if->queuing_high_bandwidth = 0;
+		}
+	}
+
+	if (!hcd->core_if->dma_enable) {
+		dwc_otg_core_global_regs_t *global_regs;
+		gintmsk_data_t intr_mask = {.d32 = 0};
+
+		global_regs = hcd->core_if->core_global_regs;
+		intr_mask.b.ptxfempty = 1;
+#ifdef DEBUG
+		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+		DWC_DEBUGPL(DBG_HCDV, "  P Tx Req Queue Space Avail (after queue): %d\n",
+			    tx_status.b.ptxqspcavail);
+		DWC_DEBUGPL(DBG_HCDV, "  P Tx FIFO Space Avail (after queue): %d\n",
+			    tx_status.b.ptxfspcavail);
+#endif
+		if (!list_empty(&hcd->periodic_sched_assigned) ||
+		    no_queue_space || no_fifo_space) {
+			/*
+			 * May need to queue more transactions as the request
+			 * queue or Tx FIFO empties. Enable the periodic Tx
+			 * FIFO empty interrupt. (Always use the half-empty
+			 * level to ensure that new requests are loaded as
+			 * soon as possible.)
+			 */
+			dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
+		} else {
+			/*
+			 * Disable the Tx FIFO empty interrupt since there are
+			 * no more transactions that need to be queued right
+			 * now. This function is called from interrupt
+			 * handlers to queue more transactions as transfer
+			 * states change.
+			 */
+			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+		}
+	}
+}
+
+/**
+ * This function processes the currently active host channels and queues
+ * transactions for these channels to the DWC_otg controller. It is called
+ * from HCD interrupt handler functions.
+ *
+ * @param hcd The HCD state structure.
+ * @param tr_type The type(s) of transactions to queue (non-periodic,
+ * periodic, or both).
+ */
+void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
+				    dwc_otg_transaction_type_e tr_type)
+{
+#ifdef DEBUG_SOF
+	DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
+#endif
+	/* Process host channels associated with periodic transfers. */
+	if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
+	     tr_type == DWC_OTG_TRANSACTION_ALL) &&
+	    !list_empty(&hcd->periodic_sched_assigned)) {
+
+		process_periodic_channels(hcd);
+	}
+
+	/* Process host channels associated with non-periodic transfers. */
+	if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
+	    tr_type == DWC_OTG_TRANSACTION_ALL) {
+		if (!list_empty(&hcd->non_periodic_sched_active)) {
+			process_non_periodic_channels(hcd);
+		} else {
+			/*
+			 * Ensure NP Tx FIFO empty interrupt is disabled when
+			 * there are no non-periodic transfers to process.
+			 */
+			gintmsk_data_t gintmsk = {.d32 = 0};
+			gintmsk.b.nptxfempty = 1;
+			dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
+					 gintmsk.d32, 0);
+		}
+	}
+}
+
+/**
+ * Sets the final status of an URB and returns it to the device driver. Any
+ * required cleanup of the URB is performed.
+ */
+void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
+{
+#ifdef DEBUG
+	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+		DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
+			  __func__, urb, usb_pipedevice(urb->pipe),
+			  usb_pipeendpoint(urb->pipe),
+			  usb_pipein(urb->pipe) ? "IN" : "OUT", status);
+		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
+			int i;
+			for (i = 0; i < urb->number_of_packets; i++) {
+				DWC_PRINT("  ISO Desc %d status: %d\n",
+					  i, urb->iso_frame_desc[i].status);
+			}
+		}
+	}
+#endif
+
+	//if we use the aligned buffer instead of the original unaligned buffer,
+	//for IN data, we have to move the data to the original buffer
+	if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
+		dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
+		memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
+	}
+
+
+	urb->status = status;
+	urb->hcpriv = NULL;
+	usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
+}
+
+/*
+ * Returns the Queue Head for an URB.
+ */
+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
+{
+	struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
+	return (dwc_otg_qh_t *)ep->hcpriv;
+}
+
+#ifdef DEBUG
+void dwc_print_setup_data(uint8_t *setup)
+{
+	int i;
+	if (CHK_DEBUG_LEVEL(DBG_HCD)){
+		DWC_PRINT("Setup Data = MSB ");
+		for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
+		DWC_PRINT("\n");
+		DWC_PRINT("  bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
+		DWC_PRINT("  bmRequestType Type = ");
+		switch ((setup[0] & 0x60) >> 5) {
+		case 0: DWC_PRINT("Standard\n"); break;
+		case 1:	DWC_PRINT("Class\n"); break;
+		case 2:	DWC_PRINT("Vendor\n"); break;
+		case 3: DWC_PRINT("Reserved\n"); break;
+		}
+		DWC_PRINT("  bmRequestType Recipient = ");
+		switch (setup[0] & 0x1f) {
+		case 0: DWC_PRINT("Device\n"); break;
+		case 1: DWC_PRINT("Interface\n"); break;
+		case 2: DWC_PRINT("Endpoint\n"); break;
+		case 3: DWC_PRINT("Other\n"); break;
+		default: DWC_PRINT("Reserved\n"); break;
+		}
+		DWC_PRINT("  bRequest = 0x%0x\n", setup[1]);
+		DWC_PRINT("  wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
+		DWC_PRINT("  wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
+		DWC_PRINT("  wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
+	}
+}
+#endif
+
+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
+}
+
+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
+{
+#ifdef DEBUG
+	int num_channels;
+	int i;
+	gnptxsts_data_t	np_tx_status;
+	hptxsts_data_t p_tx_status;
+
+	num_channels = hcd->core_if->core_params->host_channels;
+	DWC_PRINT("\n");
+	DWC_PRINT("************************************************************\n");
+	DWC_PRINT("HCD State:\n");
+	DWC_PRINT("  Num channels: %d\n", num_channels);
+	for (i = 0; i < num_channels; i++) {
+		dwc_hc_t *hc = hcd->hc_ptr_array[i];
+		DWC_PRINT("  Channel %d:\n", i);
+		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
+			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
+		DWC_PRINT("    speed: %d\n", hc->speed);
+		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
+		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
+		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
+		DWC_PRINT("    multi_count: %d\n", hc->multi_count);
+		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
+		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
+		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
+		DWC_PRINT("    xfer_count: %d\n", hc->xfer_count);
+		DWC_PRINT("    halt_on_queue: %d\n", hc->halt_on_queue);
+		DWC_PRINT("    halt_pending: %d\n", hc->halt_pending);
+		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
+		DWC_PRINT("    do_split: %d\n", hc->do_split);
+		DWC_PRINT("    complete_split: %d\n", hc->complete_split);
+		DWC_PRINT("    hub_addr: %d\n", hc->hub_addr);
+		DWC_PRINT("    port_addr: %d\n", hc->port_addr);
+		DWC_PRINT("    xact_pos: %d\n", hc->xact_pos);
+		DWC_PRINT("    requests: %d\n", hc->requests);
+		DWC_PRINT("    qh: %p\n", hc->qh);
+		if (hc->xfer_started) {
+			hfnum_data_t hfnum;
+			hcchar_data_t hcchar;
+			hctsiz_data_t hctsiz;
+			hcint_data_t hcint;
+			hcintmsk_data_t hcintmsk;
+			hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
+			hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
+			hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
+			hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
+			hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
+			DWC_PRINT("    hfnum: 0x%08x\n", hfnum.d32);
+			DWC_PRINT("    hcchar: 0x%08x\n", hcchar.d32);
+			DWC_PRINT("    hctsiz: 0x%08x\n", hctsiz.d32);
+			DWC_PRINT("    hcint: 0x%08x\n", hcint.d32);
+			DWC_PRINT("    hcintmsk: 0x%08x\n", hcintmsk.d32);
+		}
+		if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
+			dwc_otg_qtd_t *qtd;
+			struct urb *urb;
+			qtd = hc->qh->qtd_in_process;
+			urb = qtd->urb;
+			DWC_PRINT("    URB Info:\n");
+			DWC_PRINT("      qtd: %p, urb: %p\n", qtd, urb);
+			if (urb) {
+				DWC_PRINT("      Dev: %d, EP: %d %s\n",
+					  usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
+					  usb_pipein(urb->pipe) ? "IN" : "OUT");
+				DWC_PRINT("      Max packet size: %d\n",
+					  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+				DWC_PRINT("      transfer_buffer: %p\n", urb->transfer_buffer);
+				DWC_PRINT("      transfer_dma: %p\n", (void *)urb->transfer_dma);
+				DWC_PRINT("      transfer_buffer_length: %d\n", urb->transfer_buffer_length);
+				DWC_PRINT("      actual_length: %d\n", urb->actual_length);
+			}
+		}
+	}
+	DWC_PRINT("  non_periodic_channels: %d\n", hcd->non_periodic_channels);
+	DWC_PRINT("  periodic_channels: %d\n", hcd->periodic_channels);
+	DWC_PRINT("  periodic_usecs: %d\n", hcd->periodic_usecs);
+	np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
+	DWC_PRINT("  NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
+	DWC_PRINT("  NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
+	p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
+	DWC_PRINT("  P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
+	DWC_PRINT("  P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
+	dwc_otg_hcd_dump_frrem(hcd);
+	dwc_otg_dump_global_registers(hcd->core_if);
+	dwc_otg_dump_host_registers(hcd->core_if);
+	DWC_PRINT("************************************************************\n");
+	DWC_PRINT("\n");
+#endif
+}
+#endif /* DWC_DEVICE_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_hcd.h
@@ -0,0 +1,647 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
+ * $Revision: #45 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+#ifndef __DWC_HCD_H__
+#define __DWC_HCD_H__
+
+#include <linux/list.h>
+#include <linux/usb.h>
+#include <linux/usb/hcd.h>
+
+struct dwc_otg_device;
+
+#include "otg_cil.h"
+
+/**
+ * @file
+ *
+ * This file contains the structures, constants, and interfaces for
+ * the Host Contoller Driver (HCD).
+ *
+ * The Host Controller Driver (HCD) is responsible for translating requests
+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
+ * It isolates the USBD from the specifics of the controller by providing an
+ * API to the USBD.
+ */
+
+/**
+ * Phases for control transfers.
+ */
+typedef enum dwc_otg_control_phase {
+	DWC_OTG_CONTROL_SETUP,
+	DWC_OTG_CONTROL_DATA,
+	DWC_OTG_CONTROL_STATUS
+} dwc_otg_control_phase_e;
+
+/** Transaction types. */
+typedef enum dwc_otg_transaction_type {
+	DWC_OTG_TRANSACTION_NONE,
+	DWC_OTG_TRANSACTION_PERIODIC,
+	DWC_OTG_TRANSACTION_NON_PERIODIC,
+	DWC_OTG_TRANSACTION_ALL
+} dwc_otg_transaction_type_e;
+
+/**
+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
+ * interrupt, or isochronous transfer. A single QTD is created for each URB
+ * (of one of these types) submitted to the HCD. The transfer associated with
+ * a QTD may require one or multiple transactions.
+ *
+ * A QTD is linked to a Queue Head, which is entered in either the
+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
+ * execution, some or all of its transactions may be executed. After
+ * execution, the state of the QTD is updated. The QTD may be retired if all
+ * its transactions are complete or if an error occurred. Otherwise, it
+ * remains in the schedule so more transactions can be executed later.
+ */
+typedef struct dwc_otg_qtd {
+	/**
+	 * Determines the PID of the next data packet for the data phase of
+	 * control transfers. Ignored for other transfer types.<br>
+	 * One of the following values:
+	 *	- DWC_OTG_HC_PID_DATA0
+	 *	- DWC_OTG_HC_PID_DATA1
+	 */
+	uint8_t			data_toggle;
+
+	/** Current phase for control transfers (Setup, Data, or Status). */
+	dwc_otg_control_phase_e	control_phase;
+
+	/** Keep track of the current split type
+	 * for FS/LS endpoints on a HS Hub */
+	uint8_t			complete_split;
+
+	/** How many bytes transferred during SSPLIT OUT */
+	uint32_t		ssplit_out_xfer_count;
+
+	/**
+	 * Holds the number of bus errors that have occurred for a transaction
+	 * within this transfer.
+	 */
+	uint8_t			error_count;
+
+	/**
+	 * Index of the next frame descriptor for an isochronous transfer. A
+	 * frame descriptor describes the buffer position and length of the
+	 * data to be transferred in the next scheduled (micro)frame of an
+	 * isochronous transfer. It also holds status for that transaction.
+	 * The frame index starts at 0.
+	 */
+	int			isoc_frame_index;
+
+	/** Position of the ISOC split on full/low speed */
+	uint8_t			isoc_split_pos;
+
+	/** Position of the ISOC split in the buffer for the current frame */
+	uint16_t		isoc_split_offset;
+
+	/** URB for this transfer */
+	struct urb		*urb;
+
+	/** This list of QTDs */
+	struct list_head	qtd_list_entry;
+
+} dwc_otg_qtd_t;
+
+/**
+ * A Queue Head (QH) holds the static characteristics of an endpoint and
+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
+ * be entered in either the non-periodic or periodic schedule.
+ */
+typedef struct dwc_otg_qh {
+	/**
+	 * Endpoint type.
+	 * One of the following values:
+	 *	- USB_ENDPOINT_XFER_CONTROL
+	 *	- USB_ENDPOINT_XFER_ISOC
+	 *	- USB_ENDPOINT_XFER_BULK
+	 *	- USB_ENDPOINT_XFER_INT
+	 */
+	uint8_t			ep_type;
+	uint8_t			ep_is_in;
+
+	/** wMaxPacketSize Field of Endpoint Descriptor. */
+	uint16_t		maxp;
+
+	/**
+	 * Determines the PID of the next data packet for non-control
+	 * transfers. Ignored for control transfers.<br>
+	 * One of the following values:
+	 *	- DWC_OTG_HC_PID_DATA0
+	 *	- DWC_OTG_HC_PID_DATA1
+	 */
+	uint8_t			data_toggle;
+
+	/** Ping state if 1. */
+	uint8_t			ping_state;
+
+	/**
+	 * List of QTDs for this QH.
+	 */
+	struct list_head	qtd_list;
+
+	/** Host channel currently processing transfers for this QH. */
+	dwc_hc_t		*channel;
+
+	/** QTD currently assigned to a host channel for this QH. */
+	dwc_otg_qtd_t		*qtd_in_process;
+
+	/** Full/low speed endpoint on high-speed hub requires split. */
+	uint8_t			do_split;
+
+	/** @name Periodic schedule information */
+	/** @{ */
+
+	/** Bandwidth in microseconds per (micro)frame. */
+	uint8_t			usecs;
+
+	/** Interval between transfers in (micro)frames. */
+	uint16_t		interval;
+
+	/**
+	 * (micro)frame to initialize a periodic transfer. The transfer
+	 * executes in the following (micro)frame.
+	 */
+	uint16_t		sched_frame;
+
+	/** (micro)frame at which last start split was initialized. */
+	uint16_t		start_split_frame;
+
+	/** @} */
+
+	/** Entry for QH in either the periodic or non-periodic schedule. */
+	struct list_head	qh_list_entry;
+} dwc_otg_qh_t;
+
+/**
+ * This structure holds the state of the HCD, including the non-periodic and
+ * periodic schedules.
+ */
+typedef struct dwc_otg_hcd {
+	/** The DWC otg device pointer */
+	struct dwc_otg_device	*otg_dev;
+
+	/** DWC OTG Core Interface Layer */
+	dwc_otg_core_if_t	*core_if;
+
+	/** Internal DWC HCD Flags */
+	volatile union dwc_otg_hcd_internal_flags {
+		uint32_t d32;
+		struct {
+			unsigned port_connect_status_change : 1;
+			unsigned port_connect_status : 1;
+			unsigned port_reset_change : 1;
+			unsigned port_enable_change : 1;
+			unsigned port_suspend_change : 1;
+			unsigned port_over_current_change : 1;
+			unsigned reserved : 27;
+		} b;
+	} flags;
+
+	/**
+	 * Inactive items in the non-periodic schedule. This is a list of
+	 * Queue Heads. Transfers associated with these Queue Heads are not
+	 * currently assigned to a host channel.
+	 */
+	struct list_head	non_periodic_sched_inactive;
+
+	/**
+	 * Active items in the non-periodic schedule. This is a list of
+	 * Queue Heads. Transfers associated with these Queue Heads are
+	 * currently assigned to a host channel.
+	 */
+	struct list_head	non_periodic_sched_active;
+
+	/**
+	 * Pointer to the next Queue Head to process in the active
+	 * non-periodic schedule.
+	 */
+	struct list_head	*non_periodic_qh_ptr;
+
+	/**
+	 * Inactive items in the periodic schedule. This is a list of QHs for
+	 * periodic transfers that are _not_ scheduled for the next frame.
+	 * Each QH in the list has an interval counter that determines when it
+	 * needs to be scheduled for execution. This scheduling mechanism
+	 * allows only a simple calculation for periodic bandwidth used (i.e.
+	 * must assume that all periodic transfers may need to execute in the
+	 * same frame). However, it greatly simplifies scheduling and should
+	 * be sufficient for the vast majority of OTG hosts, which need to
+	 * connect to a small number of peripherals at one time.
+	 *
+	 * Items move from this list to periodic_sched_ready when the QH
+	 * interval counter is 0 at SOF.
+	 */
+	struct list_head	periodic_sched_inactive;
+
+	/**
+	 * List of periodic QHs that are ready for execution in the next
+	 * frame, but have not yet been assigned to host channels.
+	 *
+	 * Items move from this list to periodic_sched_assigned as host
+	 * channels become available during the current frame.
+	 */
+	struct list_head	periodic_sched_ready;
+
+	/**
+	 * List of periodic QHs to be executed in the next frame that are
+	 * assigned to host channels.
+	 *
+	 * Items move from this list to periodic_sched_queued as the
+	 * transactions for the QH are queued to the DWC_otg controller.
+	 */
+	struct list_head	periodic_sched_assigned;
+
+	/**
+	 * List of periodic QHs that have been queued for execution.
+	 *
+	 * Items move from this list to either periodic_sched_inactive or
+	 * periodic_sched_ready when the channel associated with the transfer
+	 * is released. If the interval for the QH is 1, the item moves to
+	 * periodic_sched_ready because it must be rescheduled for the next
+	 * frame. Otherwise, the item moves to periodic_sched_inactive.
+	 */
+	struct list_head	periodic_sched_queued;
+
+	/**
+	 * Total bandwidth claimed so far for periodic transfers. This value
+	 * is in microseconds per (micro)frame. The assumption is that all
+	 * periodic transfers may occur in the same (micro)frame.
+	 */
+	uint16_t		periodic_usecs;
+
+	/**
+	 * Frame number read from the core at SOF. The value ranges from 0 to
+	 * DWC_HFNUM_MAX_FRNUM.
+	 */
+	uint16_t		frame_number;
+
+	/**
+	 * Free host channels in the controller. This is a list of
+	 * dwc_hc_t items.
+	 */
+	struct list_head	free_hc_list;
+
+	/**
+	 * Number of host channels assigned to periodic transfers. Currently
+	 * assuming that there is a dedicated host channel for each periodic
+	 * transaction and at least one host channel available for
+	 * non-periodic transactions.
+	 */
+	int			periodic_channels;
+
+	/**
+	 * Number of host channels assigned to non-periodic transfers.
+	 */
+	int			non_periodic_channels;
+
+	/**
+	 * Array of pointers to the host channel descriptors. Allows accessing
+	 * a host channel descriptor given the host channel number. This is
+	 * useful in interrupt handlers.
+	 */
+	dwc_hc_t		*hc_ptr_array[MAX_EPS_CHANNELS];
+
+	/**
+	 * Buffer to use for any data received during the status phase of a
+	 * control transfer. Normally no data is transferred during the status
+	 * phase. This buffer is used as a bit bucket.
+	 */
+	uint8_t			*status_buf;
+
+	/**
+	 * DMA address for status_buf.
+	 */
+	dma_addr_t		status_buf_dma;
+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
+
+	/**
+	 * Structure to allow starting the HCD in a non-interrupt context
+	 * during an OTG role change.
+	 */
+	struct delayed_work	start_work;
+
+	/**
+	 * Connection timer. An OTG host must display a message if the device
+	 * does not connect. Started when the VBus power is turned on via
+	 * sysfs attribute "buspower".
+	 */
+	struct timer_list	conn_timer;
+
+	/* Tasket to do a reset */
+	struct tasklet_struct	*reset_tasklet;
+
+	/*  */
+	spinlock_t lock;
+
+#ifdef DEBUG
+	uint32_t		frrem_samples;
+	uint64_t		frrem_accum;
+
+	uint32_t		hfnum_7_samples_a;
+	uint64_t		hfnum_7_frrem_accum_a;
+	uint32_t		hfnum_0_samples_a;
+	uint64_t		hfnum_0_frrem_accum_a;
+	uint32_t		hfnum_other_samples_a;
+	uint64_t		hfnum_other_frrem_accum_a;
+
+	uint32_t		hfnum_7_samples_b;
+	uint64_t		hfnum_7_frrem_accum_b;
+	uint32_t		hfnum_0_samples_b;
+	uint64_t		hfnum_0_frrem_accum_b;
+	uint32_t		hfnum_other_samples_b;
+	uint64_t		hfnum_other_frrem_accum_b;
+#endif
+} dwc_otg_hcd_t;
+
+/** Gets the dwc_otg_hcd from a struct usb_hcd */
+static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
+{
+	return (dwc_otg_hcd_t *)(hcd->hcd_priv);
+}
+
+/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
+}
+
+/** @name HCD Create/Destroy Functions */
+/** @{ */
+extern int dwc_otg_hcd_init(struct platform_device *pdev);
+extern void dwc_otg_hcd_remove(struct platform_device *pdev);
+/** @} */
+
+/** @name Linux HC Driver API Functions */
+/** @{ */
+
+extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
+extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
+extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
+				//   struct usb_host_endpoint *ep,
+				   struct urb *urb,
+				   gfp_t mem_flags
+				  );
+extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
+				   struct urb *urb, int status);
+extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+					 struct usb_host_endpoint *ep);
+extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
+				       char *buf);
+extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
+				   u16 typeReq,
+				   u16 wValue,
+				   u16 wIndex,
+				   char *buf,
+				   u16 wLength);
+
+/** @} */
+
+/** @name Transaction Execution Functions */
+/** @{ */
+extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
+extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
+					   dwc_otg_transaction_type_e tr_type);
+extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
+				     int status);
+/** @} */
+
+/** @name Interrupt Handler Functions */
+/** @{ */
+extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
+extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+/** @} */
+
+
+/** @name Schedule Queue Functions */
+/** @{ */
+
+/* Implemented in dwc_otg_hcd_queue.c */
+extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
+extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
+extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
+
+/** Remove and free a QH */
+static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
+						  dwc_otg_qh_t *qh)
+{
+	dwc_otg_hcd_qh_remove(hcd, qh);
+	dwc_otg_hcd_qh_free(hcd, qh);
+}
+
+/** Allocates memory for a QH structure.
+ * @return Returns the memory allocate or NULL on error. */
+static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
+{
+	return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
+}
+
+extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
+extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
+extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
+
+/** Allocates memory for a QTD structure.
+ * @return Returns the memory allocate or NULL on error. */
+static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
+{
+	return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
+}
+
+/** Frees the memory for a QTD structure.  QTD should already be removed from
+ * list.
+ * @param[in] qtd QTD to free.*/
+static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
+{
+	kfree(qtd);
+}
+
+/** Removes a QTD from list.
+ * @param[in] hcd HCD instance.
+ * @param[in] qtd QTD to remove from list. */
+static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
+{
+	unsigned long flags;
+	SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+	list_del(&qtd->qtd_list_entry);
+	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+}
+
+/** Remove and free a QTD */
+static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
+{
+	dwc_otg_hcd_qtd_remove(hcd, qtd);
+	dwc_otg_hcd_qtd_free(qtd);
+}
+
+/** @} */
+
+
+/** @name Internal Functions */
+/** @{ */
+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
+/** @} */
+
+/** Gets the usb_host_endpoint associated with an URB. */
+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
+{
+	struct usb_device *dev = urb->dev;
+	int ep_num = usb_pipeendpoint(urb->pipe);
+
+	if (usb_pipein(urb->pipe))
+		return dev->ep_in[ep_num];
+	else
+		return dev->ep_out[ep_num];
+}
+
+/**
+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
+ * qualified with its direction (possible 32 endpoints per device).
+ */
+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
+						     ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
+
+/** Gets the QH that contains the list_head */
+#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
+
+/** Gets the QTD that contains the list_head */
+#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
+
+/** Check if QH is non-periodic  */
+#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
+				     (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
+
+/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
+
+/** Packet size for any kind of endpoint descriptor */
+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
+
+/**
+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
+ * frame number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
+{
+	return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
+		(DWC_HFNUM_MAX_FRNUM >> 1);
+}
+
+/**
+ * Returns true if _frame1 is greater than _frame2. The comparison is done
+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
+ * number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
+{
+	return (frame1 != frame2) &&
+		(((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
+		 (DWC_HFNUM_MAX_FRNUM >> 1));
+}
+
+/**
+ * Increments _frame by the amount specified by _inc. The addition is done
+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
+ */
+static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
+{
+	return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
+}
+
+static inline uint16_t dwc_full_frame_num(uint16_t frame)
+{
+	return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
+}
+
+static inline uint16_t dwc_micro_frame_num(uint16_t frame)
+{
+	return frame & 0x7;
+}
+
+#ifdef DEBUG
+/**
+ * Macro to sample the remaining PHY clocks left in the current frame. This
+ * may be used during debugging to determine the average time it takes to
+ * execute sections of code. There are two possible sample points, "a" and
+ * "b", so the _letter argument must be one of these values.
+ *
+ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
+ * example, "cat /sys/devices/lm0/hcd_frrem".
+ */
+#define dwc_sample_frrem(_hcd, _qh, _letter) \
+{ \
+	hfnum_data_t hfnum; \
+	dwc_otg_qtd_t *qtd; \
+	qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
+	if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
+		hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
+		switch (hfnum.b.frnum & 0x7) { \
+		case 7: \
+			_hcd->hfnum_7_samples_##_letter++; \
+			_hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
+			break; \
+		case 0: \
+			_hcd->hfnum_0_samples_##_letter++; \
+			_hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
+			break; \
+		default: \
+			_hcd->hfnum_other_samples_##_letter++; \
+			_hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
+			break; \
+		} \
+	} \
+}
+#else
+#define dwc_sample_frrem(_hcd, _qh, _letter)
+#endif
+#endif
+#endif /* DWC_DEVICE_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_hcd_intr.c
@@ -0,0 +1,1826 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
+ * $Revision: #70 $
+ * $Date: 2008/10/16 $
+ * $Change: 1117667 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+#include <linux/version.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+/** @file
+ * This file contains the implementation of the HCD Interrupt handlers.
+ */
+
+/** This function handles interrupts for the HCD. */
+int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	int retval = 0;
+
+	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+	gintsts_data_t gintsts;
+#ifdef DEBUG
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+#endif
+
+	/* Check if HOST Mode */
+	if (dwc_otg_is_host_mode(core_if)) {
+		gintsts.d32 = dwc_otg_read_core_intr(core_if);
+		if (!gintsts.d32) {
+			return 0;
+		}
+
+#ifdef DEBUG
+		/* Don't print debug message in the interrupt handler on SOF */
+# ifndef DEBUG_SOF
+		if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+			DWC_DEBUGPL(DBG_HCD, "\n");
+#endif
+
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+		if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
+#endif
+		if (gintsts.b.usbreset) {
+			DWC_PRINT("Usb Reset In Host Mode\n");
+		}
+		if (gintsts.b.sofintr) {
+			retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
+		}
+		if (gintsts.b.rxstsqlvl) {
+			retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
+		}
+		if (gintsts.b.nptxfempty) {
+			retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
+		}
+		if (gintsts.b.i2cintr) {
+			/** @todo Implement i2cintr handler. */
+		}
+		if (gintsts.b.portintr) {
+			retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
+		}
+		if (gintsts.b.hcintr) {
+			retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
+		}
+		if (gintsts.b.ptxfempty) {
+			retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
+		}
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+		if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+		{
+			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
+			DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
+				    dwc_read_reg32(&global_regs->gintsts));
+			DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
+				    dwc_read_reg32(&global_regs->gintmsk));
+		}
+#endif
+
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+	if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+		DWC_DEBUGPL(DBG_HCD, "\n");
+#endif
+
+	}
+	S3C2410X_CLEAR_EINTPEND();
+
+	return retval;
+}
+
+#ifdef DWC_TRACK_MISSED_SOFS
+#warning Compiling code to track missed SOFs
+#define FRAME_NUM_ARRAY_SIZE 1000
+/**
+ * This function is for debug only.
+ */
+static inline void track_missed_sofs(uint16_t curr_frame_number)
+{
+	static uint16_t		frame_num_array[FRAME_NUM_ARRAY_SIZE];
+	static uint16_t		last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
+	static int		frame_num_idx = 0;
+	static uint16_t		last_frame_num = DWC_HFNUM_MAX_FRNUM;
+	static int		dumped_frame_num_array = 0;
+
+	if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
+		if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
+			frame_num_array[frame_num_idx] = curr_frame_number;
+			last_frame_num_array[frame_num_idx++] = last_frame_num;
+		}
+	} else if (!dumped_frame_num_array) {
+		int i;
+		printk(KERN_EMERG USB_DWC "Frame     Last Frame\n");
+		printk(KERN_EMERG USB_DWC "-----     ----------\n");
+		for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
+			printk(KERN_EMERG USB_DWC "0x%04x    0x%04x\n",
+			       frame_num_array[i], last_frame_num_array[i]);
+		}
+		dumped_frame_num_array = 1;
+	}
+	last_frame_num = curr_frame_number;
+}
+#endif
+
+/**
+ * Handles the start-of-frame interrupt in host mode. Non-periodic
+ * transactions may be queued to the DWC_otg controller for the current
+ * (micro)frame. Periodic transactions may be queued to the controller for the
+ * next (micro)frame.
+ */
+int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
+{
+	hfnum_data_t		hfnum;
+	struct list_head	*qh_entry;
+	dwc_otg_qh_t		*qh;
+	dwc_otg_transaction_type_e tr_type;
+	gintsts_data_t gintsts = {.d32 = 0};
+
+	hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
+
+#ifdef DEBUG_SOF
+	DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
+#endif
+	hcd->frame_number = hfnum.b.frnum;
+
+#ifdef DEBUG
+	hcd->frrem_accum += hfnum.b.frrem;
+	hcd->frrem_samples++;
+#endif
+
+#ifdef DWC_TRACK_MISSED_SOFS
+	track_missed_sofs(hcd->frame_number);
+#endif
+
+	/* Determine whether any periodic QHs should be executed. */
+	qh_entry = hcd->periodic_sched_inactive.next;
+	while (qh_entry != &hcd->periodic_sched_inactive) {
+		qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
+		qh_entry = qh_entry->next;
+		if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
+			/*
+			 * Move QH to the ready list to be executed next
+			 * (micro)frame.
+			 */
+			list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
+		}
+	}
+
+	tr_type = dwc_otg_hcd_select_transactions(hcd);
+	if (tr_type != DWC_OTG_TRANSACTION_NONE) {
+		dwc_otg_hcd_queue_transactions(hcd, tr_type);
+	}
+
+	/* Clear interrupt */
+	gintsts.b.sofintr = 1;
+	dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
+ * least one packet in the Rx FIFO.  The packets are moved from the FIFO to
+ * memory if the DWC_otg controller is operating in Slave mode. */
+int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	host_grxsts_data_t grxsts;
+	dwc_hc_t *hc = NULL;
+
+	DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
+
+	grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
+
+	hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
+
+	/* Packet Status */
+	DWC_DEBUGPL(DBG_HCDV, "    Ch num = %d\n", grxsts.b.chnum);
+	DWC_DEBUGPL(DBG_HCDV, "    Count = %d\n", grxsts.b.bcnt);
+	DWC_DEBUGPL(DBG_HCDV, "    DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
+	DWC_DEBUGPL(DBG_HCDV, "    PStatus = %d\n", grxsts.b.pktsts);
+
+	switch (grxsts.b.pktsts) {
+	case DWC_GRXSTS_PKTSTS_IN:
+		/* Read the data into the host buffer. */
+		if (grxsts.b.bcnt > 0) {
+			dwc_otg_read_packet(dwc_otg_hcd->core_if,
+					    hc->xfer_buff,
+					    grxsts.b.bcnt);
+
+			/* Update the HC fields for the next packet received. */
+			hc->xfer_count += grxsts.b.bcnt;
+			hc->xfer_buff += grxsts.b.bcnt;
+		}
+
+	case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
+	case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
+	case DWC_GRXSTS_PKTSTS_CH_HALTED:
+		/* Handled in interrupt, just ignore data */
+		break;
+	default:
+		DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
+		break;
+	}
+
+	return 1;
+}
+
+/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
+ * data packets may be written to the FIFO for OUT transfers. More requests
+ * may be written to the non-periodic request queue for IN transfers. This
+ * interrupt is enabled only in Slave mode. */
+int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
+	dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
+				       DWC_OTG_TRANSACTION_NON_PERIODIC);
+	return 1;
+}
+
+/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
+ * packets may be written to the FIFO for OUT transfers. More requests may be
+ * written to the periodic request queue for IN transfers. This interrupt is
+ * enabled only in Slave mode. */
+int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
+	dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
+				       DWC_OTG_TRANSACTION_PERIODIC);
+	return 1;
+}
+
+/** There are multiple conditions that can cause a port interrupt. This function
+ * determines which interrupt conditions have occurred and handles them
+ * appropriately. */
+int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	int retval = 0;
+	hprt0_data_t hprt0;
+	hprt0_data_t hprt0_modify;
+
+	hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
+	hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
+
+	/* Clear appropriate bits in HPRT0 to clear the interrupt bit in
+	 * GINTSTS */
+
+	hprt0_modify.b.prtena = 0;
+	hprt0_modify.b.prtconndet = 0;
+	hprt0_modify.b.prtenchng = 0;
+	hprt0_modify.b.prtovrcurrchng = 0;
+
+	/* Port Connect Detected
+	 * Set flag and clear if detected */
+	if (hprt0.b.prtconndet) {
+		DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
+			    "Port Connect Detected--\n", hprt0.d32);
+		dwc_otg_hcd->flags.b.port_connect_status_change = 1;
+		dwc_otg_hcd->flags.b.port_connect_status = 1;
+		hprt0_modify.b.prtconndet = 1;
+
+		/* B-Device has connected, Delete the connection timer. */
+		del_timer( &dwc_otg_hcd->conn_timer );
+
+		/* The Hub driver asserts a reset when it sees port connect
+		 * status change flag */
+		retval |= 1;
+	}
+
+	/* Port Enable Changed
+	 * Clear if detected - Set internal flag if disabled */
+	if (hprt0.b.prtenchng) {
+		DWC_DEBUGPL(DBG_HCD, "  --Port Interrupt HPRT0=0x%08x "
+			    "Port Enable Changed--\n", hprt0.d32);
+		hprt0_modify.b.prtenchng = 1;
+		if (hprt0.b.prtena == 1) {
+			int do_reset = 0;
+			dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
+			dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
+			dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
+
+			/* Check if we need to adjust the PHY clock speed for
+			 * low power and adjust it */
+			if (params->host_support_fs_ls_low_power) {
+				gusbcfg_data_t usbcfg;
+
+				usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+				if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
+				    hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
+					/*
+					 * Low power
+					 */
+					hcfg_data_t hcfg;
+					if (usbcfg.b.phylpwrclksel == 0) {
+						/* Set PHY low power clock select for FS/LS devices */
+						usbcfg.b.phylpwrclksel = 1;
+						dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+						do_reset = 1;
+					}
+
+					hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+
+					if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
+					    params->host_ls_low_power_phy_clk ==
+					     DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
+						/* 6 MHZ */
+						DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
+						if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
+							hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
+							dwc_write_reg32(&host_if->host_global_regs->hcfg,
+									hcfg.d32);
+							do_reset = 1;
+						}
+					} else {
+						/* 48 MHZ */
+						DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
+						if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
+							hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
+							dwc_write_reg32(&host_if->host_global_regs->hcfg,
+									hcfg.d32);
+							do_reset = 1;
+						}
+					}
+				} else {
+					/*
+					 * Not low power
+					 */
+					if (usbcfg.b.phylpwrclksel == 1) {
+						usbcfg.b.phylpwrclksel = 0;
+						dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+						do_reset = 1;
+					}
+				}
+
+				if (do_reset) {
+					tasklet_schedule(dwc_otg_hcd->reset_tasklet);
+				}
+			}
+
+			if (!do_reset) {
+				/* Port has been enabled set the reset change flag */
+				dwc_otg_hcd->flags.b.port_reset_change = 1;
+			}
+		} else {
+			dwc_otg_hcd->flags.b.port_enable_change = 1;
+		}
+		retval |= 1;
+	}
+
+	/** Overcurrent Change Interrupt */
+	if (hprt0.b.prtovrcurrchng) {
+		DWC_DEBUGPL(DBG_HCD, "  --Port Interrupt HPRT0=0x%08x "
+			    "Port Overcurrent Changed--\n", hprt0.d32);
+		dwc_otg_hcd->flags.b.port_over_current_change = 1;
+		hprt0_modify.b.prtovrcurrchng = 1;
+		retval |= 1;
+	}
+
+	/* Clear Port Interrupts */
+	dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
+
+	return retval;
+}
+
+/** This interrupt indicates that one or more host channels has a pending
+ * interrupt. There are multiple conditions that can cause each host channel
+ * interrupt. This function determines which conditions have occurred for each
+ * host channel interrupt and handles them appropriately. */
+int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	int i;
+	int retval = 0;
+	haint_data_t haint;
+
+	/* Clear appropriate bits in HCINTn to clear the interrupt bit in
+	 * GINTSTS */
+
+	haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
+
+	for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
+		if (haint.b2.chint & (1 << i)) {
+			retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
+		}
+	}
+
+	return retval;
+}
+
+/* Macro used to clear one channel interrupt */
+#define clear_hc_int(_hc_regs_, _intr_) \
+do { \
+	hcint_data_t hcint_clear = {.d32 = 0}; \
+	hcint_clear.b._intr_ = 1; \
+	dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
+} while (0)
+
+/*
+ * Macro used to disable one channel interrupt. Channel interrupts are
+ * disabled when the channel is halted or released by the interrupt handler.
+ * There is no need to handle further interrupts of that type until the
+ * channel is re-assigned. In fact, subsequent handling may cause crashes
+ * because the channel structures are cleaned up when the channel is released.
+ */
+#define disable_hc_int(_hc_regs_, _intr_) \
+do { \
+	hcintmsk_data_t hcintmsk = {.d32 = 0}; \
+	hcintmsk.b._intr_ = 1; \
+	dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
+} while (0)
+
+/**
+ * Gets the actual length of a transfer after the transfer halts. _halt_status
+ * holds the reason for the halt.
+ *
+ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
+ * *short_read is set to 1 upon return if less than the requested
+ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
+ * return. short_read may also be NULL on entry, in which case it remains
+ * unchanged.
+ */
+static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
+				       dwc_otg_hc_regs_t *hc_regs,
+				       dwc_otg_qtd_t *qtd,
+				       dwc_otg_halt_status_e halt_status,
+				       int *short_read)
+{
+	hctsiz_data_t	hctsiz;
+	uint32_t	length;
+
+	if (short_read != NULL) {
+		*short_read = 0;
+	}
+	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+
+	if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
+		if (hc->ep_is_in) {
+			length = hc->xfer_len - hctsiz.b.xfersize;
+			if (short_read != NULL) {
+				*short_read = (hctsiz.b.xfersize != 0);
+			}
+		} else if (hc->qh->do_split) {
+			length = qtd->ssplit_out_xfer_count;
+		} else {
+			length = hc->xfer_len;
+		}
+	} else {
+		/*
+		 * Must use the hctsiz.pktcnt field to determine how much data
+		 * has been transferred. This field reflects the number of
+		 * packets that have been transferred via the USB. This is
+		 * always an integral number of packets if the transfer was
+		 * halted before its normal completion. (Can't use the
+		 * hctsiz.xfersize field because that reflects the number of
+		 * bytes transferred via the AHB, not the USB).
+		 */
+		length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
+	}
+
+	return length;
+}
+
+/**
+ * Updates the state of the URB after a Transfer Complete interrupt on the
+ * host channel. Updates the actual_length field of the URB based on the
+ * number of bytes transferred via the host channel. Sets the URB status
+ * if the data transfer is finished.
+ *
+ * @return 1 if the data transfer specified by the URB is completely finished,
+ * 0 otherwise.
