--- a/config.sub
+++ b/config.sub
@@ -283,6 +283,7 @@ case $basic_machine in
 	| sparcv8 | sparcv9 | sparcv9b | sparcv9v \
 	| spu | strongarm \
 	| tahoe | thumb | tic4x | tic80 | tron \
+	| ubicom32 \
 	| v850 | v850e \
 	| ubicom32 \
 	| we32k \
@@ -367,6 +368,7 @@ case $basic_machine in
 	| tahoe-* | thumb-* \
 	| tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \
 	| tron-* \
+	| ubicom32-* \
 	| v850-* | v850e-* | vax-* \
 	| ubicom32-* \
 	| we32k-* \
--- a/configure
+++ b/configure
@@ -2688,6 +2688,9 @@ case "${target}" in
   ip2k-*-*)
     noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
     ;;
+  ubicom32-*-*)
+    noconfigdirs="$noconfigdirs target-libffi"
+    ;;
   *-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu)
     noconfigdirs="$noconfigdirs target-newlib target-libgloss"
     ;;
--- /dev/null
+++ b/gcc/config/ubicom32/constraints.md
@@ -0,0 +1,149 @@
+; Constraint definitions for Ubicom32
+
+; Copyright (C) 2009 Free Software Foundation, Inc.
+; Contributed by Ubicom, Inc.
+
+; This file is part of GCC.
+
+; GCC is free software; you can redistribute it and/or modify it
+; under the terms of the GNU General Public License as published
+; by the Free Software Foundation; either version 3, or (at your
+; option) any later version.
+
+; GCC is distributed in the hope that it will be useful, but WITHOUT
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+; or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+; License for more details.
+
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3.  If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_register_constraint "a" "ALL_ADDRESS_REGS"
+  "An An register.")
+
+(define_register_constraint "d" "DATA_REGS"
+  "A Dn register.")
+
+(define_register_constraint "h" "ACC_REGS"
+  "An accumulator register.")
+
+(define_register_constraint "l" "ACC_LO_REGS"
+  "An accn_lo register.")
+
+(define_register_constraint "Z" "FDPIC_REG"
+  "The FD-PIC GOT pointer: A0.")
+
+(define_constraint "I"
+  "An 8-bit signed constant value."
+  (and (match_code "const_int")
+       (match_test "(ival >= -128) && (ival <= 127)")))
+
+(define_constraint "Q"
+  "An 8-bit signed constant value represented as unsigned."
+  (and (match_code "const_int")
+       (match_test "(ival >= 0x00) && (ival <= 0xff)")))
+
+(define_constraint "R"
+  "An 8-bit signed constant value represented as unsigned."
+  (and (match_code "const_int")
+       (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))")))
+
+(define_constraint "J"
+  "A 7-bit unsigned constant value."
+  (and (match_code "const_int")
+       (match_test "(ival >= 0) && (ival <= 127)")))
+
+(define_constraint "K"
+  "A 7-bit unsigned constant value shifted << 1."
+  (and (match_code "const_int")
+       (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)")))
+
+(define_constraint "L"
+  "A 7-bit unsigned constant value shifted << 2."
+  (and (match_code "const_int")
+       (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)")))
+
+(define_constraint "M"
+  "A 5-bit unsigned constant value."
+  (and (match_code "const_int")
+       (match_test "(ival >= 0) && (ival <= 31)")))
+
+(define_constraint "N"
+  "A signed 16 bit constant value."
+  (and (match_code "const_int")
+       (match_test "(ival >= -32768) && (ival <= 32767)")))
+
+(define_constraint "O"
+  "An exact bitmask of contiguous 1 bits starting at bit 0."
+  (and (match_code "const_int")
+       (match_test "exact_log2 (ival + 1) != -1")))
+
+(define_constraint "P"
+  "A 7-bit negative constant value shifted << 2."
+  (and (match_code "const_int")
+       (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)")))
+
+(define_constraint "S"
+  "A symbolic reference."
+  (match_code "symbol_ref"))
+
+(define_constraint "Y"
+  "An FD-PIC symbolic reference."
+  (and (match_test "TARGET_FDPIC")
+       (match_test "GET_CODE (op) == UNSPEC")
+       (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT")
+	    (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC"))))
+
+(define_memory_constraint "T1"
+  "A memory operand that can be used for .1 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (match_test "GET_MODE (op) == QImode")))
+
+(define_memory_constraint "T2"
+  "A memory operand that can be used for .2 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (match_test "GET_MODE (op) == HImode")))
+
+(define_memory_constraint "T4"
+  "A memory operand that can be used for .4 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (ior (match_test "GET_MODE (op) == SImode")
+	    (match_test "GET_MODE (op) == DImode")
+	    (match_test "GET_MODE (op) == SFmode"))))
+
+(define_memory_constraint "U1"
+  "An offsettable memory operand that can be used for .1 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (match_test "GET_MODE (op) == QImode")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
+(define_memory_constraint "U2"
+  "An offsettable memory operand that can be used for .2 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (match_test "GET_MODE (op) == HImode")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
+(define_memory_constraint "U4"
+  "An offsettable memory operand that can be used for .4 instruction."
+  (and (match_test "memory_operand (op, GET_MODE(op))")
+       (ior (match_test "GET_MODE (op) == SImode")
+	    (match_test "GET_MODE (op) == DImode")
+	    (match_test "GET_MODE (op) == SFmode"))
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+       (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+       (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
--- /dev/null
+++ b/gcc/config/ubicom32/crti.S
@@ -0,0 +1,54 @@
+/* Specialized code needed to support construction and destruction of
+   file-scope objects in C++ and Java code, and to support exception handling.
+   Copyright (C) 1999 Free Software Foundation, Inc.
+   Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA.  */
+
+/* As a special exception, if you link this library with files
+   compiled with GCC to produce an executable, this does not cause
+   the resulting executable to be covered by the GNU General Public License.
+   This exception does not however invalidate any other reasons why
+   the executable file might be covered by the GNU General Public License.  */
+
+/*
+ * This file just supplies function prologues for the .init and .fini
+ * sections.  It is linked in before crtbegin.o.
+ */
+	.file   "crti.o"
+	.ident  "GNU C crti.o"
+
+	.section .init
+	.align	2
+	.globl	_init
+	.type	_init, @function
+_init:
+	move.4 -4(sp)++, a5
+#ifdef __UBICOM32_FDPIC__
+	move.4 -4(sp)++, a0
+#endif
+
+	.section .fini
+	.align	2
+	.globl	_fini
+	.type	_fini, @function
+_fini:
+	move.4 -4(sp)++, a5
+#ifdef __UBICOM32_FDPIC__
+	move.4 -4(sp)++, a0
+#endif
--- /dev/null
+++ b/gcc/config/ubicom32/crtn.S
@@ -0,0 +1,47 @@
+/* Specialized code needed to support construction and destruction of
+   file-scope objects in C++ and Java code, and to support exception handling.
+   Copyright (C) 1999 Free Software Foundation, Inc.
+   Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA.  */
+
+/* As a special exception, if you link this library with files
+   compiled with GCC to produce an executable, this does not cause
+   the resulting executable to be covered by the GNU General Public License.
+   This exception does not however invalidate any other reasons why
+   the executable file might be covered by the GNU General Public License.  */
+
+/*
+ * This file supplies function epilogues for the .init and .fini sections.
+ * It is linked in after all other files.
+ */
+
+	.file   "crtn.o"
+	.ident  "GNU C crtn.o"
+
+	.section .init
+#ifdef __UBICOM32_FDPIC__
+	move.4	a0, (sp)4++
+#endif
+	ret	(sp)4++
+
+	.section .fini
+#ifdef __UBICOM32_FDPIC__
+	move.4	a0, (sp)4++
+#endif
+	ret	(sp)4++
--- /dev/null
+++ b/gcc/config/ubicom32/elf.h
@@ -0,0 +1,29 @@
+#undef  STARTFILE_SPEC
+#define STARTFILE_SPEC "\
+%{msim:%{!shared:crt0%O%s}} \
+crti%O%s crtbegin%O%s"
+
+#undef  ENDFILE_SPEC
+#define ENDFILE_SPEC	"crtend%O%s crtn%O%s"
+
+#ifdef __UBICOM32_FDPIC__
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)			\
+  asm (SECTION_OP);							\
+  asm ("move.4 a0, 0(sp);\n\t"						\
+       "call a5," USER_LABEL_PREFIX #FUNC ";");				\
+  asm (TEXT_SECTION_ASM_OP);
+#endif
+
+#undef SUBTARGET_DRIVER_SELF_SPECS
+#define SUBTARGET_DRIVER_SELF_SPECS \
+     "%{mfdpic:-msim} "
+
+#define NO_IMPLICIT_EXTERN_C
+
+/*
+ * We need this to compile crtbegin/crtend. This should really be picked
+ * up from elfos.h but at the moment including elfos.h causes other more
+ * serous linker issues.