+ */
+static int update_urb_state_xfer_comp(dwc_hc_t *hc,
+				      dwc_otg_hc_regs_t *hc_regs,
+				      struct urb *urb,
+				      dwc_otg_qtd_t *qtd)
+{
+	int		xfer_done = 0;
+	int		short_read = 0;
+
+	urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
+						     DWC_OTG_HC_XFER_COMPLETE,
+						     &short_read);
+
+	if (short_read || urb->actual_length == urb->transfer_buffer_length) {
+		xfer_done = 1;
+		if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
+			urb->status = -EREMOTEIO;
+		} else {
+			urb->status = 0;
+		}
+	}
+
+#ifdef DEBUG
+	{
+		hctsiz_data_t	hctsiz;
+		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+		DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
+			    __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
+		DWC_DEBUGPL(DBG_HCDV, "  hc->xfer_len %d\n", hc->xfer_len);
+		DWC_DEBUGPL(DBG_HCDV, "  hctsiz.xfersize %d\n", hctsiz.b.xfersize);
+		DWC_DEBUGPL(DBG_HCDV, "  urb->transfer_buffer_length %d\n",
+			    urb->transfer_buffer_length);
+		DWC_DEBUGPL(DBG_HCDV, "  urb->actual_length %d\n", urb->actual_length);
+		DWC_DEBUGPL(DBG_HCDV, "  short_read %d, xfer_done %d\n",
+			    short_read, xfer_done);
+	}
+#endif
+
+	return xfer_done;
+}
+
+/*
+ * Save the starting data toggle for the next transfer. The data toggle is
+ * saved in the QH for non-control transfers and it's saved in the QTD for
+ * control transfers.
+ */
+static void save_data_toggle(dwc_hc_t *hc,
+			     dwc_otg_hc_regs_t *hc_regs,
+			     dwc_otg_qtd_t *qtd)
+{
+	hctsiz_data_t hctsiz;
+	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+
+	if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
+		dwc_otg_qh_t *qh = hc->qh;
+		if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
+			qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+		} else {
+			qh->data_toggle = DWC_OTG_HC_PID_DATA1;
+		}
+	} else {
+		if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
+			qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
+		} else {
+			qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+		}
+	}
+}
+
+/**
+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
+ * still linked to the QH, the QH is added to the end of the inactive
+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
+ * schedule if no more QTDs are linked to the QH.
+ */
+static void deactivate_qh(dwc_otg_hcd_t *hcd,
+			  dwc_otg_qh_t *qh,
+			  int free_qtd)
+{
+	int continue_split = 0;
+	dwc_otg_qtd_t *qtd;
+
+	DWC_DEBUGPL(DBG_HCDV, "  %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
+
+	qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+
+	if (qtd->complete_split) {
+		continue_split = 1;
+	} else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
+		   qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
+		continue_split = 1;
+	}
+
+	if (free_qtd) {
+		dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
+		continue_split = 0;
+	}
+
+	qh->channel = NULL;
+	qh->qtd_in_process = NULL;
+	dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
+}
+
+/**
+ * Updates the state of an Isochronous URB when the transfer is stopped for
+ * any reason. The fields of the current entry in the frame descriptor array
+ * are set based on the transfer state and the input _halt_status. Completes
+ * the Isochronous URB if all the URB frames have been completed.
+ *
+ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
+ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
+ */
+static dwc_otg_halt_status_e
+update_isoc_urb_state(dwc_otg_hcd_t *hcd,
+		      dwc_hc_t *hc,
+		      dwc_otg_hc_regs_t *hc_regs,
+		      dwc_otg_qtd_t *qtd,
+		      dwc_otg_halt_status_e halt_status)
+{
+	struct urb *urb = qtd->urb;
+	dwc_otg_halt_status_e ret_val = halt_status;
+	struct usb_iso_packet_descriptor *frame_desc;
+
+	frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+	switch (halt_status) {
+	case DWC_OTG_HC_XFER_COMPLETE:
+		frame_desc->status = 0;
+		frame_desc->actual_length =
+			get_actual_xfer_length(hc, hc_regs, qtd,
+					       halt_status, NULL);
+		break;
+	case DWC_OTG_HC_XFER_FRAME_OVERRUN:
+		urb->error_count++;
+		if (hc->ep_is_in) {
+			frame_desc->status = -ENOSR;
+		} else {
+			frame_desc->status = -ECOMM;
+		}
+		frame_desc->actual_length = 0;
+		break;
+	case DWC_OTG_HC_XFER_BABBLE_ERR:
+		urb->error_count++;
+		frame_desc->status = -EOVERFLOW;
+		/* Don't need to update actual_length in this case. */
+		break;
+	case DWC_OTG_HC_XFER_XACT_ERR:
+		urb->error_count++;
+		frame_desc->status = -EPROTO;
+		frame_desc->actual_length =
+			get_actual_xfer_length(hc, hc_regs, qtd,
+					       halt_status, NULL);
+	default:
+		DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
+			  halt_status);
+		BUG();
+		break;
+	}
+
+	if (++qtd->isoc_frame_index == urb->number_of_packets) {
+		/*
+		 * urb->status is not used for isoc transfers.
+		 * The individual frame_desc statuses are used instead.
+		 */
+		dwc_otg_hcd_complete_urb(hcd, urb, 0);
+		ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
+	} else {
+		ret_val = DWC_OTG_HC_XFER_COMPLETE;
+	}
+
+	return ret_val;
+}
+
+/**
+ * Releases a host channel for use by other transfers. Attempts to select and
+ * queue more transactions since at least one host channel is available.
+ *
+ * @param hcd The HCD state structure.
+ * @param hc The host channel to release.
+ * @param qtd The QTD associated with the host channel. This QTD may be freed
+ * if the transfer is complete or an error has occurred.
+ * @param halt_status Reason the channel is being released. This status
+ * determines the actions taken by this function.
+ */
+static void release_channel(dwc_otg_hcd_t *hcd,
+			    dwc_hc_t *hc,
+			    dwc_otg_qtd_t *qtd,
+			    dwc_otg_halt_status_e halt_status)
+{
+	dwc_otg_transaction_type_e tr_type;
+	int free_qtd;
+
+	DWC_DEBUGPL(DBG_HCDV, "  %s: channel %d, halt_status %d\n",
+		    __func__, hc->hc_num, halt_status);
+
+	switch (halt_status) {
+	case DWC_OTG_HC_XFER_URB_COMPLETE:
+		free_qtd = 1;
+		break;
+	case DWC_OTG_HC_XFER_AHB_ERR:
+	case DWC_OTG_HC_XFER_STALL:
+	case DWC_OTG_HC_XFER_BABBLE_ERR:
+		free_qtd = 1;
+		break;
+	case DWC_OTG_HC_XFER_XACT_ERR:
+		if (qtd->error_count >= 3) {
+			DWC_DEBUGPL(DBG_HCDV, "  Complete URB with transaction error\n");
+			free_qtd = 1;
+			qtd->urb->status = -EPROTO;
+			dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
+		} else {
+			free_qtd = 0;
+		}
+		break;
+	case DWC_OTG_HC_XFER_URB_DEQUEUE:
+		/*
+		 * The QTD has already been removed and the QH has been
+		 * deactivated. Don't want to do anything except release the
+		 * host channel and try to queue more transfers.
+		 */
+		goto cleanup;
+	case DWC_OTG_HC_XFER_NO_HALT_STATUS:
+		DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
+		free_qtd = 0;
+		break;
+	default:
+		free_qtd = 0;
+		break;
+	}
+
+	deactivate_qh(hcd, hc->qh, free_qtd);
+
+ cleanup:
+	/*
+	 * Release the host channel for use by other transfers. The cleanup
+	 * function clears the channel interrupt enables and conditions, so
+	 * there's no need to clear the Channel Halted interrupt separately.
+	 */
+	dwc_otg_hc_cleanup(hcd->core_if, hc);
+	list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
+
+	switch (hc->ep_type) {
+	case DWC_OTG_EP_TYPE_CONTROL:
+	case DWC_OTG_EP_TYPE_BULK:
+		hcd->non_periodic_channels--;
+		break;
+
+	default:
+		/*
+		 * Don't release reservations for periodic channels here.
+		 * That's done when a periodic transfer is descheduled (i.e.
+		 * when the QH is removed from the periodic schedule).
+		 */
+		break;
+	}
+
+	/* Try to queue more transfers now that there's a free channel. */
+	tr_type = dwc_otg_hcd_select_transactions(hcd);
+	if (tr_type != DWC_OTG_TRANSACTION_NONE) {
+		dwc_otg_hcd_queue_transactions(hcd, tr_type);
+	}
+}
+
+/**
+ * Halts a host channel. If the channel cannot be halted immediately because
+ * the request queue is full, this function ensures that the FIFO empty
+ * interrupt for the appropriate queue is enabled so that the halt request can
+ * be queued when there is space in the request queue.
+ *
+ * This function may also be called in DMA mode. In that case, the channel is
+ * simply released since the core always halts the channel automatically in
+ * DMA mode.
+ */
+static void halt_channel(dwc_otg_hcd_t *hcd,
+			 dwc_hc_t *hc,
+			 dwc_otg_qtd_t *qtd,
+			 dwc_otg_halt_status_e halt_status)
+{
+	if (hcd->core_if->dma_enable) {
+		release_channel(hcd, hc, qtd, halt_status);
+		return;
+	}
+
+	/* Slave mode processing... */
+	dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
+
+	if (hc->halt_on_queue) {
+		gintmsk_data_t gintmsk = {.d32 = 0};
+		dwc_otg_core_global_regs_t *global_regs;
+		global_regs = hcd->core_if->core_global_regs;
+
+		if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+		    hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+			/*
+			 * Make sure the Non-periodic Tx FIFO empty interrupt
+			 * is enabled so that the non-periodic schedule will
+			 * be processed.
+			 */
+			gintmsk.b.nptxfempty = 1;
+			dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
+		} else {
+			/*
+			 * Move the QH from the periodic queued schedule to
+			 * the periodic assigned schedule. This allows the
+			 * halt to be queued when the periodic schedule is
+			 * processed.
+			 */
+			list_move(&hc->qh->qh_list_entry,
+				  &hcd->periodic_sched_assigned);
+
+			/*
+			 * Make sure the Periodic Tx FIFO Empty interrupt is
+			 * enabled so that the periodic schedule will be
+			 * processed.
+			 */
+			gintmsk.b.ptxfempty = 1;
+			dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
+		}
+	}
+}
+
+/**
+ * Performs common cleanup for non-periodic transfers after a Transfer
+ * Complete interrupt. This function should be called after any endpoint type
+ * specific handling is finished to release the host channel.
+ */
+static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
+				       dwc_hc_t *hc,
+				       dwc_otg_hc_regs_t *hc_regs,
+				       dwc_otg_qtd_t *qtd,
+				       dwc_otg_halt_status_e halt_status)
+{
+	hcint_data_t hcint;
+
+	qtd->error_count = 0;
+
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	if (hcint.b.nyet) {
+		/*
+		 * Got a NYET on the last transaction of the transfer. This
+		 * means that the endpoint should be in the PING state at the
+		 * beginning of the next transfer.
+		 */
+		hc->qh->ping_state = 1;
+		clear_hc_int(hc_regs, nyet);
+	}
+
+	/*
+	 * Always halt and release the host channel to make it available for
+	 * more transfers. There may still be more phases for a control
+	 * transfer or more data packets for a bulk transfer at this point,
+	 * but the host channel is still halted. A channel will be reassigned
+	 * to the transfer when the non-periodic schedule is processed after
+	 * the channel is released. This allows transactions to be queued
+	 * properly via dwc_otg_hcd_queue_transactions, which also enables the
+	 * Tx FIFO Empty interrupt if necessary.
+	 */
+	if (hc->ep_is_in) {
+		/*
+		 * IN transfers in Slave mode require an explicit disable to
+		 * halt the channel. (In DMA mode, this call simply releases
+		 * the channel.)
+		 */
+		halt_channel(hcd, hc, qtd, halt_status);
+	} else {
+		/*
+		 * The channel is automatically disabled by the core for OUT
+		 * transfers in Slave mode.
+		 */
+		release_channel(hcd, hc, qtd, halt_status);
+	}
+}
+
+/**
+ * Performs common cleanup for periodic transfers after a Transfer Complete
+ * interrupt. This function should be called after any endpoint type specific
+ * handling is finished to release the host channel.
+ */
+static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
+				   dwc_hc_t *hc,
+				   dwc_otg_hc_regs_t *hc_regs,
+				   dwc_otg_qtd_t *qtd,
+				   dwc_otg_halt_status_e halt_status)
+{
+	hctsiz_data_t hctsiz;
+	qtd->error_count = 0;
+
+	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+	if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
+		/* Core halts channel in these cases. */
+		release_channel(hcd, hc, qtd, halt_status);
+	} else {
+		/* Flush any outstanding requests from the Tx queue. */
+		halt_channel(hcd, hc, qtd, halt_status);
+	}
+}
+
+/**
+ * Handles a host channel Transfer Complete interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
+				       dwc_hc_t *hc,
+				       dwc_otg_hc_regs_t *hc_regs,
+				       dwc_otg_qtd_t *qtd)
+{
+	int			urb_xfer_done;
+	dwc_otg_halt_status_e	halt_status = DWC_OTG_HC_XFER_COMPLETE;
+	struct urb		*urb = qtd->urb;
+	int			pipe_type = usb_pipetype(urb->pipe);
+
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Transfer Complete--\n", hc->hc_num);
+
+	/*
+	 * Handle xfer complete on CSPLIT.
+	 */
+	if (hc->qh->do_split) {
+		qtd->complete_split = 0;
+	}
+
+	/* Update the QTD and URB states. */
+	switch (pipe_type) {
+	case PIPE_CONTROL:
+		switch (qtd->control_phase) {
+		case DWC_OTG_CONTROL_SETUP:
+			if (urb->transfer_buffer_length > 0) {
+				qtd->control_phase = DWC_OTG_CONTROL_DATA;
+			} else {
+				qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+			}
+			DWC_DEBUGPL(DBG_HCDV, "  Control setup transaction done\n");
+			halt_status = DWC_OTG_HC_XFER_COMPLETE;
+			break;
+		case DWC_OTG_CONTROL_DATA: {
+			urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+			if (urb_xfer_done) {
+				qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+				DWC_DEBUGPL(DBG_HCDV, "  Control data transfer done\n");
+			} else {
+				save_data_toggle(hc, hc_regs, qtd);
+			}
+			halt_status = DWC_OTG_HC_XFER_COMPLETE;
+			break;
+		}
+		case DWC_OTG_CONTROL_STATUS:
+			DWC_DEBUGPL(DBG_HCDV, "  Control transfer complete\n");
+			if (urb->status == -EINPROGRESS) {
+				urb->status = 0;
+			}
+			dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+			halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+			break;
+		}
+
+		complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+		break;
+	case PIPE_BULK:
+		DWC_DEBUGPL(DBG_HCDV, "  Bulk transfer complete\n");
+		urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+		if (urb_xfer_done) {
+			dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+			halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+		} else {
+			halt_status = DWC_OTG_HC_XFER_COMPLETE;
+		}
+
+		save_data_toggle(hc, hc_regs, qtd);
+		complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+		break;
+	case PIPE_INTERRUPT:
+		DWC_DEBUGPL(DBG_HCDV, "  Interrupt transfer complete\n");
+		update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+
+		/*
+		 * Interrupt URB is done on the first transfer complete
+		 * interrupt.
+		 */
+		dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+		save_data_toggle(hc, hc_regs, qtd);
+		complete_periodic_xfer(hcd, hc, hc_regs, qtd,
+				       DWC_OTG_HC_XFER_URB_COMPLETE);
+		break;
+	case PIPE_ISOCHRONOUS:
+		DWC_DEBUGPL(DBG_HCDV,  "  Isochronous transfer complete\n");
+		if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+			halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+							    DWC_OTG_HC_XFER_COMPLETE);
+		}
+		complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+		break;
+	}
+
+	disable_hc_int(hc_regs, xfercompl);
+
+	return 1;
+}
+
+/**
+ * Handles a host channel STALL interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
+				    dwc_hc_t *hc,
+				    dwc_otg_hc_regs_t *hc_regs,
+				    dwc_otg_qtd_t *qtd)
+{
+	struct urb *urb = qtd->urb;
+	int pipe_type = usb_pipetype(urb->pipe);
+
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "STALL Received--\n", hc->hc_num);
+
+	if (pipe_type == PIPE_CONTROL) {
+		dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
+	}
+
+	if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
+		dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
+		/*
+		 * USB protocol requires resetting the data toggle for bulk
+		 * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
+		 * setup command is issued to the endpoint. Anticipate the
+		 * CLEAR_FEATURE command since a STALL has occurred and reset
+		 * the data toggle now.
+		 */
+		hc->qh->data_toggle = 0;
+	}
+
+	halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
+
+	disable_hc_int(hc_regs, stall);
+
+	return 1;
+}
+
+/*
+ * Updates the state of the URB when a transfer has been stopped due to an
+ * abnormal condition before the transfer completes. Modifies the
+ * actual_length field of the URB to reflect the number of bytes that have
+ * actually been transferred via the host channel.
+ */
+static void update_urb_state_xfer_intr(dwc_hc_t *hc,
+				       dwc_otg_hc_regs_t *hc_regs,
+				       struct urb *urb,
+				       dwc_otg_qtd_t *qtd,
+				       dwc_otg_halt_status_e halt_status)
+{
+	uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
+							    halt_status, NULL);
+	urb->actual_length += bytes_transferred;
+
+#ifdef DEBUG
+	{
+		hctsiz_data_t	hctsiz;
+		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+		DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
+			    __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
+		DWC_DEBUGPL(DBG_HCDV, "  hc->start_pkt_count %d\n", hc->start_pkt_count);
+		DWC_DEBUGPL(DBG_HCDV, "  hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
+		DWC_DEBUGPL(DBG_HCDV, "  hc->max_packet %d\n", hc->max_packet);
+		DWC_DEBUGPL(DBG_HCDV, "  bytes_transferred %d\n", bytes_transferred);
+		DWC_DEBUGPL(DBG_HCDV, "  urb->actual_length %d\n", urb->actual_length);
+		DWC_DEBUGPL(DBG_HCDV, "  urb->transfer_buffer_length %d\n",
+			    urb->transfer_buffer_length);
+	}
+#endif
+}
+
+/**
+ * Handles a host channel NAK interrupt. This handler may be called in either
+ * DMA mode or Slave mode.
+ */
+static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
+				  dwc_hc_t *hc,
+				  dwc_otg_hc_regs_t *hc_regs,
+				  dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "NAK Received--\n", hc->hc_num);
+
+	/*
+	 * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
+	 * interrupt.  Re-start the SSPLIT transfer.
+	 */
+	if (hc->do_split) {
+		if (hc->complete_split) {
+			qtd->error_count = 0;
+		}
+		qtd->complete_split = 0;
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+		goto handle_nak_done;
+	}
+
+	switch (usb_pipetype(qtd->urb->pipe)) {
+	case PIPE_CONTROL:
+	case PIPE_BULK:
+		if (hcd->core_if->dma_enable && hc->ep_is_in) {
+			/*
+			 * NAK interrupts are enabled on bulk/control IN
+			 * transfers in DMA mode for the sole purpose of
+			 * resetting the error count after a transaction error
+			 * occurs. The core will continue transferring data.
+			 */
+			qtd->error_count = 0;
+			goto handle_nak_done;
+		}
+
+		/*
+		 * NAK interrupts normally occur during OUT transfers in DMA
+		 * or Slave mode. For IN transfers, more requests will be
+		 * queued as request queue space is available.
+		 */
+		qtd->error_count = 0;
+
+		if (!hc->qh->ping_state) {
+			update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
+						   qtd, DWC_OTG_HC_XFER_NAK);
+			save_data_toggle(hc, hc_regs, qtd);
+			if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
+				hc->qh->ping_state = 1;
+			}
+		}
+
+		/*
+		 * Halt the channel so the transfer can be re-started from
+		 * the appropriate point or the PING protocol will
+		 * start/continue.
+		 */
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+		break;
+	case PIPE_INTERRUPT:
+		qtd->error_count = 0;
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+		break;
+	case PIPE_ISOCHRONOUS:
+		/* Should never get called for isochronous transfers. */
+		BUG();
+		break;
+	}
+
+ handle_nak_done:
+	disable_hc_int(hc_regs, nak);
+
+	return 1;
+}
+
+/**
+ * Handles a host channel ACK interrupt. This interrupt is enabled when
+ * performing the PING protocol in Slave mode, when errors occur during
+ * either Slave mode or DMA mode, and during Start Split transactions.
+ */
+static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
+				  dwc_hc_t *hc,
+				  dwc_otg_hc_regs_t *hc_regs,
+				  dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "ACK Received--\n", hc->hc_num);
+
+	if (hc->do_split) {
+		/*
+		 * Handle ACK on SSPLIT.
+		 * ACK should not occur in CSPLIT.
+		 */
+		if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
+			qtd->ssplit_out_xfer_count = hc->xfer_len;
+		}
+		if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
+			/* Don't need complete for isochronous out transfers. */
+			qtd->complete_split = 1;
+		}
+
+		/* ISOC OUT */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
+			switch (hc->xact_pos) {
+			case DWC_HCSPLIT_XACTPOS_ALL:
+				break;
+			case DWC_HCSPLIT_XACTPOS_END:
+				qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+				qtd->isoc_split_offset = 0;
+				break;
+			case DWC_HCSPLIT_XACTPOS_BEGIN:
+			case DWC_HCSPLIT_XACTPOS_MID:
+				/*
+				 * For BEGIN or MID, calculate the length for
+				 * the next microframe to determine the correct
+				 * SSPLIT token, either MID or END.
+				 */
+				{
+					struct usb_iso_packet_descriptor *frame_desc;
+
+					frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
+					qtd->isoc_split_offset += 188;
+
+					if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
+						qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
+					} else {
+						qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
+					}
+
+				}
+				break;
+			}
+		} else {
+			halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
+		}
+	} else {
+		qtd->error_count = 0;
+
+		if (hc->qh->ping_state) {
+			hc->qh->ping_state = 0;
+			/*
+			 * Halt the channel so the transfer can be re-started
+			 * from the appropriate point. This only happens in
+			 * Slave mode. In DMA mode, the ping_state is cleared
+			 * when the transfer is started because the core
+			 * automatically executes the PING, then the transfer.
+			 */
+			halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
+		}
+	}
+
+	/*
+	 * If the ACK occurred when _not_ in the PING state, let the channel
+	 * continue transferring data after clearing the error count.
+	 */
+
+	disable_hc_int(hc_regs, ack);
+
+	return 1;
+}
+
+/**
+ * Handles a host channel NYET interrupt. This interrupt should only occur on
+ * Bulk and Control OUT endpoints and for complete split transactions. If a
+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
+ * handled in the xfercomp interrupt handler, not here. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
+				   dwc_hc_t *hc,
+				   dwc_otg_hc_regs_t *hc_regs,
+				   dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "NYET Received--\n", hc->hc_num);
+
+	/*
+	 * NYET on CSPLIT
+	 * re-do the CSPLIT immediately on non-periodic
+	 */
+	if (hc->do_split && hc->complete_split) {
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+		    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+			int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+
+			if (dwc_full_frame_num(frnum) !=
+			    dwc_full_frame_num(hc->qh->sched_frame)) {
+				/*
+				 * No longer in the same full speed frame.
+				 * Treat this as a transaction error.
+				 */
+#if 0
+				/** @todo Fix system performance so this can
+				 * be treated as an error. Right now complete
+				 * splits cannot be scheduled precisely enough
+				 * due to other system activity, so this error
+				 * occurs regularly in Slave mode.
+				 */
+				qtd->error_count++;
+#endif
+				qtd->complete_split = 0;
+				halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+				/** @todo add support for isoc release */
+				goto handle_nyet_done;
+			}
+		}
+
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
+		goto handle_nyet_done;
+	}
+
+	hc->qh->ping_state = 1;
+	qtd->error_count = 0;
+
+	update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
+				   DWC_OTG_HC_XFER_NYET);
+	save_data_toggle(hc, hc_regs, qtd);
+
+	/*
+	 * Halt the channel and re-start the transfer so the PING
+	 * protocol will start.
+	 */
+	halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
+
+handle_nyet_done:
+	disable_hc_int(hc_regs, nyet);
+	return 1;
+}
+
+/**
+ * Handles a host channel babble interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
+				     dwc_hc_t *hc,
+				     dwc_otg_hc_regs_t *hc_regs,
+				     dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Babble Error--\n", hc->hc_num);
+	if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+		dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
+	} else {
+		dwc_otg_halt_status_e halt_status;
+		halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+						    DWC_OTG_HC_XFER_BABBLE_ERR);
+		halt_channel(hcd, hc, qtd, halt_status);
+	}
+	disable_hc_int(hc_regs, bblerr);
+	return 1;
+}
+
+/**
+ * Handles a host channel AHB error interrupt. This handler is only called in
+ * DMA mode.
+ */
+static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
+				     dwc_hc_t *hc,
+				     dwc_otg_hc_regs_t *hc_regs,
+				     dwc_otg_qtd_t *qtd)
+{
+	hcchar_data_t	hcchar;
+	hcsplt_data_t	hcsplt;
+	hctsiz_data_t	hctsiz;
+	uint32_t	hcdma;
+	struct urb	*urb = qtd->urb;
+
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "AHB Error--\n", hc->hc_num);
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+	hcdma = dwc_read_reg32(&hc_regs->hcdma);
+
+	DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
+	DWC_ERROR("  hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
+	DWC_ERROR("  hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
+		  DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
+	DWC_ERROR("  Device address: %d\n", usb_pipedevice(urb->pipe));
+	DWC_ERROR("  Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
+		  (usb_pipein(urb->pipe) ? "IN" : "OUT"));
+	DWC_ERROR("  Endpoint type: %s\n",
+		  ({char *pipetype;
+		    switch (usb_pipetype(urb->pipe)) {
+		    case PIPE_CONTROL: pipetype = "CONTROL"; break;
+		    case PIPE_BULK: pipetype = "BULK"; break;
+		    case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
+		    case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
+		    default: pipetype = "UNKNOWN"; break;
+		   }; pipetype;}));
+	DWC_ERROR("  Speed: %s\n",
+		  ({char *speed;
+		    switch (urb->dev->speed) {
+		    case USB_SPEED_HIGH: speed = "HIGH"; break;
+		    case USB_SPEED_FULL: speed = "FULL"; break;
+		    case USB_SPEED_LOW: speed = "LOW"; break;
+		    default: speed = "UNKNOWN"; break;
+		   }; speed;}));
+	DWC_ERROR("  Max packet size: %d\n",
+		  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+	DWC_ERROR("  Data buffer length: %d\n", urb->transfer_buffer_length);
+	DWC_ERROR("  Transfer buffer: %p, Transfer DMA: %p\n",
+		  urb->transfer_buffer, (void *)urb->transfer_dma);
+	DWC_ERROR("  Setup buffer: %p, Setup DMA: %p\n",
+		  urb->setup_packet, (void *)urb->setup_dma);
+	DWC_ERROR("  Interval: %d\n", urb->interval);
+
+	dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
+
+	/*
+	 * Force a channel halt. Don't call halt_channel because that won't
+	 * write to the HCCHARn register in DMA mode to force the halt.
+	 */
+	dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
+
+	disable_hc_int(hc_regs, ahberr);
+	return 1;
+}
+
+/**
+ * Handles a host channel transaction error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
+				      dwc_hc_t *hc,
+				      dwc_otg_hc_regs_t *hc_regs,
+				      dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Transaction Error--\n", hc->hc_num);
+
+	switch (usb_pipetype(qtd->urb->pipe)) {
+	case PIPE_CONTROL:
+	case PIPE_BULK:
+		qtd->error_count++;
+		if (!hc->qh->ping_state) {
+			update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
+						   qtd, DWC_OTG_HC_XFER_XACT_ERR);
+			save_data_toggle(hc, hc_regs, qtd);
+			if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
+				hc->qh->ping_state = 1;
+			}
+		}
+
+		/*
+		 * Halt the channel so the transfer can be re-started from
+		 * the appropriate point or the PING protocol will start.
+		 */
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+		break;
+	case PIPE_INTERRUPT:
+		qtd->error_count++;
+		if (hc->do_split && hc->complete_split) {
+			qtd->complete_split = 0;
+		}
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+		break;
+	case PIPE_ISOCHRONOUS:
+		{
+			dwc_otg_halt_status_e halt_status;
+			halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+							    DWC_OTG_HC_XFER_XACT_ERR);
+
+			halt_channel(hcd, hc, qtd, halt_status);
+		}
+		break;
+	}
+
+	disable_hc_int(hc_regs, xacterr);
+
+	return 1;
+}
+
+/**
+ * Handles a host channel frame overrun interrupt. This handler may be called
+ * in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
+				       dwc_hc_t *hc,
+				       dwc_otg_hc_regs_t *hc_regs,
+				       dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Frame Overrun--\n", hc->hc_num);
+
+	switch (usb_pipetype(qtd->urb->pipe)) {
+	case PIPE_CONTROL:
+	case PIPE_BULK:
+		break;
+	case PIPE_INTERRUPT:
+		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
+		break;
+	case PIPE_ISOCHRONOUS:
+		{
+			dwc_otg_halt_status_e halt_status;
+			halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+							    DWC_OTG_HC_XFER_FRAME_OVERRUN);
+
+			halt_channel(hcd, hc, qtd, halt_status);
+		}
+		break;
+	}
+
+	disable_hc_int(hc_regs, frmovrun);
+
+	return 1;
+}
+
+/**
+ * Handles a host channel data toggle error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
+					 dwc_hc_t *hc,
+					 dwc_otg_hc_regs_t *hc_regs,
+					 dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Data Toggle Error--\n", hc->hc_num);
+
+	if (hc->ep_is_in) {
+		qtd->error_count = 0;
+	} else {
+		DWC_ERROR("Data Toggle Error on OUT transfer,"
+			  "channel %d\n", hc->hc_num);
+	}
+
+	disable_hc_int(hc_regs, datatglerr);
+
+	return 1;
+}
+
+#ifdef DEBUG
+/**
+ * This function is for debug only. It checks that a valid halt status is set
+ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
+ * taken and a warning is issued.
+ * @return 1 if halt status is ok, 0 otherwise.
+ */
+static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
+				 dwc_hc_t *hc,
+				 dwc_otg_hc_regs_t *hc_regs,
+				 dwc_otg_qtd_t *qtd)
+{
+	hcchar_data_t hcchar;
+	hctsiz_data_t hctsiz;
+	hcint_data_t hcint;
+	hcintmsk_data_t hcintmsk;
+	hcsplt_data_t hcsplt;
+
+	if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
+		/*
+		 * This code is here only as a check. This condition should
+		 * never happen. Ignore the halt if it does occur.
+		 */
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+		hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+		DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
+			 "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
+			 "hcint 0x%08x, hcintmsk 0x%08x, "
+			 "hcsplt 0x%08x, qtd->complete_split %d\n",
+			 __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
+			 hcint.d32, hcintmsk.d32,
+			 hcsplt.d32, qtd->complete_split);
+
+		DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
+			 __func__, hc->hc_num);
+		DWC_WARN("\n");
+		clear_hc_int(hc_regs, chhltd);
+		return 0;
+	}
+
+	/*
+	 * This code is here only as a check. hcchar.chdis should
+	 * never be set when the halt interrupt occurs. Halt the
+	 * channel again if it does occur.
+	 */
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	if (hcchar.b.chdis) {
+		DWC_WARN("%s: hcchar.chdis set unexpectedly, "
+			 "hcchar 0x%08x, trying to halt again\n",
+			 __func__, hcchar.d32);
+		clear_hc_int(hc_regs, chhltd);
+		hc->halt_pending = 0;
+		halt_channel(hcd, hc, qtd, hc->halt_status);
+		return 0;
+	}
+
+	return 1;
+}
+#endif
+
+/**
+ * Handles a host Channel Halted interrupt in DMA mode. This handler
+ * determines the reason the channel halted and proceeds accordingly.
+ */
+static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
+				      dwc_hc_t *hc,
+				      dwc_otg_hc_regs_t *hc_regs,
+				      dwc_otg_qtd_t *qtd)
+{
+	hcint_data_t hcint;
+	hcintmsk_data_t hcintmsk;
+	int out_nak_enh = 0;
+
+	/* For core with OUT NAK enhancement, the flow for high-
+	 * speed CONTROL/BULK OUT is handled a little differently.
+	 */
+	if (hcd->core_if->snpsid >= 0x4F54271A) {
+		if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
+		    (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+		     hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
+			DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
+			out_nak_enh = 1;
+		} else {
+			DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
+		}
+	} else {
+		DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
+	}
+
+	if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+	    hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
+		/*
+		 * Just release the channel. A dequeue can happen on a
+		 * transfer timeout. In the case of an AHB Error, the channel
+		 * was forced to halt because there's no way to gracefully
+		 * recover.
+		 */
+		release_channel(hcd, hc, qtd, hc->halt_status);
+		return;
+	}
+
+	/* Read the HCINTn register to determine the cause for the halt. */
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+
+	if (hcint.b.xfercomp) {
+		/** @todo This is here because of a possible hardware bug.  Spec
+		 * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
+		 * interrupt w/ACK bit set should occur, but I only see the
+		 * XFERCOMP bit, even with it masked out.  This is a workaround
+		 * for that behavior.  Should fix this when hardware is fixed.
+		 */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
+			handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
+		}
+		handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
+	} else if (hcint.b.stall) {
+		handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
+	} else if (hcint.b.xacterr) {
+		if (out_nak_enh) {
+			if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
+				printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
+				qtd->error_count = 0;
+			} else {
+				printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
+			}
+		}
+
+		/*
+		 * Must handle xacterr before nak or ack. Could get a xacterr
+		 * at the same time as either of these on a BULK/CONTROL OUT
+		 * that started with a PING. The xacterr takes precedence.
+		 */
+		handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
+	} else if (!out_nak_enh) {
+		if (hcint.b.nyet) {
+			/*
+			 * Must handle nyet before nak or ack. Could get a nyet at the
+			 * same time as either of those on a BULK/CONTROL OUT that
+			 * started with a PING. The nyet takes precedence.
+			 */
+			handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
+		} else if (hcint.b.bblerr) {
+			handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
+		} else if (hcint.b.frmovrun) {
+			handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
+		} else if (hcint.b.nak && !hcintmsk.b.nak) {
+			/*
+			 * If nak is not masked, it's because a non-split IN transfer
+			 * is in an error state. In that case, the nak is handled by
+			 * the nak interrupt handler, not here. Handle nak here for
+			 * BULK/CONTROL OUT transfers, which halt on a NAK to allow
+			 * rewinding the buffer pointer.
+			 */
+			handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
+		} else if (hcint.b.ack && !hcintmsk.b.ack) {
+			/*
+			 * If ack is not masked, it's because a non-split IN transfer
+			 * is in an error state. In that case, the ack is handled by
+			 * the ack interrupt handler, not here. Handle ack here for
+			 * split transfers. Start splits halt on ACK.
+			 */
+			handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
+		} else {
+			if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+			    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+				/*
+				 * A periodic transfer halted with no other channel
+				 * interrupts set. Assume it was halted by the core
+				 * because it could not be completed in its scheduled
+				 * (micro)frame.
+				 */
+#ifdef DEBUG
+				DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
+					  __func__, hc->hc_num);
+#endif
+				halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
+			} else {
+				DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
+					  "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
+					  __func__, hc->hc_num, hcint.d32,
+					  dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
+			}
+		}
+	} else {
+		printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
+	}
+}
+
+/**
+ * Handles a host channel Channel Halted interrupt.
+ *
+ * In slave mode, this handler is called only when the driver specifically
+ * requests a halt. This occurs during handling other host channel interrupts
+ * (e.g. nak, xacterr, stall, nyet, etc.).
+ *
+ * In DMA mode, this is the interrupt that occurs when the core has finished
+ * processing a transfer on a channel. Other host channel interrupts (except
+ * ahberr) are disabled in DMA mode.
+ */
+static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
+				     dwc_hc_t *hc,
+				     dwc_otg_hc_regs_t *hc_regs,
+				     dwc_otg_qtd_t *qtd)
+{
+	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+		    "Channel Halted--\n", hc->hc_num);
+
+	if (hcd->core_if->dma_enable) {
+		handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
+	} else {
+#ifdef DEBUG
+		if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
+			return 1;
+		}
+#endif
+		release_channel(hcd, hc, qtd, hc->halt_status);
+	}
+
+	return 1;
+}
+
+/** Handles interrupt for a specific Host Channel */
+int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
+{
+	int retval = 0;
+	hcint_data_t hcint;
+	hcintmsk_data_t hcintmsk;
+	dwc_hc_t *hc;
+	dwc_otg_hc_regs_t *hc_regs;
+	dwc_otg_qtd_t *qtd;
+
+	DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
+
+	hc = dwc_otg_hcd->hc_ptr_array[num];
+	hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
+	qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+
+	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+	hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+	DWC_DEBUGPL(DBG_HCDV, "  hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
+		    hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
+	hcint.d32 = hcint.d32 & hcintmsk.d32;
+
+	if (!dwc_otg_hcd->core_if->dma_enable) {
+		if (hcint.b.chhltd && hcint.d32 != 0x2) {
+			hcint.b.chhltd = 0;
+		}
+	}
+
+	if (hcint.b.xfercomp) {
+		retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+		/*
+		 * If NYET occurred at same time as Xfer Complete, the NYET is
+		 * handled by the Xfer Complete interrupt handler. Don't want
+		 * to call the NYET interrupt handler in this case.
+		 */
+		hcint.b.nyet = 0;
+	}
+	if (hcint.b.chhltd) {
+		retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.ahberr) {
+		retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.stall) {
+		retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.nak) {
+		retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.ack) {
+		retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.nyet) {
+		retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.xacterr) {
+		retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.bblerr) {
+		retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.frmovrun) {
+		retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+	if (hcint.b.datatglerr) {
+		retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+	}
+
+	return retval;
+}
+
+#endif /* DWC_DEVICE_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_hcd_queue.c
@@ -0,0 +1,713 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
+ * $Revision: #33 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+/**
+ * @file
+ *
+ * This file contains the functions to manage Queue Heads and Queue
+ * Transfer Descriptors.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+/**
+ * This function allocates and initializes a QH.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param[in] urb Holds the information about the device/endpoint that we need
+ * to initialize the QH.
+ *
+ * @return Returns pointer to the newly allocated QH, or NULL on error. */
+dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
+{
+	dwc_otg_qh_t *qh;
+
+	/* Allocate memory */
+	/** @todo add memflags argument */
+	qh = dwc_otg_hcd_qh_alloc ();
+	if (qh == NULL) {
+		return NULL;
+	}
+
+	dwc_otg_hcd_qh_init (hcd, qh, urb);
+	return qh;
+}
+
+/** Free each QTD in the QH's QTD-list then free the QH.  QH should already be
+ * removed from a list.  QTD list should already be empty if called from URB
+ * Dequeue.
+ *
+ * @param[in] hcd HCD instance.
+ * @param[in] qh The QH to free.
+ */
+void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	dwc_otg_qtd_t *qtd;
+	struct list_head *pos;
+	//unsigned long flags;
+
+	/* Free each QTD in the QTD list */
+
+#ifdef CONFIG_SMP
+	//the spinlock is locked before this function get called,
+	//but in case the lock is needed, the check function is preserved
+
+	//but in non-SMP mode, all spinlock is lockable.
+	//don't do the test in non-SMP mode
+
+	if(spin_trylock(&hcd->lock)) {
+		printk("%s: It is not supposed to be lockable!!\n",__func__);
+		BUG();
+	}
+#endif
+//	SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
+	for (pos = qh->qtd_list.next;
+	     pos != &qh->qtd_list;
+	     pos = qh->qtd_list.next)
+	{
+		list_del (pos);
+		qtd = dwc_list_to_qtd (pos);
+		dwc_otg_hcd_qtd_free (qtd);
+	}
+//	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
+
+	kfree (qh);
+	return;
+}
+
+/** Initializes a QH structure.
+ *
+ * @param[in] hcd The HCD state structure for the DWC OTG controller.
+ * @param[in] qh The QH to init.
+ * @param[in] urb Holds the information about the device/endpoint that we need
+ * to initialize the QH. */
+#define SCHEDULE_SLOP 10
+void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
+{
+	char *speed, *type;
+	memset (qh, 0, sizeof (dwc_otg_qh_t));
+
+	/* Initialize QH */
+	switch (usb_pipetype(urb->pipe)) {
+	case PIPE_CONTROL:
+		qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
+		break;
+	case PIPE_BULK:
+		qh->ep_type = USB_ENDPOINT_XFER_BULK;
+		break;
+	case PIPE_ISOCHRONOUS:
+		qh->ep_type = USB_ENDPOINT_XFER_ISOC;
+		break;
+	case PIPE_INTERRUPT:
+		qh->ep_type = USB_ENDPOINT_XFER_INT;
+		break;
+	}
+
+	qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
+
+	qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+	qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
+	INIT_LIST_HEAD(&qh->qtd_list);
+	INIT_LIST_HEAD(&qh->qh_list_entry);
+	qh->channel = NULL;
+
+	/* FS/LS Enpoint on HS Hub
+	 * NOT virtual root hub */
+	qh->do_split = 0;
+	if (((urb->dev->speed == USB_SPEED_LOW) ||
+	     (urb->dev->speed == USB_SPEED_FULL)) &&
+	    (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
+	{
+		DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
+			   usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
+			   urb->dev->ttport);
+		qh->do_split = 1;
+	}
+
+	if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
+	    qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
+		/* Compute scheduling parameters once and save them. */
+		hprt0_data_t hprt;
+
+		/** @todo Account for split transfers in the bus time. */
+		int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
+		qh->usecs = usb_calc_bus_time(urb->dev->speed,
+					       usb_pipein(urb->pipe),
+					       (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
+					       bytecount);
+
+		/* Start in a slightly future (micro)frame. */
+		qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
+						     SCHEDULE_SLOP);
+		qh->interval = urb->interval;
+#if 0
+		/* Increase interrupt polling rate for debugging. */
+		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+			qh->interval = 8;
+		}
+#endif
+		hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
+		if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
+		    ((urb->dev->speed == USB_SPEED_LOW) ||
+		     (urb->dev->speed == USB_SPEED_FULL))) {
+			qh->interval *= 8;
+			qh->sched_frame |= 0x7;
+			qh->start_split_frame = qh->sched_frame;
+		}
+
+	}
+
+	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - qh = %p\n", qh);
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Device Address = %d\n",
+		    urb->dev->devnum);
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Endpoint %d, %s\n",
+		    usb_pipeendpoint(urb->pipe),
+		    usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
+
+	switch(urb->dev->speed) {
+	case USB_SPEED_LOW:
+		speed = "low";
+		break;
+	case USB_SPEED_FULL:
+		speed = "full";
+		break;
+	case USB_SPEED_HIGH:
+		speed = "high";
+		break;
+	default:
+		speed = "?";
+		break;
+	}
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Speed = %s\n", speed);
+
+	switch (qh->ep_type) {
+	case USB_ENDPOINT_XFER_ISOC:
+		type = "isochronous";
+		break;
+	case USB_ENDPOINT_XFER_INT:
+		type = "interrupt";
+		break;
+	case USB_ENDPOINT_XFER_CONTROL:
+		type = "control";
+		break;
+	case USB_ENDPOINT_XFER_BULK:
+		type = "bulk";
+		break;
+	default:
+		type = "?";
+		break;
+	}
+	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Type = %s\n",type);
+
+#ifdef DEBUG
+	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
+			    qh->usecs);
+		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
+			    qh->interval);
+	}
+#endif
+
+	return;
+}
+
+/**
+ * Checks that a channel is available for a periodic transfer.
+ *
+ * @return 0 if successful, negative error code otherise.
+ */
+static int periodic_channel_available(dwc_otg_hcd_t *hcd)
+{
+	/*
+	 * Currently assuming that there is a dedicated host channnel for each
+	 * periodic transaction plus at least one host channel for
+	 * non-periodic transactions.
+	 */
+	int status;
+	int num_channels;
+
+	num_channels = hcd->core_if->core_params->host_channels;
+	if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) &&
+	    (hcd->periodic_channels < num_channels - 1)) {
+		status = 0;
+	}
+	else {
+		DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
+			   __func__, num_channels, hcd->periodic_channels,
+			   hcd->non_periodic_channels);
+		status = -ENOSPC;
+	}
+
+	return status;
+}
+
+/**
+ * Checks that there is sufficient bandwidth for the specified QH in the
+ * periodic schedule. For simplicity, this calculation assumes that all the
+ * transfers in the periodic schedule may occur in the same (micro)frame.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param qh QH containing periodic bandwidth required.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	int 		status;
+	uint16_t 	max_claimed_usecs;
+
+	status = 0;
+
+	if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
+		/*
+		 * High speed mode.
+		 * Max periodic usecs is 80% x 125 usec = 100 usec.
+		 */
+		max_claimed_usecs = 100 - qh->usecs;
+	} else {
+		/*
+		 * Full speed mode.
+		 * Max periodic usecs is 90% x 1000 usec = 900 usec.
+		 */
+		max_claimed_usecs = 900 - qh->usecs;
+	}
+
+	if (hcd->periodic_usecs > max_claimed_usecs) {
+		DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
+			   __func__, hcd->periodic_usecs, qh->usecs);
+		status = -ENOSPC;
+	}
+
+	return status;
+}
+
+/**
+ * Checks that the max transfer size allowed in a host channel is large enough
+ * to handle the maximum data transfer in a single (micro)frame for a periodic
+ * transfer.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param qh QH for a periodic endpoint.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	int		status;
+	uint32_t 	max_xfer_size;
+	uint32_t	max_channel_xfer_size;
+
+	status = 0;
+
+	max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
+	max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
+
+	if (max_xfer_size > max_channel_xfer_size) {
+		DWC_NOTICE("%s: Periodic xfer length %d > "
+			    "max xfer length for channel %d\n",
+			    __func__, max_xfer_size, max_channel_xfer_size);
+		status = -ENOSPC;
+	}
+
+	return status;
+}
+
+/**
+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param qh QH for the periodic transfer. The QH should already contain the
+ * scheduling information.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	int status = 0;
+
+	status = periodic_channel_available(hcd);
+	if (status) {
+		DWC_NOTICE("%s: No host channel available for periodic "
+			   "transfer.\n", __func__);
+		return status;
+	}
+
+	status = check_periodic_bandwidth(hcd, qh);
+	if (status) {
+		DWC_NOTICE("%s: Insufficient periodic bandwidth for "
+			   "periodic transfer.\n", __func__);
+		return status;
+	}
+
+	status = check_max_xfer_size(hcd, qh);
+	if (status) {
+		DWC_NOTICE("%s: Channel max transfer size too small "
+			    "for periodic transfer.\n", __func__);
+		return status;
+	}
+
+	/* Always start in the inactive schedule. */
+	list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
+
+	/* Reserve the periodic channel. */
+	hcd->periodic_channels++;
+
+	/* Update claimed usecs per (micro)frame. */
+	hcd->periodic_usecs += qh->usecs;
+
+	/* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
+	hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval;
+	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
+		DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
+			    qh, qh->usecs, qh->interval);
+	} else {
+		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
+		DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
+			    qh, qh->usecs, qh->interval);
+	}
+
+	return status;
+}
+
+/**
+ * This function adds a QH to either the non periodic or periodic schedule if
+ * it is not already in the schedule. If the QH is already in the schedule, no
+ * action is taken.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	//unsigned long flags;
+	int status = 0;
+
+#ifdef CONFIG_SMP
+	//the spinlock is locked before this function get called,
+	//but in case the lock is needed, the check function is preserved
+	//but in non-SMP mode, all spinlock is lockable.
+	//don't do the test in non-SMP mode
+
+	if(spin_trylock(&hcd->lock)) {
+		printk("%s: It is not supposed to be lockable!!\n",__func__);
+		BUG();
+	}
+#endif
+//	SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
+
+	if (!list_empty(&qh->qh_list_entry)) {
+		/* QH already in a schedule. */
+		goto done;
+	}
+
+	/* Add the new QH to the appropriate schedule */
+	if (dwc_qh_is_non_per(qh)) {
+		/* Always start in the inactive schedule. */
+		list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
+	} else {
+		status = schedule_periodic(hcd, qh);
+	}
+
+ done:
+//	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
+
+	return status;
+}
+
+/**
+ * Removes an interrupt or isochronous transfer from the periodic schedule.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param qh QH for the periodic transfer.
+ */
+static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	list_del_init(&qh->qh_list_entry);
+
+	/* Release the periodic channel reservation. */
+	hcd->periodic_channels--;
+
+	/* Update claimed usecs per (micro)frame. */
+	hcd->periodic_usecs -= qh->usecs;
+
+	/* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
+	hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval;
+
+	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
+		DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
+			    qh, qh->usecs, qh->interval);
+	} else {
+		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
+		DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
+			    qh, qh->usecs, qh->interval);
+	}
+}
+
+/**
+ * Removes a QH from either the non-periodic or periodic schedule.  Memory is
+ * not freed.
+ *
+ * @param[in] hcd The HCD state structure.
+ * @param[in] qh QH to remove from schedule. */
+void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+	//unsigned long flags;
+
+#ifdef CONFIG_SMP
+	//the spinlock is locked before this function get called,
+	//but in case the lock is needed, the check function is preserved
+	//but in non-SMP mode, all spinlock is lockable.
+	//don't do the test in non-SMP mode
+
+	if(spin_trylock(&hcd->lock)) {
+		printk("%s: It is not supposed to be lockable!!\n",__func__);
+		BUG();
+	}
+#endif
+//	SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+
+	if (list_empty(&qh->qh_list_entry)) {
+		/* QH is not in a schedule. */
+		goto done;
+	}
+
+	if (dwc_qh_is_non_per(qh)) {
+		if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
+			hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+		}
+		list_del_init(&qh->qh_list_entry);
+	} else {
+		deschedule_periodic(hcd, qh);
+	}
+
+ done:
+//	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+	return;
+}
+
+/**
+ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
+ * non-periodic schedule. The QH is added to the inactive non-periodic
+ * schedule if any QTDs are still attached to the QH.
+ *
+ * For periodic QHs, the QH is removed from the periodic queued schedule. If
+ * there are any QTDs still attached to the QH, the QH is added to either the
+ * periodic inactive schedule or the periodic ready schedule and its next
+ * scheduled frame is calculated. The QH is placed in the ready schedule if
+ * the scheduled frame has been reached already. Otherwise it's placed in the
+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
+ * completely removed from the periodic schedule.
+ */
+void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
+{
+	unsigned long flags;
+	SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+
+	if (dwc_qh_is_non_per(qh)) {
+		dwc_otg_hcd_qh_remove(hcd, qh);
+		if (!list_empty(&qh->qtd_list)) {
+			/* Add back to inactive non-periodic schedule. */
+			dwc_otg_hcd_qh_add(hcd, qh);
+		}
+	} else {
+		uint16_t frame_number =	dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+
+		if (qh->do_split) {
+			/* Schedule the next continuing periodic split transfer */
+			if (sched_next_periodic_split) {
+
+				qh->sched_frame = frame_number;
+				if (dwc_frame_num_le(frame_number,
+						     dwc_frame_num_inc(qh->start_split_frame, 1))) {
+					/*
+					 * Allow one frame to elapse after start
+					 * split microframe before scheduling
+					 * complete split, but DONT if we are
+					 * doing the next start split in the
+					 * same frame for an ISOC out.
+					 */
+					if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
+						qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
+					}
+				}
+			} else {
+				qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
+								     qh->interval);
+				if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
+					qh->sched_frame = frame_number;
+				}
+				qh->sched_frame |= 0x7;
+				qh->start_split_frame = qh->sched_frame;
+			}
+		} else {
+			qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
+			if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
+				qh->sched_frame = frame_number;
+			}
+		}
+
+		if (list_empty(&qh->qtd_list)) {
+			dwc_otg_hcd_qh_remove(hcd, qh);
+		} else {
+			/*
+			 * Remove from periodic_sched_queued and move to
+			 * appropriate queue.
+			 */
+			if (qh->sched_frame == frame_number) {
+				list_move(&qh->qh_list_entry,
+					  &hcd->periodic_sched_ready);
+			} else {
+				list_move(&qh->qh_list_entry,
+					  &hcd->periodic_sched_inactive);
+			}
+		}
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+}
+
+/**
+ * This function allocates and initializes a QTD.
+ *
+ * @param[in] urb The URB to create a QTD from.  Each URB-QTD pair will end up
+ * pointing to each other so each pair should have a unique correlation.
+ *
+ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
+dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
+{
+	dwc_otg_qtd_t *qtd;
+
+	qtd = dwc_otg_hcd_qtd_alloc ();
+	if (qtd == NULL) {
+		return NULL;
+	}
+
+	dwc_otg_hcd_qtd_init (qtd, urb);
+	return qtd;
+}
+
+/**
+ * Initializes a QTD structure.
+ *
+ * @param[in] qtd The QTD to initialize.
+ * @param[in] urb The URB to use for initialization.  */
+void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
+{
+	memset (qtd, 0, sizeof (dwc_otg_qtd_t));
+	qtd->urb = urb;
+	if (usb_pipecontrol(urb->pipe)) {
+		/*
+		 * The only time the QTD data toggle is used is on the data
+		 * phase of control transfers. This phase always starts with
+		 * DATA1.
+		 */
+		qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+		qtd->control_phase = DWC_OTG_CONTROL_SETUP;
+	}
+
+	/* start split */
+	qtd->complete_split = 0;
+	qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+	qtd->isoc_split_offset = 0;
+
+	/* Store the qtd ptr in the urb to reference what QTD. */
+	urb->hcpriv = qtd;
+	return;
+}
+
+/**
+ * This function adds a QTD to the QTD-list of a QH.  It will find the correct
+ * QH to place the QTD into.  If it does not find a QH, then it will create a
+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
+ * is placed into the proper schedule based on its EP type.
+ *
+ * @param[in] qtd The QTD to add
+ * @param[in] dwc_otg_hcd The DWC HCD structure
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
+			 dwc_otg_hcd_t *dwc_otg_hcd)
+{
+	struct usb_host_endpoint *ep;
+	dwc_otg_qh_t *qh;
+	unsigned long flags;
+	int retval = 0;
+
+	struct urb *urb = qtd->urb;
+
+	SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+
+	/*
+	 * Get the QH which holds the QTD-list to insert to. Create QH if it
+	 * doesn't exist.
+	 */
+	ep = dwc_urb_to_endpoint(urb);
+	qh = (dwc_otg_qh_t *)ep->hcpriv;
+	if (qh == NULL) {
+		qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
+		if (qh == NULL) {
+			goto done;
+		}
+		ep->hcpriv = qh;
+	}
+
+	retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
+	if (retval == 0) {
+		list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
+	}
+
+ done:
+	SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+
+	return retval;
+}
+
+#endif /* DWC_DEVICE_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_pcd.c
@@ -0,0 +1,2502 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
+ * $Revision: #70 $
+ * $Date: 2008/10/14 $
+ * $Change: 1115682 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+
+/** @file
+ * This file implements the Peripheral Controller Driver.
+ *
+ * The Peripheral Controller Driver (PCD) is responsible for
+ * translating requests from the Function Driver into the appropriate
+ * actions on the DWC_otg controller. It isolates the Function Driver
+ * from the specifics of the controller by providing an API to the
+ * Function Driver.
+ *
+ * The Peripheral Controller Driver for Linux will implement the
+ * Gadget API, so that the existing Gadget drivers can be used.
+ * (Gadget Driver is the Linux terminology for a Function Driver.)
+ *
+ * The Linux Gadget API is defined in the header file
+ * <code><linux/usb_gadget.h></code>.  The USB EP operations API is
+ * defined in the structure <code>usb_ep_ops</code> and the USB
+ * Controller API is defined in the structure
+ * <code>usb_gadget_ops</code>.
+ *
+ * An important function of the PCD is managing interrupts generated
+ * by the DWC_otg controller. The implementation of the DWC_otg device
+ * mode interrupt service routines is in dwc_otg_pcd_intr.c.
+ *
+ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
+ * @todo Does it work when the request size is greater than DEPTSIZ
+ * transfer size
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+#include <linux/usb/ch9.h>
+
+//#include <linux/usb_gadget.h>
+
+#include "otg_driver.h"
+#include "otg_pcd.h"
+
+
+
+/**
+ * Static PCD pointer for use in usb_gadget_register_driver and
+ * usb_gadget_unregister_driver.  Initialized in dwc_otg_pcd_init.
+ */
+static	 dwc_otg_pcd_t *s_pcd = 0;
+
+
+/* Display the contents of the buffer */
+extern void dump_msg(const u8 *buf, unsigned int length);
+
+
+/**
+ * This function completes a request.  It call's the request call back.
+ */
+void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
+				  int status)
+{
+	unsigned stopped = ep->stopped;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
+	list_del_init(&req->queue);
+
+	if (req->req.status == -EINPROGRESS) {
+		req->req.status = status;
+	} else {
+		status = req->req.status;
+	}
+
+	/* don't modify queue heads during completion callback */
+	ep->stopped = 1;
+	SPIN_UNLOCK(&ep->pcd->lock);
+	req->req.complete(&ep->ep, &req->req);
+	SPIN_LOCK(&ep->pcd->lock);
+
+	if (ep->pcd->request_pending > 0) {
+		--ep->pcd->request_pending;
+	}
+
+	ep->stopped = stopped;
+}
+
+/**
+ * This function terminates all the requsts in the EP request queue.
+ */
+void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_otg_pcd_request_t *req;
+
+	ep->stopped = 1;
+
+	/* called with irqs blocked?? */
+	while (!list_empty(&ep->queue)) {
+		req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
+				 queue);
+		dwc_otg_request_done(ep, req, -ESHUTDOWN);
+	}
+}
+
+/* USB Endpoint Operations */
+/*
+ * The following sections briefly describe the behavior of the Gadget
+ * API endpoint operations implemented in the DWC_otg driver
+ * software. Detailed descriptions of the generic behavior of each of
+ * these functions can be found in the Linux header file
+ * include/linux/usb_gadget.h.
+ *
+ * The Gadget API provides wrapper functions for each of the function
+ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
+ * function, which then calls the underlying PCD function. The
+ * following sections are named according to the wrapper
+ * functions. Within each section, the corresponding DWC_otg PCD
+ * function name is specified.
+ *
+ */
+
+/**
+ * This function assigns periodic Tx FIFO to an periodic EP
+ * in shared Tx FIFO mode
+ */
+static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t	*core_if)
+{
+	uint32_t PerTxMsk = 1;
+	int i;
+	for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
+	{
+		if((PerTxMsk & core_if->p_tx_msk) == 0) {
+			core_if->p_tx_msk |= PerTxMsk;
+			return i + 1;
+		}
+		PerTxMsk <<= 1;
+	}
+	return 0;
+}
+/**
+ * This function releases periodic Tx FIFO
+ * in shared Tx FIFO mode
+ */
+static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
+{
+	core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
+}
+/**
+ * This function assigns periodic Tx FIFO to an periodic EP
+ * in shared Tx FIFO mode
+ */
+static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
+{
+	uint32_t TxMsk = 1;
+	int i;
+
+	for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
+	{
+		if((TxMsk & core_if->tx_msk) == 0) {
+			core_if->tx_msk |= TxMsk;
+			return i + 1;
+		}
+		TxMsk <<= 1;
+	}
+	return 0;
+}
+/**
+ * This function releases periodic Tx FIFO
+ * in shared Tx FIFO mode
+ */
+static void release_tx_fifo(dwc_otg_core_if_t	*core_if, uint32_t fifo_num)
+{
+	core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
+}
+
+/**
+ * This function is called by the Gadget Driver for each EP to be
+ * configured for the current configuration (SET_CONFIGURATION).
+ *
+ * This function initializes the dwc_otg_ep_t data structure, and then
+ * calls dwc_otg_ep_activate.
+ */
+static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
+				 const struct usb_endpoint_descriptor *ep_desc)
+{
+	dwc_otg_pcd_ep_t *ep = 0;
+	dwc_otg_pcd_t *pcd = 0;
+	unsigned long flags;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	if (!usb_ep || !ep_desc || ep->desc ||
+			ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
+		DWC_WARN("%s, bad ep or descriptor\n", __func__);
+		return -EINVAL;
+	}
+	if (ep == &ep->pcd->ep0) {
+		DWC_WARN("%s, bad ep(0)\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Check FIFO size? */
+	if (!ep_desc->wMaxPacketSize) {
+		DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
+		return -ERANGE;
+	}
+
+	pcd = ep->pcd;
+	if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+		DWC_WARN("%s, bogus device state\n", __func__);
+		return -ESHUTDOWN;
+	}
+
+	SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+	ep->desc = ep_desc;
+	ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
+
+	/*
+	 * Activate the EP
+	 */
+	ep->stopped = 0;
+
+	ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
+	ep->dwc_ep.maxpacket = ep->ep.maxpacket;
+
+	ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
+
+	if(ep->dwc_ep.is_in) {
+		if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
+			ep->dwc_ep.tx_fifo_num = 0;
+
+			if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
+				/*
+				 * if ISOC EP then assign a Periodic Tx FIFO.
+				 */
+				ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
+			 }
+		} else {
+			/*
+			 * if Dedicated FIFOs mode is on then assign a Tx FIFO.
+			 */
+			ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
+
+		}
+	}
+	/* Set initial data PID. */
+	if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
+		ep->dwc_ep.data_pid_start = 0;
+	}
+
+	DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
+					ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
+					ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
+
+	if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
+		ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
+	}
+
+	dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+	return 0;
+}
+
+/**
+ * This function is called when an EP is disabled due to disconnect or
+ * change in configuration. Any pending requests will terminate with a
+ * status of -ESHUTDOWN.
+ *
+ * This function modifies the dwc_otg_ep_t data structure for this EP,
+ * and then calls dwc_otg_ep_deactivate.
+ */
+static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
+{
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t *pcd = 0;
+	unsigned long flags;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	if (!usb_ep || !ep->desc) {
+		DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
+			usb_ep ? ep->ep.name : NULL);
+		return -EINVAL;
+	}
+
+	SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+	dwc_otg_request_nuke(ep);
+
+	dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
+	ep->desc = 0;
+	ep->stopped = 1;
+
+	if(ep->dwc_ep.is_in) {
+		dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+		release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+		release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+	}
+
+	/* Free DMA Descriptors */
+	pcd = ep->pcd;
+
+	SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
+
+	if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
+		dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
+	}
+
+	DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
+	return 0;
+}
+
+
+/**
+ * This function allocates a request object to use with the specified
+ * endpoint.
+ *
+ * @param ep The endpoint to be used with with the request
+ * @param gfp_flags the GFP_* flags to use.
+ */
+static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
+						     gfp_t gfp_flags)
+{
+	dwc_otg_pcd_request_t *req;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
+	if (0 == ep) {
+		DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
+		return 0;
+	}
+	req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
+	if (0 == req) {
+		DWC_WARN("%s() %s\n", __func__,
+				 "request allocation failed!\n");
+		return 0;
+	}
+	memset(req, 0, sizeof(dwc_otg_pcd_request_t));
+	req->req.dma = DMA_ADDR_INVALID;
+	INIT_LIST_HEAD(&req->queue);
+	return &req->req;
+}
+
+/**
+ * This function frees a request object.
+ *
+ * @param ep The endpoint associated with the request
+ * @param req The request being freed
+ */
+static void dwc_otg_pcd_free_request(struct usb_ep *ep,
+					 struct usb_request *req)
+{
+	dwc_otg_pcd_request_t *request;
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
+
+	if (0 == ep || 0 == req) {
+		DWC_WARN("%s() %s\n", __func__,
+				 "Invalid ep or req argument!\n");
+		return;
+	}
+
+	request = container_of(req, dwc_otg_pcd_request_t, req);
+	kfree(request);
+}
+
+#if 0
+/**
+ * This function allocates an I/O buffer to be used for a transfer
+ * to/from the specified endpoint.
+ *
+ * @param usb_ep The endpoint to be used with with the request
+ * @param bytes The desired number of bytes for the buffer
+ * @param dma Pointer to the buffer's DMA address; must be valid
+ * @param gfp_flags the GFP_* flags to use.
+ * @return address of a new buffer or null is buffer could not be allocated.
+ */
+static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
+				      dma_addr_t *dma,
+				      gfp_t gfp_flags)
+{
+	void *buf;
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t *pcd = 0;
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	pcd = ep->pcd;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
+				dma, gfp_flags);
+
+	/* Check dword alignment */
+	if ((bytes & 0x3UL) != 0) {
+		DWC_WARN("%s() Buffer size is not a multiple of"
+				 "DWORD size (%d)",__func__, bytes);
+	}
+
+	if (GET_CORE_IF(pcd)->dma_enable) {
+		buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
+	}
+	else {
+		buf = kmalloc(bytes, gfp_flags);
+	}
+
+	/* Check dword alignment */
+	if (((int)buf & 0x3UL) != 0) {
+		DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
+					__func__, buf);
+	}
+
+	return buf;
+}
+
+/**
+ * This function frees an I/O buffer that was allocated by alloc_buffer.
+ *
+ * @param usb_ep the endpoint associated with the buffer
+ * @param buf address of the buffer
+ * @param dma The buffer's DMA address
+ * @param bytes The number of bytes of the buffer
+ */
+static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
+					dma_addr_t dma, unsigned bytes)
+{
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t *pcd = 0;
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	pcd = ep->pcd;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
+
+	if (GET_CORE_IF(pcd)->dma_enable) {
+		dma_free_coherent (NULL, bytes, buf, dma);
+	}
+	else {
+		kfree(buf);
+	}
+}
+#endif
+
+/**
+ * This function is used to submit an I/O Request to an EP.
+ *
+ *	- When the request completes the request's completion callback
+ *	  is called to return the request to the driver.
+ *	- An EP, except control EPs, may have multiple requests
+ *	  pending.
+ *	- Once submitted the request cannot be examined or modified.
+ *	- Each request is turned into one or more packets.
+ *	- A BULK EP can queue any amount of data; the transfer is
+ *	  packetized.
+ *	- Zero length Packets are specified with the request 'zero'
+ *	  flag.
+ */
+static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
+				struct usb_request *usb_req,
+				gfp_t gfp_flags)
+{
+	int prevented = 0;
+	dwc_otg_pcd_request_t *req;
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t	*pcd;
+	unsigned long flags = 0;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
+			__func__, usb_ep, usb_req, gfp_flags);
+
+	req = container_of(usb_req, dwc_otg_pcd_request_t, req);
+	if (!usb_req || !usb_req->complete || !usb_req->buf ||
+			!list_empty(&req->queue)) {
+		DWC_WARN("%s, bad params\n", __func__);
+		return -EINVAL;
+	}
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
+		DWC_WARN("%s, bad ep\n", __func__);
+		return -EINVAL;
+	}
+
+	pcd = ep->pcd;
+	if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+		DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+		DWC_WARN("%s, bogus device state\n", __func__);
+		return -ESHUTDOWN;
+	}
+
+
+	DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
+			   usb_ep->name, usb_req, usb_req->length, usb_req->buf);
+
+	if (!GET_CORE_IF(pcd)->core_params->opt) {
+		if (ep->dwc_ep.num != 0) {
+			DWC_ERROR("%s queue req %p, len %d buf %p\n",
+					  usb_ep->name, usb_req, usb_req->length, usb_req->buf);
+		}
+	}
+
+	SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+#if defined(DEBUG) & defined(VERBOSE)
+	dump_msg(usb_req->buf, usb_req->length);
+#endif
+
+	usb_req->status = -EINPROGRESS;
+	usb_req->actual = 0;
+
+	/*
+	 * For EP0 IN without premature status, zlp is required?
+	 */
+	if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
+		DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
+		//_req->zero = 1;
+	}
+
+	/* Start the transfer */
+	if (list_empty(&ep->queue) && !ep->stopped) {
+		/* EP0 Transfer? */
+		if (ep->dwc_ep.num == 0) {
+			switch (pcd->ep0state) {
+			case EP0_IN_DATA_PHASE:
+				DWC_DEBUGPL(DBG_PCD,
+						"%s ep0: EP0_IN_DATA_PHASE\n",
+						__func__);
+				break;
+
+			case EP0_OUT_DATA_PHASE:
+				DWC_DEBUGPL(DBG_PCD,
+						"%s ep0: EP0_OUT_DATA_PHASE\n",
+						__func__);
+				if (pcd->request_config) {
+					/* Complete STATUS PHASE */
+					ep->dwc_ep.is_in = 1;
+					pcd->ep0state = EP0_IN_STATUS_PHASE;
+				}
+				break;
+
+			case EP0_IN_STATUS_PHASE:
+				DWC_DEBUGPL(DBG_PCD,
+						"%s ep0: EP0_IN_STATUS_PHASE\n",
+						__func__);
+				break;
+
+			default:
+				DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
+						pcd->ep0state);
+				SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+				return -EL2HLT;
+			}
+			ep->dwc_ep.dma_addr = usb_req->dma;
+			ep->dwc_ep.start_xfer_buff = usb_req->buf;
+			ep->dwc_ep.xfer_buff = usb_req->buf;
+			ep->dwc_ep.xfer_len = usb_req->length;
+			ep->dwc_ep.xfer_count = 0;
+			ep->dwc_ep.sent_zlp = 0;
+			ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
+
+			if(usb_req->zero) {
+				if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
+						&& (ep->dwc_ep.xfer_len != 0)) {
+					ep->dwc_ep.sent_zlp = 1;
+				}
+
+			}
+
+			ep_check_and_patch_dma_addr(ep);
+			dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
+		}
+		else {
+
+			uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
+
+			/* Setup and start the Transfer */
+			ep->dwc_ep.dma_addr = usb_req->dma;
+			ep->dwc_ep.start_xfer_buff = usb_req->buf;
+			ep->dwc_ep.xfer_buff = usb_req->buf;
+			ep->dwc_ep.sent_zlp = 0;
+			ep->dwc_ep.total_len = usb_req->length;
+			ep->dwc_ep.xfer_len = 0;
+			ep->dwc_ep.xfer_count = 0;
+
+			if(max_transfer > MAX_TRANSFER_SIZE) {
+				ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
+			} else {
+				ep->dwc_ep.maxxfer = max_transfer;
+			}
+
+			if(usb_req->zero) {
+				if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
+						&& (ep->dwc_ep.total_len != 0)) {
+					ep->dwc_ep.sent_zlp = 1;
+				}
+
+			}
+
+			ep_check_and_patch_dma_addr(ep);
+			dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
+		}
+	}
+
+	if ((req != 0) || prevented) {
+		++pcd->request_pending;
+		list_add_tail(&req->queue, &ep->queue);
+		if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
+			/** @todo NGS Create a function for this. */
+			diepmsk_data_t diepmsk = { .d32 = 0};
+			diepmsk.b.intktxfemp = 1;
+			if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
+				dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
+							0, diepmsk.d32);
+			} else {
+				dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
+			}
+		}
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+	return 0;
+}
+
+/**
+ * This function cancels an I/O request from an EP.
+ */
+static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
+				  struct usb_request *usb_req)
+{
+	dwc_otg_pcd_request_t *req;
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t	*pcd;
+	unsigned long flags;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+	if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
+		DWC_WARN("%s, bad argument\n", __func__);
+		return -EINVAL;
+	}
+	pcd = ep->pcd;
+	if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+		DWC_WARN("%s, bogus device state\n", __func__);
+		return -ESHUTDOWN;
+	}
+
+	SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+	DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
+					ep->dwc_ep.is_in ? "IN" : "OUT",
+					usb_req);
+
+	/* make sure it's actually queued on this endpoint */
+	list_for_each_entry(req, &ep->queue, queue)
+	{
+		if (&req->req == usb_req) {
+			break;
+		}
+	}
+
+	if (&req->req != usb_req) {
+		SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+		return -EINVAL;
+	}
+
+	if (!list_empty(&req->queue)) {
+		dwc_otg_request_done(ep, req, -ECONNRESET);
+	}
+	else {
+		req = 0;
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+	return req ? 0 : -EOPNOTSUPP;
+}
+
+/**
+ * usb_ep_set_halt stalls an endpoint.
+ *
+ * usb_ep_clear_halt clears an endpoint halt and resets its data
+ * toggle.
+ *
+ * Both of these functions are implemented with the same underlying
+ * function. The behavior depends on the value argument.
+ *
+ * @param[in] usb_ep the Endpoint to halt or clear halt.
+ * @param[in] value
+ *	- 0 means clear_halt.
+ *	- 1 means set_halt,
+ *	- 2 means clear stall lock flag.
+ *	- 3 means set  stall lock flag.
+ */
+static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
+{
+	int retval = 0;
+	unsigned long flags;
+	dwc_otg_pcd_ep_t *ep = 0;
+
+
+	DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+	if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
+			ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
+		DWC_WARN("%s, bad ep\n", __func__);
+		return -EINVAL;
+	}
+
+	SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+	if (!list_empty(&ep->queue)) {
+		DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
+		retval = -EAGAIN;
+	}
+	else if (value == 0) {
+		dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
+					&ep->dwc_ep);
+	}
+	else if(value == 1) {
+		if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
+			dtxfsts_data_t txstatus;
+			fifosize_data_t txfifosize;
+
+			txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
+			txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
+
+			if(txstatus.b.txfspcavail < txfifosize.b.depth) {
+				DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
+				retval = -EAGAIN;
+			}
+			else {
+				if (ep->dwc_ep.num == 0) {
+					ep->pcd->ep0state = EP0_STALL;
+				}
+
+				ep->stopped = 1;
+				dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
+							&ep->dwc_ep);
+			}
+		}
+		else {
+			if (ep->dwc_ep.num == 0) {
+				ep->pcd->ep0state = EP0_STALL;
+			}
+
+			ep->stopped = 1;
+			dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
+						&ep->dwc_ep);
+		}
+	}
+	else if (value == 2) {
+		ep->dwc_ep.stall_clear_flag = 0;
+	}
+	else if (value == 3) {
+		ep->dwc_ep.stall_clear_flag = 1;
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
+	return retval;
+}
+
+/**
+ * This function allocates a DMA Descriptor chain for the Endpoint
+ * buffer to be used for a transfer to/from the specified endpoint.
+ */
+dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
+{
+
+	return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
+}
+
+LIST_HEAD(tofree_list);
+DEFINE_SPINLOCK(tofree_list_lock);
+
+struct free_param {
+	struct list_head list;
+
+	void* addr;
+	dma_addr_t dma_addr;
+	uint32_t size;
+};
+void free_list_agent_fn(void *data){
+	struct list_head free_list;
+	struct free_param *cur,*next;
+
+	spin_lock(&tofree_list_lock);
+	list_add(&free_list,&tofree_list);
+	list_del_init(&tofree_list);
+	spin_unlock(&tofree_list_lock);
+
+	list_for_each_entry_safe(cur,next,&free_list,list){
+		if(cur==&free_list) break;
+		dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
+		list_del(&cur->list);
+		kfree(cur);
+	}
+}
+DECLARE_WORK(free_list_agent,free_list_agent_fn);
+/**
+ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
+ */
+void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
+{
+	if(irqs_disabled()){
+		struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
+		fp->addr=desc_addr;
+		fp->dma_addr=dma_desc_addr;
+		fp->size=count*sizeof(dwc_otg_dma_desc_t);
+
+		spin_lock(&tofree_list_lock);
+		list_add(&fp->list,&tofree_list);
+		spin_unlock(&tofree_list_lock);
+
+		schedule_work(&free_list_agent);
+		return ;
+	}
+	dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
+}
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+
+ 	dsts_data_t 		dsts = { .d32 = 0};
+	depctl_data_t 		depctl = { .d32 = 0 };
+	volatile uint32_t 	*addr;
+ 	int 			i, j;
+
+	if(dwc_ep->is_in)
+		dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
+	else
+		dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+
+
+	/** Allocate descriptors for double buffering */
+	dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
+	if(dwc_ep->desc_addr) {
+		DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
+		return;
+	}
+
+	dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+	/** ISO OUT EP */
+	if(dwc_ep->is_in == 0) {
+		desc_sts_data_t sts = { .d32 =0 };
+		dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
+		dma_addr_t dma_ad;
+		uint32_t data_per_desc;
+		dwc_otg_dev_out_ep_regs_t *out_regs =
+			core_if->dev_if->out_ep_regs[dwc_ep->num];
+		int	offset;
+
+		addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+		dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
+
+		/** Buffer 0 descriptors setup */
+		dma_ad = dwc_ep->dma_addr0;
+
+		sts.b_iso_out.bs = BS_HOST_READY;
+		sts.b_iso_out.rxsts = 0;
+		sts.b_iso_out.l = 0;
+		sts.b_iso_out.sp = 0;
+		sts.b_iso_out.ioc = 0;
+		sts.b_iso_out.pid = 0;
+		sts.b_iso_out.framenum = 0;
+
+		offset = 0;
+		for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+		{
+
+			for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+			{
+				data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+					dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+
+				data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+				sts.b_iso_out.rxbytes = data_per_desc;
+				writel((uint32_t)dma_ad, &dma_desc->buf);
+				writel(sts.d32, &dma_desc->status);
+
+				offset += data_per_desc;
+				dma_desc ++;
+				//(uint32_t)dma_ad += data_per_desc;
+				dma_ad = (uint32_t)dma_ad + data_per_desc;
+			}
+		}
+
+		for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+		{
+			data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+				dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+			data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+			sts.b_iso_out.rxbytes = data_per_desc;
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+
+			offset += data_per_desc;
+			dma_desc ++;
+			//(uint32_t)dma_ad += data_per_desc;
+			dma_ad = (uint32_t)dma_ad + data_per_desc;
+		}
+
+		sts.b_iso_out.ioc = 1;
+		data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+			dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+		data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+		sts.b_iso_out.rxbytes = data_per_desc;
+
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+		dma_desc ++;
+
+		/** Buffer 1 descriptors setup */
+		sts.b_iso_out.ioc = 0;
+		dma_ad = dwc_ep->dma_addr1;
+
+		offset = 0;
+		for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+		{
+			for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+			{
+				data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+					dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+				data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+				sts.b_iso_out.rxbytes = data_per_desc;
+				writel((uint32_t)dma_ad, &dma_desc->buf);
+				writel(sts.d32, &dma_desc->status);
+
+				offset += data_per_desc;
+				dma_desc ++;
+				//(uint32_t)dma_ad += data_per_desc;
+				dma_ad = (uint32_t)dma_ad + data_per_desc;
+			}
+		}
+		for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+		{
+			data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+				dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+			data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+			sts.b_iso_out.rxbytes = data_per_desc;
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+
+			offset += data_per_desc;
+			dma_desc ++;
+			//(uint32_t)dma_ad += data_per_desc;
+			dma_ad = (uint32_t)dma_ad + data_per_desc;
+		}
+
+		sts.b_iso_out.ioc = 1;
+		sts.b_iso_out.l = 1;
+		data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+			dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+		data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+		sts.b_iso_out.rxbytes = data_per_desc;
+
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+
+		dwc_ep->next_frame = 0;
+
+		/** Write dma_ad into DOEPDMA register */
+		dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
+
+	}
+	/** ISO IN EP */
+	else {
+		desc_sts_data_t sts = { .d32 =0 };
+		dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
+		dma_addr_t dma_ad;
+		dwc_otg_dev_in_ep_regs_t *in_regs =
+			core_if->dev_if->in_ep_regs[dwc_ep->num];
+		unsigned int		   frmnumber;
+		fifosize_data_t		txfifosize,rxfifosize;
+
+		txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
+		rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
+
+
+		addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+
+		dma_ad = dwc_ep->dma_addr0;
+
+		dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+		sts.b_iso_in.bs = BS_HOST_READY;
+		sts.b_iso_in.txsts = 0;
+		sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
+		sts.b_iso_in.ioc = 0;
+		sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
+
+
+		frmnumber = dwc_ep->next_frame;
+
+		sts.b_iso_in.framenum = frmnumber;
+		sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
+		sts.b_iso_in.l = 0;
+
+		/** Buffer 0 descriptors setup */
+		for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+		{
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+			dma_desc ++;
+
+			//(uint32_t)dma_ad += dwc_ep->data_per_frame;
+			dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+			sts.b_iso_in.framenum += dwc_ep->bInterval;
+		}
+
+		sts.b_iso_in.ioc = 1;
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+		++dma_desc;
+
+		/** Buffer 1 descriptors setup */
+		sts.b_iso_in.ioc = 0;
+		dma_ad = dwc_ep->dma_addr1;
+
+		for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+		{
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+			dma_desc ++;
+
+			//(uint32_t)dma_ad += dwc_ep->data_per_frame;
+			dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+			sts.b_iso_in.framenum += dwc_ep->bInterval;
+
+			sts.b_iso_in.ioc = 0;
+		}
+		sts.b_iso_in.ioc = 1;
+		sts.b_iso_in.l = 1;
+
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+
+		dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
+
+		/** Write dma_ad into diepdma register */
+		dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
+	}
+	/** Enable endpoint, clear nak  */
+	depctl.d32 = 0;
+	depctl.b.epena = 1;
+	depctl.b.usbactep = 1;
+	depctl.b.cnak = 1;
+
+	dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+	depctl.d32 = dwc_read_reg32(addr);
+}
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+
+void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t 		depctl = { .d32 = 0 };
+	volatile uint32_t 	*addr;
+
+
+	if(ep->is_in) {
+		addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+	} else {
+		addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+	}
+
+
+	if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
+		return;
+	} else {
+		deptsiz_data_t		deptsiz = { .d32 = 0 };
+
+		ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
+		ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
+				ep->maxpacket;
+		ep->xfer_count = 0;
+		ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+		ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+
+		if(ep->is_in) {
+			/* Program the transfer size and packet count
+			 *	as follows: xfersize = N * maxpacket +
+			 *	short_packet pktcnt = N + (short_packet
+			 *	exist ? 1 : 0)
+			 */
+			deptsiz.b.mc = ep->pkt_per_frm;
+			deptsiz.b.xfersize = ep->xfer_len;
+			deptsiz.b.pktcnt =
+				(ep->xfer_len - 1 + ep->maxpacket) /
+				ep->maxpacket;
+			dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
+
+			/* Write the DMA register */
+			dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
+
+		} else {
+			deptsiz.b.pktcnt =
+					(ep->xfer_len + (ep->maxpacket - 1)) /
+					ep->maxpacket;
+			deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
+
+			dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
+
+			/* Write the DMA register */
+			dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
+
+		}
+		/** Enable endpoint, clear nak  */
+		depctl.d32 = 0;
+		dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+
+		depctl.b.epena = 1;
+		depctl.b.cnak = 1;
+
+		dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+	}
+}
+
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer.	 For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR.  the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ 	if(core_if->dma_enable) {
+		if(core_if->dma_desc_enable) {
+			if(ep->is_in) {
+				ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
+			} else {
+				ep->desc_cnt = ep->pkt_cnt;
+			}
+			dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
+		} else {
+			if(core_if->pti_enh_enable) {
+				dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
+			} else {
+				ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+				ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+				dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
+			}
+		}
+	} else {
+		ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+		ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+		dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
+	}
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer.	 For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR.  the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	depctl_data_t depctl = { .d32 = 0 };
+	volatile uint32_t *addr;
+
+	if(ep->is_in == 1) {
+		addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+	}
+	else {
+		addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+	}
+
+	/* disable the ep */
+	depctl.d32 = dwc_read_reg32(addr);
+
+	depctl.b.epdis = 1;
+	depctl.b.snak = 1;
+
+	dwc_write_reg32(addr, depctl.d32);
+
+	if(core_if->dma_desc_enable &&
+		ep->iso_desc_addr && ep->iso_dma_desc_addr) {
+		dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
+	}
+
+	/* reset varibales */
+	ep->dma_addr0 = 0;
+	ep->dma_addr1 = 0;
+	ep->xfer_buff0 = 0;
+	ep->xfer_buff1 = 0;
+	ep->data_per_frame = 0;
+	ep->data_pattern_frame = 0;
+	ep->sync_frame = 0;
+	ep->buf_proc_intrvl = 0;
+	ep->bInterval = 0;
+	ep->proc_buf_num = 0;
+	ep->pkt_per_frm = 0;
+	ep->pkt_per_frm = 0;
+	ep->desc_cnt = 	0;
+	ep->iso_desc_addr = 0;
+	ep->iso_dma_desc_addr = 0;
+}
+
+
+/**
+ * This function is used to submit an ISOC Transfer Request to an EP.