+ */
+#define INIT_SECTION_ASM_OP	"\t.section\t.init"
+#define FINI_SECTION_ASM_OP	"\t.section\t.fini"
--- /dev/null
+++ b/gcc/config/ubicom32/linux.h
@@ -0,0 +1,80 @@
+/* Definitions of target machine for Ubicom32-uclinux
+
+   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+   2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GCC.
+
+   GCC is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published
+   by the Free Software Foundation; either version 3, or (at your
+   option) any later version.
+
+   GCC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+   License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with GCC; see the file COPYING3.  If not see
+   <http://www.gnu.org/licenses/>.  */
+
+/* Don't assume anything about the header files.  */
+#define NO_IMPLICIT_EXTERN_C
+
+#undef  LIB_SPEC
+#define LIB_SPEC  \
+	"%{pthread:-lpthread} " \
+	"-lc"
+
+#undef LINK_GCC_C_SEQUENCE_SPEC
+#define LINK_GCC_C_SEQUENCE_SPEC \
+  "%{static:--start-group} %G %L %{static:--end-group} " \
+  "%{!static: %G}"
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC \
+  "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \
+  "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}"
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC \
+  "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s"
+
+/* taken from linux.h */
+/* The GNU C++ standard library requires that these macros be defined.  */
+#undef CPLUSPLUS_CPP_SPEC
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
+
+#define TARGET_OS_CPP_BUILTINS()				\
+    do {							\
+	builtin_define_std ("__UBICOM32__");			\
+	builtin_define_std ("__ubicom32__");			\
+	builtin_define ("__gnu_linux__");			\
+	builtin_define_std ("linux");				\
+	builtin_define_std ("unix");				\
+	builtin_assert ("system=linux");			\
+	builtin_assert ("system=unix");				\
+	builtin_assert ("system=posix");			\
+    } while (0)
+
+#define OBJECT_FORMAT_ELF
+
+
+#undef DRIVER_SELF_SPECS
+#define DRIVER_SELF_SPECS \
+  "%{!mno-fdpic:-mfdpic}"
+
+#undef LINK_SPEC
+#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \
+  %{static:-dn -Bstatic} \
+  %{shared:-G -Bdynamic} \
+  %{!shared: %{!static: \
+   %{rdynamic:-export-dynamic} \
+   %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \
+   %{static}} "
+
+/*
+#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h"
+*/
--- /dev/null
+++ b/gcc/config/ubicom32/predicates.md
@@ -0,0 +1,327 @@
+; Predicate definitions for Ubicom32.
+
+; Copyright (C) 2009 Free Software Foundation, Inc.
+; Contributed by Ubicom, Inc.
+
+; This file is part of GCC.
+
+; GCC is free software; you can redistribute it and/or modify it
+; under the terms of the GNU General Public License as published
+; by the Free Software Foundation; either version 3, or (at your
+; option) any later version.
+
+; GCC is distributed in the hope that it will be useful, but WITHOUT
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+; or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+; License for more details.
+
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3.  If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_predicate "ubicom32_move_operand"
+  (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum")
+{
+  if (CONST_INT_P (op))
+    return true;
+
+  if (GET_CODE (op) == CONST_DOUBLE)
+    return true;
+  
+  if (GET_CODE (op) == CONST)
+    return memory_address_p (mode, op);
+
+  if (GET_MODE (op) != mode)
+    return false;
+
+  if (MEM_P (op))
+    return memory_address_p (mode, XEXP (op, 0));
+  
+  if (GET_CODE (op) == SUBREG) {
+      op = SUBREG_REG (op);
+
+      if (REG_P (op))
+	return true;
+  
+      if (! MEM_P (op))
+	return false;
+
+      /* Paradoxical SUBREG.  */
+      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op)))
+	return false;
+
+      return memory_address_p (GET_MODE (op), XEXP (op, 0));
+    }
+
+  return register_operand (op, mode);
+})
+
+;; Returns true if OP is either a symbol reference or a sum of a
+;; symbol reference and a constant.
+
+(define_predicate "ubicom32_symbolic_address_operand"
+  (match_code "symbol_ref, label_ref, const")
+{
+  switch (GET_CODE (op))
+    {
+    case SYMBOL_REF:
+    case LABEL_REF:
+      return true;
+
+    case CONST:
+      op = XEXP (op, 0);
+      return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
+	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
+	      && CONST_INT_P (XEXP (op, 1)));
+
+    default:
+      return false;
+    }
+})
+
+;; Return true if operand is the uClinux FD-PIC register.
+
+(define_predicate "ubicom32_fdpic_operand"
+  (match_code "reg")
+{
+  if (! TARGET_FDPIC)
+    return false;
+
+  if (!REG_P (op))
+    return false;
+
+  if (GET_MODE (op) != mode && mode != VOIDmode)
+    return false;
+
+  if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER)
+    return false;
+
+  return true;
+})
+
+(define_predicate "ubicom32_fdpic_got_offset_operand"
+  (match_code "unspec")
+{
+  if (! TARGET_FDPIC)
+    return false;
+
+  if (GET_CODE (op) != UNSPEC)
+    return false;
+
+  if (XINT (op, 1) != UNSPEC_FDPIC_GOT
+      && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC)
+    return false;
+
+  return true;
+})
+
+(define_predicate "ubicom32_arith_operand"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+  return (ubicom32_move_operand (op, mode)
+	  && ! ubicom32_symbolic_address_operand (op, mode)
+	  && (! CONST_INT_P (op)
+	      || satisfies_constraint_I (op)));
+})
+
+(define_predicate "ubicom32_arith_operand_dot1"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+  return (ubicom32_move_operand (op, mode)
+	  && ! ubicom32_symbolic_address_operand (op, mode)
+	  && (! CONST_INT_P (op)
+	      || satisfies_constraint_Q (op)));
+})
+
+(define_predicate "ubicom32_arith_operand_dot2"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+  return (ubicom32_move_operand (op, mode)
+	  && ! ubicom32_symbolic_address_operand (op, mode)
+	  && (! CONST_INT_P (op)
+	      || satisfies_constraint_R (op)));
+})
+
+(define_predicate "ubicom32_compare_operand"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_move_operand (op, mode)
+	  && ! ubicom32_symbolic_address_operand (op, mode)
+	  && (! CONST_INT_P (op)
+	      || satisfies_constraint_N (op)));
+})
+
+(define_predicate "ubicom32_compare_operator"
+  (match_code "compare"))
+
+(define_predicate "ubicom32_and_or_si3_operand"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+  return (ubicom32_arith_operand (op, mode)
+	  || (CONST_INT_P (op)
+	      && ((exact_log2 (INTVAL (op) + 1) != -1
+		   && exact_log2 (INTVAL (op) + 1) <= 31)
+		  || (exact_log2 (INTVAL (op)) != -1
+		      && exact_log2 (INTVAL (op)) <= 31)
+		  || (exact_log2 (~INTVAL (op)) != -1
+		      && exact_log2 (~INTVAL (op)) <= 31))));
+})
+
+(define_predicate "ubicom32_and_or_hi3_operand"
+  (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+  return (ubicom32_arith_operand (op, mode)
+	  || (CONST_INT_P (op)
+	      && exact_log2 (INTVAL (op) + 1) != -1
+	      && exact_log2 (INTVAL (op) + 1) <= 15));
+})
+
+(define_predicate "ubicom32_mem_or_address_register_operand"
+  (match_code "subreg, reg, mem")
+{
+  unsigned int regno;
+
+  if (MEM_P (op)
+      && memory_operand (op, mode))
+    return true;
+
+  if (REG_P (op))
+    regno = REGNO (op);
+  else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+    {
+      int offset;
+      if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+	offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+      else
+	offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+				      GET_MODE (SUBREG_REG (op)),
+				      SUBREG_BYTE (op),
+				      GET_MODE (op));
+      regno = REGNO (SUBREG_REG (op)) + offset;
+    }
+  else
+    return false;
+
+  return (regno >= FIRST_PSEUDO_REGISTER 
+	  || REGNO_REG_CLASS (regno) == FDPIC_REG
+	  || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
+})
+
+(define_predicate "ubicom32_data_register_operand"
+  (match_code "subreg, reg")
+{
+  unsigned int regno;
+
+  if (REG_P (op))
+    regno = REGNO (op);
+  else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+    {
+      int offset;
+      if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+	offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+      else
+	offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+				      GET_MODE (SUBREG_REG (op)),
+				      SUBREG_BYTE (op),
+				      GET_MODE (op));
+      regno = REGNO (SUBREG_REG (op)) + offset;
+    }
+  else
+    return false;
+
+  return ((regno >= FIRST_PSEUDO_REGISTER 
+	   && regno != REGNO (virtual_stack_vars_rtx))
+	  || REGNO_REG_CLASS (regno) == DATA_REGS);
+})
+
+(define_predicate "ubicom32_address_register_operand"
+  (match_code "subreg, reg")
+{
+  unsigned int regno;
+
+  if (REG_P (op))
+    regno = REGNO (op);
+  else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+    {
+      int offset;
+      if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+	offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+      else
+	offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+				      GET_MODE (SUBREG_REG (op)),
+				      SUBREG_BYTE (op),