+ *
+ *	- Every time a sync period completes the request's completion callback
+ *	  is called to provide data to the gadget driver.
+ *	- Once submitted the request cannot be modified.
+ *	- Each request is turned into periodic data packets untill ISO
+ *	  Transfer is stopped..
+ */
+static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
+				gfp_t gfp_flags)
+{
+	dwc_otg_pcd_ep_t 	*ep;
+	dwc_otg_pcd_t		*pcd;
+	dwc_ep_t 		*dwc_ep;
+	unsigned long 		flags = 0;
+	int32_t 		frm_data;
+	dwc_otg_core_if_t	*core_if;
+	dcfg_data_t		dcfg;
+	dsts_data_t		dsts;
+
+
+	if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
+		DWC_WARN("%s, bad params\n", __func__);
+		return -EINVAL;
+	}
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+	if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
+		DWC_WARN("%s, bad ep\n", __func__);
+		return -EINVAL;
+	}
+
+	pcd = ep->pcd;
+	core_if = GET_CORE_IF(pcd);
+
+	dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+
+	if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+		DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+		DWC_WARN("%s, bogus device state\n", __func__);
+		return -ESHUTDOWN;
+	}
+
+	SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+	dwc_ep = &ep->dwc_ep;
+
+	if(ep->iso_req) {
+		DWC_WARN("%s, iso request in progress\n", __func__);
+	}
+	req->status = -EINPROGRESS;
+
+	dwc_ep->dma_addr0 = req->dma0;
+	dwc_ep->dma_addr1 = req->dma1;
+
+	dwc_ep->xfer_buff0 = req->buf0;
+	dwc_ep->xfer_buff1 = req->buf1;
+
+	ep->iso_req = req;
+
+	dwc_ep->data_per_frame = req->data_per_frame;
+
+	/** @todo - pattern data support is to be implemented in the future */
+	dwc_ep->data_pattern_frame = req->data_pattern_frame;
+	dwc_ep->sync_frame = req->sync_frame;
+
+	dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
+
+	dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
+
+	dwc_ep->proc_buf_num = 0;
+
+	dwc_ep->pkt_per_frm = 0;
+	frm_data = ep->dwc_ep.data_per_frame;
+	while(frm_data > 0) {
+		dwc_ep->pkt_per_frm++;
+		frm_data -= ep->dwc_ep.maxpacket;
+	}
+
+	dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+	if(req->flags & USB_REQ_ISO_ASAP) {
+		dwc_ep->next_frame = dsts.b.soffn + 1;
+		if(dwc_ep->bInterval != 1){
+			dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
+		}
+	} else {
+		dwc_ep->next_frame = req->start_frame;
+	}
+
+
+	if(!core_if->pti_enh_enable) {
+		dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+	} else {
+		dwc_ep->pkt_cnt =
+			(dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
+			- 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
+	}
+
+	if(core_if->dma_desc_enable) {
+		dwc_ep->desc_cnt =
+			dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+	}
+
+	dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
+	if(!dwc_ep->pkt_info) {
+		return -ENOMEM;
+	}
+	if(core_if->pti_enh_enable) {
+		memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
+	}
+
+	dwc_ep->cur_pkt = 0;
+
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+	dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
+
+	return 0;
+}
+
+/**
+ * This function stops ISO EP Periodic Data Transfer.
+ */
+static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
+{
+	dwc_otg_pcd_ep_t *ep;
+	dwc_otg_pcd_t	*pcd;
+	dwc_ep_t *dwc_ep;
+	unsigned long flags;
+
+	ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+	if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
+		DWC_WARN("%s, bad ep\n", __func__);
+		return -EINVAL;
+	}
+
+	pcd = ep->pcd;
+
+	if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+		DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+		DWC_WARN("%s, bogus device state\n", __func__);
+		return -ESHUTDOWN;
+	}
+
+	dwc_ep = &ep->dwc_ep;
+
+	dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
+
+	kfree(dwc_ep->pkt_info);
+
+	SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+	if(ep->iso_req != req) {
+		return -EINVAL;
+	}
+
+	req->status = -ECONNRESET;
+
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+
+	ep->iso_req = 0;
+
+	return 0;
+}
+
+/**
+ * This function is used for perodical data exchnage between PCD and gadget drivers.
+ * for Isochronous EPs
+ *
+ *	- Every time a sync period completes this function is called to
+ *	  perform data exchange between PCD and gadget
+ */
+void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
+{
+ 	int i;
+	struct usb_gadget_iso_packet_descriptor *iso_packet;
+	dwc_ep_t *dwc_ep;
+
+	dwc_ep = &ep->dwc_ep;
+
+	if(ep->iso_req->status == -ECONNRESET) {
+		DWC_PRINT("Device has already disconnected\n");
+		/*Device has been disconnected*/
+		return;
+	}
+
+	if(dwc_ep->proc_buf_num != 0) {
+		iso_packet = ep->iso_req->iso_packet_desc0;
+	}
+
+	else {
+		iso_packet = ep->iso_req->iso_packet_desc1;
+	}
+
+	/* Fill in ISOC packets descriptors & pass to gadget driver*/
+
+	for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
+		iso_packet[i].status = dwc_ep->pkt_info[i].status;
+		iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
+		iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
+		dwc_ep->pkt_info[i].status = 0;
+		dwc_ep->pkt_info[i].offset = 0;
+		dwc_ep->pkt_info[i].length = 0;
+	}
+
+	/* Call callback function to process data buffer */
+	ep->iso_req->status = 0;/* success */
+
+	SPIN_UNLOCK(&ep->pcd->lock);
+	ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
+	SPIN_LOCK(&ep->pcd->lock);
+}
+
+
+static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
+				gfp_t gfp_flags)
+{
+	struct usb_iso_request	*pReq = NULL;
+	uint32_t		req_size;
+
+
+	req_size = sizeof(struct usb_iso_request);
+	req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
+
+
+	pReq = kmalloc(req_size, gfp_flags);
+	if (!pReq) {
+		DWC_WARN("%s, can't allocate Iso Request\n", __func__);
+		return 0;
+	}
+	pReq->iso_packet_desc0 = (void*) (pReq +  1);
+
+	pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
+
+	return pReq;
+}
+
+static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
+{
+	kfree(req);
+}
+
+static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
+{
+	.ep_ops =
+	{
+		.enable		= dwc_otg_pcd_ep_enable,
+		.disable	= dwc_otg_pcd_ep_disable,
+
+		.alloc_request	= dwc_otg_pcd_alloc_request,
+		.free_request	= dwc_otg_pcd_free_request,
+
+		//.alloc_buffer	= dwc_otg_pcd_alloc_buffer,
+		//.free_buffer	= dwc_otg_pcd_free_buffer,
+
+		.queue		= dwc_otg_pcd_ep_queue,
+		.dequeue	= dwc_otg_pcd_ep_dequeue,
+
+		.set_halt	= dwc_otg_pcd_ep_set_halt,
+		.fifo_status	= 0,
+		.fifo_flush = 0,
+	},
+	.iso_ep_start		= dwc_otg_pcd_iso_ep_start,
+	.iso_ep_stop		= dwc_otg_pcd_iso_ep_stop,
+	.alloc_iso_request 	= dwc_otg_pcd_alloc_iso_request,
+	.free_iso_request	= dwc_otg_pcd_free_iso_request,
+};
+
+#else
+
+
+static struct usb_ep_ops dwc_otg_pcd_ep_ops =
+{
+	.enable		= dwc_otg_pcd_ep_enable,
+	.disable	= dwc_otg_pcd_ep_disable,
+
+	.alloc_request	= dwc_otg_pcd_alloc_request,
+	.free_request	= dwc_otg_pcd_free_request,
+
+//	.alloc_buffer	= dwc_otg_pcd_alloc_buffer,
+//	.free_buffer	= dwc_otg_pcd_free_buffer,
+
+	.queue		= dwc_otg_pcd_ep_queue,
+	.dequeue	= dwc_otg_pcd_ep_dequeue,
+
+	.set_halt	= dwc_otg_pcd_ep_set_halt,
+	.fifo_status	= 0,
+	.fifo_flush = 0,
+
+
+};
+
+#endif /* DWC_EN_ISOC */
+/*	Gadget Operations */
+/**
+ * The following gadget operations will be implemented in the DWC_otg
+ * PCD. Functions in the API that are not described below are not
+ * implemented.
+ *
+ * The Gadget API provides wrapper functions for each of the function
+ * pointers defined in usb_gadget_ops. The Gadget Driver calls the
+ * wrapper function, which then calls the underlying PCD function. The
+ * following sections are named according to the wrapper functions
+ * (except for ioctl, which doesn't have a wrapper function). Within
+ * each section, the corresponding DWC_otg PCD function name is
+ * specified.
+ *
+ */
+
+/**
+ *Gets the USB Frame number of the last SOF.
+ */
+static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
+{
+	dwc_otg_pcd_t *pcd;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
+
+	if (gadget == 0) {
+		return -ENODEV;
+	}
+	else {
+		pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
+		dwc_otg_get_frame_number(GET_CORE_IF(pcd));
+	}
+
+	return 0;
+}
+
+void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
+{
+	uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
+	gotgctl_data_t mem;
+	gotgctl_data_t val;
+
+	val.d32 = dwc_read_reg32(addr);
+	if (val.b.sesreq) {
+		DWC_ERROR("Session Request Already active!\n");
+			return;
+	}
+
+	DWC_NOTICE("Session Request Initated\n");
+	mem.d32 = dwc_read_reg32(addr);
+	mem.b.sesreq = 1;
+	dwc_write_reg32(addr, mem.d32);
+
+	/* Start the SRP timer */
+	dwc_otg_pcd_start_srp_timer(pcd);
+	return;
+}
+
+void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
+{
+	dctl_data_t dctl = {.d32=0};
+	volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
+
+	if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
+		if (pcd->remote_wakeup_enable) {
+			if (set) {
+				dctl.b.rmtwkupsig = 1;
+				dwc_modify_reg32(addr, 0, dctl.d32);
+				DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
+				mdelay(1);
+				dwc_modify_reg32(addr, dctl.d32, 0);
+				DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
+			}
+			else {
+			}
+		}
+		else {
+			DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
+		}
+	}
+	return;
+}
+
+/**
+ * Initiates Session Request Protocol (SRP) to wakeup the host if no
+ * session is in progress. If a session is already in progress, but
+ * the device is suspended, remote wakeup signaling is started.
+ *
+ */
+static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
+{
+	unsigned long flags;
+	dwc_otg_pcd_t *pcd;
+	dsts_data_t		dsts;
+	gotgctl_data_t	gotgctl;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
+
+	if (gadget == 0) {
+		return -ENODEV;
+	}
+	else {
+		pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
+	}
+	SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+	/*
+	 * This function starts the Protocol if no session is in progress. If
+	 * a session is already in progress, but the device is suspended,
+	 * remote wakeup signaling is started.
+	 */
+
+	/* Check if valid session */
+	gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
+	if (gotgctl.b.bsesvld) {
+		/* Check if suspend state */
+		dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
+		if (dsts.b.suspsts) {
+			dwc_otg_pcd_remote_wakeup(pcd, 1);
+		}
+	}
+	else {
+		dwc_otg_pcd_initiate_srp(pcd);
+	}
+
+	SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+	return 0;
+}
+
+static const struct usb_gadget_ops dwc_otg_pcd_ops =
+{
+	.get_frame	 = dwc_otg_pcd_get_frame,
+	.wakeup		 = dwc_otg_pcd_wakeup,
+	// current versions must always be self-powered
+};
+
+/**
+ * This function updates the otg values in the gadget structure.
+ */
+void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
+{
+
+	if (!pcd->gadget.is_otg)
+		return;
+
+	if (reset) {
+		pcd->b_hnp_enable = 0;
+		pcd->a_hnp_support = 0;
+		pcd->a_alt_hnp_support = 0;
+	}
+
+	pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
+	pcd->gadget.a_hnp_support =  pcd->a_hnp_support;
+	pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
+}
+
+/**
+ * This function is the top level PCD interrupt handler.
+ */
+static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
+{
+	dwc_otg_pcd_t *pcd = dev;
+	int32_t retval = IRQ_NONE;
+
+	retval = dwc_otg_pcd_handle_intr(pcd);
+	return IRQ_RETVAL(retval);
+}
+
+/**
+ * PCD Callback function for initializing the PCD when switching to
+ * device mode.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_start_cb(void *p)
+{
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+	/*
+	 * Initialized the Core for Device mode.
+	 */
+	if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
+		dwc_otg_core_dev_init(GET_CORE_IF(pcd));
+	}
+	return 1;
+}
+
+/**
+ * PCD Callback function for stopping the PCD when switching to Host
+ * mode.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_stop_cb(void *p)
+{
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+	extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
+
+	dwc_otg_pcd_stop(pcd);
+	return 1;
+}
+
+
+/**
+ * PCD Callback function for notifying the PCD when resuming from
+ * suspend.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_suspend_cb(void *p)
+{
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+	if (pcd->driver && pcd->driver->resume) {
+		SPIN_UNLOCK(&pcd->lock);
+		pcd->driver->suspend(&pcd->gadget);
+		SPIN_LOCK(&pcd->lock);
+	}
+
+	return 1;
+}
+
+
+/**
+ * PCD Callback function for notifying the PCD when resuming from
+ * suspend.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_resume_cb(void *p)
+{
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+	if (pcd->driver && pcd->driver->resume) {
+			SPIN_UNLOCK(&pcd->lock);
+			pcd->driver->resume(&pcd->gadget);
+			SPIN_LOCK(&pcd->lock);
+	}
+
+	/* Stop the SRP timeout timer. */
+	if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
+		(!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
+		if (GET_CORE_IF(pcd)->srp_timer_started) {
+			GET_CORE_IF(pcd)->srp_timer_started = 0;
+			del_timer(&pcd->srp_timer);
+		}
+	}
+	return 1;
+}
+
+
+/**
+ * PCD Callback structure for handling mode switching.
+ */
+static dwc_otg_cil_callbacks_t pcd_callbacks =
+{
+	.start = dwc_otg_pcd_start_cb,
+	.stop = dwc_otg_pcd_stop_cb,
+	.suspend = dwc_otg_pcd_suspend_cb,
+	.resume_wakeup = dwc_otg_pcd_resume_cb,
+	.p = 0, /* Set at registration */
+};
+
+/**
+ * This function is called when the SRP timer expires.	The SRP should
+ * complete within 6 seconds.
+ */
+static void srp_timeout(unsigned long ptr)
+{
+	gotgctl_data_t gotgctl;
+	dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
+	volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
+
+	gotgctl.d32 = dwc_read_reg32(addr);
+
+	core_if->srp_timer_started = 0;
+
+	if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+		(core_if->core_params->i2c_enable)) {
+		DWC_PRINT("SRP Timeout\n");
+
+		if ((core_if->srp_success) &&
+			(gotgctl.b.bsesvld)) {
+			if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+				core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+			}
+
+			/* Clear Session Request */
+			gotgctl.d32 = 0;
+			gotgctl.b.sesreq = 1;
+			dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+					  gotgctl.d32, 0);
+
+			core_if->srp_success = 0;
+		}
+		else {
+			DWC_ERROR("Device not connected/responding\n");
+			gotgctl.b.sesreq = 0;
+			dwc_write_reg32(addr, gotgctl.d32);
+		}
+	}
+	else if (gotgctl.b.sesreq) {
+		DWC_PRINT("SRP Timeout\n");
+
+		DWC_ERROR("Device not connected/responding\n");
+		gotgctl.b.sesreq = 0;
+		dwc_write_reg32(addr, gotgctl.d32);
+	}
+	else {
+		DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
+	}
+}
+
+/**
+ * Start the SRP timer to detect when the SRP does not complete within
+ * 6 seconds.
+ *
+ * @param pcd the pcd structure.
+ */
+void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
+{
+	struct timer_list *srp_timer = &pcd->srp_timer;
+	GET_CORE_IF(pcd)->srp_timer_started = 1;
+	init_timer(srp_timer);
+	srp_timer->function = srp_timeout;
+	srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
+	srp_timer->expires = jiffies + (HZ*6);
+	add_timer(srp_timer);
+}
+
+/**
+ * Tasklet
+ *
+ */
+extern void start_next_request(dwc_otg_pcd_ep_t *ep);
+
+static void start_xfer_tasklet_func (unsigned long data)
+{
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
+	dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
+
+	int i;
+	depctl_data_t diepctl;
+
+	DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
+
+	diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
+
+	if (pcd->ep0.queue_sof) {
+		pcd->ep0.queue_sof = 0;
+		start_next_request (&pcd->ep0);
+		// break;
+	}
+
+	for (i=0; i<core_if->dev_if->num_in_eps; i++)
+	{
+		depctl_data_t diepctl;
+		diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
+
+		if (pcd->in_ep[i].queue_sof) {
+			pcd->in_ep[i].queue_sof = 0;
+			start_next_request (&pcd->in_ep[i]);
+			// break;
+		}
+	}
+
+	return;
+}
+
+
+
+
+
+
+
+static struct tasklet_struct start_xfer_tasklet = {
+	.next = NULL,
+	.state = 0,
+	.count = ATOMIC_INIT(0),
+	.func = start_xfer_tasklet_func,
+	.data = 0,
+};
+/**
+ * This function initialized the pcd Dp structures to there default
+ * state.
+ *
+ * @param pcd the pcd structure.
+ */
+void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
+{
+	static const char * names[] =
+		{
+
+			"ep0",
+			"ep1in",
+			"ep2in",
+			"ep3in",
+			"ep4in",
+			"ep5in",
+			"ep6in",
+			"ep7in",
+			"ep8in",
+			"ep9in",
+			"ep10in",
+			"ep11in",
+			"ep12in",
+			"ep13in",
+			"ep14in",
+			"ep15in",
+			"ep1out",
+			"ep2out",
+			"ep3out",
+			"ep4out",
+			"ep5out",
+			"ep6out",
+			"ep7out",
+			"ep8out",
+			"ep9out",
+			"ep10out",
+			"ep11out",
+			"ep12out",
+			"ep13out",
+			"ep14out",
+			"ep15out"
+
+	};
+
+	int i;
+	int in_ep_cntr, out_ep_cntr;
+	uint32_t hwcfg1;
+	uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
+	uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
+	dwc_otg_pcd_ep_t *ep;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
+
+	INIT_LIST_HEAD (&pcd->gadget.ep_list);
+	pcd->gadget.ep0 = &pcd->ep0.ep;
+	pcd->gadget.speed = USB_SPEED_UNKNOWN;
+
+	INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
+
+	/**
+	 * Initialize the EP0 structure.
+	 */
+	ep = &pcd->ep0;
+
+	/* Init EP structure */
+	ep->desc = 0;
+	ep->pcd = pcd;
+	ep->stopped = 1;
+
+	/* Init DWC ep structure */
+	ep->dwc_ep.num = 0;
+	ep->dwc_ep.active = 0;
+	ep->dwc_ep.tx_fifo_num = 0;
+	/* Control until ep is actvated */
+	ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+	ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+	ep->dwc_ep.dma_addr = 0;
+	ep->dwc_ep.start_xfer_buff = 0;
+	ep->dwc_ep.xfer_buff = 0;
+	ep->dwc_ep.xfer_len = 0;
+	ep->dwc_ep.xfer_count = 0;
+	ep->dwc_ep.sent_zlp = 0;
+	ep->dwc_ep.total_len = 0;
+	ep->queue_sof = 0;
+	ep->dwc_ep.desc_addr = 0;
+	ep->dwc_ep.dma_desc_addr = 0;
+
+	ep->dwc_ep.aligned_buf=NULL;
+	ep->dwc_ep.aligned_buf_size=0;
+	ep->dwc_ep.aligned_dma_addr=0;
+
+
+	/* Init the usb_ep structure. */
+	ep->ep.name = names[0];
+	ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+
+	/**
+	 * @todo NGS: What should the max packet size be set to
+	 * here?  Before EP type is set?
+	 */
+	ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+	list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+	INIT_LIST_HEAD (&ep->queue);
+	/**
+	 * Initialize the EP structures.
+	 */
+	in_ep_cntr = 0;
+	hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
+
+	for (i = 1; in_ep_cntr < num_in_eps; i++)
+	{
+		if((hwcfg1 & 0x1) == 0) {
+			dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
+			in_ep_cntr ++;
+
+			/* Init EP structure */
+			ep->desc = 0;
+			ep->pcd = pcd;
+			ep->stopped = 1;
+
+			/* Init DWC ep structure */
+			ep->dwc_ep.is_in = 1;
+			ep->dwc_ep.num = i;
+			ep->dwc_ep.active = 0;
+			ep->dwc_ep.tx_fifo_num = 0;
+
+			/* Control until ep is actvated */
+			ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+			ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+			ep->dwc_ep.dma_addr = 0;
+			ep->dwc_ep.start_xfer_buff = 0;
+			ep->dwc_ep.xfer_buff = 0;
+			ep->dwc_ep.xfer_len = 0;
+			ep->dwc_ep.xfer_count = 0;
+			ep->dwc_ep.sent_zlp = 0;
+			ep->dwc_ep.total_len = 0;
+			ep->queue_sof = 0;
+			ep->dwc_ep.desc_addr = 0;
+			ep->dwc_ep.dma_desc_addr = 0;
+
+			/* Init the usb_ep structure. */
+			ep->ep.name = names[i];
+			ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+
+			/**
+			 * @todo NGS: What should the max packet size be set to
+			 * here?  Before EP type is set?
+			 */
+			ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+			//add only even number ep as in
+			if((i%2)==1)
+				list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+			INIT_LIST_HEAD (&ep->queue);
+		}
+		hwcfg1 >>= 2;
+	}
+
+	out_ep_cntr = 0;
+	hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
+
+	for (i = 1; out_ep_cntr < num_out_eps; i++)
+	{
+		if((hwcfg1 & 0x1) == 0) {
+			dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
+			out_ep_cntr++;
+
+			/* Init EP structure */
+			ep->desc = 0;
+			ep->pcd = pcd;
+			ep->stopped = 1;
+
+			/* Init DWC ep structure */
+			ep->dwc_ep.is_in = 0;
+			ep->dwc_ep.num = i;
+			ep->dwc_ep.active = 0;
+			ep->dwc_ep.tx_fifo_num = 0;
+			/* Control until ep is actvated */
+			ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+			ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+			ep->dwc_ep.dma_addr = 0;
+			ep->dwc_ep.start_xfer_buff = 0;
+			ep->dwc_ep.xfer_buff = 0;
+			ep->dwc_ep.xfer_len = 0;
+			ep->dwc_ep.xfer_count = 0;
+			ep->dwc_ep.sent_zlp = 0;
+			ep->dwc_ep.total_len = 0;
+			ep->queue_sof = 0;
+
+			/* Init the usb_ep structure. */
+			ep->ep.name = names[15 + i];
+			ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+			/**
+			 * @todo NGS: What should the max packet size be set to
+			 * here?  Before EP type is set?
+			 */
+			ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+			//add only odd number ep as out
+			if((i%2)==0)
+				list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+			INIT_LIST_HEAD (&ep->queue);
+		}
+		hwcfg1 >>= 2;
+	}
+
+	/* remove ep0 from the list.  There is a ep0 pointer.*/
+	list_del_init (&pcd->ep0.ep.ep_list);
+
+	pcd->ep0state = EP0_DISCONNECT;
+	pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
+	pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
+	pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+}
+
+/**
+ * This function releases the Gadget device.
+ * required by device_unregister().
+ *
+ * @todo Should this do something?	Should it free the PCD?
+ */
+static void dwc_otg_pcd_gadget_release(struct device *dev)
+{
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
+}
+
+
+
+/**
+ * This function initialized the PCD portion of the driver.
+ *
+ */
+u8 dev_id[]="gadget";
+int dwc_otg_pcd_init(struct platform_device *pdev)
+{
+	static char pcd_name[] = "dwc_otg_pcd";
+	dwc_otg_pcd_t *pcd;
+	dwc_otg_core_if_t* core_if;
+	dwc_otg_dev_if_t* dev_if;
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+	int retval = 0;
+
+
+	DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
+	/*
+	 * Allocate PCD structure
+	 */
+	pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
+
+	if (pcd == 0) {
+		return -ENOMEM;
+	}
+
+	memset(pcd, 0, sizeof(dwc_otg_pcd_t));
+	spin_lock_init(&pcd->lock);
+
+	otg_dev->pcd = pcd;
+	s_pcd = pcd;
+	pcd->gadget.name = pcd_name;
+
+	pcd->gadget.dev.init_name = dev_id;
+	pcd->otg_dev = platform_get_drvdata(pdev);
+
+	pcd->gadget.dev.parent = &pdev->dev;
+	pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
+	pcd->gadget.ops = &dwc_otg_pcd_ops;
+
+	core_if = GET_CORE_IF(pcd);
+	dev_if = core_if->dev_if;
+
+	if(core_if->hwcfg4.b.ded_fifo_en) {
+		DWC_PRINT("Dedicated Tx FIFOs mode\n");
+	}
+	else {
+		DWC_PRINT("Shared Tx FIFO mode\n");
+	}
+
+	/* If the module is set to FS or if the PHY_TYPE is FS then the gadget
+	 * should not report as dual-speed capable.	 replace the following line
+	 * with the block of code below it once the software is debugged for
+	 * this.  If is_dualspeed = 0 then the gadget driver should not report
+	 * a device qualifier descriptor when queried. */
+	if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
+		((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
+		 (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
+		 (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
+		pcd->gadget.is_dualspeed = 0;
+	}
+	else {
+		pcd->gadget.is_dualspeed = 1;
+	}
+
+	if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
+	(otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
+	(otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
+	(otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
+		pcd->gadget.is_otg = 0;
+	}
+	else {
+		pcd->gadget.is_otg = 1;
+	}
+
+
+	pcd->driver = 0;
+	/* Register the gadget device */
+printk("%s: 1\n",__func__);
+	retval = device_register(&pcd->gadget.dev);
+	if (retval != 0) {
+		kfree (pcd);
+printk("%s: 2\n",__func__);
+		return retval;
+	}
+
+
+	/*
+	 * Initialized the Core for Device mode.
+	 */
+	if (dwc_otg_is_device_mode(core_if)) {
+		dwc_otg_core_dev_init(core_if);
+	}
+
+	/*
+	 * Initialize EP structures
+	 */
+	dwc_otg_pcd_reinit(pcd);
+
+	/*
+	 * Register the PCD Callbacks.
+	 */
+	dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
+						pcd);
+	/*
+	 * Setup interupt handler
+	 */
+	DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
+	retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
+				IRQF_SHARED, pcd->gadget.name, pcd);
+	if (retval != 0) {
+		DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
+		device_unregister(&pcd->gadget.dev);
+		kfree (pcd);
+		return -EBUSY;
+	}
+
+	/*
+	 * Initialize the DMA buffer for SETUP packets
+	 */
+	if (GET_CORE_IF(pcd)->dma_enable) {
+		pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
+		if (pcd->setup_pkt == 0) {
+			free_irq(otg_dev->irq, pcd);
+			device_unregister(&pcd->gadget.dev);
+			kfree (pcd);
+			return -ENOMEM;
+		}
+
+		pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
+		if (pcd->status_buf == 0) {
+			dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+			free_irq(otg_dev->irq, pcd);
+			device_unregister(&pcd->gadget.dev);
+			kfree (pcd);
+			return -ENOMEM;
+		}
+
+		if (GET_CORE_IF(pcd)->dma_desc_enable) {
+			dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
+			dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
+			dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
+			dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
+
+			if(dev_if->setup_desc_addr[0] == 0
+			|| dev_if->setup_desc_addr[1] == 0
+			|| dev_if->in_desc_addr == 0
+			|| dev_if->out_desc_addr == 0 ) {
+
+				if(dev_if->out_desc_addr)
+					dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
+				if(dev_if->in_desc_addr)
+					dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
+				if(dev_if->setup_desc_addr[1])
+					dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
+				if(dev_if->setup_desc_addr[0])
+					dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
+
+
+				dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
+				dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+
+				free_irq(otg_dev->irq, pcd);
+				device_unregister(&pcd->gadget.dev);
+				kfree (pcd);
+
+				return -ENOMEM;
+			}
+		}
+	}
+	else {
+		pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
+		if (pcd->setup_pkt == 0) {
+			free_irq(otg_dev->irq, pcd);
+			device_unregister(&pcd->gadget.dev);
+			kfree (pcd);
+			return -ENOMEM;
+		}
+
+		pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
+		if (pcd->status_buf == 0) {
+			kfree(pcd->setup_pkt);
+			free_irq(otg_dev->irq, pcd);
+			device_unregister(&pcd->gadget.dev);
+			kfree (pcd);
+			return -ENOMEM;
+		}
+	}
+
+
+	/* Initialize tasklet */
+	start_xfer_tasklet.data = (unsigned long)pcd;
+	pcd->start_xfer_tasklet = &start_xfer_tasklet;
+
+	return 0;
+}
+
+/**
+ * Cleanup the PCD.
+ */
+void dwc_otg_pcd_remove(struct platform_device *pdev)
+{
+	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+	dwc_otg_pcd_t *pcd = otg_dev->pcd;
+	dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
+
+	/*
+	 * Free the IRQ
+	 */
+	free_irq(otg_dev->irq, pcd);
+
+	 /* start with the driver above us */
+	if (pcd->driver) {
+		/* should have been done already by driver model core */
+		DWC_WARN("driver '%s' is still registered\n",
+				 pcd->driver->driver.name);
+		usb_gadget_unregister_driver(pcd->driver);
+	}
+	device_unregister(&pcd->gadget.dev);
+
+	if (GET_CORE_IF(pcd)->dma_enable) {
+		dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+		dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
+		if (GET_CORE_IF(pcd)->dma_desc_enable) {
+			dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
+			dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
+			dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
+			dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
+		}
+	}
+	else {
+		kfree (pcd->setup_pkt);
+		kfree (pcd->status_buf);
+	}
+
+	kfree(pcd);
+	otg_dev->pcd = 0;
+}
+
+/**
+ * This function registers a gadget driver with the PCD.
+ *
+ * When a driver is successfully registered, it will receive control
+ * requests including set_configuration(), which enables non-control
+ * requests.  then usb traffic follows until a disconnect is reported.
+ * then a host may connect again, or the driver might get unbound.
+ *
+ * @param driver The driver being registered
+ */
+int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
+	int (*bind)(struct usb_gadget *))
+{
+	int retval;
+
+	DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
+
+	if (!driver || driver->speed == USB_SPEED_UNKNOWN ||
+		!bind ||
+		!driver->unbind ||
+		!driver->disconnect ||
+		!driver->setup) {
+		DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
+		return -EINVAL;
+	}
+	if (s_pcd == 0) {
+		DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
+		return -ENODEV;
+	}
+	if (s_pcd->driver != 0) {
+		DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
+		return -EBUSY;
+	}
+
+	/* hook up the driver */
+	s_pcd->driver = driver;
+	s_pcd->gadget.dev.driver = &driver->driver;
+
+	DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
+	retval = bind(&s_pcd->gadget);
+	if (retval) {
+		DWC_ERROR("bind to driver %s --> error %d\n",
+					driver->driver.name, retval);
+		s_pcd->driver = 0;
+		s_pcd->gadget.dev.driver = 0;
+		return retval;
+	}
+	DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
+					driver->driver.name);
+	return 0;
+}
+
+EXPORT_SYMBOL(usb_gadget_probe_driver);
+
+/**
+ * This function unregisters a gadget driver
+ *
+ * @param driver The driver being unregistered
+ */
+int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
+{
+	//DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
+
+	if (s_pcd == 0) {
+		DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
+				-ENODEV);
+		return -ENODEV;
+	}
+	if (driver == 0 || driver != s_pcd->driver) {
+		DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
+				-EINVAL);
+		return -EINVAL;
+	}
+
+	driver->unbind(&s_pcd->gadget);
+	s_pcd->driver = 0;
+
+	DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
+			driver->driver.name);
+	return 0;
+}
+EXPORT_SYMBOL(usb_gadget_unregister_driver);
+
+#endif /* DWC_HOST_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_pcd.h
@@ -0,0 +1,292 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
+ * $Revision: #36 $
+ * $Date: 2008/09/26 $
+ * $Change: 1103515 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+#if !defined(__DWC_PCD_H__)
+#define __DWC_PCD_H__
+
+#include <linux/types.h>
+#include <linux/list.h>
+#include <linux/errno.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+
+#include <linux/usb/ch9.h>
+#include <linux/usb/gadget.h>
+
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+
+struct dwc_otg_device;
+
+#include "otg_cil.h"
+
+/**
+ * @file
+ *
+ * This file contains the structures, constants, and interfaces for
+ * the Perpherial Contoller Driver (PCD).
+ *
+ * The Peripheral Controller Driver (PCD) for Linux will implement the
+ * Gadget API, so that the existing Gadget drivers can be used.	 For
+ * the Mass Storage Function driver the File-backed USB Storage Gadget
+ * (FBS) driver will be used.  The FBS driver supports the
+ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
+ * transports.
+ *
+ */
+
+/** Invalid DMA Address */
+#define DMA_ADDR_INVALID	(~(dma_addr_t)0)
+/** Maxpacket size for EP0 */
+#define MAX_EP0_SIZE	64
+/** Maxpacket size for any EP */
+#define MAX_PACKET_SIZE 1024
+
+/** Max Transfer size for any EP */
+#define MAX_TRANSFER_SIZE 65535
+
+/** Max DMA Descriptor count for any EP */
+#define MAX_DMA_DESC_CNT 64
+
+/**
+ * Get the pointer to the core_if from the pcd pointer.
+ */
+#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
+
+/**
+ * States of EP0.
+ */
+typedef enum ep0_state
+{
+	EP0_DISCONNECT,		/* no host */
+	EP0_IDLE,
+	EP0_IN_DATA_PHASE,
+	EP0_OUT_DATA_PHASE,
+	EP0_IN_STATUS_PHASE,
+	EP0_OUT_STATUS_PHASE,
+	EP0_STALL,
+} ep0state_e;
+
+/** Fordward declaration.*/
+struct dwc_otg_pcd;
+
+/** DWC_otg iso request structure.
+ *
+ */
+typedef struct usb_iso_request  dwc_otg_pcd_iso_request_t;
+
+/**	  PCD EP structure.
+ * This structure describes an EP, there is an array of EPs in the PCD
+ * structure.
+ */
+typedef struct dwc_otg_pcd_ep
+{
+	/** USB EP data */
+	struct usb_ep		ep;
+	/** USB EP Descriptor */
+	const struct usb_endpoint_descriptor	*desc;
+
+	/** queue of dwc_otg_pcd_requests. */
+	struct list_head	queue;
+	unsigned stopped : 1;
+	unsigned disabling : 1;
+	unsigned dma : 1;
+	unsigned queue_sof : 1;
+
+#ifdef DWC_EN_ISOC
+	/** DWC_otg Isochronous Transfer */
+	struct usb_iso_request* iso_req;
+#endif //DWC_EN_ISOC
+
+	/** DWC_otg ep data. */
+	dwc_ep_t dwc_ep;
+
+	/** Pointer to PCD */
+	struct dwc_otg_pcd *pcd;
+}dwc_otg_pcd_ep_t;
+
+
+
+/** DWC_otg PCD Structure.
+ * This structure encapsulates the data for the dwc_otg PCD.
+ */
+typedef struct dwc_otg_pcd
+{
+	/** USB gadget */
+	struct usb_gadget gadget;
+	/** USB gadget driver pointer*/
+	struct usb_gadget_driver *driver;
+	/** The DWC otg device pointer. */
+	struct dwc_otg_device *otg_dev;
+
+	/** State of EP0 */
+	ep0state_e	ep0state;
+	/** EP0 Request is pending */
+	unsigned	ep0_pending : 1;
+	/** Indicates when SET CONFIGURATION Request is in process */
+	unsigned	request_config : 1;
+	/** The state of the Remote Wakeup Enable. */
+	unsigned	remote_wakeup_enable : 1;
+	/** The state of the B-Device HNP Enable. */
+	unsigned	b_hnp_enable : 1;
+	/** The state of A-Device HNP Support. */
+	unsigned	a_hnp_support : 1;
+	/** The state of the A-Device Alt HNP support. */
+	unsigned	a_alt_hnp_support : 1;
+	/** Count of pending Requests */
+	unsigned	request_pending;
+
+		/** SETUP packet for EP0
+	 * This structure is allocated as a DMA buffer on PCD initialization
+	 * with enough space for up to 3 setup packets.
+	 */
+	union
+	{
+			struct usb_ctrlrequest	req;
+			uint32_t	d32[2];
+	} *setup_pkt;
+
+	dma_addr_t setup_pkt_dma_handle;
+
+	/** 2-byte dma buffer used to return status from GET_STATUS */
+	uint16_t *status_buf;
+	dma_addr_t status_buf_dma_handle;
+
+	/** EP0 */
+	dwc_otg_pcd_ep_t ep0;
+
+	/** Array of IN EPs. */
+	dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
+	/** Array of OUT EPs. */
+	dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
+	/** number of valid EPs in the above array. */
+//	  unsigned	num_eps : 4;
+	spinlock_t	lock;
+	/** Timer for SRP.	If it expires before SRP is successful
+	 * clear the SRP. */
+	struct timer_list srp_timer;
+
+	/** Tasklet to defer starting of TEST mode transmissions until
+	 *	Status Phase has been completed.
+	 */
+	struct tasklet_struct test_mode_tasklet;
+
+	/** Tasklet to delay starting of xfer in DMA mode */
+	struct tasklet_struct *start_xfer_tasklet;
+
+	/** The test mode to enter when the tasklet is executed. */
+	unsigned test_mode;
+
+} dwc_otg_pcd_t;
+
+
+/** DWC_otg request structure.
+ * This structure is a list of requests.
+ */
+typedef struct
+{
+	struct usb_request	req; /**< USB Request. */
+	struct list_head	queue;	/**< queue of these requests. */
+} dwc_otg_pcd_request_t;
+
+
+extern int dwc_otg_pcd_init(struct platform_device *pdev);
+
+//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
+extern void dwc_otg_pcd_remove( struct platform_device *pdev );
+extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
+extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
+
+extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
+extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
+
+extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
+extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
+				int status);
+extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
+extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
+					const unsigned reset);
+#ifndef VERBOSE
+#define VERIFY_PCD_DMA_ADDR(_addr_) 	BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
+				       ((_addr_)==0)||\
+				       ((_addr_)&0x3))
+#else
+#define VERIFY_PCD_DMA_ADDR(_addr_) 	{\
+						if(((_addr_)==DMA_ADDR_INVALID)||\
+						       ((_addr_)==0)||\
+						       ((_addr_)&0x3)) {\
+							printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
+							BUG();\
+						}\
+					}
+#endif
+
+
+static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
+//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
+	dwc_ep_t *dwc_ep=&ep->dwc_ep;
+
+DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
+	if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
+		if((((u32)dwc_ep->xfer_buff)&0x3)==0){
+			dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
+DWC_DEBUGPL(DBG_PCDV,"    got dma_addr=%.8x\n",dwc_ep->dma_addr);
+		}else{
+DWC_DEBUGPL(DBG_PCDV,"    buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
+			if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
+				if(dwc_ep->aligned_buf){
+//printk("    free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
+					//dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
+					kfree(dwc_ep->aligned_buf);
+				}
+				dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
+				//dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
+				dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
+				dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
+				if(!dwc_ep->aligned_buf){
+					DWC_ERROR("Cannot alloc required buffer!!\n");
+					BUG();
+				}
+DWC_DEBUGPL(DBG_PCDV,"    dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
+			}
+			dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
+			if(dwc_ep->is_in) {
+				memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
+				dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
+			}
+		}
+	}
+}
+
+#endif
+#endif /* DWC_HOST_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_pcd_intr.c
@@ -0,0 +1,3682 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
+ * $Revision: #83 $
+ * $Date: 2008/10/14 $
+ * $Change: 1115682 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+#include <linux/pci.h>
+
+#include "otg_driver.h"
+#include "otg_pcd.h"
+
+
+#define DEBUG_EP0
+
+
+/* request functions defined in "dwc_otg_pcd.c" */
+
+/** @file
+ * This file contains the implementation of the PCD Interrupt handlers.
+ *
+ * The PCD handles the device interrupts.  Many conditions can cause a
+ * device interrupt. When an interrupt occurs, the device interrupt
+ * service routine determines the cause of the interrupt and
+ * dispatches handling to the appropriate function. These interrupt
+ * handling functions are described below.
+ * All interrupt registers are processed from LSB to MSB.
+ */
+
+
+/**
+ * This function prints the ep0 state for debug purposes.
+ */
+static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
+{
+#ifdef DEBUG
+	char str[40];
+
+	switch (pcd->ep0state) {
+	case EP0_DISCONNECT:
+		strcpy(str, "EP0_DISCONNECT");
+		break;
+	case EP0_IDLE:
+		strcpy(str, "EP0_IDLE");
+		break;
+	case EP0_IN_DATA_PHASE:
+		strcpy(str, "EP0_IN_DATA_PHASE");
+		break;
+	case EP0_OUT_DATA_PHASE:
+		strcpy(str, "EP0_OUT_DATA_PHASE");
+		break;
+	case EP0_IN_STATUS_PHASE:
+		strcpy(str,"EP0_IN_STATUS_PHASE");
+		break;
+	case EP0_OUT_STATUS_PHASE:
+		strcpy(str,"EP0_OUT_STATUS_PHASE");
+		break;
+	case EP0_STALL:
+		strcpy(str,"EP0_STALL");
+		break;
+	default:
+		strcpy(str,"EP0_INVALID");
+	}
+
+	DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
+#endif
+}
+
+/**
+ * This function returns pointer to in ep struct with number ep_num
+ */
+static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
+{
+	int i;
+	int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
+	if(ep_num == 0) {
+		return &pcd->ep0;
+	}
+	else {
+		for(i = 0; i < num_in_eps; ++i)
+		{
+			if(pcd->in_ep[i].dwc_ep.num == ep_num)
+				return &pcd->in_ep[i];
+		}
+		return 0;
+	}
+}
+/**
+ * This function returns pointer to out ep struct with number ep_num
+ */
+static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
+{
+	int i;
+	int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
+	if(ep_num == 0) {
+		return &pcd->ep0;
+	}
+	else {
+		for(i = 0; i < num_out_eps; ++i)
+		{
+			if(pcd->out_ep[i].dwc_ep.num == ep_num)
+				return &pcd->out_ep[i];
+		}
+		return 0;
+	}
+}
+/**
+ * This functions gets a pointer to an EP from the wIndex address
+ * value of the control request.
+ */
+static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
+{
+	dwc_otg_pcd_ep_t	*ep;
+
+	if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
+		return &pcd->ep0;
+	list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
+	{
+		u8	bEndpointAddress;
+
+		if (!ep->desc)
+			continue;
+
+		bEndpointAddress = ep->desc->bEndpointAddress;
+		if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
+			== (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
+			return ep;
+	}
+	return NULL;
+}
+
+/**
+ * This function checks the EP request queue, if the queue is not
+ * empty the next request is started.
+ */
+void start_next_request(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_otg_pcd_request_t *req = 0;
+	uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
+	if (!list_empty(&ep->queue)) {
+		req = list_entry(ep->queue.next,
+			   dwc_otg_pcd_request_t, queue);
+
+		/* Setup and start the Transfer */
+		ep->dwc_ep.dma_addr = req->req.dma;
+		ep->dwc_ep.start_xfer_buff = req->req.buf;
+		ep->dwc_ep.xfer_buff = req->req.buf;
+		ep->dwc_ep.sent_zlp = 0;
+		ep->dwc_ep.total_len = req->req.length;
+		ep->dwc_ep.xfer_len = 0;
+		ep->dwc_ep.xfer_count = 0;
+
+		if(max_transfer > MAX_TRANSFER_SIZE) {
+			ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
+		} else {
+			ep->dwc_ep.maxxfer = max_transfer;
+		}
+
+		if(req->req.zero) {
+			if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
+					&& (ep->dwc_ep.total_len != 0)) {
+				ep->dwc_ep.sent_zlp = 1;
+			}
+
+		}
+	 	ep_check_and_patch_dma_addr(ep);
+		dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
+	}
+}
+
+/**
+ * This function handles the SOF Interrupts. At this time the SOF
+ * Interrupt is disabled.
+ */
+int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+
+	gintsts_data_t gintsts;
+
+	DWC_DEBUGPL(DBG_PCD, "SOF\n");
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.sofintr = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+
+/**
+ * This function handles the Rx Status Queue Level Interrupt, which
+ * indicates that there is a least one packet in the Rx FIFO.  The
+ * packets are moved from the FIFO to memory, where they will be
+ * processed when the Endpoint Interrupt Register indicates Transfer
+ * Complete or SETUP Phase Done.
+ *
+ * Repeat the following until the Rx Status Queue is empty:
+ *	 -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
+ *		info
+ *	 -# If Receive FIFO is empty then skip to step Clear the interrupt
+ *		and exit
+ *	 -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
+ *		SETUP data to the buffer
+ *	 -# If OUT Data Packet call dwc_otg_read_packet to copy the data
+ *		to the destination buffer
+ */
+int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+	gintmsk_data_t gintmask = {.d32=0};
+	device_grxsts_data_t status;
+	dwc_otg_pcd_ep_t *ep;
+	gintsts_data_t gintsts;
+#ifdef DEBUG
+	static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
+#endif
+
+	//DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
+	/* Disable the Rx Status Queue Level interrupt */
+	gintmask.b.rxstsqlvl= 1;
+	dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
+
+	/* Get the Status from the top of the FIFO */
+	status.d32 = dwc_read_reg32(&global_regs->grxstsp);
+
+	DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
+					"pktsts:%x Frame:%d(0x%0x)\n",
+					status.b.epnum, status.b.bcnt,
+					dpid_str[status.b.dpid],
+					status.b.pktsts, status.b.fn, status.b.fn);
+	/* Get pointer to EP structure */
+	ep = get_out_ep(pcd, status.b.epnum);
+
+	switch (status.b.pktsts) {
+	case DWC_DSTS_GOUT_NAK:
+		DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
+		break;
+	case DWC_STS_DATA_UPDT:
+		DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
+		if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
+			/** @todo NGS Check for buffer overflow? */
+			dwc_otg_read_packet(core_if,
+						 ep->dwc_ep.xfer_buff,
+						 status.b.bcnt);
+			ep->dwc_ep.xfer_count += status.b.bcnt;
+			ep->dwc_ep.xfer_buff += status.b.bcnt;
+		}
+		break;
+	case DWC_STS_XFER_COMP:
+		DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
+		break;
+	case DWC_DSTS_SETUP_COMP:
+#ifdef DEBUG_EP0
+		DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
+#endif
+		break;
+case DWC_DSTS_SETUP_UPDT:
+		dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
+#ifdef DEBUG_EP0
+		DWC_DEBUGPL(DBG_PCD,
+				"SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
+				pcd->setup_pkt->req.bRequestType,
+				pcd->setup_pkt->req.bRequest,
+				pcd->setup_pkt->req.wValue,
+				pcd->setup_pkt->req.wIndex,
+				pcd->setup_pkt->req.wLength);
+#endif
+		ep->dwc_ep.xfer_count += status.b.bcnt;
+		break;
+	default:
+		DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
+				status.b.pktsts);
+		break;
+	}
+
+	/* Enable the Rx Status Queue Level interrupt */
+	dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.rxstsqlvl = 1;
+	dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
+
+	//DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
+	return 1;
+}
+/**
+ * This function examines the Device IN Token Learning Queue to
+ * determine the EP number of the last IN token received.  This
+ * implementation is for the Mass Storage device where there are only
+ * 2 IN EPs (Control-IN and BULK-IN).
+ *
+ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
+ * are 8 EP Numbers in each of the other possible DTKNQ Registers.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ *
+ */
+static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
+{
+	dwc_otg_device_global_regs_t *dev_global_regs =
+			core_if->dev_if->dev_global_regs;
+	const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
+	/* Number of Token Queue Registers */
+	const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
+	dtknq1_data_t dtknqr1;
+	uint32_t in_tkn_epnums[4];
+	int ndx = 0;
+	int i = 0;
+	volatile uint32_t *addr = &dev_global_regs->dtknqr1;
+	int epnum = 0;
+
+	//DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
+
+	/* Read the DTKNQ Registers */
+	for (i = 0; i < DTKNQ_REG_CNT; i++)
+	{
+		in_tkn_epnums[ i ] = dwc_read_reg32(addr);
+		DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
+				in_tkn_epnums[i]);
+		if (addr == &dev_global_regs->dvbusdis) {
+			addr = &dev_global_regs->dtknqr3_dthrctl;
+		}
+		else {
+			++addr;
+		}
+	}
+
+	/* Copy the DTKNQR1 data to the bit field. */
+	dtknqr1.d32 = in_tkn_epnums[0];
+	/* Get the EP numbers */
+	in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
+	ndx = dtknqr1.b.intknwptr - 1;
+
+	//DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
+	if (ndx == -1) {
+		/** @todo Find a simpler way to calculate the max
+		 * queue position.*/
+		int cnt = TOKEN_Q_DEPTH;
+		if (TOKEN_Q_DEPTH <= 6) {
+			cnt = TOKEN_Q_DEPTH - 1;
+		}
+		else if (TOKEN_Q_DEPTH <= 14) {
+			cnt = TOKEN_Q_DEPTH - 7;
+		}
+		else if (TOKEN_Q_DEPTH <= 22) {
+			cnt = TOKEN_Q_DEPTH - 15;
+		}
+		else {
+			cnt = TOKEN_Q_DEPTH - 23;
+		}
+		epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
+	}
+	else {
+		if (ndx <= 5) {
+			epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
+		}
+		else if (ndx <= 13) {
+			ndx -= 6;
+			epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
+		}
+		else if (ndx <= 21) {
+			ndx -= 14;
+			epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
+		}
+		else if (ndx <= 29) {
+			ndx -= 22;
+			epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
+		}
+	}
+	//DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
+	return epnum;
+}
+
+/**
+ * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
+ * The active request is checked for the next packet to be loaded into
+ * the non-periodic Tx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_core_global_regs_t *global_regs =
+			core_if->core_global_regs;
+	dwc_otg_dev_in_ep_regs_t *ep_regs;
+	gnptxsts_data_t txstatus = {.d32 = 0};
+	gintsts_data_t gintsts;
+
+	int epnum = 0;
+	dwc_otg_pcd_ep_t *ep = 0;
+	uint32_t len = 0;
+	int dwords;
+
+	/* Get the epnum from the IN Token Learning Queue. */
+	epnum = get_ep_of_last_in_token(core_if);
+	ep = get_in_ep(pcd, epnum);
+
+	DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
+	ep_regs = core_if->dev_if->in_ep_regs[epnum];
+
+	len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+	if (len > ep->dwc_ep.maxpacket) {
+		len = ep->dwc_ep.maxpacket;
+	}
+	dwords = (len + 3)/4;
+
+	/* While there is space in the queue and space in the FIFO and
+	* More data to tranfer, Write packets to the Tx FIFO */
+	txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+	DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
+
+	while  (txstatus.b.nptxqspcavail > 0 &&
+		txstatus.b.nptxfspcavail > dwords &&
+		ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
+		/* Write the FIFO */
+		dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
+		len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+
+		if (len > ep->dwc_ep.maxpacket) {
+			len = ep->dwc_ep.maxpacket;
+		}
+
+		dwords = (len + 3)/4;
+		txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+		DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
+	}
+
+	DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
+			dwc_read_reg32(&global_regs->gnptxsts));
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.nptxfempty = 1;
+	dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This function is called when dedicated Tx FIFO Empty interrupt occurs.
+ * The active request is checked for the next packet to be loaded into
+ * apropriate Tx FIFO.
+ */
+static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t* dev_if = core_if->dev_if;
+	dwc_otg_dev_in_ep_regs_t *ep_regs;
+	dtxfsts_data_t txstatus = {.d32 = 0};
+	dwc_otg_pcd_ep_t *ep = 0;
+	uint32_t len = 0;
+	int dwords;
+
+	ep = get_in_ep(pcd, epnum);
+
+	DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
+
+	ep_regs = core_if->dev_if->in_ep_regs[epnum];
+
+	len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+
+	if (len > ep->dwc_ep.maxpacket) {
+		len = ep->dwc_ep.maxpacket;
+	}
+
+	dwords = (len + 3)/4;
+
+	/* While there is space in the queue and space in the FIFO and
+	 * More data to tranfer, Write packets to the Tx FIFO */
+	txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
+	DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
+
+	while  (txstatus.b.txfspcavail > dwords &&
+		ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
+		ep->dwc_ep.xfer_len != 0) {
+		/* Write the FIFO */
+		dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
+
+		len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+		if (len > ep->dwc_ep.maxpacket) {
+			len = ep->dwc_ep.maxpacket;
+		}
+
+		dwords = (len + 3)/4;
+		txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
+		DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
+	}
+
+	DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
+
+	return 1;
+}
+
+/**
+ * This function is called when the Device is disconnected. It stops
+ * any active requests and informs the Gadget driver of the
+ * disconnect.
+ */
+void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
+{
+	int i, num_in_eps, num_out_eps;
+	dwc_otg_pcd_ep_t *ep;
+
+	gintmsk_data_t intr_mask = {.d32 = 0};
+
+	num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
+	num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
+	/* don't disconnect drivers more than once */
+	if (pcd->ep0state == EP0_DISCONNECT) {
+		DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
+		return;
+	}
+	pcd->ep0state = EP0_DISCONNECT;
+
+	/* Reset the OTG state. */
+	dwc_otg_pcd_update_otg(pcd, 1);
+
+	/* Disable the NP Tx Fifo Empty Interrupt. */
+	intr_mask.b.nptxfempty = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+					 intr_mask.d32, 0);
+
+	/* Flush the FIFOs */
+	/**@todo NGS Flush Periodic FIFOs */
+	dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
+	dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
+
+	/* prevent new request submissions, kill any outstanding requests  */
+	ep = &pcd->ep0;
+	dwc_otg_request_nuke(ep);
+	/* prevent new request submissions, kill any outstanding requests  */
+	for (i = 0; i < num_in_eps; i++)
+	{
+		dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
+		dwc_otg_request_nuke(ep);
+	}
+	/* prevent new request submissions, kill any outstanding requests  */
+	for (i = 0; i < num_out_eps; i++)
+	{
+		dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
+		dwc_otg_request_nuke(ep);
+	}
+
+	/* report disconnect; the driver is already quiesced */
+	if (pcd->driver && pcd->driver->disconnect) {
+		SPIN_UNLOCK(&pcd->lock);
+		pcd->driver->disconnect(&pcd->gadget);
+		SPIN_LOCK(&pcd->lock);
+	}
+}
+
+/**
+ * This interrupt indicates that ...
+ */
+int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
+{
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	gintsts_data_t gintsts;
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
+	intr_mask.b.i2cintr = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+				intr_mask.d32, 0);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.i2cintr = 1;
+	dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+						 gintsts.d32);
+	return 1;
+}
+
+
+/**
+ * This interrupt indicates that ...
+ */
+int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
+{
+	gintsts_data_t gintsts;
+#if defined(VERBOSE)
+	DWC_PRINT("Early Suspend Detected\n");
+#endif
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.erlysuspend = 1;
+	dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+				gintsts.d32);
+	return 1;
+}
+
+/**
+ * This function configures EPO to receive SETUP packets.
+ *
+ * @todo NGS: Update the comments from the HW FS.
+ *
+ *	-# Program the following fields in the endpoint specific registers
+ *	for Control OUT EP 0, in order to receive a setup packet
+ *	- DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
+ *	  setup packets)
+ *	- DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
+ *	  to back setup packets)
+ *		- In DMA mode, DOEPDMA0 Register with a memory address to
+ *		  store any setup packets received
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param pcd	  Programming view of the PCD.
+ */
+static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	deptsiz0_data_t doeptsize0 = { .d32 = 0};
+	dwc_otg_dma_desc_t* dma_desc;
+	depctl_data_t doepctl = { .d32 = 0 };
+
+#ifdef VERBOSE
+	DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
+				dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+#endif
+
+	doeptsize0.b.supcnt = 3;
+	doeptsize0.b.pktcnt = 1;
+	doeptsize0.b.xfersize = 8*3;
+
+	if (core_if->dma_enable) {
+		if (!core_if->dma_desc_enable) {
+			/** put here as for Hermes mode deptisz register should not be written */
+			dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
+			 doeptsize0.d32);
+
+			/** @todo dma needs to handle multiple setup packets (up to 3) */
+			VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
+
+			dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
+			pcd->setup_pkt_dma_handle);
+		} else {
+			dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
+			dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
+
+			/** DMA Descriptor Setup */
+			dma_desc->status.b.bs = BS_HOST_BUSY;
+			dma_desc->status.b.l = 1;
+			dma_desc->status.b.ioc = 1;
+			dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
+			dma_desc->buf = pcd->setup_pkt_dma_handle;
+			dma_desc->status.b.bs = BS_HOST_READY;
+
+			/** DOEPDMA0 Register write */
+			VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
+			dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
+		}
+
+	} else {
+		/** put here as for Hermes mode deptisz register should not be written */
+		dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
+					 doeptsize0.d32);
+	}
+
+	/** DOEPCTL0 Register write */
+	doepctl.b.epena = 1;
+	doepctl.b.cnak = 1;
+	dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
+
+#ifdef VERBOSE
+	DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
+				dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+	DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
+				dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
+#endif
+}
+
+/**
+ * This interrupt occurs when a USB Reset is detected.	When the USB
+ * Reset Interrupt occurs the device state is set to DEFAULT and the
+ * EP0 state is set to IDLE.
+ *	-#	Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
+ *	-#	Unmask the following interrupt bits
+ *		- DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
+ *	- DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
+ *	- DOEPMSK.SETUP = 1
+ *	- DOEPMSK.XferCompl = 1
+ *	- DIEPMSK.XferCompl = 1
+ *	- DIEPMSK.TimeOut = 1
+ *	-# Program the following fields in the endpoint specific registers
+ *	for Control OUT EP 0, in order to receive a setup packet
+ *	- DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
+ *	  setup packets)
+ *	- DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
+ *	  to back setup packets)
+ *		- In DMA mode, DOEPDMA0 Register with a memory address to
+ *		  store any setup packets received
+ * At this point, all the required initialization, except for enabling
+ * the control 0 OUT endpoint is done, for receiving SETUP packets.
+ */
+int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	depctl_data_t doepctl = { .d32 = 0};
+
+	daint_data_t daintmsk = { .d32 = 0};
+	doepmsk_data_t doepmsk = { .d32 = 0};
+	diepmsk_data_t diepmsk = { .d32 = 0};
+
+	dcfg_data_t dcfg = { .d32=0 };
+	grstctl_t resetctl = { .d32=0 };
+	dctl_data_t dctl = {.d32=0};
+	int i = 0;
+	gintsts_data_t gintsts;
+
+	DWC_PRINT("USB RESET\n");
+#ifdef DWC_EN_ISOC
+	for(i = 1;i < 16; ++i)
+	{
+		dwc_otg_pcd_ep_t *ep;
+		dwc_ep_t *dwc_ep;
+		ep = get_in_ep(pcd,i);
+		if(ep != 0){
+			dwc_ep = &ep->dwc_ep;
+			dwc_ep->next_frame = 0xffffffff;
+		}
+	}
+#endif /* DWC_EN_ISOC  */
+
+	/* reset the HNP settings */
+	dwc_otg_pcd_update_otg(pcd, 1);
+
+	/* Clear the Remote Wakeup Signalling */
+	dctl.b.rmtwkupsig = 1;
+	dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
+					  dctl.d32, 0);
+
+	/* Set NAK for all OUT EPs */
+	doepctl.b.snak = 1;
+	for (i=0; i <= dev_if->num_out_eps; i++)
+	{
+		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
+						 doepctl.d32);
+	}
+
+	/* Flush the NP Tx FIFO */
+	dwc_otg_flush_tx_fifo(core_if, 0x10);
+	/* Flush the Learning Queue */
+	resetctl.b.intknqflsh = 1;
+	dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
+
+	if(core_if->multiproc_int_enable) {
+		daintmsk.b.inep0 = 1;
+		daintmsk.b.outep0 = 1;
+		dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
+
+		doepmsk.b.setup = 1;
+		doepmsk.b.xfercompl = 1;
+		doepmsk.b.ahberr = 1;
+		doepmsk.b.epdisabled = 1;
+
+		if(core_if->dma_desc_enable) {
+			doepmsk.b.stsphsercvd = 1;
+			doepmsk.b.bna = 1;
+		}
+/*
+		doepmsk.b.babble = 1;
+		doepmsk.b.nyet = 1;
+
+		if(core_if->dma_enable) {
+			doepmsk.b.nak = 1;
+		}
+*/
+		dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
+
+		diepmsk.b.xfercompl = 1;
+		diepmsk.b.timeout = 1;
+		diepmsk.b.epdisabled = 1;
+		diepmsk.b.ahberr = 1;
+		diepmsk.b.intknepmis = 1;
+
+		if(core_if->dma_desc_enable) {
+			diepmsk.b.bna = 1;
+		}
+/*
+		if(core_if->dma_enable) {
+			diepmsk.b.nak = 1;
+		}
+*/
+		dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
+	} else{
+		daintmsk.b.inep0 = 1;
+		daintmsk.b.outep0 = 1;
+		dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
+
+		doepmsk.b.setup = 1;
+		doepmsk.b.xfercompl = 1;
+		doepmsk.b.ahberr = 1;
+		doepmsk.b.epdisabled = 1;
+
+		if(core_if->dma_desc_enable) {
+			doepmsk.b.stsphsercvd = 1;
+			doepmsk.b.bna = 1;
+		}
+/*
+		doepmsk.b.babble = 1;
+		doepmsk.b.nyet = 1;
+		doepmsk.b.nak = 1;
+*/
+		dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
+
+		diepmsk.b.xfercompl = 1;
+		diepmsk.b.timeout = 1;
+		diepmsk.b.epdisabled = 1;
+		diepmsk.b.ahberr = 1;
+		diepmsk.b.intknepmis = 1;
+
+		if(core_if->dma_desc_enable) {
+			diepmsk.b.bna = 1;
+		}
+
+//		diepmsk.b.nak = 1;
+
+		dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
+	}
+
+	/* Reset Device Address */
+	dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
+	dcfg.b.devaddr = 0;
+	dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
+
+	/* setup EP0 to receive SETUP packets */
+	ep0_out_start(core_if, pcd);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.usbreset = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * Get the device speed from the device status register and convert it
+ * to USB speed constant.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static int get_device_speed(dwc_otg_core_if_t *core_if)
+{
+	dsts_data_t dsts;
+	enum usb_device_speed speed = USB_SPEED_UNKNOWN;
+	dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+	switch (dsts.b.enumspd) {
+	case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
+		speed = USB_SPEED_HIGH;
+		break;
+	case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
+	case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
+		speed = USB_SPEED_FULL;
+		break;
+
+	case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
+		speed = USB_SPEED_LOW;
+		break;
+	}
+
+	return speed;
+}
+
+/**
+ * Read the device status register and set the device speed in the
+ * data structure.
+ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
+ */
+int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+	gintsts_data_t gintsts;
+	gusbcfg_data_t gusbcfg;
+	dwc_otg_core_global_regs_t *global_regs =
+		GET_CORE_IF(pcd)->core_global_regs;
+	uint8_t utmi16b, utmi8b;
+//	DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
+	DWC_PRINT("SPEED ENUM\n");
+
+	if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
+		utmi16b = 6;
+		utmi8b = 9;
+	} else {
+		utmi16b = 4;
+		utmi8b = 8;
+	}
+	dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+#ifdef DEBUG_EP0
+	print_ep0_state(pcd);
+#endif
+
+	if (pcd->ep0state == EP0_DISCONNECT) {
+		pcd->ep0state = EP0_IDLE;
+	}
+	else if (pcd->ep0state == EP0_STALL) {
+		pcd->ep0state = EP0_IDLE;
+	}
+
+	pcd->ep0state = EP0_IDLE;
+
+	ep0->stopped = 0;
+
+	pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
+
+	/* Set USB turnaround time based on device speed and PHY interface. */
+	gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+	if (pcd->gadget.speed == USB_SPEED_HIGH) {
+		if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
+			/* ULPI interface */
+			gusbcfg.b.usbtrdtim = 9;
+		}
+		if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
+			/* UTMI+ interface */
+			if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
+				gusbcfg.b.usbtrdtim = utmi8b;
+			}
+			else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
+				gusbcfg.b.usbtrdtim = utmi16b;
+			}
+			else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
+				gusbcfg.b.usbtrdtim = utmi8b;
+			}
+			else {
+				gusbcfg.b.usbtrdtim = utmi16b;
+			}
+		}
+		if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
+			/* UTMI+  OR  ULPI interface */
+			if (gusbcfg.b.ulpi_utmi_sel == 1) {
+				/* ULPI interface */
+				gusbcfg.b.usbtrdtim = 9;
+			}
+			else {
+				/* UTMI+ interface */
+				if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
+					gusbcfg.b.usbtrdtim = utmi16b;
+				}
+				else {
+					gusbcfg.b.usbtrdtim = utmi8b;
+				}
+			}
+		}
+	}
+	else {
+		/* Full or low speed */
+		gusbcfg.b.usbtrdtim = 9;
+	}
+	dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.enumdone = 1;
+	dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+			 gintsts.d32);
+	return 1;
+}
+
+/**
+ * This interrupt indicates that the ISO OUT Packet was dropped due to
+ * Rx FIFO full or Rx Status Queue Full.  If this interrupt occurs
+ * read all the data from the Rx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
+{
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	gintsts_data_t gintsts;
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+			  "ISOC Out Dropped");
+
+	intr_mask.b.isooutdrop = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+			  intr_mask.d32, 0);
+
+	/* Clear interrupt */
+
+	gintsts.d32 = 0;
+	gintsts.b.isooutdrop = 1;
+	dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+			 gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This interrupt indicates the end of the portion of the micro-frame
+ * for periodic transactions.  If there is a periodic transaction for
+ * the next frame, load the packets into the EP periodic Tx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
+{
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	gintsts_data_t gintsts;
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
+
+	intr_mask.b.eopframe = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+					  intr_mask.d32, 0);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.eopframe = 1;
+	dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This interrupt indicates that EP of the packet on the top of the
+ * non-periodic Tx FIFO does not match EP of the IN Token received.
+ *
+ * The "Device IN Token Queue" Registers are read to determine the
+ * order the IN Tokens have been received.	The non-periodic Tx FIFO
+ * is flushed, so it can be reloaded in the order seen in the IN Token
+ * Queue.
+ */
+int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
+{
+	gintsts_data_t gintsts;
+	DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.epmismatch = 1;
+	dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This funcion stalls EP0.
+ */
+static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
+{
+	dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+	struct usb_ctrlrequest	*ctrl = &pcd->setup_pkt->req;
+	DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
+			 ctrl->bRequestType, ctrl->bRequest, err_val);
+
+	ep0->dwc_ep.is_in = 1;
+	dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
+	pcd->ep0.stopped = 1;
+	pcd->ep0state = EP0_IDLE;
+	ep0_out_start(GET_CORE_IF(pcd), pcd);
+}
+
+/**
+ * This functions delegates the setup command to the gadget driver.
+ */
+static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
+					struct usb_ctrlrequest * ctrl)
+{
+	int ret = 0;
+	if (pcd->driver && pcd->driver->setup) {
+		SPIN_UNLOCK(&pcd->lock);
+		ret = pcd->driver->setup(&pcd->gadget, ctrl);
+		SPIN_LOCK(&pcd->lock);
+		if (ret < 0) {
+			ep0_do_stall(pcd, ret);
+		}
+
+		/** @todo This is a g_file_storage gadget driver specific
+		 * workaround: a DELAYED_STATUS result from the fsg_setup
+		 * routine will result in the gadget queueing a EP0 IN status
+		 * phase for a two-stage control transfer.	Exactly the same as
+		 * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
+		 * specific request.  Need a generic way to know when the gadget
+		 * driver will queue the status phase.	Can we assume when we
+		 * call the gadget driver setup() function that it will always
+		 * queue and require the following flag?  Need to look into
+		 * this.
+		 */
+
+		if (ret == 256 + 999) {
+			pcd->request_config = 1;
+		}
+	}
+}
+
+/**
+ * This function starts the Zero-Length Packet for the IN status phase
+ * of a 2 stage control transfer.
+ */
+static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+	if (pcd->ep0state == EP0_STALL) {
+		return;
+	}
+
+	pcd->ep0state = EP0_IN_STATUS_PHASE;
+
+	/* Prepare for more SETUP Packets */
+	DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
+	ep0->dwc_ep.xfer_len = 0;
+	ep0->dwc_ep.xfer_count = 0;
+	ep0->dwc_ep.is_in = 1;
+	ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
+	dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+	/* Prepare for more SETUP Packets */
+//	if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
+}
+
+/**
+ * This function starts the Zero-Length Packet for the OUT status phase
+ * of a 2 stage control transfer.
+ */
+static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+	if (pcd->ep0state == EP0_STALL) {
+		DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
+		return;
+	}
+	pcd->ep0state = EP0_OUT_STATUS_PHASE;
+
+	DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
+	ep0->dwc_ep.xfer_len = 0;
+	ep0->dwc_ep.xfer_count = 0;
+	ep0->dwc_ep.is_in = 0;
+	ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
+	dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+	/* Prepare for more SETUP Packets */
+	if(GET_CORE_IF(pcd)->dma_enable == 0) {
+			ep0_out_start(GET_CORE_IF(pcd), pcd);
+	}
+}
+
+/**
+ * Clear the EP halt (STALL) and if pending requests start the
+ * transfer.
+ */
+static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
+{
+	if(ep->dwc_ep.stall_clear_flag == 0)
+		dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
+
+	/* Reactive the EP */
+	dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
+	if (ep->stopped) {
+		ep->stopped = 0;
+		/* If there is a request in the EP queue start it */
+
+		/** @todo FIXME: this causes an EP mismatch in DMA mode.
+		 * epmismatch not yet implemented. */
+
+		/*
+		 * Above fixme is solved by implmenting a tasklet to call the
+		 * start_next_request(), outside of interrupt context at some
+		 * time after the current time, after a clear-halt setup packet.
+		 * Still need to implement ep mismatch in the future if a gadget
+		 * ever uses more than one endpoint at once
+		 */
+		ep->queue_sof = 1;
+		tasklet_schedule (pcd->start_xfer_tasklet);
+	}
+	/* Start Control Status Phase */
+	do_setup_in_status_phase(pcd);
+}
+
+/**
+ * This function is called when the SET_FEATURE TEST_MODE Setup packet
+ * is sent from the host.  The Device Control register is written with
+ * the Test Mode bits set to the specified Test Mode.  This is done as
+ * a tasklet so that the "Status" phase of the control transfer
+ * completes before transmitting the TEST packets.
+ *
+ * @todo This has not been tested since the tasklet struct was put
+ * into the PCD struct!
+ *
+ */
+static void do_test_mode(unsigned long data)
+{
+	dctl_data_t		dctl;
+	dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	int test_mode = pcd->test_mode;
+
+
+//	  DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
+
+	dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
+	switch (test_mode) {
+	case 1: // TEST_J
+		dctl.b.tstctl = 1;
+		break;
+
+	case 2: // TEST_K
+		dctl.b.tstctl = 2;
+		break;
+
+	case 3: // TEST_SE0_NAK
+		dctl.b.tstctl = 3;
+		break;
+
+	case 4: // TEST_PACKET
+		dctl.b.tstctl = 4;
+		break;
+
+	case 5: // TEST_FORCE_ENABLE
+		dctl.b.tstctl = 5;
+		break;
+	}
+	dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
+}
+
+/**
+ * This function process the GET_STATUS Setup Commands.
+ */
+static inline void do_get_status(dwc_otg_pcd_t *pcd)
+{
+	struct usb_ctrlrequest	ctrl = pcd->setup_pkt->req;
+	dwc_otg_pcd_ep_t	*ep;
+	dwc_otg_pcd_ep_t	*ep0 = &pcd->ep0;
+	uint16_t		*status = pcd->status_buf;
+
+#ifdef DEBUG_EP0
+	DWC_DEBUGPL(DBG_PCD,
+			"GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
+			ctrl.bRequestType, ctrl.bRequest,
+			ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+#endif
+
+	switch (ctrl.bRequestType & USB_RECIP_MASK) {
+	case USB_RECIP_DEVICE:
+		*status = 0x1; /* Self powered */
+		*status |= pcd->remote_wakeup_enable << 1;
+		break;
+
+	case USB_RECIP_INTERFACE:
+		*status = 0;
+		break;
+
+	case USB_RECIP_ENDPOINT:
+		ep = get_ep_by_addr(pcd, ctrl.wIndex);
+		if (ep == 0 || ctrl.wLength > 2) {
+			ep0_do_stall(pcd, -EOPNOTSUPP);
+			return;
+		}
+		/** @todo check for EP stall */
+		*status = ep->stopped;
+		break;
+	}
+	pcd->ep0_pending = 1;
+	ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
+	ep0->dwc_ep.xfer_buff = (uint8_t *)status;
+	ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
+	ep0->dwc_ep.xfer_len = 2;
+	ep0->dwc_ep.xfer_count = 0;
+	ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
+	dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+}
+/**
+ * This function process the SET_FEATURE Setup Commands.
+ */
+static inline void do_set_feature(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_core_global_regs_t *global_regs =
+			core_if->core_global_regs;
+	struct usb_ctrlrequest	ctrl = pcd->setup_pkt->req;
+	dwc_otg_pcd_ep_t	*ep = 0;
+	int32_t otg_cap_param = core_if->core_params->otg_cap;
+	gotgctl_data_t gotgctl = { .d32 = 0 };
+
+	DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
+			ctrl.bRequestType, ctrl.bRequest,
+			ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+	DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
+
+
+	switch (ctrl.bRequestType & USB_RECIP_MASK) {
+	case USB_RECIP_DEVICE:
+		switch (ctrl.wValue) {
+		case USB_DEVICE_REMOTE_WAKEUP:
+			pcd->remote_wakeup_enable = 1;
+			break;
+
+		case USB_DEVICE_TEST_MODE:
+			/* Setup the Test Mode tasklet to do the Test
+			 * Packet generation after the SETUP Status
+			 * phase has completed. */
+
+			/** @todo This has not been tested since the
+			 * tasklet struct was put into the PCD
+			 * struct! */
+			pcd->test_mode_tasklet.next = 0;
+			pcd->test_mode_tasklet.state = 0;
+			atomic_set(&pcd->test_mode_tasklet.count, 0);
+			pcd->test_mode_tasklet.func = do_test_mode;
+			pcd->test_mode_tasklet.data = (unsigned long)pcd;
+			pcd->test_mode = ctrl.wIndex >> 8;
+			tasklet_schedule(&pcd->test_mode_tasklet);
+			break;
+
+		case USB_DEVICE_B_HNP_ENABLE:
+			DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
+
+			/* dev may initiate HNP */
+			if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+				pcd->b_hnp_enable = 1;
+				dwc_otg_pcd_update_otg(pcd, 0);
+				DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
+				/**@todo Is the gotgctl.devhnpen cleared
+				 * by a USB Reset? */
+				gotgctl.b.devhnpen = 1;
+				gotgctl.b.hnpreq = 1;
+				dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
+			}
+			else {
+				ep0_do_stall(pcd, -EOPNOTSUPP);
+			}
+			break;
+
+		case USB_DEVICE_A_HNP_SUPPORT:
+			/* RH port supports HNP */
+			DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
+			if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+				pcd->a_hnp_support = 1;
+				dwc_otg_pcd_update_otg(pcd, 0);
+			}
+			else {
+				ep0_do_stall(pcd, -EOPNOTSUPP);
+			}
+			break;
+
+		case USB_DEVICE_A_ALT_HNP_SUPPORT:
+			/* other RH port does */
+			DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
+			if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+				pcd->a_alt_hnp_support = 1;
+				dwc_otg_pcd_update_otg(pcd, 0);
+			}
+			else {
+				ep0_do_stall(pcd, -EOPNOTSUPP);
+			}
+			break;
+		}
+		do_setup_in_status_phase(pcd);
+		break;
+
+	case USB_RECIP_INTERFACE:
+		do_gadget_setup(pcd, &ctrl);
+		break;
+
+	case USB_RECIP_ENDPOINT:
+		if (ctrl.wValue == USB_ENDPOINT_HALT) {
+			ep = get_ep_by_addr(pcd, ctrl.wIndex);
+			if (ep == 0) {
+				ep0_do_stall(pcd, -EOPNOTSUPP);
+				return;
+			}
+			ep->stopped = 1;
+			dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
+		}
+		do_setup_in_status_phase(pcd);
+		break;
+	}
+}
+
+/**
+ * This function process the CLEAR_FEATURE Setup Commands.
+ */
+static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
+{
+	struct usb_ctrlrequest	ctrl = pcd->setup_pkt->req;
+	dwc_otg_pcd_ep_t	*ep = 0;
+
+	DWC_DEBUGPL(DBG_PCD,
+				"CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
+				ctrl.bRequestType, ctrl.bRequest,
+				ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+
+	switch (ctrl.bRequestType & USB_RECIP_MASK) {
+	case USB_RECIP_DEVICE:
+		switch (ctrl.wValue) {
+		case USB_DEVICE_REMOTE_WAKEUP:
+			pcd->remote_wakeup_enable = 0;
+			break;
+
+		case USB_DEVICE_TEST_MODE:
+			/** @todo Add CLEAR_FEATURE for TEST modes. */
+			break;
+		}
+		do_setup_in_status_phase(pcd);
+		break;
+
+	case USB_RECIP_ENDPOINT:
+		ep = get_ep_by_addr(pcd, ctrl.wIndex);
+		if (ep == 0) {
+			ep0_do_stall(pcd, -EOPNOTSUPP);
+			return;
+		}
+
+		pcd_clear_halt(pcd, ep);
+
+		break;
+	}
+}
+
+/**
+ * This function process the SET_ADDRESS Setup Commands.
+ */
+static inline void do_set_address(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
+	struct usb_ctrlrequest	ctrl = pcd->setup_pkt->req;
+
+	if (ctrl.bRequestType == USB_RECIP_DEVICE) {
+		dcfg_data_t dcfg = {.d32=0};
+
+#ifdef DEBUG_EP0
+//			DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
+#endif
+		dcfg.b.devaddr = ctrl.wValue;
+		dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
+		do_setup_in_status_phase(pcd);
+	}
+}
+
+/**
+ *	This function processes SETUP commands.	 In Linux, the USB Command
+ *	processing is done in two places - the first being the PCD and the
+ *	second in the Gadget Driver (for example, the File-Backed Storage
+ *	Gadget Driver).
+ *
+ * <table>
+ * <tr><td>Command	</td><td>Driver </td><td>Description</td></tr>
+ *
+ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
+ * defined in chapter 9 of the USB 2.0 Specification chapter 9
+ * </td></tr>
+ *
+ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
+ * requests are the ENDPOINT_HALT feature is procesed, all others the
+ * interface requests are ignored.</td></tr>
+ *
+ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
+ * requests are processed by the PCD.  Interface requests are passed
+ * to the Gadget Driver.</td></tr>
+ *
+ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
+ * with device address received </td></tr>
+ *
+ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
+ * requested descriptor</td></tr>
+ *
+ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
+ * not implemented by any of the existing Gadget Drivers.</td></tr>
+ *
+ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
+ * all EPs and enable EPs for new configuration.</td></tr>
+ *
+ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
+ * the current configuration</td></tr>
+ *
+ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
+ * EPs and enable EPs for new configuration.</td></tr>
+ *
+ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
+ * current interface.</td></tr>
+ *
+ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
+ * message.</td></tr>
+ * </table>
+ *
+ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
+ * processed by pcd_setup. Calling the Function Driver's setup function from
+ * pcd_setup processes the gadget SETUP commands.