+				      GET_MODE (op));
+      regno = REGNO (SUBREG_REG (op)) + offset;
+    }
+  else
+    return false;
+
+  return (regno >= FIRST_PSEUDO_REGISTER 
+	  || REGNO_REG_CLASS (regno) == FDPIC_REG
+	  || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
+})
+
+(define_predicate "ubicom32_acc_lo_register_operand"
+  (match_code "subreg, reg")
+{
+  unsigned int regno;
+
+  if (REG_P (op))
+    regno = REGNO (op);
+  else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+    {
+      int offset;
+      if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+	offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+      else
+	offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+				      GET_MODE (SUBREG_REG (op)),
+				      SUBREG_BYTE (op),
+				      GET_MODE (op));
+      regno = REGNO (SUBREG_REG (op)) + offset;
+    }
+  else
+    return false;
+
+  return ((regno >= FIRST_PSEUDO_REGISTER 
+	   && regno != REGNO (virtual_stack_vars_rtx))
+	  || REGNO_REG_CLASS (regno) == ACC_LO_REGS);
+})
+
+(define_predicate "ubicom32_acc_hi_register_operand"
+  (match_code "subreg, reg")
+{
+  unsigned int regno;
+
+  if (REG_P (op))
+    regno = REGNO (op);
+  else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+    {
+      int offset;
+      if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+	offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+      else
+	offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+				      GET_MODE (SUBREG_REG (op)),
+				      SUBREG_BYTE (op),
+				      GET_MODE (op));
+      regno = REGNO (SUBREG_REG (op)) + offset;
+    }
+  else
+    return false;
+
+  return ((regno >= FIRST_PSEUDO_REGISTER 
+	   && regno != REGNO (virtual_stack_vars_rtx))
+	  || REGNO_REG_CLASS (regno) == ACC_REGS);
+})
+
+(define_predicate "ubicom32_call_address_operand"
+  (match_code "symbol_ref, subreg, reg")
+{
+  return (GET_CODE (op) == SYMBOL_REF || REG_P (op));
+})
+
+(define_special_predicate "ubicom32_cc_register_operand"
+  (and (match_code "reg")
+       (match_test "REGNO (op) == CC_REGNUM")))
+
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32
@@ -0,0 +1,52 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+	$(srcdir)/config/udivmodsi4.c \
+	$(srcdir)/config/divmod.c \
+	$(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS = 
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+	echo '#define FLOAT'				> fp-bit.c
+	cat $(srcdir)/config/fp-bit.c			>> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+	cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# Commented out to speed up compiler development!
+#
+# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4
+# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+MULTILIB_OPTIONS += mfdpic
+MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi
+MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore
+
+# Assemble startup files.
+$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES)
+	$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
+	-c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S
+
+$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES)
+	$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
+	-c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S
+
+# these parts are required because uClibc ldso needs them to link.
+# they are not in the specfile so they will not be included automatically.
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32-linux
@@ -0,0 +1,35 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+	$(srcdir)/config/udivmodsi4.c \
+	$(srcdir)/config/divmod.c \
+	$(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS =
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+	echo '#define FLOAT'				> fp-bit.c
+	cat $(srcdir)/config/fp-bit.c			>> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+	cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# We only support v3 and v4 ISAs for uClinux.
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+
+#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32-uclinux
@@ -0,0 +1,35 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+	$(srcdir)/config/udivmodsi4.c \
+	$(srcdir)/config/divmod.c \
+	$(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS = 
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+	echo '#define FLOAT'				> fp-bit.c
+	cat $(srcdir)/config/fp-bit.c			>> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+	cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# We only support v3 and v4 ISAs for uClinux.
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32-modes.def
@@ -0,0 +1,30 @@
+/* Definitions of target machine for GNU compiler, Ubicom32 architecture.
+   Copyright (C) 2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GCC.
+
+   GCC is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published
+   by the Free Software Foundation; either version 3, or (at your
+   option) any later version.
+
+   GCC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+   License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with GCC; see the file COPYING3.  If not see
+   <http://www.gnu.org/licenses/>.  */
+
+/* Some insns set all condition code flags, some only set the Z and N flags, and
+   some only set the Z flag.  */
+
+CC_MODE (CCW);
+CC_MODE (CCWZN);
+CC_MODE (CCWZ);
+CC_MODE (CCS);
+CC_MODE (CCSZN);
+CC_MODE (CCSZ);
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32-protos.h
@@ -0,0 +1,84 @@
+/* Function prototypes for Ubicom IP3000.
+
+   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+   2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GNU CC.
+
+   GNU CC is free software; you can redistribute it and/or modify it under
+   the terms of the GNU General Public License as published by the Free
+   Software Foundation; either version 2, or (at your option) any later
+   version.
+
+   GNU CC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+   for more details.
+
+   You should have received a copy of the GNU General Public License along
+   with GNU CC; see the file COPYING.  If not, write to the Free Software
+   Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
+#ifdef RTX_CODE
+
+#ifdef TREE_CODE
+extern void ubicom32_va_start (tree, rtx);
+#endif /* TREE_CODE */
+
+extern void ubicom32_print_operand (FILE *, rtx, int);
+extern void ubicom32_print_operand_address (FILE *, rtx);
+
+extern void ubicom32_conditional_register_usage (void);
+extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class);
+extern int ubicom32_regno_ok_for_index_p (int, int);
+extern void ubicom32_expand_movsi (rtx *);
+extern void ubicom32_expand_addsi3 (rtx *);
+extern int ubicom32_emit_mult_sequence (rtx *);
+extern void ubicom32_emit_move_const_int (rtx, rtx);
+extern bool ubicom32_legitimate_constant_p (rtx);
+extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int);
+extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode);
+extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int);
+extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1);
+extern int ubicom32_mode_dependent_address_p (rtx);
+extern void ubicom32_output_cond_jump (rtx, rtx, rtx);
+extern void ubicom32_expand_eh_return (rtx *);
+extern void ubicom32_expand_call_fdpic (rtx *);
+extern void ubicom32_expand_call_value_fdpic (rtx *);
+extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx);
+extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx);
+extern int ubicom32_shiftable_const_int (int);
+#endif /* RTX_CODE */
+
+#ifdef TREE_CODE
+extern void init_cumulative_args (CUMULATIVE_ARGS *cum,
+				  tree fntype,
+				  struct rtx_def *libname,
+				  int indirect);
+extern struct rtx_def *function_arg (CUMULATIVE_ARGS *,
+				     enum machine_mode, tree, int);
+extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *,
+					      enum machine_mode,
+					      tree, int);
+extern int function_arg_partial_nregs (CUMULATIVE_ARGS *,
+				       enum machine_mode, tree, int);
+extern struct rtx_def *ubicom32_va_arg (tree, tree);
+extern int ubicom32_reg_parm_stack_space (tree);
+#endif /* TREE_CODE */
+
+extern struct rtx_def * ubicom32_builtin_saveregs (void);
+extern void asm_file_start (FILE *);
+extern void ubicom32_expand_prologue (void);
+extern void ubicom32_expand_epilogue (void);
+extern int ubicom32_initial_elimination_offset (int, int);
+extern int ubicom32_regno_ok_for_base_p (int, int);
+extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode);
+extern int ubicom32_can_use_return_insn_p (void);
+extern rtx ubicom32_return_addr_rtx (int, rtx);
+extern void ubicom32_optimization_options (int, int);
+extern void ubicom32_override_options (void);
+extern bool ubicom32_match_cc_mode (rtx, enum machine_mode);
+
+extern int ubicom32_reorg_completed;
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.c
@@ -0,0 +1,2881 @@
+/* Subroutines for insn-output.c for Ubicom32
+
+   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+   2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GCC.
+
+   GCC is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published
+   by the Free Software Foundation; either version 3, or (at your
+   option) any later version.