+ */
+static inline void pcd_setup(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	struct usb_ctrlrequest	ctrl = pcd->setup_pkt->req;
+	dwc_otg_pcd_ep_t	*ep0 = &pcd->ep0;
+
+	deptsiz0_data_t doeptsize0 = { .d32 = 0};
+
+#ifdef DEBUG_EP0
+	DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
+			ctrl.bRequestType, ctrl.bRequest,
+			ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+#endif
+
+	doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
+
+	/** @todo handle > 1 setup packet , assert error for now */
+
+	if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
+		DWC_ERROR ("\n\n-----------	 CANNOT handle > 1 setup packet in DMA mode\n\n");
+	}
+
+	/* Clean up the request queue */
+	dwc_otg_request_nuke(ep0);
+	ep0->stopped = 0;
+
+	if (ctrl.bRequestType & USB_DIR_IN) {
+		ep0->dwc_ep.is_in = 1;
+		pcd->ep0state = EP0_IN_DATA_PHASE;
+	}
+	else {
+		ep0->dwc_ep.is_in = 0;
+		pcd->ep0state = EP0_OUT_DATA_PHASE;
+	}
+
+	if(ctrl.wLength == 0) {
+		ep0->dwc_ep.is_in = 1;
+		pcd->ep0state = EP0_IN_STATUS_PHASE;
+	}
+
+	if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
+		/* handle non-standard (class/vendor) requests in the gadget driver */
+		do_gadget_setup(pcd, &ctrl);
+		return;
+	}
+
+	/** @todo NGS: Handle bad setup packet? */
+
+///////////////////////////////////////////
+//// --- Standard Request handling --- ////
+
+	switch (ctrl.bRequest) {
+	case USB_REQ_GET_STATUS:
+		do_get_status(pcd);
+		break;
+
+	case USB_REQ_CLEAR_FEATURE:
+		do_clear_feature(pcd);
+		break;
+
+	case USB_REQ_SET_FEATURE:
+		do_set_feature(pcd);
+		break;
+
+	case USB_REQ_SET_ADDRESS:
+		do_set_address(pcd);
+		break;
+
+	case USB_REQ_SET_INTERFACE:
+	case USB_REQ_SET_CONFIGURATION:
+//		_pcd->request_config = 1;	/* Configuration changed */
+		do_gadget_setup(pcd, &ctrl);
+		break;
+
+	case USB_REQ_SYNCH_FRAME:
+		do_gadget_setup(pcd, &ctrl);
+		break;
+
+	default:
+		/* Call the Gadget Driver's setup functions */
+		do_gadget_setup(pcd, &ctrl);
+		break;
+	}
+}
+
+/**
+ * This function completes the ep0 control transfer.
+ */
+static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	dwc_otg_dev_in_ep_regs_t *in_ep_regs =
+	dev_if->in_ep_regs[ep->dwc_ep.num];
+#ifdef DEBUG_EP0
+	dwc_otg_dev_out_ep_regs_t *out_ep_regs =
+			dev_if->out_ep_regs[ep->dwc_ep.num];
+#endif
+	deptsiz0_data_t deptsiz;
+	desc_sts_data_t desc_sts;
+	dwc_otg_pcd_request_t *req;
+	int is_last = 0;
+	dwc_otg_pcd_t *pcd = ep->pcd;
+
+	//DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
+
+	if (pcd->ep0_pending && list_empty(&ep->queue)) {
+		if (ep->dwc_ep.is_in) {
+#ifdef DEBUG_EP0
+			DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
+#endif
+			do_setup_out_status_phase(pcd);
+		}
+		else {
+#ifdef DEBUG_EP0
+			DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
+#endif
+			do_setup_in_status_phase(pcd);
+		}
+		pcd->ep0_pending = 0;
+		return 1;
+	}
+
+	if (list_empty(&ep->queue)) {
+		return 0;
+	}
+	req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
+
+
+	if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
+		is_last = 1;
+	}
+	else if (ep->dwc_ep.is_in) {
+		deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
+		if(core_if->dma_desc_enable != 0)
+			desc_sts.d32 = readl(dev_if->in_desc_addr);
+#ifdef DEBUG_EP0
+		DWC_DEBUGPL(DBG_PCDV, "%s len=%d  xfersize=%d pktcnt=%d\n",
+				ep->ep.name, ep->dwc_ep.xfer_len,
+				deptsiz.b.xfersize, deptsiz.b.pktcnt);
+#endif
+
+		if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
+			((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
+			req->req.actual = ep->dwc_ep.xfer_count;
+			/* Is a Zero Len Packet needed? */
+			if (req->req.zero) {
+#ifdef DEBUG_EP0
+				DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
+#endif
+			    req->req.zero = 0;
+			}
+			do_setup_out_status_phase(pcd);
+		}
+	}
+	else {
+		/* ep0-OUT */
+#ifdef DEBUG_EP0
+		deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
+		DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
+				ep->ep.name, ep->dwc_ep.xfer_len,
+				deptsiz.b.xfersize,
+				deptsiz.b.pktcnt);
+#endif
+		req->req.actual = ep->dwc_ep.xfer_count;
+		/* Is a Zero Len Packet needed? */
+		if (req->req.zero) {
+#ifdef DEBUG_EP0
+			DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
+#endif
+    			req->req.zero = 0;
+		}
+		if(core_if->dma_desc_enable == 0)
+			do_setup_in_status_phase(pcd);
+	}
+
+	/* Complete the request */
+	if (is_last) {
+		dwc_otg_request_done(ep, req, 0);
+		ep->dwc_ep.start_xfer_buff = 0;
+		ep->dwc_ep.xfer_buff = 0;
+		ep->dwc_ep.xfer_len = 0;
+		return 1;
+	}
+	return 0;
+}
+
+inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
+{
+	dwc_ep_t *dwc_ep = &ep->dwc_ep;
+	if(byte_count && dwc_ep->aligned_buf &&
+		dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
+		dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
+	{
+		//aligned buf used, apply complete patch
+		u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
+		memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
+	}
+}
+
+/**
+ * This function completes the request for the EP.	If there are
+ * additional requests for the EP in the queue they will be started.
+ */
+static void complete_ep(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	dwc_otg_dev_in_ep_regs_t *in_ep_regs =
+	dev_if->in_ep_regs[ep->dwc_ep.num];
+	deptsiz_data_t deptsiz;
+	desc_sts_data_t desc_sts;
+	dwc_otg_pcd_request_t *req = 0;
+	dwc_otg_dma_desc_t* dma_desc;
+	uint32_t byte_count = 0;
+	int is_last = 0;
+	int i;
+
+	DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
+					(ep->dwc_ep.is_in?"IN":"OUT"));
+
+	/* Get any pending requests */
+	if (!list_empty(&ep->queue)) {
+		req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
+				 queue);
+		if (!req) {
+			printk("complete_ep 0x%p, req = NULL!\n", ep);
+			return;
+		}
+	}
+	else {
+		printk("complete_ep 0x%p, ep->queue empty!\n", ep);
+		return;
+	}
+	DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
+
+	if (ep->dwc_ep.is_in) {
+		deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
+
+		if (core_if->dma_enable) {
+			//dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
+			if(core_if->dma_desc_enable == 0) {
+				//dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
+				if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
+					byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
+
+					ep->dwc_ep.xfer_buff += byte_count;
+					ep->dwc_ep.dma_addr += byte_count;
+					ep->dwc_ep.xfer_count += byte_count;
+
+					DWC_DEBUGPL(DBG_PCDV, "%s len=%d  xfersize=%d pktcnt=%d\n",
+							ep->ep.name, ep->dwc_ep.xfer_len,
+							deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+					if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+						//dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+					} else if(ep->dwc_ep.sent_zlp) {
+						/*
+						 * This fragment of code should initiate 0
+						 * length trasfer in case if it is queued
+						 * a trasfer with size divisible to EPs max
+						 * packet size and with usb_request zero field
+						 * is set, which means that after data is transfered,
+						 * it is also should be transfered
+						 * a 0 length packet at the end. For Slave and
+						 * Buffer DMA modes in this case SW has
+						 * to initiate 2 transfers one with transfer size,
+						 * and the second with 0 size. For Desriptor
+						 * DMA mode SW is able to initiate a transfer,
+						 * which will handle all the packets including
+						 * the last  0 legth.
+						 */
+						ep->dwc_ep.sent_zlp = 0;
+						dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+					} else {
+						is_last = 1;
+					}
+				} else {
+					DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
+							 ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
+							 deptsiz.b.xfersize, deptsiz.b.pktcnt);
+				}
+			} else {
+
+				dma_desc = ep->dwc_ep.desc_addr;
+				byte_count = 0;
+				ep->dwc_ep.sent_zlp = 0;
+
+				for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
+					desc_sts.d32 = readl(dma_desc);
+					byte_count += desc_sts.b.bytes;
+					dma_desc++;
+				}
+
+				if(byte_count == 0) {
+					ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
+					is_last = 1;
+				} else {
+					DWC_WARN("Incomplete transfer\n");
+				}
+			}
+		} else {
+			if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
+				/* 	Check if the whole transfer was completed,
+				 * 	if no, setup transfer for next portion of data
+				 */
+			DWC_DEBUGPL(DBG_PCDV, "%s len=%d  xfersize=%d pktcnt=%d\n",
+					ep->ep.name, ep->dwc_ep.xfer_len,
+					deptsiz.b.xfersize, deptsiz.b.pktcnt);
+				if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+					//dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
+				} else if(ep->dwc_ep.sent_zlp) {
+					/*
+					 * This fragment of code should initiate 0
+					 * length trasfer in case if it is queued
+					 * a trasfer with size divisible to EPs max
+					 * packet size and with usb_request zero field
+					 * is set, which means that after data is transfered,
+					 * it is also should be transfered
+					 * a 0 length packet at the end. For Slave and
+					 * Buffer DMA modes in this case SW has
+					 * to initiate 2 transfers one with transfer size,
+					 * and the second with 0 size. For Desriptor
+					 * DMA mode SW is able to initiate a transfer,
+					 * which will handle all the packets including
+					 * the last  0 legth.
+					 */
+					ep->dwc_ep.sent_zlp = 0;
+					dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+				} else {
+					is_last = 1;
+				}
+			}
+			else {
+				DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
+						ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
+						deptsiz.b.xfersize, deptsiz.b.pktcnt);
+			}
+		}
+	} else {
+		dwc_otg_dev_out_ep_regs_t *out_ep_regs =
+				dev_if->out_ep_regs[ep->dwc_ep.num];
+		desc_sts.d32 = 0;
+		if(core_if->dma_enable) {
+			//dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
+			if(core_if->dma_desc_enable) {
+				DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
+				dma_desc = ep->dwc_ep.desc_addr;
+				byte_count = 0;
+				ep->dwc_ep.sent_zlp = 0;
+				for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
+					desc_sts.d32 = readl(dma_desc);
+					byte_count += desc_sts.b.bytes;
+					dma_desc++;
+				}
+
+				ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
+						- byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
+
+				//todo: invalidate cache & aligned buf patch on completion
+				//
+
+				is_last = 1;
+			} else {
+				deptsiz.d32 = 0;
+				deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
+
+				byte_count = (ep->dwc_ep.xfer_len -
+							 ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
+
+//				dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+
+DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+				//todo: invalidate cache & aligned buf patch on completion
+				dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+				aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
+
+				ep->dwc_ep.xfer_buff += byte_count;
+				ep->dwc_ep.dma_addr += byte_count;
+				ep->dwc_ep.xfer_count += byte_count;
+
+				/* 	Check if the whole transfer was completed,
+				 * 	if no, setup transfer for next portion of data
+				 */
+				if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+					//dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+				}
+				else if(ep->dwc_ep.sent_zlp) {
+					/*
+					 * This fragment of code should initiate 0
+					 * length trasfer in case if it is queued
+					 * a trasfer with size divisible to EPs max
+					 * packet size and with usb_request zero field
+					 * is set, which means that after data is transfered,
+					 * it is also should be transfered
+					 * a 0 length packet at the end. For Slave and
+					 * Buffer DMA modes in this case SW has
+					 * to initiate 2 transfers one with transfer size,
+					 * and the second with 0 size. For Desriptor
+					 * DMA mode SW is able to initiate a transfer,
+					 * which will handle all the packets including
+					 * the last  0 legth.
+					 */
+					ep->dwc_ep.sent_zlp = 0;
+					dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+				} else {
+					is_last = 1;
+				}
+			}
+		} else {
+			/* 	Check if the whole transfer was completed,
+			 * 	if no, setup transfer for next portion of data
+			 */
+			if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+				//dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
+			}
+			else if(ep->dwc_ep.sent_zlp) {
+				/*
+				 * This fragment of code should initiate 0
+				 * length trasfer in case if it is queued
+				 * a trasfer with size divisible to EPs max
+				 * packet size and with usb_request zero field
+				 * is set, which means that after data is transfered,
+				 * it is also should be transfered
+				 * a 0 length packet at the end. For Slave and
+				 * Buffer DMA modes in this case SW has
+				 * to initiate 2 transfers one with transfer size,
+				 * and the second with 0 size. For Desriptor
+				 * DMA mode SW is able to initiate a transfer,
+				 * which will handle all the packets including
+				 * the last  0 legth.
+				 */
+				ep->dwc_ep.sent_zlp = 0;
+				dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+			} else {
+				is_last = 1;
+			}
+		}
+
+#ifdef DEBUG
+
+		DWC_DEBUGPL(DBG_PCDV, "addr %p,	 %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
+				&out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
+				ep->dwc_ep.xfer_count,
+				deptsiz.b.xfersize,
+				deptsiz.b.pktcnt);
+#endif
+	}
+
+	/* Complete the request */
+	if (is_last) {
+		req->req.actual = ep->dwc_ep.xfer_count;
+
+		dwc_otg_request_done(ep, req, 0);
+
+		ep->dwc_ep.start_xfer_buff = 0;
+		ep->dwc_ep.xfer_buff = 0;
+		ep->dwc_ep.xfer_len = 0;
+
+		/* If there is a request in the queue start it.*/
+		start_next_request(ep);
+	}
+}
+
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function BNA interrupt for Isochronous EPs
+ *
+ */
+static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_ep_t		*dwc_ep = &ep->dwc_ep;
+	volatile uint32_t	*addr;
+	depctl_data_t		depctl = {.d32 = 0};
+	dwc_otg_pcd_t		*pcd = ep->pcd;
+	dwc_otg_dma_desc_t	*dma_desc;
+	int	i;
+
+	dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
+
+	if(dwc_ep->is_in) {
+		desc_sts_data_t	sts = {.d32 = 0};
+		for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
+		{
+			sts.d32 = readl(&dma_desc->status);
+			sts.b_iso_in.bs = BS_HOST_READY;
+			writel(sts.d32,&dma_desc->status);
+		}
+	}
+	else {
+		desc_sts_data_t	sts = {.d32 = 0};
+		for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
+		{
+			sts.d32 = readl(&dma_desc->status);
+			sts.b_iso_out.bs = BS_HOST_READY;
+			writel(sts.d32,&dma_desc->status);
+		}
+	}
+
+	if(dwc_ep->is_in == 0){
+		addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+	}
+	else{
+		addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+	}
+	depctl.b.epena = 1;
+	dwc_modify_reg32(addr,depctl.d32,depctl.d32);
+}
+
+/**
+ * This function sets latest iso packet information(non-PTI mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+	deptsiz_data_t		deptsiz = { .d32 = 0 };
+	dma_addr_t		dma_addr;
+	uint32_t		offset;
+
+	if(ep->proc_buf_num)
+		dma_addr = ep->dma_addr1;
+	else
+		dma_addr = ep->dma_addr0;
+
+	if(ep->is_in) {
+		deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
+		offset = ep->data_per_frame;
+	} else {
+		deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
+		offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
+	}
+
+	if(!deptsiz.b.xfersize) {
+		ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
+		ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
+		ep->pkt_info[ep->cur_pkt].status = 0;
+	} else {
+		ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
+		ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
+		ep->pkt_info[ep->cur_pkt].status = -ENODATA;
+	}
+	ep->cur_pkt_addr += offset;
+	ep->cur_pkt_dma_addr += offset;
+	ep->cur_pkt++;
+}
+
+/**
+ * This function sets latest iso packet information(DDMA mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+	dwc_otg_dma_desc_t* dma_desc;
+	desc_sts_data_t sts = {.d32 = 0};
+	iso_pkt_info_t *iso_packet;
+	uint32_t data_per_desc;
+	uint32_t offset;
+ 	int i, j;
+
+	iso_packet = dwc_ep->pkt_info;
+
+	/** Reinit closed DMA Descriptors*/
+	/** ISO OUT EP */
+	if(dwc_ep->is_in == 0) {
+		dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+		offset = 0;
+
+		for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+		{
+			for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+			{
+				data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+					dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+				data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+
+				sts.d32 = readl(&dma_desc->status);
+
+				/* Write status in iso_packet_decsriptor  */
+				iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+				if(iso_packet->status) {
+					iso_packet->status = -ENODATA;
+				}
+
+				/* Received data length */
+				if(!sts.b_iso_out.rxbytes){
+					iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
+				} else {
+					iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
+								(4 - dwc_ep->data_per_frame % 4);
+				}
+
+				iso_packet->offset = offset;
+
+				offset += data_per_desc;
+				dma_desc ++;
+				iso_packet ++;
+			}
+		}
+
+		for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+		{
+			data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+				dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+			data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+
+			sts.d32 = readl(&dma_desc->status);
+
+			/* Write status in iso_packet_decsriptor  */
+			iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+			if(iso_packet->status) {
+				iso_packet->status = -ENODATA;
+			}
+
+			/* Received data length */
+			iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
+
+			iso_packet->offset = offset;
+
+			offset += data_per_desc;
+			iso_packet++;
+			dma_desc++;
+		}
+
+		sts.d32 = readl(&dma_desc->status);
+
+		/* Write status in iso_packet_decsriptor  */
+		iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+		if(iso_packet->status) {
+			iso_packet->status = -ENODATA;
+		}
+		/* Received data length */
+		if(!sts.b_iso_out.rxbytes){
+			iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
+		} else {
+			iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
+							(4 - dwc_ep->data_per_frame % 4);
+		}
+
+		iso_packet->offset = offset;
+	}
+	else /** ISO IN EP */
+	{
+		dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+		for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+		{
+			sts.d32 = readl(&dma_desc->status);
+
+			/* Write status in iso packet descriptor */
+			iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
+			if(iso_packet->status != 0) {
+				iso_packet->status = -ENODATA;
+
+			}
+			/* Bytes has been transfered */
+			iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
+
+			dma_desc ++;
+			iso_packet++;
+		}
+
+		sts.d32 = readl(&dma_desc->status);
+		while(sts.b_iso_in.bs == BS_DMA_BUSY) {
+			sts.d32 = readl(&dma_desc->status);
+		}
+
+		/* Write status in iso packet descriptor ??? do be done with ERROR codes*/
+		iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
+		if(iso_packet->status != 0) {
+			iso_packet->status = -ENODATA;
+		}
+
+		/* Bytes has been transfered */
+		iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
+	}
+}
+
+/**
+ * This function reinitialize DMA Descriptors for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+ 	int i, j;
+	dwc_otg_dma_desc_t* dma_desc;
+	dma_addr_t dma_ad;
+	volatile uint32_t	*addr;
+	desc_sts_data_t sts = { .d32 =0 };
+	uint32_t data_per_desc;
+
+	if(dwc_ep->is_in == 0) {
+		addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+	}
+	else {
+		addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+	}
+
+
+	if(dwc_ep->proc_buf_num == 0) {
+		/** Buffer 0 descriptors setup */
+		dma_ad = dwc_ep->dma_addr0;
+	}
+	else {
+		/** Buffer 1 descriptors setup */
+		dma_ad = dwc_ep->dma_addr1;
+	}
+
+	/** Reinit closed DMA Descriptors*/
+	/** ISO OUT EP */
+	if(dwc_ep->is_in == 0) {
+		dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+		sts.b_iso_out.bs = BS_HOST_READY;
+		sts.b_iso_out.rxsts = 0;
+		sts.b_iso_out.l = 0;
+		sts.b_iso_out.sp = 0;
+		sts.b_iso_out.ioc = 0;
+		sts.b_iso_out.pid = 0;
+		sts.b_iso_out.framenum = 0;
+
+		for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+		{
+			for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+			{
+				data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+					dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+				data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+				sts.b_iso_out.rxbytes = data_per_desc;
+				writel((uint32_t)dma_ad, &dma_desc->buf);
+				writel(sts.d32, &dma_desc->status);
+
+				//(uint32_t)dma_ad += data_per_desc;
+				dma_ad = (uint32_t)dma_ad + data_per_desc;
+				dma_desc ++;
+			}
+		}
+
+		for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+		{
+
+			data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+				dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+			data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+			sts.b_iso_out.rxbytes = data_per_desc;
+
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+
+			dma_desc++;
+			//(uint32_t)dma_ad += data_per_desc;
+			dma_ad = (uint32_t)dma_ad + data_per_desc;
+		}
+
+		sts.b_iso_out.ioc = 1;
+		sts.b_iso_out.l = dwc_ep->proc_buf_num;
+
+		data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+			dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+		data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+		sts.b_iso_out.rxbytes = data_per_desc;
+
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+	}
+	else /** ISO IN EP */
+	{
+		dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+		sts.b_iso_in.bs = BS_HOST_READY;
+		sts.b_iso_in.txsts = 0;
+		sts.b_iso_in.sp = 0;
+		sts.b_iso_in.ioc = 0;
+		sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
+		sts.b_iso_in.framenum = dwc_ep->next_frame;
+		sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
+		sts.b_iso_in.l = 0;
+
+		for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+		{
+			writel((uint32_t)dma_ad, &dma_desc->buf);
+			writel(sts.d32, &dma_desc->status);
+
+			sts.b_iso_in.framenum  += dwc_ep->bInterval;
+			//(uint32_t)dma_ad += dwc_ep->data_per_frame;
+			dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+			dma_desc ++;
+		}
+
+		sts.b_iso_in.ioc = 1;
+		sts.b_iso_in.l = dwc_ep->proc_buf_num;
+
+		writel((uint32_t)dma_ad, &dma_desc->buf);
+		writel(sts.d32, &dma_desc->status);
+
+		dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
+	}
+	dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+}
+
+
+/**
+ * This function is to handle Iso EP transfer complete interrupt
+ * in case Iso out packet was dropped
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP for wihich transfer complete was asserted
+ *
+ */
+static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+	uint32_t dma_addr;
+	uint32_t drp_pkt;
+	uint32_t drp_pkt_cnt;
+	deptsiz_data_t deptsiz = { .d32 = 0 };
+	depctl_data_t depctl  = { .d32 = 0 };
+	int i;
+
+	deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
+
+	drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
+	drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
+
+	/* Setting dropped packets status */
+	for(i = 0; i < drp_pkt_cnt; ++i) {
+		dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
+		drp_pkt ++;
+		deptsiz.b.pktcnt--;
+	}
+
+
+	if(deptsiz.b.pktcnt > 0) {
+		deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
+	} else {
+		deptsiz.b.xfersize = 0;
+		deptsiz.b.pktcnt = 0;
+	}
+
+	dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
+
+	if(deptsiz.b.pktcnt > 0) {
+		if(dwc_ep->proc_buf_num) {
+			dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
+		} else {
+			dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
+		}
+
+		VERIFY_PCD_DMA_ADDR(dma_addr);
+		dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
+
+		/** Re-enable endpoint, clear nak  */
+		depctl.d32 = 0;
+		depctl.b.epena = 1;
+		depctl.b.cnak = 1;
+
+		dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
+				depctl.d32,depctl.d32);
+		return 0;
+	} else {
+		return 1;
+	}
+}
+
+/**
+ * This function sets iso packets information(PTI mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ 	int i, j;
+	dma_addr_t dma_ad;
+	iso_pkt_info_t *packet_info = ep->pkt_info;
+	uint32_t offset;
+	uint32_t frame_data;
+	deptsiz_data_t deptsiz;
+
+	if(ep->proc_buf_num == 0) {
+		/** Buffer 0 descriptors setup */
+		dma_ad = ep->dma_addr0;
+	}
+	else {
+		/** Buffer 1 descriptors setup */
+		dma_ad = ep->dma_addr1;
+	}
+
+	if(ep->is_in) {
+		deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
+	} else {
+		deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
+	}
+
+	if(!deptsiz.b.xfersize) {
+		offset = 0;
+		for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
+		{
+			frame_data = ep->data_per_frame;
+			for(j = 0; j < ep->pkt_per_frm; ++j) {
+
+				/* Packet status - is not set as initially
+				 * it is set to 0 and if packet was sent
+				 successfully, status field will remain 0*/
+
+				/* Bytes has been transfered */
+				packet_info->length = (ep->maxpacket < frame_data) ?
+							ep->maxpacket : frame_data;
+
+				/* Received packet offset */
+				packet_info->offset = offset;
+				offset += packet_info->length;
+				frame_data -= packet_info->length;
+
+				packet_info ++;
+			}
+		}
+		return 1;
+	} else {
+		/* This is a workaround for in case of Transfer Complete with
+		 * PktDrpSts interrupts	merging - in this case Transfer complete
+		 * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
+		 * set and with DOEPTSIZ register non zero. Investigations showed,
+		 * that this happens when Out packet is dropped, but because of
+		 * interrupts merging during first interrupt handling PktDrpSts
+		 * bit is cleared and for next merged interrupts it is not reset.
+		 * In this case SW hadles the interrupt as if PktDrpSts bit is set.
+		 */
+		if(ep->is_in) {
+			return 1;
+		} else {
+			return handle_iso_out_pkt_dropped(core_if, ep);
+		}
+	}
+}
+
+/**
+ * This function is to handle Iso EP transfer complete interrupt
+ *
+ * @param ep The EP for which transfer complete was asserted
+ *
+ */
+static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+	dwc_ep_t *dwc_ep = &ep->dwc_ep;
+	uint8_t is_last = 0;
+
+	if(core_if->dma_enable) {
+		if(core_if->dma_desc_enable) {
+			set_ddma_iso_pkts_info(core_if, dwc_ep);
+			reinit_ddma_iso_xfer(core_if, dwc_ep);
+			is_last = 1;
+		} else {
+			if(core_if->pti_enh_enable) {
+				if(set_iso_pkts_info(core_if, dwc_ep)) {
+					dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+					dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
+					is_last = 1;
+				}
+			} else {
+				set_current_pkt_info(core_if, dwc_ep);
+				if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+					is_last = 1;
+					dwc_ep->cur_pkt = 0;
+					dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+					if(dwc_ep->proc_buf_num) {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+					} else {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+					}
+				}
+				dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
+			}
+		}
+	} else {
+		set_current_pkt_info(core_if, dwc_ep);
+		if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+			is_last = 1;
+			dwc_ep->cur_pkt = 0;
+			dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+			if(dwc_ep->proc_buf_num) {
+				dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+				dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+			} else {
+				dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+				dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+			}
+		}
+		dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
+	}
+	if(is_last)
+		dwc_otg_iso_buffer_done(ep, ep->iso_req);
+}
+
+#endif  //DWC_EN_ISOC
+
+
+/**
+ * This function handles EP0 Control transfers.
+ *
+ * The state of the control tranfers are tracked in
+ * <code>ep0state</code>.
+ */
+static void handle_ep0(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+	desc_sts_data_t desc_sts;
+	deptsiz0_data_t deptsiz;
+	uint32_t byte_count;
+
+#ifdef DEBUG_EP0
+	DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
+	print_ep0_state(pcd);
+#endif
+
+	switch (pcd->ep0state) {
+	case EP0_DISCONNECT:
+		break;
+
+	case EP0_IDLE:
+		pcd->request_config = 0;
+
+		pcd_setup(pcd);
+		break;
+
+	case EP0_IN_DATA_PHASE:
+#ifdef DEBUG_EP0
+		DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
+				ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
+				ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
+#endif
+
+		if (core_if->dma_enable != 0) {
+			/*
+			 * For EP0 we can only program 1 packet at a time so we
+			 * need to do the make calculations after each complete.
+			 * Call write_packet to make the calculations, as in
+			 * slave mode, and use those values to determine if we
+			 * can complete.
+			 */
+			if(core_if->dma_desc_enable == 0) {
+				deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
+				byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
+			}
+			else {
+				desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
+				byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
+			}
+
+			ep0->dwc_ep.xfer_count += byte_count;
+			ep0->dwc_ep.xfer_buff += byte_count;
+			ep0->dwc_ep.dma_addr += byte_count;
+		}
+		if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
+			dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+			DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+		}
+		else if(ep0->dwc_ep.sent_zlp) {
+			dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+			ep0->dwc_ep.sent_zlp = 0;
+			DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+		}
+		else {
+			ep0_complete_request(ep0);
+			DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
+		}
+		break;
+	case EP0_OUT_DATA_PHASE:
+#ifdef DEBUG_EP0
+		DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
+				ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
+				ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
+#endif
+		if (core_if->dma_enable != 0) {
+			if(core_if->dma_desc_enable == 0) {
+				deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
+				byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
+
+				//todo: invalidate cache & aligned buf patch on completion
+				dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+				aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
+			}
+			else {
+				desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
+				byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
+
+				//todo: invalidate cache & aligned buf patch on completion
+				//
+
+			}
+			ep0->dwc_ep.xfer_count += byte_count;
+			ep0->dwc_ep.xfer_buff += byte_count;
+			ep0->dwc_ep.dma_addr += byte_count;
+		}
+		if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
+			dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+			DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+		}
+		else if(ep0->dwc_ep.sent_zlp) {
+			dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+			ep0->dwc_ep.sent_zlp = 0;
+			DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+	}
+		else {
+			ep0_complete_request(ep0);
+			DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
+		}
+		break;
+
+	case EP0_IN_STATUS_PHASE:
+	case EP0_OUT_STATUS_PHASE:
+		DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
+				ep0_complete_request(ep0);
+				pcd->ep0state = EP0_IDLE;
+				ep0->stopped = 1;
+				ep0->dwc_ep.is_in = 0;	/* OUT for next SETUP */
+
+		/* Prepare for more SETUP Packets */
+		if(core_if->dma_enable) {
+			ep0_out_start(core_if, pcd);
+		}
+		break;
+
+	case EP0_STALL:
+		DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
+		break;
+	}
+#ifdef DEBUG_EP0
+	print_ep0_state(pcd);
+#endif
+}
+
+
+/**
+ * Restart transfer
+ */
+static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
+{
+	dwc_otg_core_if_t *core_if;
+	dwc_otg_dev_if_t *dev_if;
+	deptsiz_data_t dieptsiz = {.d32=0};
+	dwc_otg_pcd_ep_t *ep;
+
+	ep = get_in_ep(pcd, epnum);
+
+#ifdef DWC_EN_ISOC
+	if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
+		return;
+	}
+#endif /* DWC_EN_ISOC  */
+
+	core_if = GET_CORE_IF(pcd);
+	dev_if = core_if->dev_if;
+
+	dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
+
+	DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
+			" stopped=%d\n", ep->dwc_ep.xfer_buff,
+			ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
+			ep->stopped);
+	/*
+	 * If xfersize is 0 and pktcnt in not 0, resend the last packet.
+	 */
+	if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
+		 ep->dwc_ep.start_xfer_buff != 0) {
+		if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
+			ep->dwc_ep.xfer_count = 0;
+			ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
+			ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
+		}
+		else {
+			ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
+			/* convert packet size to dwords. */
+			ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
+			ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
+		}
+		ep->stopped = 0;
+		DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
+					"xfer_len=%0x stopped=%d\n",
+					ep->dwc_ep.xfer_buff,
+					ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
+					ep->stopped
+					);
+		if (epnum == 0) {
+			dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
+		}
+		else {
+			dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+		}
+	}
+}
+
+
+/**
+ * handle the IN EP disable interrupt.
+ */
+static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
+						 const uint32_t epnum)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	deptsiz_data_t dieptsiz = {.d32=0};
+	dctl_data_t dctl = {.d32=0};
+	dwc_otg_pcd_ep_t *ep;
+	dwc_ep_t *dwc_ep;
+
+	ep = get_in_ep(pcd, epnum);
+	dwc_ep = &ep->dwc_ep;
+
+	if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+		dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
+		return;
+	}
+
+	DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
+			dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
+	dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
+
+	DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
+			dieptsiz.b.pktcnt,
+			dieptsiz.b.xfersize);
+
+	if (ep->stopped) {
+		/* Flush the Tx FIFO */
+		dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
+		/* Clear the Global IN NP NAK */
+		dctl.d32 = 0;
+		dctl.b.cgnpinnak = 1;
+		dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
+					 dctl.d32, 0);
+		/* Restart the transaction */
+		if (dieptsiz.b.pktcnt != 0 ||
+			dieptsiz.b.xfersize != 0) {
+			restart_transfer(pcd, epnum);
+		}
+	}
+	else {
+		/* Restart the transaction */
+		if (dieptsiz.b.pktcnt != 0 ||
+			dieptsiz.b.xfersize != 0) {
+			restart_transfer(pcd, epnum);
+		}
+		DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
+	}
+}
+
+/**
+ * Handler for the IN EP timeout handshake interrupt.
+ */
+static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
+						const uint32_t epnum)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+
+#ifdef DEBUG
+	deptsiz_data_t dieptsiz = {.d32=0};
+	uint32_t num = 0;
+#endif
+	dctl_data_t dctl = {.d32=0};
+	dwc_otg_pcd_ep_t *ep;
+
+	gintmsk_data_t intr_mask = {.d32 = 0};
+
+	ep = get_in_ep(pcd, epnum);
+
+	/* Disable the NP Tx Fifo Empty Interrrupt */
+	if (!core_if->dma_enable) {
+		intr_mask.b.nptxfempty = 1;
+		dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
+	}
+	/** @todo NGS Check EP type.
+	 * Implement for Periodic EPs */
+	/*
+	 * Non-periodic EP
+	 */
+	/* Enable the Global IN NAK Effective Interrupt */
+	intr_mask.b.ginnakeff = 1;
+	dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+					  0, intr_mask.d32);
+
+	/* Set Global IN NAK */
+	dctl.b.sgnpinnak = 1;
+	dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
+					 dctl.d32, dctl.d32);
+
+	ep->stopped = 1;
+
+#ifdef DEBUG
+	dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
+	DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
+			dieptsiz.b.pktcnt,
+			dieptsiz.b.xfersize);
+#endif
+
+#ifdef DISABLE_PERIODIC_EP
+	/*
+	 * Set the NAK bit for this EP to
+	 * start the disable process.
+	 */
+	diepctl.d32 = 0;
+	diepctl.b.snak = 1;
+	dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
+	ep->disabling = 1;
+	ep->stopped = 1;
+#endif
+}
+
+/**
+ * Handler for the IN EP NAK interrupt.
+ */
+static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
+						const uint32_t epnum)
+{
+        /** @todo implement ISR */
+        dwc_otg_core_if_t* core_if;
+	diepmsk_data_t intr_mask = { .d32 = 0};
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
+	core_if = GET_CORE_IF(pcd);
+	intr_mask.b.nak = 1;
+
+	if(core_if->multiproc_int_enable) {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
+					  intr_mask.d32, 0);
+	} else {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
+					  intr_mask.d32, 0);
+	}
+
+	return 1;
+}
+
+/**
+ * Handler for the OUT EP Babble interrupt.
+ */
+static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
+						const uint32_t epnum)
+{
+        /** @todo implement ISR */
+        dwc_otg_core_if_t* core_if;
+	doepmsk_data_t intr_mask = { .d32 = 0};
+
+ 	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
+	core_if = GET_CORE_IF(pcd);
+	intr_mask.b.babble = 1;
+
+	if(core_if->multiproc_int_enable) {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+					  intr_mask.d32, 0);
+	} else {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+					  intr_mask.d32, 0);
+	}
+
+	return 1;
+}
+
+/**
+ * Handler for the OUT EP NAK interrupt.
+ */
+static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
+						const uint32_t epnum)
+{
+        /** @todo implement ISR */
+        dwc_otg_core_if_t* core_if;
+	doepmsk_data_t intr_mask = { .d32 = 0};
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
+	core_if = GET_CORE_IF(pcd);
+	intr_mask.b.nak = 1;
+
+	if(core_if->multiproc_int_enable) {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+					  intr_mask.d32, 0);
+	} else {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+					  intr_mask.d32, 0);
+	}
+
+	return 1;
+}
+
+/**
+ * Handler for the OUT EP NYET interrupt.
+ */
+static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
+						const uint32_t epnum)
+{
+        /** @todo implement ISR */
+        dwc_otg_core_if_t* core_if;
+	doepmsk_data_t intr_mask = { .d32 = 0};
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
+	core_if = GET_CORE_IF(pcd);
+	intr_mask.b.nyet = 1;
+
+	if(core_if->multiproc_int_enable) {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+					  intr_mask.d32, 0);
+	} else {
+		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+					  intr_mask.d32, 0);
+	}
+
+	return 1;
+}
+
+/**
+ * This interrupt indicates that an IN EP has a pending Interrupt.
+ * The sequence for handling the IN EP interrupt is shown below:
+ * -#	Read the Device All Endpoint Interrupt register
+ * -#	Repeat the following for each IN EP interrupt bit set (from
+ *		LSB to MSB).
+ * -#	Read the Device Endpoint Interrupt (DIEPINTn) register
+ * -#	If "Transfer Complete" call the request complete function
+ * -#	If "Endpoint Disabled" complete the EP disable procedure.
+ * -#	If "AHB Error Interrupt" log error
+ * -#	If "Time-out Handshake" log error
+ * -#	If "IN Token Received when TxFIFO Empty" write packet to Tx
+ *		FIFO.
+ * -#	If "IN Token EP Mismatch" (disable, this is handled by EP
+ *		Mismatch Interrupt)
+ */
+static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
+{
+#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
+do { \
+		diepint_data_t diepint = {.d32=0}; \
+		diepint.b.__intr = 1; \
+		dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
+		diepint.d32); \
+} while (0)
+
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	diepint_data_t diepint = {.d32=0};
+	dctl_data_t dctl = {.d32=0};
+	depctl_data_t depctl = {.d32=0};
+	uint32_t ep_intr;
+	uint32_t epnum = 0;
+	dwc_otg_pcd_ep_t *ep;
+	dwc_ep_t *dwc_ep;
+	gintmsk_data_t intr_mask = {.d32 = 0};
+
+	DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
+
+	/* Read in the device interrupt bits */
+	ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
+
+	/* Service the Device IN interrupts for each endpoint */
+	while(ep_intr) {
+		if (ep_intr&0x1) {
+			uint32_t empty_msk;
+			/* Get EP pointer */
+			ep = get_in_ep(pcd, epnum);
+			dwc_ep = &ep->dwc_ep;
+
+			depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
+			empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+
+			DWC_DEBUGPL(DBG_PCDV,
+					"IN EP INTERRUPT - %d\nepmty_msk - %8x  diepctl - %8x\n",
+					epnum,
+					empty_msk,
+					depctl.d32);
+
+			DWC_DEBUGPL(DBG_PCD,
+					"EP%d-%s: type=%d, mps=%d\n",
+					dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
+					dwc_ep->type, dwc_ep->maxpacket);
+
+			diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
+
+			DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
+			/* Transfer complete */
+			if (diepint.b.xfercompl) {
+				/* Disable the NP Tx FIFO Empty
+				 * Interrrupt */
+					if(core_if->en_multiple_tx_fifo == 0) {
+					intr_mask.b.nptxfempty = 1;
+					dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
+				}
+				else {
+					/* Disable the Tx FIFO Empty Interrupt for this EP */
+					uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
+					dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+					fifoemptymsk, 0);
+				}
+				/* Clear the bit in DIEPINTn for this interrupt */
+				CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
+
+				/* Complete the transfer */
+				if (epnum == 0) {
+					handle_ep0(pcd);
+				}
+#ifdef DWC_EN_ISOC
+				else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+					if(!ep->stopped)
+						complete_iso_ep(ep);
+				}
+#endif //DWC_EN_ISOC
+				else {
+
+					complete_ep(ep);
+				}
+			}
+			/* Endpoint disable	 */
+			if (diepint.b.epdisabled) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
+				handle_in_ep_disable_intr(pcd, epnum);
+
+				/* Clear the bit in DIEPINTn for this interrupt */
+				CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
+			}
+			/* AHB Error */
+			if (diepint.b.ahberr) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
+				/* Clear the bit in DIEPINTn for this interrupt */
+				CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
+			}
+			/* TimeOUT Handshake (non-ISOC IN EPs) */
+			if (diepint.b.timeout) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
+				handle_in_ep_timeout_intr(pcd, epnum);
+
+				CLEAR_IN_EP_INTR(core_if,epnum,timeout);
+			}
+			/** IN Token received with TxF Empty */
+			if (diepint.b.intktxfemp) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
+								epnum);
+				if (!ep->stopped && epnum != 0) {
+
+					diepmsk_data_t diepmsk = { .d32 = 0};
+					diepmsk.b.intktxfemp = 1;
+
+					if(core_if->multiproc_int_enable) {
+						dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
+							diepmsk.d32, 0);
+					} else {
+						dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
+					}
+					start_next_request(ep);
+				}
+				else if(core_if->dma_desc_enable && epnum == 0 &&
+						pcd->ep0state == EP0_OUT_STATUS_PHASE) {
+					// EP0 IN set STALL
+					depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
+
+					/* set the disable and stall bits */
+					if (depctl.b.epena) {
+						depctl.b.epdis = 1;
+					}
+					depctl.b.stall = 1;
+					dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
+				}
+				CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
+			}
+			/** IN Token Received with EP mismatch */
+			if (diepint.b.intknepmis) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
+				CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
+			}
+			/** IN Endpoint NAK Effective */
+			if (diepint.b.inepnakeff) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
+				/* Periodic EP */
+				if (ep->disabling) {
+					depctl.d32 = 0;
+					depctl.b.snak = 1;
+					depctl.b.epdis = 1;
+					dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
+				}
+				CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
+
+			}
+
+			/** IN EP Tx FIFO Empty Intr */
+			if (diepint.b.emptyintr) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
+				write_empty_tx_fifo(pcd, epnum);
+
+				CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
+			}
+
+			/** IN EP BNA Intr */
+			if (diepint.b.bna) {
+				CLEAR_IN_EP_INTR(core_if,epnum,bna);
+				if(core_if->dma_desc_enable) {
+#ifdef DWC_EN_ISOC
+					if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+						/*
+						 * This checking is performed to prevent first "false" BNA
+						 * handling occuring right after reconnect
+						 */
+						if(dwc_ep->next_frame != 0xffffffff)
+							dwc_otg_pcd_handle_iso_bna(ep);
+					}
+					else
+#endif //DWC_EN_ISOC
+					{
+						dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
+
+						/* If Global Continue on BNA is disabled - disable EP */
+						if(!dctl.b.gcontbna) 						{
+							depctl.d32 = 0;
+							depctl.b.snak = 1;
+							depctl.b.epdis = 1;
+							dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
+						} else {
+							start_next_request(ep);
+						}
+					}
+				}
+			}
+			/* NAK Interrutp */
+			if (diepint.b.nak) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
+				handle_in_ep_nak_intr(pcd, epnum);
+
+				CLEAR_IN_EP_INTR(core_if,epnum,nak);
+			}
+		}
+		epnum++;
+		ep_intr >>=1;
+	}
+
+	return 1;
+#undef CLEAR_IN_EP_INTR
+}
+
+/**
+ * This interrupt indicates that an OUT EP has a pending Interrupt.