+
+   GCC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+   License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with GCC; see the file COPYING3.  If not see
+   <http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "insn-codes.h"
+#include "flags.h"
+#include "recog.h"
+#include "expr.h"
+#include "function.h"
+#include "obstack.h"
+#include "toplev.h"
+#include "tm_p.h"
+#include "tm-constrs.h"
+#include "basic-block.h"
+#include "integrate.h"
+#include "target.h"
+#include "target-def.h"
+#include "reload.h"
+#include "df.h"
+#include "langhooks.h"
+#include "optabs.h"
+
+static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
+static void ubicom32_layout_frame (void);
+static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT);
+static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT);
+static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed);
+static bool ubicom32_fixed_condition_code_regs (unsigned int *,
+						unsigned int *);
+static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode,
+						       enum machine_mode);
+static int ubicom32_naked_function_p (void);
+static void ubicom32_machine_dependent_reorg (void);
+static bool ubicom32_assemble_integer (rtx, unsigned int, int);
+static void ubicom32_asm_init_sections (void);
+static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree, 
+				       bool);
+static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+					enum machine_mode mode, const_tree type,
+					bool named ATTRIBUTE_UNUSED);
+static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+				    enum machine_mode mode, const_tree type,
+				    bool named ATTRIBUTE_UNUSED);
+
+static bool ubicom32_return_in_memory (const_tree type, 
+				       const_tree fntype ATTRIBUTE_UNUSED);
+static bool ubicom32_is_base_reg (rtx, int);
+static void ubicom32_init_builtins (void);
+static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
+static tree ubicom32_fold_builtin (tree, tree, bool);
+static int ubicom32_get_valid_offset_mask (enum machine_mode);
+static bool ubicom32_cannot_force_const_mem (rtx);
+
+/* Case values threshold */
+int ubicom32_case_values_threshold = 6;
+
+/* Nonzero if this chip supports the Ubicom32 v3 ISA.  */
+int ubicom32_v3 = 1;
+
+/* Nonzero if this chip supports the Ubicom32 v4 ISA.  */
+int ubicom32_v4 = 1;
+
+/* Valid attributes:
+   naked - don't generate function prologue/epilogue and `ret' command.  */
+const struct attribute_spec ubicom32_attribute_table[] =
+{
+  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
+  { "naked", 0, 0, true,  false, false, ubicom32_handle_fndecl_attribute },
+  { NULL,    0, 0, false, false, false, NULL }
+};
+
+#undef TARGET_ASM_FUNCTION_PROLOGUE
+#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue
+
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table
+
+/* All addresses cost the same amount.  */
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
+
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS ubicom32_rtx_costs
+
+#undef TARGET_FIXED_CONDITION_CODE_REGS
+#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs
+
+#undef TARGET_CC_MODES_COMPATIBLE
+#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg
+
+#undef  TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER ubicom32_assemble_integer
+
+#undef TARGET_ASM_INIT_SECTIONS
+#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections
+
+#undef TARGET_ARG_PARTIAL_BYTES
+#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes
+
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference
+
+#undef TARGET_CALLEE_COPIES
+#define TARGET_CALLEE_COPIES ubicom32_callee_copies
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS ubicom32_init_builtins
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin
+
+#undef TARGET_FOLD_BUILTIN
+#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin
+
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+static char save_regs[FIRST_PSEUDO_REGISTER];
+static int nregs;
+static int frame_size;
+int ubicom32_stack_size = 0;	/* size of allocated stack (including frame) */
+int ubicom32_can_use_calli_to_ret;
+
+#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT)
+#define ROUND_CALL_BLOCK_SIZE(BYTES) \
+  (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1))
+
+/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
+   must report the mode of the memory reference from PRINT_OPERAND to
+   PRINT_OPERAND_ADDRESS.  */
+enum machine_mode output_memory_reference_mode;
+
+/* Flag for some split insns from the ubicom32.md.  */
+int ubicom32_reorg_completed;
+
+enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] =
+{
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  DATA_REGS, 
+  FDPIC_REG, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ADDRESS_REGS, 
+  ACC_REGS,
+  ACC_LO_REGS,
+  ACC_REGS,
+  ACC_LO_REGS,
+  SOURCE3_REG,
+  ADDRESS_REGS,
+  NO_REGS,			/* CC_REG must be NO_REGS */
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS,
+  SPECIAL_REGS
+};
+
+rtx ubicom32_compare_op0;
+rtx ubicom32_compare_op1;
+
+/* Handle command line option overrides.  */
+
+void
+ubicom32_override_options (void)
+{
+  flag_pic = 0;
+
+  if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) {
+    /* If we have a version 1 architecture then we want to avoid using jump
+       tables.  */
+    ubicom32_case_values_threshold = 30000;
+    ubicom32_v3 = 0;
+    ubicom32_v4 = 0;
+  } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) {
+    ubicom32_v3 = 0;
+    ubicom32_v4 = 0;
+  } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) {
+    ubicom32_v3 = 1;
+    ubicom32_v4 = 0;
+  } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) {
+    ubicom32_v3 = 1;
+    ubicom32_v4 = 1;
+  }
+
+  /* There is no single unaligned SI op for PIC code.  Sometimes we
+     need to use ".4byte" and sometimes we need to use ".picptr".
+     See ubicom32_assemble_integer for details.  */
+  if (TARGET_FDPIC)
+    targetm.asm_out.unaligned_op.si = 0;
+}
+
+void
+ubicom32_conditional_register_usage (void)
+{
+  /* If we're using the old ipOS ABI we need to make D10 through D13
+     caller-clobbered.  */
+  if (TARGET_IPOS_ABI)
+    {
+      call_used_regs[D10_REGNUM] = 1;
+      call_used_regs[D11_REGNUM] = 1;
+      call_used_regs[D12_REGNUM] = 1;
+      call_used_regs[D13_REGNUM] = 1;
+    }
+}
+
+/* We have some number of optimizations that don't really work for the Ubicom32
+   architecture so we deal with them here.  */
+
+void
+ubicom32_optimization_options (int level ATTRIBUTE_UNUSED,
+			       int size ATTRIBUTE_UNUSED)
+{
+  /* The tree IVOPTs pass seems to do really bad things for the Ubicom32
+     architecture - it tends to turn things that would happily use pre/post
+     increment/decrement into operations involving unecessary loop
+     indicies.  */
+  flag_ivopts = 0;
+
+  /* We have problems where DSE at the RTL level misses partial stores
+     to the stack.  For now we disable it to avoid this.  */
+  flag_dse = 0;
+}
+
+/* Print operand X using operand code CODE to assembly language output file
+   FILE.  */
+
+void
+ubicom32_print_operand (FILE *file, rtx x, int code)
+{
+  switch (code)
+    {
+    case 'A':
+      /* Identify the correct accumulator to use.  */
+      if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM)
+	fprintf (file, "acc0");
+      else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM)
+	fprintf (file, "acc1");
+      else
+	abort ();
+      break;
+
+    case 'b':
+    case 'B':
+      {
+	enum machine_mode mode;
+
+	mode = GET_MODE (XEXP (x, 0));
+
+	/* These are normal and reversed branches.  */
+	switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
+	  {
+	  case NE:
+	    fprintf (file, "ne");
+	    break;
+
+	  case EQ:
+	    fprintf (file, "eq");
+	    break;
+
+	  case GE:
+	    if (mode == CCSZNmode || mode == CCWZNmode)
+	      fprintf (file, "pl");
+	    else
+	      fprintf (file, "ge");
+	    break;
+
+	  case GT:
+	    fprintf (file, "gt");
+	    break;
+
+	  case LE:
+	    fprintf (file, "le");
+	    break;
+
+	  case LT:
+	    if (mode == CCSZNmode || mode == CCWZNmode)
+	      fprintf (file, "mi");
+	    else
+	      fprintf (file, "lt");
+	    break;
+
+	  case GEU:
+	    fprintf (file, "cs");
+	    break;
+
+	  case GTU:
+	    fprintf (file, "hi");
+	    break;
+
+	  case LEU:
+	    fprintf (file, "ls");
+	    break;
+
+	  case LTU:
+	    fprintf (file, "cc");
+	    break;
+
+	  default:
+	    abort ();
+	  }
+      }
+      break;
+
+    case 'C':
+      /* This is used for the operand to a call instruction;
+	 if it's a REG, enclose it in parens, else output
+	 the operand normally.  */
+      if (REG_P (x))
+	{
+	  fputc ('(', file);
+	  ubicom32_print_operand (file, x, 0);
+	  fputc (')', file);
+	}
+      else
+	ubicom32_print_operand (file, x, 0);
+      break;
+
+    case 'd':
+      /* Bit operations we need bit numbers. */
+      fprintf (file, "%d", exact_log2 (INTVAL (x)));
+      break;
+
+    case 'D':
+      /* Bit operations we need bit numbers. */
+      fprintf (file, "%d", exact_log2 (~ INTVAL (x)));
+      break;
+
+    case 'E':
+      /* For lea, which we use to add address registers.
+	 We don't want the '#' on a constant. */
+      if (CONST_INT_P (x))
+	{
+	  fprintf (file, "%ld", INTVAL (x));
+	  break;
+	}
+      /* FALL THROUGH */
+
+    default:
+      switch (GET_CODE (x))
+	{
+	case MEM:
+	  output_memory_reference_mode = GET_MODE (x);
+	  output_address (XEXP (x, 0));
+	  break;
+
+	case PLUS:
+	  output_address (x);
+	  break;
+
+	case REG:
+	  fprintf (file, "%s", reg_names[REGNO (x)]);
+	  break;
+
+	case SUBREG:
+	  fprintf (file, "%s", reg_names[subreg_regno (x)]);
+	  break;
+
+	/* This will only be single precision....  */
+	case CONST_DOUBLE:
+	  {
+	    unsigned long val;
+	    REAL_VALUE_TYPE rv;
+
+	    REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+	    fprintf (file, "0x%lx", val);
+	    break;
+	  }
+
+	case CONST_INT:
+	case SYMBOL_REF:
+	case CONST:
+	case LABEL_REF:
+	case CODE_LABEL:
+	case LO_SUM:
+	  ubicom32_print_operand_address (file, x);
+	  break;
+
+	case HIGH:
+	  fprintf (file, "#%%hi(");
+	  ubicom32_print_operand_address (file, XEXP (x, 0));
+	  fprintf (file, ")");
+	  break;
+
+	case UNSPEC:
+	  switch (XINT (x, 1))
+	    {
+	    case UNSPEC_FDPIC_GOT:
+	      fprintf (file, "#%%got_lo(");
+	      ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
+	      fprintf (file, ")");
+	      break;
+
+	    case UNSPEC_FDPIC_GOT_FUNCDESC:
+	      fprintf (file, "#%%got_funcdesc_lo(");
+	      ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
+	      fprintf (file, ")");
+	      break;
+
+	    default:
+	      abort ();
+	    }
+          break;
+
+	default:
+	  abort ();
+	}
+      break;
+   }
+}
+
+/* Output assembly language output for the address ADDR to FILE.  */
+
+void
+ubicom32_print_operand_address (FILE *file, rtx addr)
+{
+  switch (GET_CODE (addr))
+    {
+    case POST_INC:
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode));
+      break;
+
+    case PRE_INC:
+      fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode));
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "++");
+      break;
+
+    case POST_DEC:
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode));
+      break;
+
+    case PRE_DEC:
+      fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode));
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "++");
+      break;
+
+    case POST_MODIFY:
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1)));
+      break;
+
+    case PRE_MODIFY:
+      fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1)));
+      ubicom32_print_operand_address (file, XEXP (addr, 0));
+      fprintf (file, "++");
+      break;
+
+    case REG:
+      fputc ('(', file);
+      fprintf (file, "%s", reg_names[REGNO (addr)]); 
+      fputc (')', file);
+      break;
+
+    case PLUS:
+      {
+	rtx base = XEXP (addr, 0);
+	rtx index = XEXP (addr, 1); 
+
+ 	/* Switch around addresses of the form index * scaling + base.  */
+ 	if (! ubicom32_is_base_reg (base, 1))
+ 	  {
+ 	    rtx tmp = base;
+ 	    base = index;
+ 	    index = tmp;
+ 	  }
+
+	if (CONST_INT_P (index)) 
+	  {
+	    fprintf (file, "%ld", INTVAL (index)); 
+	    fputc ('(', file);
+	    fputs (reg_names[REGNO (base)], file); 
+	  }
+ 	else if (GET_CODE (index) == MULT
+ 	         || REG_P (index))
+	  {
+ 	    if (GET_CODE (index) == MULT)
+ 	      index = XEXP (index, 0);
+	    fputc ('(', file);
+	    fputs (reg_names[REGNO (base)], file); 
+	    fputc (',', file);
+	    fputs (reg_names[REGNO (index)], file); 
+	  }
+	else 
+	  abort (); 
+
+	fputc (')', file);
+	break;
+      }
+
+    case LO_SUM:
+      fprintf (file, "%%lo(");
+      ubicom32_print_operand (file, XEXP (addr, 1), 'L');
+      fprintf (file, ")(");
+      ubicom32_print_operand (file, XEXP (addr, 0), 0);
+      fprintf (file, ")");
+      break;
+
+    case CONST_INT:
+      fputc ('#', file);
+      output_addr_const (file, addr); 
+      break;
+
+    default:
+      output_addr_const (file, addr);
+      break;
+    }
+}
+
+/* X and Y are two things to compare using CODE.  Emit the compare insn and
+   return the rtx for the cc reg in the proper mode.  */
+
+rtx
+ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
+{
+  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
+  rtx cc_reg;
+
+  cc_reg = gen_rtx_REG (mode, CC_REGNUM);
+
+  emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
+			  gen_rtx_COMPARE (mode, x, y)));
+
+  return cc_reg;
+}
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
+   return the mode to be used for the comparison.  */
+
+enum machine_mode
+ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y)
+{
+  /* Is this a short compare?  */
+  if (GET_MODE (x) == QImode
+      || GET_MODE (x) == HImode
+      || GET_MODE (y) == QImode
+      || GET_MODE (y) == HImode)
+    {
+      switch (op)
+	{
+	case EQ :
+	case NE :
+	  return CCSZmode;
+
+	case GE:
+	case LT:
+	  if (y == const0_rtx)
+	    return CCSZNmode;
+
+	default :
+	  return CCSmode;
+	}
+    }
+
+  /* We have a word compare.  */
+  switch (op)
+    {
+    case EQ :
+    case NE :
+      return CCWZmode;
+
+    case GE :
+    case LT :
+      if (y == const0_rtx)
+	return CCWZNmode;
+
+    default :
+      return CCWmode;
+    }
+}
+
+/* Return TRUE or FALSE depending on whether the first SET in INSN
+   has source and destination with matching CC modes, and that the
+   CC mode is at least as constrained as REQ_MODE.  */
+bool
+ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode)
+{
+  rtx set;
+  enum machine_mode set_mode;
+
+  set = PATTERN (insn);
+  if (GET_CODE (set) == PARALLEL)
+    set = XVECEXP (set, 0, 0);
+  gcc_assert (GET_CODE (set) == SET);
+  gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
+
+  /* SET_MODE is the mode we have in the instruction.  This must either
+     be the same or less restrictive that the required mode REQ_MODE.  */
+  set_mode = GET_MODE (SET_DEST (set));
+
+  switch (req_mode)
+    {
+    case CCSZmode:
+      if (set_mode != CCSZmode)
+	return 0;
+      break;
+
+    case CCSZNmode:
+      if (set_mode != CCSZmode
+	  && set_mode != CCSZNmode)
+	return 0;
+      break;
+
+    case CCSmode:
+      if (set_mode != CCSmode
+	  && set_mode != CCSZmode
+	  && set_mode != CCSZNmode)
+	return 0;
+      break;
+
+    case CCWZmode:
+      if (set_mode != CCWZmode)
+	return 0;
+      break;
+
+    case CCWZNmode:
+      if (set_mode != CCWZmode
+	  && set_mode != CCWZNmode)
+	return 0;
+      break;
+
+    case CCWmode:
+      if (set_mode != CCWmode
+	  && set_mode != CCWZmode
+	  && set_mode != CCWZNmode)
+	return 0;
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  return (GET_MODE (SET_SRC (set)) == set_mode);
+}
+
+/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
+   that we can implement more efficiently.  */
+
+void
+ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1)
+{
+  /* If we have a REG and a MEM then compare the MEM with the REG and not
+     the other way round.  */
+  if (REG_P (*op0) && MEM_P (*op1))
+    {
+      rtx tem = *op0;
+      *op0 = *op1;
+      *op1 = tem;
+      *code = swap_condition (*code);
+      return;
+    }
+
+  /* If we have a REG and a CONST_INT then we may want to reverse things
+     if the constant can be represented as an "I" constraint.  */
+  if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1))
+    {
+      rtx tem = *op0;
+      *op0 = *op1;
+      *op1 = tem;
+      *code = swap_condition (*code);
+      return;
+    }
+}
+
+/* Return the fixed registers used for condition codes.  */
+
+static bool
+ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
+{
+  *p1 = CC_REGNUM;
+  *p2 = INVALID_REGNUM;
+ 
+  return true;
+}
+
+/* If two condition code modes are compatible, return a condition code
+   mode which is compatible with both.  Otherwise, return
+   VOIDmode.  */
+
+static enum machine_mode
+ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
+{
+  if (m1 == m2)
+    return m1;
+
+  if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
+    return VOIDmode;
+
+  switch (m1)
+    {
+    case CCWmode:
+      if (m2 == CCWZNmode || m2 == CCWZmode)
+	return m1;
+
+      return VOIDmode;
+
+    case CCWZNmode:
+      if (m2 == CCWmode)
+	return m2;
+
+      if (m2 == CCWZmode)
+	return m1;
+
+      return VOIDmode;
+
+    case CCWZmode:
+      if (m2 == CCWmode || m2 == CCWZNmode)
+	return m2;
+
+      return VOIDmode;