+ * The sequence for handling the OUT EP interrupt is shown below:
+ * -#	Read the Device All Endpoint Interrupt register
+ * -#	Repeat the following for each OUT EP interrupt bit set (from
+ *		LSB to MSB).
+ * -#	Read the Device Endpoint Interrupt (DOEPINTn) register
+ * -#	If "Transfer Complete" call the request complete function
+ * -#	If "Endpoint Disabled" complete the EP disable procedure.
+ * -#	If "AHB Error Interrupt" log error
+ * -#	If "Setup Phase Done" process Setup Packet (See Standard USB
+ *		Command Processing)
+ */
+static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
+{
+#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
+do { \
+		doepint_data_t doepint = {.d32=0}; \
+		doepint.b.__intr = 1; \
+		dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
+		doepint.d32); \
+} while (0)
+
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+	dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+	uint32_t ep_intr;
+	doepint_data_t doepint = {.d32=0};
+	dctl_data_t dctl = {.d32=0};
+	depctl_data_t doepctl = {.d32=0};
+	uint32_t epnum = 0;
+	dwc_otg_pcd_ep_t *ep;
+	dwc_ep_t *dwc_ep;
+
+	DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
+
+	/* Read in the device interrupt bits */
+	ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
+
+	while(ep_intr) {
+		if (ep_intr&0x1) {
+			/* Get EP pointer */
+			ep = get_out_ep(pcd, epnum);
+			dwc_ep = &ep->dwc_ep;
+
+#ifdef VERBOSE
+			DWC_DEBUGPL(DBG_PCDV,
+					"EP%d-%s: type=%d, mps=%d\n",
+					dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
+					dwc_ep->type, dwc_ep->maxpacket);
+#endif
+			doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
+
+			/* Transfer complete */
+			if (doepint.b.xfercompl) {
+				if (epnum == 0) {
+					/* Clear the bit in DOEPINTn for this interrupt */
+					CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+					if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
+						handle_ep0(pcd);
+#ifdef DWC_EN_ISOC
+				} else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+					if (doepint.b.pktdrpsts == 0) {
+						/* Clear the bit in DOEPINTn for this interrupt */
+						CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+						complete_iso_ep(ep);
+					} else {
+						doepint_data_t doepint = {.d32=0};
+						doepint.b.xfercompl = 1;
+						doepint.b.pktdrpsts = 1;
+						dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
+							doepint.d32);
+						if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
+							complete_iso_ep(ep);
+						}
+					}
+#endif //DWC_EN_ISOC
+				} else {
+					/* Clear the bit in DOEPINTn for this interrupt */
+					CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+					complete_ep(ep);
+				}
+
+			}
+
+			/* Endpoint disable	 */
+			if (doepint.b.epdisabled) {
+				/* Clear the bit in DOEPINTn for this interrupt */
+				CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
+			}
+			/* AHB Error */
+			if (doepint.b.ahberr) {
+				DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
+				DWC_DEBUGPL(DBG_PCD,"EP DMA REG	 %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
+				CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
+			}
+			/* Setup Phase Done (contorl EPs) */
+			if (doepint.b.setup) {
+#ifdef DEBUG_EP0
+				DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
+							epnum);
+#endif
+				CLEAR_OUT_EP_INTR(core_if,epnum,setup);
+				handle_ep0(pcd);
+			}
+
+			/** OUT EP BNA Intr */
+			if (doepint.b.bna) {
+				CLEAR_OUT_EP_INTR(core_if,epnum,bna);
+				if(core_if->dma_desc_enable) {
+#ifdef DWC_EN_ISOC
+					if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+						/*
+						 * This checking is performed to prevent first "false" BNA
+						 * handling occuring right after reconnect
+						 */
+						if(dwc_ep->next_frame != 0xffffffff)
+							dwc_otg_pcd_handle_iso_bna(ep);
+					}
+					else
+#endif //DWC_EN_ISOC
+					{
+						dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
+
+						/* If Global Continue on BNA is disabled - disable EP*/
+						if(!dctl.b.gcontbna) {
+							doepctl.d32 = 0;
+							doepctl.b.snak = 1;
+							doepctl.b.epdis = 1;
+							dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
+						} else {
+							start_next_request(ep);
+						}
+					}
+				}
+			}
+			if (doepint.b.stsphsercvd) {
+				CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
+				if(core_if->dma_desc_enable) {
+					do_setup_in_status_phase(pcd);
+				}
+			}
+			/* Babble Interrutp */
+			if (doepint.b.babble) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
+				handle_out_ep_babble_intr(pcd, epnum);
+
+				CLEAR_OUT_EP_INTR(core_if,epnum,babble);
+			}
+			/* NAK Interrutp */
+			if (doepint.b.nak) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
+				handle_out_ep_nak_intr(pcd, epnum);
+
+				CLEAR_OUT_EP_INTR(core_if,epnum,nak);
+			}
+			/* NYET Interrutp */
+			if (doepint.b.nyet) {
+				DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
+				handle_out_ep_nyet_intr(pcd, epnum);
+
+				CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
+			}
+		}
+
+		epnum++;
+		ep_intr >>=1;
+	}
+
+	return 1;
+
+#undef CLEAR_OUT_EP_INTR
+}
+
+
+/**
+ * Incomplete ISO IN Transfer Interrupt.
+ * This interrupt indicates one of the following conditions occurred
+ * while transmitting an ISOC transaction.
+ * - Corrupted IN Token for ISOC EP.
+ * - Packet not complete in FIFO.
+ * The follow actions will be taken:
+ *	-#	Determine the EP
+ *	-#	Set incomplete flag in dwc_ep structure
+ *	-#	Disable EP; when "Endpoint Disabled" interrupt is received
+ *		Flush FIFO
+ */
+int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
+{
+	gintsts_data_t 		gintsts;
+
+
+#ifdef DWC_EN_ISOC
+	dwc_otg_dev_if_t 	*dev_if;
+	deptsiz_data_t 		deptsiz = { .d32 = 0};
+	depctl_data_t		depctl = { .d32 = 0};
+	dsts_data_t		dsts = { .d32 = 0};
+	dwc_ep_t		*dwc_ep;
+	int i;
+
+	dev_if = GET_CORE_IF(pcd)->dev_if;
+
+	for(i = 1; i <= dev_if->num_in_eps; ++i) {
+		dwc_ep = &pcd->in_ep[i].dwc_ep;
+		if(dwc_ep->active &&
+			dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
+		{
+			deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
+			depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+
+			if(depctl.b.epdis && deptsiz.d32) {
+				set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
+				if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+					dwc_ep->cur_pkt = 0;
+					dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+
+					if(dwc_ep->proc_buf_num) {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+					} else {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+					}
+				}
+
+				dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
+				dwc_ep->next_frame = dsts.b.soffn;
+
+				dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
+			}
+		}
+	}
+
+#else
+        gintmsk_data_t intr_mask = { .d32 = 0};
+        DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+                          "IN ISOC Incomplete");
+
+        intr_mask.b.incomplisoin = 1;
+        dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+                                intr_mask.d32, 0);
+#endif //DWC_EN_ISOC
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.incomplisoin = 1;
+	dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+				gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * Incomplete ISO OUT Transfer Interrupt.
+ *
+ * This interrupt indicates that the core has dropped an ISO OUT
+ * packet.	The following conditions can be the cause:
+ * - FIFO Full, the entire packet would not fit in the FIFO.
+ * - CRC Error
+ * - Corrupted Token
+ * The follow actions will be taken:
+ *	-#	Determine the EP
+ *	-#	Set incomplete flag in dwc_ep structure
+ *	-#	Read any data from the FIFO
+ *	-#	Disable EP.	 when "Endpoint Disabled" interrupt is received
+ *		re-enable EP.
+ */
+int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
+{
+	/* @todo implement ISR */
+	gintsts_data_t gintsts;
+
+#ifdef DWC_EN_ISOC
+	dwc_otg_dev_if_t 	*dev_if;
+	deptsiz_data_t 		deptsiz = { .d32 = 0};
+	depctl_data_t		depctl = { .d32 = 0};
+	dsts_data_t		dsts = { .d32 = 0};
+	dwc_ep_t		*dwc_ep;
+	int i;
+
+	dev_if = GET_CORE_IF(pcd)->dev_if;
+
+	for(i = 1; i <= dev_if->num_out_eps; ++i) {
+		dwc_ep = &pcd->in_ep[i].dwc_ep;
+		if(pcd->out_ep[i].dwc_ep.active &&
+			pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
+		{
+			deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
+			depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
+
+			if(depctl.b.epdis && deptsiz.d32) {
+				set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
+				if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+					dwc_ep->cur_pkt = 0;
+					dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+
+					if(dwc_ep->proc_buf_num) {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+					} else {
+						dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+						dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+					}
+				}
+
+				dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
+				dwc_ep->next_frame = dsts.b.soffn;
+
+				dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
+			}
+		}
+	}
+#else
+        /** @todo implement ISR */
+        gintmsk_data_t intr_mask = { .d32 = 0};
+
+        DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+                          "OUT ISOC Incomplete");
+
+        intr_mask.b.incomplisoout = 1;
+        dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+                                intr_mask.d32, 0);
+
+#endif // DWC_EN_ISOC
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.incomplisoout = 1;
+	dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+				gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * This function handles the Global IN NAK Effective interrupt.
+ *
+ */
+int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
+	depctl_data_t diepctl = { .d32 = 0};
+	depctl_data_t diepctl_rd = { .d32 = 0};
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	gintsts_data_t gintsts;
+	int i;
+
+	DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
+
+	/* Disable all active IN EPs */
+	diepctl.b.epdis = 1;
+	diepctl.b.snak = 1;
+
+	for (i=0; i <= dev_if->num_in_eps; i++)
+	{
+		diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+		if (diepctl_rd.b.epena) {
+			dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
+						diepctl.d32);
+		}
+	}
+	/* Disable the Global IN NAK Effective Interrupt */
+	intr_mask.b.ginnakeff = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+					  intr_mask.d32, 0);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.ginnakeff = 1;
+	dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+						 gintsts.d32);
+
+	return 1;
+}
+
+/**
+ * OUT NAK Effective.
+ *
+ */
+int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
+{
+	gintmsk_data_t intr_mask = { .d32 = 0};
+	gintsts_data_t gintsts;
+
+	DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+			  "Global IN NAK Effective\n");
+	/* Disable the Global IN NAK Effective Interrupt */
+	intr_mask.b.goutnakeff = 1;
+	dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+					  intr_mask.d32, 0);
+
+	/* Clear interrupt */
+	gintsts.d32 = 0;
+	gintsts.b.goutnakeff = 1;
+	dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+						 gintsts.d32);
+
+	return 1;
+}
+
+
+/**
+ * PCD interrupt handler.
+ *
+ * The PCD handles the device interrupts.  Many conditions can cause a
+ * device interrupt. When an interrupt occurs, the device interrupt
+ * service routine determines the cause of the interrupt and
+ * dispatches handling to the appropriate function. These interrupt
+ * handling functions are described below.
+ *
+ * All interrupt registers are processed from LSB to MSB.
+ *
+ */
+int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
+{
+	dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+#ifdef VERBOSE
+	dwc_otg_core_global_regs_t *global_regs =
+			core_if->core_global_regs;
+#endif
+	gintsts_data_t gintr_status;
+	int32_t retval = 0;
+
+
+#ifdef VERBOSE
+	DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x	 gintmsk=%08x\n",
+				__func__,
+				dwc_read_reg32(&global_regs->gintsts),
+				dwc_read_reg32(&global_regs->gintmsk));
+#endif
+
+	if (dwc_otg_is_device_mode(core_if)) {
+		SPIN_LOCK(&pcd->lock);
+#ifdef VERBOSE
+		DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x  gintmsk=%08x\n",
+						__func__,
+						dwc_read_reg32(&global_regs->gintsts),
+						dwc_read_reg32(&global_regs->gintmsk));
+#endif
+
+		gintr_status.d32 = dwc_otg_read_core_intr(core_if);
+/*
+		if (!gintr_status.d32) {
+			SPIN_UNLOCK(&pcd->lock);
+			return 0;
+		}
+*/
+		DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
+					__func__, gintr_status.d32);
+
+		if (gintr_status.b.sofintr) {
+			retval |= dwc_otg_pcd_handle_sof_intr(pcd);
+		}
+		if (gintr_status.b.rxstsqlvl) {
+			retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
+		}
+		if (gintr_status.b.nptxfempty) {
+			retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
+		}
+		if (gintr_status.b.ginnakeff) {
+			retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
+		}
+		if (gintr_status.b.goutnakeff) {
+			retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
+		}
+		if (gintr_status.b.i2cintr) {
+			retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
+		}
+		if (gintr_status.b.erlysuspend) {
+			retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
+		}
+		if (gintr_status.b.usbreset) {
+			retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
+		}
+		if (gintr_status.b.enumdone) {
+			retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
+		}
+		if (gintr_status.b.isooutdrop) {
+			retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
+		}
+		if (gintr_status.b.eopframe) {
+			retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
+		}
+		if (gintr_status.b.epmismatch) {
+			retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
+		}
+		if (gintr_status.b.inepint) {
+			if(!core_if->multiproc_int_enable) {
+				retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
+			}
+		}
+		if (gintr_status.b.outepintr) {
+			if(!core_if->multiproc_int_enable) {
+				retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
+			}
+		}
+		if (gintr_status.b.incomplisoin) {
+			retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
+		}
+		if (gintr_status.b.incomplisoout) {
+			retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
+		}
+
+		/* In MPI mode De vice Endpoints intterrupts are asserted
+		 * without setting outepintr and inepint bits set, so these
+		 * Interrupt handlers are called without checking these bit-fields
+		 */
+		if(core_if->multiproc_int_enable) {
+			retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
+			retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
+		}
+#ifdef VERBOSE
+		DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
+						dwc_read_reg32(&global_regs->gintsts));
+#endif
+		SPIN_UNLOCK(&pcd->lock);
+	}
+	S3C2410X_CLEAR_EINTPEND();
+
+	return retval;
+}
+
+#endif /* DWC_HOST_ONLY */
--- /dev/null
+++ b/drivers/usb/dwc/otg_plat.h
@@ -0,0 +1,266 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
+ * $Revision: #23 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064915 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_OTG_PLAT_H__)
+#define __DWC_OTG_PLAT_H__
+
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+
+/* Changed all readl and writel to __raw_readl, __raw_writel */
+
+/**
+ * @file
+ *
+ * This file contains the Platform Specific constants, interfaces
+ * (functions and macros) for Linux.
+ *
+ */
+//#if !defined(__LINUX_ARM_ARCH__)
+//#error "The contents of this file is Linux specific!!!"
+//#endif
+
+/**
+ * Reads the content of a register.
+ *
+ * @param reg address of register to read.
+ * @return contents of the register.
+ *
+
+ * Usage:<br>
+ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
+ */
+static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
+{
+		  return __raw_readl(reg);
+     //   return readl(reg);
+};
+
+/**
+ * Writes a register with a 32 bit value.
+ *
+ * @param reg address of register to read.
+ * @param value to write to _reg.
+ *
+ * Usage:<br>
+ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
+ */
+static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
+{
+     //   writel( value, reg );
+		  __raw_writel(value, reg);
+
+};
+
+/**
+ * This function modifies bit values in a register.  Using the
+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
+ *
+ * @param reg address of register to read.
+ * @param clear_mask bit mask to be cleared.
+ * @param set_mask bit mask to be set.
+ *
+ * Usage:<br>
+ * <code> // Clear the SOF Interrupt Mask bit and <br>
+ * // set the OTG Interrupt mask bit, leaving all others as they were.
+ *    dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
+ */
+static __inline__
+ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
+{
+      //  writel( (readl(reg) & ~clear_mask) | set_mask, reg );
+        __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
+};
+
+
+/**
+ * Wrapper for the OS micro-second delay function.
+ * @param[in] usecs Microseconds of delay
+ */
+static __inline__ void UDELAY( const uint32_t usecs )
+{
+        udelay( usecs );
+}
+
+/**
+ * Wrapper for the OS milli-second delay function.
+ * @param[in] msecs milliseconds of delay
+ */
+static __inline__ void MDELAY( const uint32_t msecs )
+{
+        mdelay( msecs );
+}
+
+/**
+ * Wrapper for the Linux spin_lock.  On the ARM (Integrator)
+ * spin_lock() is a nop.
+ *
+ * @param lock Pointer to the spinlock.
+ */
+static __inline__ void SPIN_LOCK( spinlock_t *lock )
+{
+        spin_lock(lock);
+}
+
+/**
+ * Wrapper for the Linux spin_unlock.  On the ARM (Integrator)
+ * spin_lock() is a nop.
+ *
+ * @param lock Pointer to the spinlock.
+ */
+static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
+{
+        spin_unlock(lock);
+}
+
+/**
+ * Wrapper (macro) for the Linux spin_lock_irqsave.  On the ARM
+ * (Integrator) spin_lock() is a nop.
+ *
+ * @param l Pointer to the spinlock.
+ * @param f unsigned long for irq flags storage.
+ */
+#define SPIN_LOCK_IRQSAVE( l, f )  spin_lock_irqsave(l,f);
+
+/**
+ * Wrapper (macro) for the Linux spin_unlock_irqrestore.  On the ARM
+ * (Integrator) spin_lock() is a nop.
+ *
+ * @param l Pointer to the spinlock.
+ * @param f unsigned long for irq flags storage.
+ */
+#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
+
+/*
+ * Debugging support vanishes in non-debug builds.
+ */
+
+
+/**
+ * The Debug Level bit-mask variable.
+ */
+extern uint32_t g_dbg_lvl;
+/**
+ * Set the Debug Level variable.
+ */
+static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
+{
+        uint32_t old = g_dbg_lvl;
+        g_dbg_lvl = new;
+        return old;
+}
+
+/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
+#define DBG_CIL		(0x2)
+/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
+ * messages */
+#define DBG_CILV	(0x20)
+/**  When debug level has the DBG_PCD bit set, display PCD (Device) debug
+ *  messages */
+#define DBG_PCD		(0x4)
+/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
+ * messages */
+#define DBG_PCDV	(0x40)
+/** When debug level has the DBG_HCD bit set, display Host debug messages */
+#define DBG_HCD		(0x8)
+/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
+ * messages */
+#define DBG_HCDV	(0x80)
+/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
+ *  mode. */
+#define DBG_HCD_URB	(0x800)
+
+/** When debug level has any bit set, display debug messages */
+#define DBG_ANY		(0xFF)
+
+/** All debug messages off */
+#define DBG_OFF		0
+
+/** Prefix string for DWC_DEBUG print macros. */
+#define USB_DWC "DWC_otg: "
+
+/**
+ * Print a debug message when the Global debug level variable contains
+ * the bit defined in <code>lvl</code>.
+ *
+ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
+ * @param[in] x - like printf
+ *
+ *    Example:<p>
+ * <code>
+ *      DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
+ * </code>
+ * <br>
+ * results in:<br>
+ * <code>
+ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
+ * </code>
+ */
+#ifdef DEBUG
+
+# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
+# define DWC_DEBUGP(x...)	DWC_DEBUGPL(DBG_ANY, x )
+
+# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
+
+#else
+
+# define DWC_DEBUGPL(lvl, x...) do{}while(0)
+# define DWC_DEBUGP(x...)
+
+# define CHK_DEBUG_LEVEL(level) (0)
+
+#endif /*DEBUG*/
+
+/**
+ * Print an Error message.
+ */
+#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
+/**
+ * Print a Warning message.
+ */
+#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
+/**
+ * Print a notice (normal but significant message).
+ */
+#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
+/**
+ *  Basic message printing.
+ */
+#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
+
+#endif
+
--- /dev/null
+++ b/drivers/usb/dwc/otg_regs.h
@@ -0,0 +1,2059 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
+ * $Revision: #72 $
+ * $Date: 2008/09/19 $
+ * $Change: 1099526 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#ifndef __DWC_OTG_REGS_H__
+#define __DWC_OTG_REGS_H__
+
+/**
+ * @file
+ *
+ * This file contains the data structures for accessing the DWC_otg core registers.
+ *
+ * The application interfaces with the HS OTG core by reading from and
+ * writing to the Control and Status Register (CSR) space through the
+ * AHB Slave interface. These registers are 32 bits wide, and the
+ * addresses are 32-bit-block aligned.
+ * CSRs are classified as follows:
+ * - Core Global Registers
+ * - Device Mode Registers
+ * - Device Global Registers
+ * - Device Endpoint Specific Registers
+ * - Host Mode Registers
+ * - Host Global Registers
+ * - Host Port CSRs
+ * - Host Channel Specific Registers
+ *
+ * Only the Core Global registers can be accessed in both Device and
+ * Host modes. When the HS OTG core is operating in one mode, either
+ * Device or Host, the application must not access registers from the
+ * other mode. When the core switches from one mode to another, the
+ * registers in the new mode of operation must be reprogrammed as they
+ * would be after a power-on reset.
+ */
+
+/** Maximum number of Periodic FIFOs */
+#define MAX_PERIO_FIFOS 15
+/** Maximum number of Transmit FIFOs */
+#define MAX_TX_FIFOS 15
+
+/** Maximum number of Endpoints/HostChannels */
+#define MAX_EPS_CHANNELS 16
+
+/****************************************************************************/
+/** DWC_otg Core registers .
+ * The dwc_otg_core_global_regs structure defines the size
+ * and relative field offsets for the Core Global registers.
+ */
+typedef struct dwc_otg_core_global_regs
+{
+	/** OTG Control and Status Register.  <i>Offset: 000h</i> */
+	volatile uint32_t gotgctl;
+	/** OTG Interrupt Register.	 <i>Offset: 004h</i> */
+	volatile uint32_t gotgint;
+	/**Core AHB Configuration Register.	 <i>Offset: 008h</i> */
+	volatile uint32_t gahbcfg;
+
+#define DWC_GLBINTRMASK		0x0001
+#define DWC_DMAENABLE		0x0020
+#define DWC_NPTXEMPTYLVL_EMPTY	0x0080
+#define DWC_NPTXEMPTYLVL_HALFEMPTY	0x0000
+#define DWC_PTXEMPTYLVL_EMPTY	0x0100
+#define DWC_PTXEMPTYLVL_HALFEMPTY	0x0000
+
+	/**Core USB Configuration Register.	 <i>Offset: 00Ch</i> */
+	volatile uint32_t gusbcfg;
+	/**Core Reset Register.	 <i>Offset: 010h</i> */
+	volatile uint32_t grstctl;
+	/**Core Interrupt Register.	 <i>Offset: 014h</i> */
+	volatile uint32_t gintsts;
+	/**Core Interrupt Mask Register.  <i>Offset: 018h</i> */
+	volatile uint32_t gintmsk;
+	/**Receive Status Queue Read Register (Read Only).	<i>Offset: 01Ch</i> */
+	volatile uint32_t grxstsr;
+	/**Receive Status Queue Read & POP Register (Read Only).  <i>Offset: 020h</i>*/
+	volatile uint32_t grxstsp;
+	/**Receive FIFO Size Register.	<i>Offset: 024h</i> */
+	volatile uint32_t grxfsiz;
+	/**Non Periodic Transmit FIFO Size Register.  <i>Offset: 028h</i> */
+	volatile uint32_t gnptxfsiz;
+	/**Non Periodic Transmit FIFO/Queue Status Register (Read
+	 * Only). <i>Offset: 02Ch</i> */
+	volatile uint32_t gnptxsts;
+	/**I2C Access Register.	 <i>Offset: 030h</i> */
+	volatile uint32_t gi2cctl;
+	/**PHY Vendor Control Register.	 <i>Offset: 034h</i> */
+	volatile uint32_t gpvndctl;
+	/**General Purpose Input/Output Register.  <i>Offset: 038h</i> */
+	volatile uint32_t ggpio;
+	/**User ID Register.  <i>Offset: 03Ch</i> */
+	volatile uint32_t guid;
+	/**Synopsys ID Register (Read Only).  <i>Offset: 040h</i> */
+	volatile uint32_t gsnpsid;
+	/**User HW Config1 Register (Read Only).  <i>Offset: 044h</i> */
+	volatile uint32_t ghwcfg1;
+	/**User HW Config2 Register (Read Only).  <i>Offset: 048h</i> */
+	volatile uint32_t ghwcfg2;
+#define DWC_SLAVE_ONLY_ARCH 0
+#define DWC_EXT_DMA_ARCH 1
+#define DWC_INT_DMA_ARCH 2
+
+#define DWC_MODE_HNP_SRP_CAPABLE	0
+#define DWC_MODE_SRP_ONLY_CAPABLE	1
+#define DWC_MODE_NO_HNP_SRP_CAPABLE		2
+#define DWC_MODE_SRP_CAPABLE_DEVICE		3
+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE	4
+#define DWC_MODE_SRP_CAPABLE_HOST	5
+#define DWC_MODE_NO_SRP_CAPABLE_HOST	6
+
+	/**User HW Config3 Register (Read Only).  <i>Offset: 04Ch</i> */
+	volatile uint32_t ghwcfg3;
+	/**User HW Config4 Register (Read Only).  <i>Offset: 050h</i>*/
+	volatile uint32_t ghwcfg4;
+	/** Reserved  <i>Offset: 054h-0FFh</i> */
+	volatile uint32_t reserved[43];
+	/** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
+	volatile uint32_t hptxfsiz;
+	/** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
+		otherwise Device Transmit FIFO#n Register.
+	 * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
+	volatile uint32_t dptxfsiz_dieptxf[15];
+} dwc_otg_core_global_regs_t;
+
+/**
+ * This union represents the bit fields of the Core OTG Control
+ * and Status Register (GOTGCTL).  Set the bits using the bit
+ * fields then write the <i>d32</i> value to the register.
+ */
+typedef union gotgctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned sesreqscs : 1;
+		unsigned sesreq : 1;
+		unsigned reserved2_7 : 6;
+		unsigned hstnegscs : 1;
+		unsigned hnpreq : 1;
+		unsigned hstsethnpen : 1;
+		unsigned devhnpen : 1;
+		unsigned reserved12_15 : 4;
+		unsigned conidsts : 1;
+		unsigned reserved17 : 1;
+		unsigned asesvld : 1;
+		unsigned bsesvld : 1;
+		unsigned currmod : 1;
+		unsigned reserved21_31 : 11;
+	} b;
+} gotgctl_data_t;
+
+/**
+ * This union represents the bit fields of the Core OTG Interrupt Register
+ * (GOTGINT).  Set/clear the bits using the bit fields then write the <i>d32</i>
+ * value to the register.
+ */
+typedef union gotgint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Current Mode */
+		unsigned reserved0_1 : 2;
+
+		/** Session End Detected */
+		unsigned sesenddet : 1;
+
+		unsigned reserved3_7 : 5;
+
+		/** Session Request Success Status Change */
+		unsigned sesreqsucstschng : 1;
+		/** Host Negotiation Success Status Change */
+		unsigned hstnegsucstschng : 1;
+
+		unsigned reserver10_16 : 7;
+
+		/** Host Negotiation Detected */
+		unsigned hstnegdet : 1;
+		/** A-Device Timeout Change */
+		unsigned adevtoutchng : 1;
+		/** Debounce Done */
+		unsigned debdone : 1;
+
+		unsigned reserved31_20 : 12;
+
+	} b;
+} gotgint_data_t;
+
+
+/**
+ * This union represents the bit fields of the Core AHB Configuration
+ * Register (GAHBCFG).	Set/clear the bits using the bit fields then
+ * write the <i>d32</i> value to the register.
+ */
+typedef union gahbcfg_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned glblintrmsk : 1;
+#define DWC_GAHBCFG_GLBINT_ENABLE		1
+
+		unsigned hburstlen : 4;
+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE	0
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR		1
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4		3
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8		5
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16	7
+
+		unsigned dmaenable : 1;
+#define DWC_GAHBCFG_DMAENABLE			1
+		unsigned reserved : 1;
+		unsigned nptxfemplvl_txfemplvl : 1;
+		unsigned ptxfemplvl : 1;
+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY		1
+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY	0
+		unsigned reserved9_31 : 23;
+	} b;
+} gahbcfg_data_t;
+
+/**
+ * This union represents the bit fields of the Core USB Configuration
+ * Register (GUSBCFG).	Set the bits using the bit fields then write
+ * the <i>d32</i> value to the register.
+ */
+typedef union gusbcfg_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned toutcal : 3;
+		unsigned phyif : 1;
+		unsigned ulpi_utmi_sel : 1;
+		unsigned fsintf : 1;
+		unsigned physel : 1;
+		unsigned ddrsel : 1;
+		unsigned srpcap : 1;
+		unsigned hnpcap : 1;
+		unsigned usbtrdtim : 4;
+		unsigned nptxfrwnden : 1;
+		unsigned phylpwrclksel : 1;
+		unsigned otgutmifssel : 1;
+		unsigned ulpi_fsls : 1;
+		unsigned ulpi_auto_res : 1;
+		unsigned ulpi_clk_sus_m : 1;
+		unsigned ulpi_ext_vbus_drv : 1;
+		unsigned ulpi_int_vbus_indicator : 1;
+		unsigned term_sel_dl_pulse : 1;
+		unsigned reserved23_27 : 5;
+		unsigned tx_end_delay : 1;
+		unsigned reserved29_31 : 3;
+	} b;
+} gusbcfg_data_t;
+
+/**
+ * This union represents the bit fields of the Core Reset Register
+ * (GRSTCTL).  Set/clear the bits using the bit fields then write the
+ * <i>d32</i> value to the register.
+ */
+typedef union grstctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Core Soft Reset (CSftRst) (Device and Host)
+		 *
+		 * The application can flush the control logic in the
+		 * entire core using this bit. This bit resets the
+		 * pipelines in the AHB Clock domain as well as the
+		 * PHY Clock domain.
+		 *
+		 * The state machines are reset to an IDLE state, the
+		 * control bits in the CSRs are cleared, all the
+		 * transmit FIFOs and the receive FIFO are flushed.
+		 *
+		 * The status mask bits that control the generation of
+		 * the interrupt, are cleared, to clear the
+		 * interrupt. The interrupt status bits are not
+		 * cleared, so the application can get the status of
+		 * any events that occurred in the core after it has
+		 * set this bit.
+		 *
+		 * Any transactions on the AHB are terminated as soon
+		 * as possible following the protocol. Any
+		 * transactions on the USB are terminated immediately.
+		 *
+		 * The configuration settings in the CSRs are
+		 * unchanged, so the software doesn't have to
+		 * reprogram these registers (Device
+		 * Configuration/Host Configuration/Core System
+		 * Configuration/Core PHY Configuration).
+		 *
+		 * The application can write to this bit, any time it
+		 * wants to reset the core. This is a self clearing
+		 * bit and the core clears this bit after all the
+		 * necessary logic is reset in the core, which may
+		 * take several clocks, depending on the current state
+		 * of the core.
+		 */
+		unsigned csftrst : 1;
+		/** Hclk Soft Reset
+		 *
+		 * The application uses this bit to reset the control logic in
+		 * the AHB clock domain. Only AHB clock domain pipelines are
+		 * reset.
+		 */
+		unsigned hsftrst : 1;
+		/** Host Frame Counter Reset (Host Only)<br>
+		 *
+		 * The application can reset the (micro)frame number
+		 * counter inside the core, using this bit. When the
+		 * (micro)frame counter is reset, the subsequent SOF
+		 * sent out by the core, will have a (micro)frame
+		 * number of 0.
+		 */
+		unsigned hstfrm : 1;
+		/** In Token Sequence Learning Queue Flush
+		 * (INTknQFlsh) (Device Only)
+		 */
+		unsigned intknqflsh : 1;
+		/** RxFIFO Flush (RxFFlsh) (Device and Host)
+		 *
+		 * The application can flush the entire Receive FIFO
+		 * using this bit.	<p>The application must first
+		 * ensure that the core is not in the middle of a
+		 * transaction.	 <p>The application should write into
+		 * this bit, only after making sure that neither the
+		 * DMA engine is reading from the RxFIFO nor the MAC
+		 * is writing the data in to the FIFO.	<p>The
+		 * application should wait until the bit is cleared
+		 * before performing any other operations. This bit
+		 * will takes 8 clocks (slowest of PHY or AHB clock)
+		 * to clear.
+		 */
+		unsigned rxfflsh : 1;
+		/** TxFIFO Flush (TxFFlsh) (Device and Host).
+		 *
+		 * This bit is used to selectively flush a single or
+		 * all transmit FIFOs.	The application must first
+		 * ensure that the core is not in the middle of a
+		 * transaction.	 <p>The application should write into
+		 * this bit, only after making sure that neither the
+		 * DMA engine is writing into the TxFIFO nor the MAC
+		 * is reading the data out of the FIFO.	 <p>The
+		 * application should wait until the core clears this
+		 * bit, before performing any operations. This bit
+		 * will takes 8 clocks (slowest of PHY or AHB clock)
+		 * to clear.
+		 */
+		unsigned txfflsh : 1;
+		/** TxFIFO Number (TxFNum) (Device and Host).
+		 *
+		 * This is the FIFO number which needs to be flushed,
+		 * using the TxFIFO Flush bit. This field should not
+		 * be changed until the TxFIFO Flush bit is cleared by
+		 * the core.
+		 *	 - 0x0 : Non Periodic TxFIFO Flush
+		 *	 - 0x1 : Periodic TxFIFO #1 Flush in device mode
+		 *	   or Periodic TxFIFO in host mode
+		 *	 - 0x2 : Periodic TxFIFO #2 Flush in device mode.
+		 *	 - ...
+		 *	 - 0xF : Periodic TxFIFO #15 Flush in device mode
+		 *	 - 0x10: Flush all the Transmit NonPeriodic and
+		 *	   Transmit Periodic FIFOs in the core
+		 */
+		unsigned txfnum : 5;
+		/** Reserved */
+		unsigned reserved11_29 : 19;
+		/** DMA Request Signal.	 Indicated DMA request is in
+		 * probress.  Used for debug purpose. */
+		unsigned dmareq : 1;
+		/** AHB Master Idle.  Indicates the AHB Master State
+		 * Machine is in IDLE condition. */
+		unsigned ahbidle : 1;
+	} b;
+} grstctl_t;
+
+
+/**
+ * This union represents the bit fields of the Core Interrupt Mask
+ * Register (GINTMSK).	Set/clear the bits using the bit fields then
+ * write the <i>d32</i> value to the register.
+ */
+typedef union gintmsk_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned reserved0 : 1;
+		unsigned modemismatch : 1;
+		unsigned otgintr : 1;
+		unsigned sofintr : 1;
+		unsigned rxstsqlvl : 1;
+		unsigned nptxfempty : 1;
+		unsigned ginnakeff : 1;
+		unsigned goutnakeff : 1;
+		unsigned reserved8 : 1;
+		unsigned i2cintr : 1;
+		unsigned erlysuspend : 1;
+		unsigned usbsuspend : 1;
+		unsigned usbreset : 1;
+		unsigned enumdone : 1;
+		unsigned isooutdrop : 1;
+		unsigned eopframe : 1;
+		unsigned reserved16 : 1;
+		unsigned epmismatch : 1;
+		unsigned inepintr : 1;
+		unsigned outepintr : 1;
+		unsigned incomplisoin : 1;
+		unsigned incomplisoout : 1;
+		unsigned reserved22_23 : 2;
+		unsigned portintr : 1;
+		unsigned hcintr : 1;
+		unsigned ptxfempty : 1;
+		unsigned reserved27 : 1;
+		unsigned conidstschng : 1;
+		unsigned disconnect : 1;
+		unsigned sessreqintr : 1;
+		unsigned wkupintr : 1;
+	} b;
+} gintmsk_data_t;
+/**
+ * This union represents the bit fields of the Core Interrupt Register
+ * (GINTSTS).  Set/clear the bits using the bit fields then write the
+ * <i>d32</i> value to the register.
+ */
+typedef union gintsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+#define DWC_SOF_INTR_MASK 0x0008
+	/** register bits */
+	struct
+	{
+#define DWC_HOST_MODE 1
+		unsigned curmode : 1;
+		unsigned modemismatch : 1;
+		unsigned otgintr : 1;
+		unsigned sofintr : 1;
+		unsigned rxstsqlvl : 1;
+		unsigned nptxfempty : 1;
+		unsigned ginnakeff : 1;
+		unsigned goutnakeff : 1;
+		unsigned reserved8 : 1;
+		unsigned i2cintr : 1;
+		unsigned erlysuspend : 1;
+		unsigned usbsuspend : 1;
+		unsigned usbreset : 1;
+		unsigned enumdone : 1;
+		unsigned isooutdrop : 1;
+		unsigned eopframe : 1;
+		unsigned intokenrx : 1;
+		unsigned epmismatch : 1;
+		unsigned inepint: 1;
+		unsigned outepintr : 1;
+		unsigned incomplisoin : 1;
+		unsigned incomplisoout : 1;
+		unsigned reserved22_23 : 2;
+		unsigned portintr : 1;
+		unsigned hcintr : 1;
+		unsigned ptxfempty : 1;
+		unsigned reserved27 : 1;
+		unsigned conidstschng : 1;
+		unsigned disconnect : 1;
+		unsigned sessreqintr : 1;
+		unsigned wkupintr : 1;
+	} b;
+} gintsts_data_t;
+
+
+/**
+ * This union represents the bit fields in the Device Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
+ * element then read out the bits using the <i>b</i>it elements.
+ */
+typedef union device_grxsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned epnum : 4;
+		unsigned bcnt : 11;
+		unsigned dpid : 2;
+#define DWC_STS_DATA_UPDT		0x2				  // OUT Data Packet
+#define DWC_STS_XFER_COMP		0x3				  // OUT Data Transfer Complete
+
+#define DWC_DSTS_GOUT_NAK		0x1				  // Global OUT NAK
+#define DWC_DSTS_SETUP_COMP		0x4				  // Setup Phase Complete
+#define DWC_DSTS_SETUP_UPDT 0x6				  // SETUP Packet
+		unsigned pktsts : 4;
+		unsigned fn : 4;
+		unsigned reserved : 7;
+	} b;
+} device_grxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Host Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
+ * element then read out the bits using the <i>b</i>it elements.
+ */
+typedef union host_grxsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned chnum : 4;
+		unsigned bcnt : 11;
+		unsigned dpid : 2;
+		unsigned pktsts : 4;
+#define DWC_GRXSTS_PKTSTS_IN			  0x2
+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP	  0x3
+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
+#define DWC_GRXSTS_PKTSTS_CH_HALTED		  0x7
+		unsigned reserved : 11;
+	} b;
+} host_grxsts_data_t;
+
+/**
+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
+ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
+ * read out the bits using the <i>b</i>it elements.
+ */
+typedef union fifosize_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned startaddr : 16;
+		unsigned depth : 16;
+	} b;
+} fifosize_data_t;
+
+/**
+ * This union represents the bit fields in the Non-Periodic Transmit
+ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
+ * <i>d32</i> element then read out the bits using the <i>b</i>it
+ * elements.