+
+    case CCSmode:
+      if (m2 == CCSZNmode || m2 == CCSZmode)
+	return m1;
+
+      return VOIDmode;
+
+    case CCSZNmode:
+      if (m2 == CCSmode)
+	return m2;
+
+      if (m2 == CCSZmode)
+	return m1;
+
+      return VOIDmode;
+
+    case CCSZmode:
+      if (m2 == CCSmode || m2 == CCSZNmode)
+	return m2;
+
+      return VOIDmode;
+
+    default:
+      gcc_unreachable ();
+    }
+}
+
+static rtx
+ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg)
+{
+  int unspec;
+  rtx got_offs;
+  rtx got_offs_scaled;
+  rtx plus_scaled;
+  rtx tmp;
+  rtx new_rtx;
+
+  gcc_assert (reg != 0);
+
+  if (GET_CODE (orig) == SYMBOL_REF
+      && SYMBOL_REF_FUNCTION_P (orig))
+    unspec = UNSPEC_FDPIC_GOT_FUNCDESC;
+  else
+    unspec = UNSPEC_FDPIC_GOT;
+
+  got_offs = gen_reg_rtx (SImode);
+  tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec);
+  emit_move_insn (got_offs, tmp);
+
+  got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4));
+  plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled);
+  new_rtx = gen_const_mem (Pmode, plus_scaled);
+  emit_move_insn (reg, new_rtx);
+
+  return reg;
+}
+
+static rtx
+ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg)
+{
+  rtx addr = orig;
+  rtx new_rtx = orig;
+
+  if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
+    {
+      rtx base;
+
+      if (GET_CODE (addr) == CONST)
+	{
+	  addr = XEXP (addr, 0);
+	  gcc_assert (GET_CODE (addr) == PLUS);
+	}
+
+      base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg);
+      return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1));
+    }
+
+  return new_rtx;
+}
+
+/* Code generation.  */
+
+void
+ubicom32_expand_movsi (rtx *operands)
+{
+  if (GET_CODE (operands[1]) == SYMBOL_REF
+      || (GET_CODE (operands[1]) == CONST
+	  && GET_CODE (XEXP (operands[1], 0)) == PLUS
+	  && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
+      || CONSTANT_ADDRESS_P (operands[1]))
+    {
+      if (TARGET_FDPIC)
+	{
+	  rtx tmp;
+	  rtx fdpic_reg;
+
+	  gcc_assert (can_create_pseudo_p ());
+	  tmp = gen_reg_rtx (Pmode);
+	  fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+	  if (GET_CODE (operands[1]) == SYMBOL_REF
+	      || GET_CODE (operands[1]) == LABEL_REF)
+	    operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg);
+	  else
+	    operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg);
+	}
+      else
+	{
+	  rtx tmp;
+	  enum machine_mode mode;
+
+	  /* We want to avoid reusing operand 0 if we can because it limits
+	     our ability to optimize later.  */
+	  tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
+
+	  mode = GET_MODE (operands[0]);
+	  emit_insn (gen_rtx_SET (VOIDmode, tmp,
+				  gen_rtx_HIGH (mode, operands[1])));
+	  operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]);
+	  if (can_create_pseudo_p() && ! REG_P (operands[0]))
+	    {
+	      tmp = gen_reg_rtx (mode);
+	      emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1]));
+	      operands[1] = tmp;
+	    }
+	}
+    }
+}
+
+/* Emit code for addsi3.  */
+
+void
+ubicom32_expand_addsi3 (rtx *operands)
+{
+  rtx op, clob;
+
+  if (can_create_pseudo_p ())
+    {
+      /* If we have a non-data reg for operand 1 then prefer that over
+         a CONST_INT in operand 2.  */
+      if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	  && CONST_INT_P (operands[2]))
+	operands[2] = copy_to_mode_reg (SImode, operands[2]);
+
+      if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+	operands[2] = copy_to_mode_reg (SImode, operands[2]);
+    }
+
+  /* Emit the instruction.  */
+
+  op = gen_rtx_SET (VOIDmode, operands[0],
+		    gen_rtx_PLUS (SImode, operands[1], operands[2]));
+
+  if (! can_create_pseudo_p ())
+    {
+      /* Reload doesn't know about the flags register, and doesn't know that
+         it doesn't want to clobber it.  We can only do this with PLUS.  */
+      emit_insn (op);
+    }
+  else
+    {
+      clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+      emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+    }
+}
+
+/* Emit code for mulsi3.  Return 1 if we have generated all the code
+   necessary to do the multiplication.  */
+
+int
+ubicom32_emit_mult_sequence (rtx *operands)
+{
+  if (! ubicom32_v4)
+    {
+      rtx a1, a1_1, a2;
+      rtx b1, b1_1, b2;
+      rtx mac_lo_rtx;
+      rtx t1, t2, t3;
+
+      /* Give up if we cannot create new pseudos.  */
+      if (!can_create_pseudo_p())
+	return 0;
+
+      /* Synthesize 32-bit multiplication using 16-bit operations:
+     
+	 a1 = highpart (a)
+	 a2 = lowpart (a)
+
+	 b1 = highpart (b)
+	 b2 = lowpart (b)
+
+	 c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
+	   =        0        + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
+	                       ^^^^^^^^^^^^^^^   ^^^^^^^^^^^^^^^   ^^^^^^^
+			           Signed             Signed      Unsigned  */
+
+      if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+	{
+	  rtx op1;
+
+	  op1 = gen_reg_rtx (SImode);
+	  emit_move_insn (op1, operands[1]);
+	  operands[1] = op1;
+	}
+
+      if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+	{
+	  rtx op2;
+
+	  op2 = gen_reg_rtx (SImode);
+	  emit_move_insn (op2, operands[2]);
+	  operands[2] = op2;
+	}
+
+      /* a1 = highpart (a)  */
+      a1 = gen_reg_rtx (HImode);
+      a1_1 = gen_reg_rtx (SImode);
+      emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16)));
+      emit_move_insn (a1, gen_lowpart (HImode, a1_1));
+
+      /* a2 = lowpart (a)  */
+      a2 = gen_reg_rtx (HImode);
+      emit_move_insn (a2, gen_lowpart (HImode, operands[1]));
+
+      /* b1 = highpart (b)  */
+      b1 = gen_reg_rtx (HImode);
+      b1_1 = gen_reg_rtx (SImode);
+      emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16)));
+      emit_move_insn (b1, gen_lowpart (HImode, b1_1));
+
+      /* b2 = lowpart (b)  */
+      b2 = gen_reg_rtx (HImode);
+      emit_move_insn (b2, gen_lowpart (HImode, operands[2]));
+
+      /* t1 = (a1 * b2) << 16  */
+      t1 = gen_reg_rtx (SImode);
+      mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM);
+      emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2));
+      emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16)));
+
+      /* t2 = (a2 * b1) << 16  */
+      t2 = gen_reg_rtx (SImode);
+      emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1));
+      emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16)));
+
+      /* mac_lo = a2 * b2  */
+      emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2));
+
+      /* t3 = t1 + t2  */
+      t3 = gen_reg_rtx (SImode);
+      emit_insn (gen_addsi3 (t3, t1, t2));
+
+      /* c = t3 + mac_lo_rtx  */
+      emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3));
+
+      return 1;
+    }
+  else
+    {
+      rtx acc_rtx;
+
+      /* Give up if we cannot create new pseudos.  */
+      if (!can_create_pseudo_p())
+	return 0;
+
+      if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+        {
+	  rtx op1;
+
+	  op1 = gen_reg_rtx (SImode);
+	  emit_move_insn (op1, operands[1]);
+	  operands[1] = op1;
+	}
+
+      if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+	{
+	  rtx op2;
+
+	  op2 = gen_reg_rtx (SImode);
+	  emit_move_insn (op2, operands[2]);
+	  operands[2] = op2;
+	}
+
+      acc_rtx = gen_reg_rtx (DImode);
+      emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2]));
+      emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx));
+
+      return 1;
+    }
+}
+
+/* Move the integer value VAL into OPERANDS[0].  */
+
+void
+ubicom32_emit_move_const_int (rtx dest, rtx imm)
+{
+  rtx xoperands[2];
+  
+  xoperands[0] = dest;
+  xoperands[1] = imm;
+
+  /* Treat mem destinations separately.  Values must be explicitly sign
+     extended.  */
+  if (MEM_P (dest))
+    {
+      rtx low_hword_mem;
+      rtx low_hword_addr;
+
+      /* Emit shorter sequence for signed 7-bit quantities.  */
+      if (satisfies_constraint_I (imm))
+	{
+          output_asm_insn ("move.4\t%0, %1", xoperands);
+          return;
+	}
+
+      /* Special case for pushing constants.  */
+      if (GET_CODE (XEXP (dest, 0)) == PRE_DEC
+	  && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
+	{
+	  output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+	  output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+	  return;
+	}
+
+      /* See if we can add 2 to the original address.  This is only
+	 possible if the original address is of the form REG or
+	 REG+const.  */
+      low_hword_addr = plus_constant (XEXP (dest, 0), 2);
+      if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1))
+	{
+	  low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr);
+	  MEM_COPY_ATTRIBUTES (low_hword_mem, dest);
+	  output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands);
+	  xoperands[0] = low_hword_mem;
+	  output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
+	  return;
+	}
+
+      /* The original address is too complex.  We need to use a
+	 scratch memory by (sp) and move that to the original
+	 destination.  */
+      if (! reg_mentioned_p (stack_pointer_rtx, dest))
+	{
+	  output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+	  output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+	  output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
+	  return;
+	}
+
+      /* Our address mentions the stack pointer so we need to
+	 use our scratch data register here as well as scratch
+	 memory.  */
+      output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+      output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+      output_asm_insn ("move.4\td15, (sp)4++", xoperands);
+      output_asm_insn ("move.4\t%0, d15", xoperands);
+      return;
+    }
+
+  /* Move into registers are zero extended by default.  */
+  if (! REG_P (dest))
+    abort ();
+
+  if (satisfies_constraint_N (imm))
+    {
+      output_asm_insn ("movei\t%0, %1", xoperands);
+      return;
+    }
+
+  if (INTVAL (xoperands[1]) >= 0xff80
+      && INTVAL (xoperands[1]) < 0x10000)
+    {
+      xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000);
+      output_asm_insn ("move.2\t%0, %1", xoperands);
+      return;
+    }
+
+  if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS
+       || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG)
+      && ((INTVAL (xoperands[1]) & 0x80000000) == 0))
+    {
+      output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands);
+      if ((INTVAL (xoperands[1]) & 0x7f) != 0)
+	output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands);
+      return;
+    }
+
+  if ((INTVAL (xoperands[1]) & 0xffff0000) == 0)
+    {
+      output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
+      output_asm_insn ("move.2\t%0, %0", xoperands);
+      return;
+    }
+
+  /* This is very expensive.  The constant is so large that we
+     need to use the stack to do the load.  */
+  output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+  output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+  output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
+}
+
+/* Stack layout. Prologue/Epilogue.  */
+
+static int save_regs_size;
+
+static void 
+ubicom32_layout_frame (void)
+{
+  int regno;
+  
+  memset ((char *) &save_regs[0], 0, sizeof (save_regs));
+  nregs = 0;
+  frame_size = get_frame_size ();
+
+  if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM))
+    {
+      save_regs[FRAME_POINTER_REGNUM] = 1;
+      ++nregs;
+    }
+
+  if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO))
+    ubicom32_can_use_calli_to_ret = 1;
+  else
+    {
+      ubicom32_can_use_calli_to_ret = 0;
+      save_regs[LINK_REGNO] = 1;
+      ++nregs;
+    }
+
+  /* Figure out which register(s) needs to be saved.  */
+  for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++)
+	if (df_regs_ever_live_p(regno)
+	&& ! call_used_regs[regno]
+	&& ! fixed_regs[regno]
+	&& ! save_regs[regno])
+    {
+      save_regs[regno] = 1;
+      ++nregs;
+    }
+
+  save_regs_size = 4 * nregs;
+}
+
+static void
+ubicom32_emit_add_movsi (int regno, int adj)
+{
+  rtx x;
+  rtx reg = gen_rtx_REG (SImode, regno);
+
+  adj += 4;
+  if (adj > 8 * 4) 
+    {
+      x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+				 GEN_INT (-adj)));
+      RTX_FRAME_RELATED_P (x) = 1;
+      x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg);
+    }
+  else
+    {
+      rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
+				     gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+						   GEN_INT (-adj)));
+      x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg);
+    }
+  RTX_FRAME_RELATED_P (x) = 1;      
+}
+
+void
+ubicom32_expand_prologue (void)
+{
+  rtx x;
+  int regno;
+  int outgoing_args_size = crtl->outgoing_args_size;
+  int adj;
+
+  if (ubicom32_naked_function_p ())
+    return;
+
+  ubicom32_builtin_saveregs ();
+  
+  ubicom32_layout_frame ();
+  adj = (outgoing_args_size + get_frame_size () + save_regs_size
+	 + crtl->args.pretend_args_size);
+  
+  if (!adj)
+    ;
+  else if (outgoing_args_size + save_regs_size < 508
+	   && get_frame_size () + save_regs_size > 508)
+    {
+      int i = 0;
+      x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+		      GEN_INT (-adj));
+      x = emit_insn (x);
+      RTX_FRAME_RELATED_P (x) = 1;
+
+      for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
+	if (save_regs[regno] && regno != LINK_REGNO)
+	  {
+	    x = gen_rtx_MEM (SImode,
+			     gen_rtx_PLUS (Pmode,
+					   stack_pointer_rtx,
+					   GEN_INT (i * 4 + outgoing_args_size)));
+	    x = emit_move_insn (x, gen_rtx_REG (SImode, regno));
+	    RTX_FRAME_RELATED_P (x) = 1;
+	    ++i;
+	  }
+      if (save_regs[LINK_REGNO])
+	{
+	  x = gen_rtx_MEM (SImode,
+			   gen_rtx_PLUS (Pmode,
+					 stack_pointer_rtx,
+					 GEN_INT (i * 4 + outgoing_args_size)));
+	  x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO));
+	  RTX_FRAME_RELATED_P (x) = 1;
+	}
+    }
+  else
+    {
+      int regno;
+      int adj = get_frame_size () + crtl->args.pretend_args_size;
+      int i = 0;
+
+      if (save_regs[LINK_REGNO])
+	{
+	  ubicom32_emit_add_movsi (LINK_REGNO, adj);
+	  ++i;
+	}
+      
+      for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno)
+	if (save_regs[regno] && regno != LINK_REGNO)
+	  {
+	    if (i)
+	      {
+		rtx mem = gen_rtx_MEM (SImode,
+				       gen_rtx_PRE_DEC (Pmode,
+							stack_pointer_rtx));
+		x = emit_move_insn (mem, gen_rtx_REG (SImode, regno));
+		RTX_FRAME_RELATED_P (x) = 1;
+	      }
+	    else
+	      ubicom32_emit_add_movsi (regno, adj);
+	    ++i;
+	  }
+      
+      if (outgoing_args_size || (!i && adj))
+	{
+	  x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+			  GEN_INT (-outgoing_args_size - (i ? 0 : adj)));
+	  x = emit_insn (x);
+	  RTX_FRAME_RELATED_P (x) = 1;
+	}
+    }
+
+  if (frame_pointer_needed)
+    {
+      int fp_adj = save_regs_size + outgoing_args_size;
+      x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx,
+		      GEN_INT (fp_adj));
+      x = emit_insn (x);
+      RTX_FRAME_RELATED_P (x) = 1;
+    }
+}
+
+void
+ubicom32_expand_epilogue (void)
+{
+  rtx x;
+  int regno;
+  int outgoing_args_size = crtl->outgoing_args_size;
+  int adj;
+  int i;
+
+  if (ubicom32_naked_function_p ())
+    {
+      emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
+						        LINK_REGNO)));
+      return;
+    }
+
+  if (cfun->calls_alloca)
+    {
+      x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
+		      GEN_INT (-save_regs_size));
+      emit_insn (x);
+      outgoing_args_size = 0;
+    }
+  
+  if (outgoing_args_size)
+    {
+      x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+		      GEN_INT (outgoing_args_size));
+      emit_insn (x);
+    }
+
+  i = 0;
+  for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
+    if (save_regs[regno] && regno != LINK_REGNO)
+      {
+	x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+	emit_move_insn (gen_rtx_REG (SImode, regno), x);
+	++i;
+      }
+
+  /* Do we have to adjust the stack after we've finished restoring regs?  */
+  adj = get_frame_size() + crtl->args.pretend_args_size;
+  if (cfun->stdarg)
+    adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
+ 
+#if 0
+  if (crtl->calls_eh_return && 0)
+    {
+      if (save_regs[LINK_REGNO])
+        {
+          x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+          emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
+        }
+
+      if (adj)
+        {
+          x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+			  GEN_INT (adj));
+          x = emit_insn (x);
+        }