+ */
+typedef union gnptxsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned nptxfspcavail : 16;
+		unsigned nptxqspcavail : 8;
+		/** Top of the Non-Periodic Transmit Request Queue
+		 *	- bit 24 - Terminate (Last entry for the selected
+		 *	  channel/EP)
+		 *	- bits 26:25 - Token Type
+		 *	  - 2'b00 - IN/OUT
+		 *	  - 2'b01 - Zero Length OUT
+		 *	  - 2'b10 - PING/Complete Split
+		 *	  - 2'b11 - Channel Halt
+		 *	- bits 30:27 - Channel/EP Number
+		 */
+		unsigned nptxqtop_terminate : 1;
+		unsigned nptxqtop_token : 2;
+		unsigned nptxqtop_chnep : 4;
+		unsigned reserved : 1;
+	} b;
+} gnptxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Transmit
+ * FIFO Status Register (DTXFSTS). Read the register into the
+ * <i>d32</i> element then read out the bits using the <i>b</i>it
+ * elements.
+ */
+typedef union dtxfsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned txfspcavail : 16;
+		unsigned reserved : 16;
+	} b;
+} dtxfsts_data_t;
+
+/**
+ * This union represents the bit fields in the I2C Control Register
+ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union gi2cctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned rwdata : 8;
+		unsigned regaddr : 8;
+		unsigned addr : 7;
+		unsigned i2cen : 1;
+		unsigned ack : 1;
+		unsigned i2csuspctl : 1;
+		unsigned i2cdevaddr : 2;
+		unsigned reserved : 2;
+		unsigned rw : 1;
+		unsigned bsydne : 1;
+	} b;
+} gi2cctl_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config1
+ * Register.  Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg1_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned ep_dir0 : 2;
+		unsigned ep_dir1 : 2;
+		unsigned ep_dir2 : 2;
+		unsigned ep_dir3 : 2;
+		unsigned ep_dir4 : 2;
+		unsigned ep_dir5 : 2;
+		unsigned ep_dir6 : 2;
+		unsigned ep_dir7 : 2;
+		unsigned ep_dir8 : 2;
+		unsigned ep_dir9 : 2;
+		unsigned ep_dir10 : 2;
+		unsigned ep_dir11 : 2;
+		unsigned ep_dir12 : 2;
+		unsigned ep_dir13 : 2;
+		unsigned ep_dir14 : 2;
+		unsigned ep_dir15 : 2;
+	} b;
+} hwcfg1_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config2
+ * Register.  Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg2_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/* GHWCFG2 */
+		unsigned op_mode : 3;
+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
+
+		unsigned architecture : 2;
+		unsigned point2point : 1;
+		unsigned hs_phy_type : 2;
+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
+
+		unsigned fs_phy_type : 2;
+		unsigned num_dev_ep : 4;
+		unsigned num_host_chan : 4;
+		unsigned perio_ep_supported : 1;
+		unsigned dynamic_fifo : 1;
+		unsigned multi_proc_int : 1;
+		unsigned reserved21 : 1;
+		unsigned nonperio_tx_q_depth : 2;
+		unsigned host_perio_tx_q_depth : 2;
+		unsigned dev_token_q_depth : 5;
+		unsigned reserved31 : 1;
+	} b;
+} hwcfg2_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config3
+ * Register.  Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg3_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/* GHWCFG3 */
+		unsigned xfer_size_cntr_width : 4;
+		unsigned packet_size_cntr_width : 3;
+		unsigned otg_func : 1;
+		unsigned i2c : 1;
+		unsigned vendor_ctrl_if : 1;
+		unsigned optional_features : 1;
+		unsigned synch_reset_type : 1;
+		unsigned ahb_phy_clock_synch : 1;
+		unsigned reserved15_13 : 3;
+		unsigned dfifo_depth : 16;
+	} b;
+} hwcfg3_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config4
+ * Register.  Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg4_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned num_dev_perio_in_ep : 4;
+		unsigned power_optimiz : 1;
+		unsigned min_ahb_freq : 9;
+		unsigned utmi_phy_data_width : 2;
+		unsigned num_dev_mode_ctrl_ep : 4;
+		unsigned iddig_filt_en : 1;
+		unsigned vbus_valid_filt_en : 1;
+		unsigned a_valid_filt_en : 1;
+		unsigned b_valid_filt_en : 1;
+		unsigned session_end_filt_en : 1;
+		unsigned ded_fifo_en : 1;
+		unsigned num_in_eps : 4;
+		unsigned desc_dma : 1;
+		unsigned desc_dma_dyn : 1;
+	} b;
+} hwcfg4_data_t;
+
+////////////////////////////////////////////
+// Device Registers
+/**
+ * Device Global Registers. <i>Offsets 800h-BFFh</i>
+ *
+ * The following structures define the size and relative field offsets
+ * for the Device Mode Registers.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_global_regs
+{
+	/** Device Configuration Register. <i>Offset 800h</i> */
+	volatile uint32_t dcfg;
+	/** Device Control Register. <i>Offset: 804h</i> */
+	volatile uint32_t dctl;
+	/** Device Status Register (Read Only). <i>Offset: 808h</i> */
+	volatile uint32_t dsts;
+	/** Reserved. <i>Offset: 80Ch</i> */
+	uint32_t unused;
+	/** Device IN Endpoint Common Interrupt Mask
+	 * Register. <i>Offset: 810h</i> */
+	volatile uint32_t diepmsk;
+	/** Device OUT Endpoint Common Interrupt Mask
+	 * Register. <i>Offset: 814h</i> */
+	volatile uint32_t doepmsk;
+	/** Device All Endpoints Interrupt Register.  <i>Offset: 818h</i> */
+	volatile uint32_t daint;
+	/** Device All Endpoints Interrupt Mask Register.  <i>Offset:
+	 * 81Ch</i> */
+	volatile uint32_t daintmsk;
+	/** Device IN Token Queue Read Register-1 (Read Only).
+	 * <i>Offset: 820h</i> */
+	volatile uint32_t dtknqr1;
+	/** Device IN Token Queue Read Register-2 (Read Only).
+	 * <i>Offset: 824h</i> */
+	volatile uint32_t dtknqr2;
+	/** Device VBUS	 discharge Register.  <i>Offset: 828h</i> */
+	volatile uint32_t dvbusdis;
+	/** Device VBUS Pulse Register.	 <i>Offset: 82Ch</i> */
+	volatile uint32_t dvbuspulse;
+	/** Device IN Token Queue Read Register-3 (Read Only). /
+	 *	Device Thresholding control register (Read/Write)
+	 * <i>Offset: 830h</i> */
+	volatile uint32_t dtknqr3_dthrctl;
+	/** Device IN Token Queue Read Register-4 (Read Only). /
+	 *	Device IN EPs empty Inr. Mask Register (Read/Write)
+	 * <i>Offset: 834h</i> */
+	volatile uint32_t dtknqr4_fifoemptymsk;
+	/** Device Each Endpoint Interrupt Register (Read Only). /
+	 * <i>Offset: 838h</i> */
+	volatile uint32_t deachint;
+	/** Device Each Endpoint Interrupt mask Register (Read/Write). /
+	 * <i>Offset: 83Ch</i> */
+	volatile uint32_t deachintmsk;
+	/** Device Each In Endpoint Interrupt mask Register (Read/Write). /
+	 * <i>Offset: 840h</i> */
+	volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
+	/** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
+	 * <i>Offset: 880h</i> */
+	volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
+} dwc_otg_device_global_regs_t;
+
+/**
+ * This union represents the bit fields in the Device Configuration
+ * Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.  Write the
+ * <i>d32</i> member to the dcfg register.
+ */
+typedef union dcfg_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Device Speed */
+		unsigned devspd : 2;
+		/** Non Zero Length Status OUT Handshake */
+		unsigned nzstsouthshk : 1;
+#define DWC_DCFG_SEND_STALL 1
+
+		unsigned reserved3 : 1;
+		/** Device Addresses */
+		unsigned devaddr : 7;
+		/** Periodic Frame Interval */
+		unsigned perfrint : 2;
+#define DWC_DCFG_FRAME_INTERVAL_80 0
+#define DWC_DCFG_FRAME_INTERVAL_85 1
+#define DWC_DCFG_FRAME_INTERVAL_90 2
+#define DWC_DCFG_FRAME_INTERVAL_95 3
+
+		unsigned reserved13_17 : 5;
+		/** In Endpoint Mis-match count */
+		unsigned epmscnt : 5;
+		/** Enable Descriptor DMA in Device mode */
+		unsigned descdma : 1;
+	} b;
+} dcfg_data_t;
+
+/**
+ * This union represents the bit fields in the Device Control
+ * Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union dctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Remote Wakeup */
+		unsigned rmtwkupsig : 1;
+		/** Soft Disconnect */
+		unsigned sftdiscon : 1;
+		/** Global Non-Periodic IN NAK Status */
+		unsigned gnpinnaksts : 1;
+		/** Global OUT NAK Status */
+		unsigned goutnaksts : 1;
+		/** Test Control */
+		unsigned tstctl : 3;
+		/** Set Global Non-Periodic IN NAK */
+		unsigned sgnpinnak : 1;
+		/** Clear Global Non-Periodic IN NAK */
+		unsigned cgnpinnak : 1;
+		/** Set Global OUT NAK */
+		unsigned sgoutnak : 1;
+		/** Clear Global OUT NAK */
+		unsigned cgoutnak : 1;
+
+		/** Power-On Programming Done */
+		unsigned pwronprgdone : 1;
+		/** Global Continue on BNA */
+		unsigned gcontbna : 1;
+		/** Global Multi Count */
+		unsigned gmc : 2;
+		/** Ignore Frame Number for ISOC EPs */
+		unsigned ifrmnum : 1;
+		/** NAK on Babble */
+		unsigned nakonbble : 1;
+
+		unsigned reserved16_31 : 16;
+	} b;
+} dctl_data_t;
+
+/**
+ * This union represents the bit fields in the Device Status
+ * Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union dsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Suspend Status */
+		unsigned suspsts : 1;
+		/** Enumerated Speed */
+		unsigned enumspd : 2;
+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ		   2
+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ		   3
+		/** Erratic Error */
+		unsigned errticerr : 1;
+		unsigned reserved4_7: 4;
+		/** Frame or Microframe Number of the received SOF */
+		unsigned soffn : 14;
+		unsigned reserved22_31 : 10;
+	} b;
+} dsts_data_t;
+
+
+/**
+ * This union represents the bit fields in the Device IN EP Interrupt
+ * Register and the Device IN EP Common Mask Register.
+ *
+ * - Read the register into the <i>d32</i> member then set/clear the
+ *	 bits using the <i>b</i>it elements.
+ */
+typedef union diepint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Transfer complete mask */
+		unsigned xfercompl : 1;
+		/** Endpoint disable mask */
+		unsigned epdisabled : 1;
+		/** AHB Error mask */
+		unsigned ahberr : 1;
+		/** TimeOUT Handshake mask (non-ISOC EPs) */
+		unsigned timeout : 1;
+		/** IN Token received with TxF Empty mask */
+		unsigned intktxfemp : 1;
+		/** IN Token Received with EP mismatch mask */
+		unsigned intknepmis : 1;
+		/** IN Endpoint HAK Effective mask */
+		unsigned inepnakeff : 1;
+		/** IN Endpoint HAK Effective mask */
+		unsigned emptyintr : 1;
+		unsigned txfifoundrn : 1;
+
+		/** BNA Interrupt mask */
+		unsigned bna : 1;
+		unsigned reserved10_12 : 3;
+		/** BNA Interrupt mask */
+		unsigned nak : 1;
+		unsigned reserved14_31 : 18;
+		} b;
+} diepint_data_t;
+
+/**
+ * This union represents the bit fields in the Device IN EP
+ * Common/Dedicated Interrupt Mask Register.
+ */
+typedef union diepint_data diepmsk_data_t;
+
+/**
+ * This union represents the bit fields in the Device OUT EP Interrupt
+ * Registerand Device OUT EP Common Interrupt Mask Register.
+ *
+ * - Read the register into the <i>d32</i> member then set/clear the
+ *	 bits using the <i>b</i>it elements.
+ */
+typedef union doepint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Transfer complete */
+		unsigned xfercompl : 1;
+		/** Endpoint disable  */
+		unsigned epdisabled : 1;
+		/** AHB Error */
+		unsigned ahberr : 1;
+		/** Setup Phase Done (contorl EPs) */
+		unsigned setup : 1;
+		/** OUT Token Received when Endpoint Disabled */
+		unsigned outtknepdis : 1;
+		unsigned stsphsercvd : 1;
+		/** Back-to-Back SETUP Packets Received */
+		unsigned back2backsetup : 1;
+		unsigned reserved7 : 1;
+		/** OUT packet Error */
+		unsigned outpkterr : 1;
+		/** BNA Interrupt */
+		unsigned bna : 1;
+		unsigned reserved10 : 1;
+		/** Packet Drop Status */
+		unsigned pktdrpsts : 1;
+		/** Babble Interrupt */
+		unsigned babble : 1;
+		/** NAK Interrupt */
+		unsigned nak : 1;
+		/** NYET Interrupt */
+		unsigned nyet : 1;
+
+		unsigned reserved15_31 : 17;
+	} b;
+} doepint_data_t;
+
+/**
+ * This union represents the bit fields in the Device OUT EP
+ * Common/Dedicated Interrupt Mask Register.
+ */
+typedef union doepint_data doepmsk_data_t;
+
+/**
+ * This union represents the bit fields in the Device All EP Interrupt
+ * and Mask Registers.
+ * - Read the register into the <i>d32</i> member then set/clear the
+ *	 bits using the <i>b</i>it elements.
+ */
+typedef union daint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** IN Endpoint bits */
+		unsigned in : 16;
+		/** OUT Endpoint bits */
+		unsigned out : 16;
+	} ep;
+	struct
+	{
+		/** IN Endpoint bits */
+		unsigned inep0	: 1;
+		unsigned inep1	: 1;
+		unsigned inep2	: 1;
+		unsigned inep3	: 1;
+		unsigned inep4	: 1;
+		unsigned inep5	: 1;
+		unsigned inep6	: 1;
+		unsigned inep7	: 1;
+		unsigned inep8	: 1;
+		unsigned inep9	: 1;
+		unsigned inep10 : 1;
+		unsigned inep11 : 1;
+		unsigned inep12 : 1;
+		unsigned inep13 : 1;
+		unsigned inep14 : 1;
+		unsigned inep15 : 1;
+		/** OUT Endpoint bits */
+		unsigned outep0	 : 1;
+		unsigned outep1	 : 1;
+		unsigned outep2	 : 1;
+		unsigned outep3	 : 1;
+		unsigned outep4	 : 1;
+		unsigned outep5	 : 1;
+		unsigned outep6	 : 1;
+		unsigned outep7	 : 1;
+		unsigned outep8	 : 1;
+		unsigned outep9	 : 1;
+		unsigned outep10 : 1;
+		unsigned outep11 : 1;
+		unsigned outep12 : 1;
+		unsigned outep13 : 1;
+		unsigned outep14 : 1;
+		unsigned outep15 : 1;
+	} b;
+} daint_data_t;
+
+/**
+ * This union represents the bit fields in the Device IN Token Queue
+ * Read Registers.
+ * - Read the register into the <i>d32</i> member.
+ * - READ-ONLY Register
+ */
+typedef union dtknq1_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** In Token Queue Write Pointer */
+		unsigned intknwptr : 5;
+		/** Reserved */
+		unsigned reserved05_06 : 2;
+		/** write pointer has wrapped. */
+		unsigned wrap_bit : 1;
+		/** EP Numbers of IN Tokens 0 ... 4 */
+		unsigned epnums0_5 : 24;
+	}b;
+} dtknq1_data_t;
+
+/**
+ * This union represents Threshold control Register
+ * - Read and write the register into the <i>d32</i> member.
+ * - READ-WRITABLE Register
+ */
+typedef union dthrctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** non ISO Tx Thr. Enable */
+		unsigned non_iso_thr_en : 1;
+		/** ISO Tx Thr. Enable */
+		unsigned iso_thr_en : 1;
+		/** Tx Thr. Length */
+		unsigned tx_thr_len : 9;
+		/** Reserved */
+		unsigned reserved11_15 : 5;
+		/** Rx Thr. Enable */
+		unsigned rx_thr_en : 1;
+		/** Rx Thr. Length */
+		unsigned rx_thr_len : 9;
+		/** Reserved */
+		unsigned reserved26_31 : 6;
+	}b;
+} dthrctl_data_t;
+
+
+/**
+ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
+ * 900h-AFCh</i>
+ *
+ * There will be one set of endpoint registers per logical endpoint
+ * implemented.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_in_ep_regs
+{
+	/** Device IN Endpoint Control Register. <i>Offset:900h +
+	 * (ep_num * 20h) + 00h</i> */
+	volatile uint32_t diepctl;
+	/** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
+	uint32_t reserved04;
+	/** Device IN Endpoint Interrupt Register. <i>Offset:900h +
+	 * (ep_num * 20h) + 08h</i> */
+	volatile uint32_t diepint;
+	/** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
+	uint32_t reserved0C;
+	/** Device IN Endpoint Transfer Size
+	 * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
+	volatile uint32_t dieptsiz;
+	/** Device IN Endpoint DMA Address Register. <i>Offset:900h +
+	 * (ep_num * 20h) + 14h</i> */
+	volatile uint32_t diepdma;
+	/** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
+	 * (ep_num * 20h) + 18h</i> */
+	volatile uint32_t dtxfsts;
+	/** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
+	 * (ep_num * 20h) + 1Ch</i> */
+	volatile uint32_t diepdmab;
+} dwc_otg_dev_in_ep_regs_t;
+
+/**
+ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
+ * B00h-CFCh</i>
+ *
+ * There will be one set of endpoint registers per logical endpoint
+ * implemented.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_out_ep_regs
+{
+	/** Device OUT Endpoint Control Register. <i>Offset:B00h +
+	 * (ep_num * 20h) + 00h</i> */
+	volatile uint32_t doepctl;
+	/** Device OUT Endpoint Frame number Register.	<i>Offset:
+	 * B00h + (ep_num * 20h) + 04h</i> */
+	volatile uint32_t doepfn;
+	/** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
+	 * (ep_num * 20h) + 08h</i> */
+	volatile uint32_t doepint;
+	/** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
+	uint32_t reserved0C;
+	/** Device OUT Endpoint Transfer Size Register. <i>Offset:
+	 * B00h + (ep_num * 20h) + 10h</i> */
+	volatile uint32_t doeptsiz;
+	/** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
+	 * + (ep_num * 20h) + 14h</i> */
+	volatile uint32_t doepdma;
+	/** Reserved. <i>Offset:B00h + 	 * (ep_num * 20h) + 1Ch</i> */
+	uint32_t unused;
+	/** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
+	 * + (ep_num * 20h) + 1Ch</i> */
+	uint32_t doepdmab;
+} dwc_otg_dev_out_ep_regs_t;
+
+/**
+ * This union represents the bit fields in the Device EP Control
+ * Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union depctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Maximum Packet Size
+		 * IN/OUT EPn
+		 * IN/OUT EP0 - 2 bits
+		 *	 2'b00: 64 Bytes
+		 *	 2'b01: 32
+		 *	 2'b10: 16
+		 *	 2'b11: 8 */
+		unsigned mps : 11;
+#define DWC_DEP0CTL_MPS_64	 0
+#define DWC_DEP0CTL_MPS_32	 1
+#define DWC_DEP0CTL_MPS_16	 2
+#define DWC_DEP0CTL_MPS_8	 3
+
+		/** Next Endpoint
+		 * IN EPn/IN EP0
+		 * OUT EPn/OUT EP0 - reserved */
+		unsigned nextep : 4;
+
+		/** USB Active Endpoint */
+		unsigned usbactep : 1;
+
+		/** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
+		 * This field contains the PID of the packet going to
+		 * be received or transmitted on this endpoint. The
+		 * application should program the PID of the first
+		 * packet going to be received or transmitted on this
+		 * endpoint , after the endpoint is
+		 * activated. Application use the SetD1PID and
+		 * SetD0PID fields of this register to program either
+		 * D0 or D1 PID.
+		 *
+		 * The encoding for this field is
+		 *	 - 0: D0
+		 *	 - 1: D1
+		 */
+		unsigned dpid : 1;
+
+		/** NAK Status */
+		unsigned naksts : 1;
+
+		/** Endpoint Type
+		 *	2'b00: Control
+		 *	2'b01: Isochronous
+		 *	2'b10: Bulk
+		 *	2'b11: Interrupt */
+		unsigned eptype : 2;
+
+		/** Snoop Mode
+		 * OUT EPn/OUT EP0
+		 * IN EPn/IN EP0 - reserved */
+		unsigned snp : 1;
+
+		/** Stall Handshake */
+		unsigned stall : 1;
+
+		/** Tx Fifo Number
+		 * IN EPn/IN EP0
+		 * OUT EPn/OUT EP0 - reserved */
+		unsigned txfnum : 4;
+
+		/** Clear NAK */
+		unsigned cnak : 1;
+		/** Set NAK */
+		unsigned snak : 1;
+		/** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
+		 * Writing to this field sets the Endpoint DPID (DPID)
+		 * field in this register to DATA0. Set Even
+		 * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
+		 * Writing to this field sets the Even/Odd
+		 * (micro)frame (EO_FrNum) field to even (micro)
+		 * frame.
+		 */
+		unsigned setd0pid : 1;
+		/** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
+		 * Writing to this field sets the Endpoint DPID (DPID)
+		 * field in this register to DATA1 Set Odd
+		 * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
+		 * Writing to this field sets the Even/Odd
+		 * (micro)frame (EO_FrNum) field to odd (micro) frame.
+		 */
+		unsigned setd1pid : 1;
+		/** Endpoint Disable */
+		unsigned epdis : 1;
+		/** Endpoint Enable */
+		unsigned epena : 1;
+		} b;
+} depctl_data_t;
+
+/**
+ * This union represents the bit fields in the Device EP Transfer
+ * Size Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union deptsiz_data
+{
+		/** raw register data */
+		uint32_t d32;
+		/** register bits */
+		struct {
+		/** Transfer size */
+		unsigned xfersize : 19;
+		/** Packet Count */
+		unsigned pktcnt : 10;
+		/** Multi Count - Periodic IN endpoints */
+		unsigned mc : 2;
+		unsigned reserved : 1;
+		} b;
+} deptsiz_data_t;
+
+/**
+ * This union represents the bit fields in the Device EP 0 Transfer
+ * Size Register.  Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union deptsiz0_data
+{
+		/** raw register data */
+		uint32_t d32;
+		/** register bits */
+		struct {
+		/** Transfer size */
+		unsigned xfersize : 7;
+				/** Reserved */
+				unsigned reserved7_18 : 12;
+		/** Packet Count */
+		unsigned pktcnt : 1;
+				/** Reserved */
+		unsigned reserved20_28 : 9;
+				/**Setup Packet Count (DOEPTSIZ0 Only) */
+				unsigned supcnt : 2;
+				unsigned reserved31;
+		} b;
+} deptsiz0_data_t;
+
+
+/////////////////////////////////////////////////
+// DMA Descriptor Specific Structures
+//
+
+/** Buffer status definitions */
+
+#define BS_HOST_READY	0x0
+#define BS_DMA_BUSY		0x1
+#define BS_DMA_DONE		0x2
+#define BS_HOST_BUSY	0x3
+
+/** Receive/Transmit status definitions */
+
+#define RTS_SUCCESS		0x0
+#define RTS_BUFFLUSH	0x1
+#define RTS_RESERVED	0x2
+#define RTS_BUFERR		0x3
+
+
+/**
+ * This union represents the bit fields in the DMA Descriptor
+ * status quadlet. Read the quadlet into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
+ * <i>b_iso_in</i> elements.
+ */
+typedef union desc_sts_data
+{
+		/** raw register data */
+		uint32_t d32;
+		/** quadlet bits */
+		struct {
+		/** Received number of bytes */
+		unsigned bytes : 16;
+
+		unsigned reserved16_22 : 7;
+		/** Multiple Transfer - only for OUT EPs */
+		unsigned mtrf : 1;
+		/** Setup Packet received - only for OUT EPs */
+		unsigned sr : 1;
+		/** Interrupt On Complete */
+		unsigned ioc : 1;
+		/** Short Packet */
+		unsigned sp : 1;
+		/** Last */
+		unsigned l : 1;
+		/** Receive Status */
+		unsigned sts : 2;
+		/** Buffer Status */
+		unsigned bs : 2;
+		} b;
+
+#ifdef DWC_EN_ISOC
+		/** iso out quadlet bits */
+		struct {
+		/** Received number of bytes */
+		unsigned rxbytes : 11;
+
+		unsigned reserved11 : 1;
+		/** Frame Number */
+		unsigned framenum : 11;
+		/** Received ISO Data PID */
+		unsigned pid : 2;
+		/** Interrupt On Complete */
+		unsigned ioc : 1;
+		/** Short Packet */
+		unsigned sp : 1;
+		/** Last */
+		unsigned l : 1;
+		/** Receive Status */
+		unsigned rxsts : 2;
+		/** Buffer Status */
+		unsigned bs : 2;
+		} b_iso_out;
+
+		/** iso in quadlet bits */
+		struct {
+		/** Transmited number of bytes */
+		unsigned txbytes : 12;
+		/** Frame Number */
+		unsigned framenum : 11;
+		/** Transmited ISO Data PID */
+		unsigned pid : 2;
+		/** Interrupt On Complete */
+		unsigned ioc : 1;
+		/** Short Packet */
+		unsigned sp : 1;
+		/** Last */
+		unsigned l : 1;
+		/** Transmit Status */
+		unsigned txsts : 2;
+		/** Buffer Status */
+		unsigned bs : 2;
+		} b_iso_in;
+#endif //DWC_EN_ISOC
+} desc_sts_data_t;
+
+/**
+ * DMA Descriptor structure
+ *
+ * DMA Descriptor structure contains two quadlets:
+ * Status quadlet and Data buffer pointer.
+ */
+typedef struct dwc_otg_dma_desc
+{
+	/** DMA Descriptor status quadlet */
+	desc_sts_data_t	status;
+	/** DMA Descriptor data buffer pointer */
+ 	dma_addr_t	buf;
+} dwc_otg_dma_desc_t;
+
+/**
+ * The dwc_otg_dev_if structure contains information needed to manage
+ * the DWC_otg controller acting in device mode. It represents the
+ * programming view of the device-specific aspects of the controller.
+ */
+typedef struct dwc_otg_dev_if
+{
+	/** Pointer to device Global registers.
+	 * Device Global Registers starting at offset 800h
+	 */
+	dwc_otg_device_global_regs_t *dev_global_regs;
+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
+
+	/**
+	 * Device Logical IN Endpoint-Specific Registers 900h-AFCh
+	 */
+	dwc_otg_dev_in_ep_regs_t	 *in_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
+#define DWC_EP_REG_OFFSET 0x20
+
+	/** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
+	dwc_otg_dev_out_ep_regs_t	 *out_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
+
+	/* Device configuration information*/
+	uint8_t	 speed;				 /**< Device Speed	0: Unknown, 1: LS, 2:FS, 3: HS */
+	uint8_t	 num_in_eps;		 /**< Number # of Tx EP range: 0-15 exept ep0 */
+	uint8_t	 num_out_eps;		 /**< Number # of Rx EP range: 0-15 exept ep 0*/
+
+	/** Size of periodic FIFOs (Bytes) */
+	uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
+
+	/** Size of Tx FIFOs (Bytes) */
+	uint16_t tx_fifo_size[MAX_TX_FIFOS];
+
+	/** Thresholding enable flags and length varaiables **/
+	uint16_t rx_thr_en;
+	uint16_t iso_tx_thr_en;
+	uint16_t non_iso_tx_thr_en;
+
+	uint16_t rx_thr_length;
+	uint16_t tx_thr_length;
+
+	/**
+	 * Pointers to the DMA Descriptors for EP0 Control
+	 * transfers (virtual and physical)
+	 */
+	/** 2 descriptors for SETUP packets */
+	uint32_t dma_setup_desc_addr[2];
+	dwc_otg_dma_desc_t* setup_desc_addr[2];
+
+	/** Pointer to Descriptor with latest SETUP packet */
+	dwc_otg_dma_desc_t* psetup;
+
+	/** Index of current SETUP handler descriptor */
+	uint32_t setup_desc_index;
+
+	/** Descriptor for Data In or Status In phases */
+	uint32_t dma_in_desc_addr;
+	dwc_otg_dma_desc_t* in_desc_addr;;
+
+	/** Descriptor for Data Out or Status Out phases */
+	uint32_t dma_out_desc_addr;
+	dwc_otg_dma_desc_t* out_desc_addr;
+} dwc_otg_dev_if_t;
+
+
+
+
+/////////////////////////////////////////////////
+// Host Mode Register Structures
+//
+/**
+ * The Host Global Registers structure defines the size and relative
+ * field offsets for the Host Mode Global Registers.  Host Global
+ * Registers offsets 400h-7FFh.
+*/
+typedef struct dwc_otg_host_global_regs
+{
+	/** Host Configuration Register.   <i>Offset: 400h</i> */
+	volatile uint32_t hcfg;
+	/** Host Frame Interval Register.	<i>Offset: 404h</i> */
+	volatile uint32_t hfir;
+	/** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
+	volatile uint32_t hfnum;
+	/** Reserved.	<i>Offset: 40Ch</i> */
+	uint32_t reserved40C;
+	/** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
+	volatile uint32_t hptxsts;
+	/** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
+	volatile uint32_t haint;
+	/** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
+	volatile uint32_t haintmsk;
+} dwc_otg_host_global_regs_t;
+
+/**
+ * This union represents the bit fields in the Host Configuration Register.
+ * Read the register into the <i>d32</i> member then set/clear the bits using
+ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
+ */
+typedef union hcfg_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		/** FS/LS Phy Clock Select */
+		unsigned fslspclksel : 2;
+#define DWC_HCFG_30_60_MHZ 0
+#define DWC_HCFG_48_MHZ	   1
+#define DWC_HCFG_6_MHZ	   2
+
+		/** FS/LS Only Support */
+		unsigned fslssupp : 1;
+		} b;
+} hcfg_data_t;
+
+/**
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+typedef union hfir_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		unsigned frint : 16;
+		unsigned reserved : 16;
+	} b;
+} hfir_data_t;
+
+/**
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+typedef union hfnum_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		unsigned frnum : 16;
+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
+		unsigned frrem : 16;
+	} b;
+} hfnum_data_t;
+
+typedef union hptxsts_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		unsigned ptxfspcavail : 16;
+		unsigned ptxqspcavail : 8;
+		/** Top of the Periodic Transmit Request Queue
+		 *	- bit 24 - Terminate (last entry for the selected channel)
+		 *	- bits 26:25 - Token Type
+		 *	  - 2'b00 - Zero length
+		 *	  - 2'b01 - Ping
+		 *	  - 2'b10 - Disable
+		 *	- bits 30:27 - Channel Number
+		 *	- bit 31 - Odd/even microframe
+		 */
+		unsigned ptxqtop_terminate : 1;
+		unsigned ptxqtop_token : 2;
+		unsigned ptxqtop_chnum : 4;
+		unsigned ptxqtop_odd : 1;
+	} b;
+} hptxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Host Port Control and Status
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hprt0 register.
+ */
+typedef union hprt0_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned prtconnsts : 1;
+		unsigned prtconndet : 1;
+		unsigned prtena : 1;
+		unsigned prtenchng : 1;
+		unsigned prtovrcurract : 1;
+		unsigned prtovrcurrchng : 1;
+		unsigned prtres : 1;
+		unsigned prtsusp : 1;
+		unsigned prtrst : 1;
+		unsigned reserved9 : 1;
+		unsigned prtlnsts : 2;
+		unsigned prtpwr : 1;
+		unsigned prttstctl : 4;
+		unsigned prtspd : 2;
+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
+#define DWC_HPRT0_PRTSPD_LOW_SPEED	2
+		unsigned reserved19_31 : 13;
+	} b;
+} hprt0_data_t;
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union haint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned ch0 : 1;
+		unsigned ch1 : 1;
+		unsigned ch2 : 1;
+		unsigned ch3 : 1;
+		unsigned ch4 : 1;
+		unsigned ch5 : 1;
+		unsigned ch6 : 1;
+		unsigned ch7 : 1;
+		unsigned ch8 : 1;
+		unsigned ch9 : 1;
+		unsigned ch10 : 1;
+		unsigned ch11 : 1;
+		unsigned ch12 : 1;
+		unsigned ch13 : 1;
+		unsigned ch14 : 1;
+		unsigned ch15 : 1;
+		unsigned reserved : 16;
+	} b;
+
+	struct
+	{
+		unsigned chint : 16;
+		unsigned reserved : 16;
+	} b2;
+} haint_data_t;
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union haintmsk_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		unsigned ch0 : 1;
+		unsigned ch1 : 1;
+		unsigned ch2 : 1;
+		unsigned ch3 : 1;
+		unsigned ch4 : 1;
+		unsigned ch5 : 1;
+		unsigned ch6 : 1;
+		unsigned ch7 : 1;
+		unsigned ch8 : 1;
+		unsigned ch9 : 1;
+		unsigned ch10 : 1;
+		unsigned ch11 : 1;
+		unsigned ch12 : 1;
+		unsigned ch13 : 1;
+		unsigned ch14 : 1;
+		unsigned ch15 : 1;
+		unsigned reserved : 16;
+	} b;
+
+	struct
+	{
+		unsigned chint : 16;
+		unsigned reserved : 16;
+	} b2;
+} haintmsk_data_t;
+
+/**
+ * Host Channel Specific Registers. <i>500h-5FCh</i>
+ */
+typedef struct dwc_otg_hc_regs
+{
+	/** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
+	volatile uint32_t hcchar;
+	/** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
+	volatile uint32_t hcsplt;
+	/** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
+	volatile uint32_t hcint;
+	/** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
+	volatile uint32_t hcintmsk;
+	/** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
+	volatile uint32_t hctsiz;
+	/** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
+	volatile uint32_t hcdma;
+	/** Reserved.  <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
+	uint32_t reserved[2];
+} dwc_otg_hc_regs_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Characteristics
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcchar register.
+ */
+typedef union hcchar_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		/** Maximum packet size in bytes */
+		unsigned mps : 11;
+
+		/** Endpoint number */
+		unsigned epnum : 4;
+
+		/** 0: OUT, 1: IN */
+		unsigned epdir : 1;
+
+		unsigned reserved : 1;
+
+		/** 0: Full/high speed device, 1: Low speed device */
+		unsigned lspddev : 1;
+
+		/** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
+		unsigned eptype : 2;
+
+		/** Packets per frame for periodic transfers. 0 is reserved. */
+		unsigned multicnt : 2;
+
+		/** Device address */
+		unsigned devaddr : 7;
+
+		/**
+		 * Frame to transmit periodic transaction.
+		 * 0: even, 1: odd
+		 */
+		unsigned oddfrm : 1;
+
+		/** Channel disable */
+		unsigned chdis : 1;
+
+		/** Channel enable */
+		unsigned chen : 1;
+	} b;
+} hcchar_data_t;
+
+typedef union hcsplt_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		/** Port Address */
+		unsigned prtaddr : 7;
+
+		/** Hub Address */
+		unsigned hubaddr : 7;
+
+		/** Transaction Position */
+		unsigned xactpos : 2;
+#define DWC_HCSPLIT_XACTPOS_MID 0
+#define DWC_HCSPLIT_XACTPOS_END 1
+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
+#define DWC_HCSPLIT_XACTPOS_ALL 3
+
+		/** Do Complete Split */
+		unsigned compsplt : 1;
+
+		/** Reserved */
+		unsigned reserved : 14;
+
+		/** Split Enble */
+		unsigned spltena : 1;
+	} b;
+} hcsplt_data_t;
+
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union hcint_data
+{
+	/** raw register data */
+	uint32_t d32;
+	/** register bits */
+	struct
+	{
+		/** Transfer Complete */
+		unsigned xfercomp : 1;
+		/** Channel Halted */
+		unsigned chhltd : 1;
+		/** AHB Error */
+		unsigned ahberr : 1;
+		/** STALL Response Received */
+		unsigned stall : 1;
+		/** NAK Response Received */
+		unsigned nak : 1;
+		/** ACK Response Received */
+		unsigned ack : 1;
+		/** NYET Response Received */
+		unsigned nyet : 1;
+		/** Transaction Err */
+		unsigned xacterr : 1;
+		/** Babble Error */
+		unsigned bblerr : 1;
+		/** Frame Overrun */
+		unsigned frmovrun : 1;
+		/** Data Toggle Error */
+		unsigned datatglerr : 1;
+		/** Reserved */
+		unsigned reserved : 21;
+	} b;
+} hcint_data_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Transfer Size
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcchar register.
+ */
+typedef union hctsiz_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		/** Total transfer size in bytes */
+		unsigned xfersize : 19;
+
+		/** Data packets to transfer */
+		unsigned pktcnt : 10;
+
+		/**
+		 * Packet ID for next data packet
+		 * 0: DATA0
+		 * 1: DATA2
+		 * 2: DATA1
+		 * 3: MDATA (non-Control), SETUP (Control)
+		 */
+		unsigned pid : 2;
+#define DWC_HCTSIZ_DATA0 0
+#define DWC_HCTSIZ_DATA1 2
+#define DWC_HCTSIZ_DATA2 1
+#define DWC_HCTSIZ_MDATA 3
+#define DWC_HCTSIZ_SETUP 3
+
+		/** Do PING protocol when 1 */
+		unsigned dopng : 1;
+	} b;
+} hctsiz_data_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Interrupt Mask
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcintmsk register.
+ */
+typedef union hcintmsk_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		unsigned xfercompl : 1;
+		unsigned chhltd : 1;
+		unsigned ahberr : 1;
+		unsigned stall : 1;
+		unsigned nak : 1;
+		unsigned ack : 1;
+		unsigned nyet : 1;
+		unsigned xacterr : 1;
+		unsigned bblerr : 1;
+		unsigned frmovrun : 1;
+		unsigned datatglerr : 1;
+		unsigned reserved : 21;
+	} b;
+} hcintmsk_data_t;
+
+/** OTG Host Interface Structure.
+ *
+ * The OTG Host Interface Structure structure contains information
+ * needed to manage the DWC_otg controller acting in host mode. It
+ * represents the programming view of the host-specific aspects of the
+ * controller.
+ */
+typedef struct dwc_otg_host_if
+{
+	/** Host Global Registers starting at offset 400h.*/
+	dwc_otg_host_global_regs_t *host_global_regs;
+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
+
+	/** Host Port 0 Control and Status Register */
+	volatile uint32_t *hprt0;
+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
+
+	/** Host Channel Specific Registers at offsets 500h-5FCh. */
+	dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
+
+
+	/* Host configuration information */
+	/** Number of Host Channels (range: 1-16) */
+	uint8_t	 num_host_channels;
+	/** Periodic EPs supported (0: no, 1: yes) */
+	uint8_t	 perio_eps_supported;
+	/** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
+	uint16_t perio_tx_fifo_size;
+} dwc_otg_host_if_t;
+
+
+/**
+ * This union represents the bit fields in the Power and Clock Gating Control
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union pcgcctl_data
+{
+	/** raw register data */
+	uint32_t d32;
+
+	/** register bits */
+	struct
+	{
+		/** Stop Pclk */
+		unsigned stoppclk : 1;
+		/** Gate Hclk */
+		unsigned gatehclk : 1;
+		/** Power Clamp */
+		unsigned pwrclmp : 1;
+		/** Reset Power Down Modules */
+		unsigned rstpdwnmodule : 1;
+		/** PHY Suspended */
+		unsigned physuspended : 1;
+		unsigned reserved : 27;
+	} b;
+} pcgcctl_data_t;
+
+
+#endif
--- a/drivers/usb/core/urb.c
+++ b/drivers/usb/core/urb.c
@@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
 
 	if (urb->transfer_flags & URB_FREE_BUFFER)
 		kfree(urb->transfer_buffer);
-
+	if (urb->aligned_transfer_buffer) {
+		kfree(urb->aligned_transfer_buffer);
+		urb->aligned_transfer_buffer = 0;
+		urb->aligned_transfer_dma = 0;
+	}
 	kfree(urb);
 }
 
--- a/include/linux/usb.h
+++ b/include/linux/usb.h
@@ -1200,6 +1200,9 @@ struct urb {
 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
 	void *transfer_buffer;		/* (in) associated data buffer */
 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
+	void *aligned_transfer_buffer;	/* (in) associeated data buffer */
+	dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
+	u32 aligned_transfer_buffer_length; /* (in) data buffer length */
 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
 	int num_sgs;			/* (in) number of entries in the sg list */
 	u32 transfer_buffer_length;	/* (in) data buffer length */
--- a/drivers/usb/gadget/Kconfig
+++ b/drivers/usb/gadget/Kconfig
@@ -111,7 +111,7 @@ config	USB_GADGET_SELECTED
 #
 choice
 	prompt "USB Peripheral Controller"
-	depends on USB_GADGET
+	depends on USB_GADGET && !USB_DWC_OTG
 	help
 	   A USB device uses a controller to talk to its host.
 	   Systems should have only one such upstream link.