+
+      /* Perform the additional bump for __throw.  */
+      emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+			     EH_RETURN_STACKADJ_RTX));
+      emit_jump_insn (gen_eh_return_internal ());
+      return;
+    }
+#endif
+
+  if (save_regs[LINK_REGNO])
+    {
+      if (adj >= 4 && adj <= (6 * 4))
+        {
+	  x = GEN_INT (adj + 4);
+          emit_jump_insn (gen_return_from_post_modify_sp (x));
+	  return;
+        }
+
+      if (adj == 0)
+	{
+          x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+          emit_jump_insn (gen_return_internal (x));
+          return;
+	}
+
+      x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+      emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
+    }
+
+  if (adj)
+    {
+      x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+		      GEN_INT (adj));
+      x = emit_insn (x);
+      adj = 0;
+    }
+
+  /* Given that we've just done all the hard work here we may as well use
+     a calli to return.  */
+  ubicom32_can_use_calli_to_ret = 1;
+  emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO)));
+}
+
+void
+ubicom32_expand_call_fdpic (rtx *operands)
+{
+  rtx c;
+  rtx addr;
+  rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+
+  addr = XEXP (operands[0], 0);
+
+  c = gen_call_fdpic (addr, operands[1], fdpic_reg);
+  emit_call_insn (c);
+}
+
+void
+ubicom32_expand_call_value_fdpic (rtx *operands)
+{
+  rtx c;
+  rtx addr;
+  rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+
+  addr = XEXP (operands[1], 0);
+
+  c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg);
+  emit_call_insn (c);
+}
+
+void
+ubicom32_expand_eh_return (rtx *operands)
+{
+  if (REG_P (operands[0])
+      || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO)
+    {
+      rtx sp = EH_RETURN_STACKADJ_RTX;
+      emit_move_insn (sp, operands[0]);
+      operands[0] = sp;
+    }
+
+  if (REG_P (operands[1])
+      || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO)
+    {
+      rtx ra = EH_RETURN_HANDLER_RTX;
+      emit_move_insn (ra, operands[1]);
+      operands[1] = ra;
+    }
+}
+
+/* Compute the offsets between eliminable registers.  */
+
+int
+ubicom32_initial_elimination_offset (int from, int to)
+{
+  ubicom32_layout_frame ();
+  if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+    return save_regs_size + crtl->outgoing_args_size;
+
+  if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
+    return get_frame_size ()/* + save_regs_size */;
+
+  if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+    return get_frame_size ()
+	   + crtl->outgoing_args_size
+	   + save_regs_size;
+
+  return 0;
+}
+
+/* Return 1 if it is appropriate to emit `ret' instructions in the
+   body of a function.  Do this only if the epilogue is simple, needing a
+   couple of insns.  Prior to reloading, we can't tell how many registers
+   must be saved, so return 0 then.  Return 0 if there is no frame
+   marker to de-allocate.
+
+   If NON_SAVING_SETJMP is defined and true, then it is not possible
+   for the epilogue to be simple, so return 0.  This is a special case
+   since NON_SAVING_SETJMP will not cause regs_ever_live to change
+   until final, but jump_optimize may need to know sooner if a
+   `return' is OK.  */
+
+int
+ubicom32_can_use_return_insn_p (void)
+{
+  if (! reload_completed || frame_pointer_needed)
+    return 0;
+
+  return 1;
+}
+
+/* Attributes and CC handling.  */
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+   struct attribute_spec.handler.  */
+static tree
+ubicom32_handle_fndecl_attribute (tree *node, tree name,
+			      tree args ATTRIBUTE_UNUSED,
+			      int flags ATTRIBUTE_UNUSED,
+			      bool *no_add_attrs)
+{
+  if (TREE_CODE (*node) != FUNCTION_DECL)
+    {
+      warning ("'%s' attribute only applies to functions",
+	       IDENTIFIER_POINTER (name));
+      *no_add_attrs = true;
+    }
+
+  return NULL_TREE;
+}
+
+/* A C expression that places additional restrictions on the register class to
+   use when it is necessary to copy value X into a register in class CLASS.
+   The value is a register class; perhaps CLASS, or perhaps another, smaller
+   class.  On many machines, the following definition is safe:
+
+        #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
+
+   Sometimes returning a more restrictive class makes better code.  For
+   example, on the 68000, when X is an integer constant that is in range for a
+   `moveq' instruction, the value of this macro is always `DATA_REGS' as long
+   as CLASS includes the data registers.  Requiring a data register guarantees
+   that a `moveq' will be used.
+
+   If X is a `const_double', by returning `NO_REGS' you can force X into a
+   memory constant.  This is useful on certain machines where immediate
+   floating values cannot be loaded into certain kinds of registers.  */
+
+enum reg_class
+ubicom32_preferred_reload_class (rtx x, enum reg_class class)
+{
+  /* If a symbolic constant, HIGH or a PLUS is reloaded,
+     it is most likely being used as an address, so
+     prefer ADDRESS_REGS.  If 'class' is not a superset
+     of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload.  */
+  if (GET_CODE (x) == PLUS
+      || GET_CODE (x) == HIGH
+      || GET_CODE (x) == LABEL_REF
+      || GET_CODE (x) == SYMBOL_REF
+      || GET_CODE (x) == CONST)
+    {
+      if (reg_class_subset_p (ALL_ADDRESS_REGS, class))
+	return ALL_ADDRESS_REGS;
+
+      return NO_REGS;
+    }
+
+  return class;
+}
+
+/* Function arguments and varargs.  */
+
+int
+ubicom32_reg_parm_stack_space (tree fndecl)
+{
+  return 0;
+  
+  if (fndecl
+      && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0
+      && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl)))) 
+	  != void_type_node))
+    return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
+
+  return 0;
+}
+
+/* Flush the argument registers to the stack for a stdarg function;
+   return the new argument pointer.  */
+
+rtx
+ubicom32_builtin_saveregs (void)
+{
+  int regno;
+  
+  if (! cfun->stdarg)
+    return 0;
+  
+  for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno)
+    emit_move_insn (gen_rtx_MEM (SImode,
+				 gen_rtx_PRE_DEC (SImode,
+						  stack_pointer_rtx)),
+		    gen_rtx_REG (SImode, regno));
+  
+  return stack_pointer_rtx;
+}
+
+void
+ubicom32_va_start (tree valist, rtx nextarg)
+{
+  std_expand_builtin_va_start (valist, nextarg);
+}
+
+rtx
+ubicom32_va_arg (tree valist, tree type)
+{
+  HOST_WIDE_INT size, rsize;
+  tree addr, incr, tmp;
+  rtx addr_rtx;
+  int indirect = 0;
+
+  /* Round up sizeof(type) to a word.  */
+  size = int_size_in_bytes (type);
+  rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
+
+  /* Large types are passed by reference.  */
+  if (size > 8)
+    {
+      indirect = 1;
+      size = rsize = UNITS_PER_WORD;
+    }
+
+  incr = valist;
+  addr = incr = save_expr (incr);
+
+  /* FIXME Nat's version - is it correct?  */
+  tmp = fold_convert (ptr_type_node, size_int (rsize));
+  tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp);
+  incr = fold (tmp);
+
+  /* FIXME Nat's version - is it correct? */
+  incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr);
+
+  TREE_SIDE_EFFECTS (incr) = 1;
+  expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+  addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
+
+  if (size < UNITS_PER_WORD)
+    emit_insn (gen_addsi3 (addr_rtx, addr_rtx,
+			   GEN_INT (UNITS_PER_WORD - size)));
+
+  if (indirect)
+    {
+      addr_rtx = force_reg (Pmode, addr_rtx);
+      addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
+      set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
+    }
+
+  return addr_rtx;
+}
+
+void
+init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
+		      int indirect ATTRIBUTE_UNUSED)
+{
+  cum->nbytes = 0;
+
+  if (!libname)
+    {
+      cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0
+		     && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+			 != void_type_node));
+    }
+}
+
+/* Return an RTX to represent where a value in mode MODE will be passed
+   to a function.  If the result is 0, the argument will be pushed.  */
+
+rtx
+function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
+	      int named ATTRIBUTE_UNUSED)
+{
+  rtx result = 0;
+  int size, align;
+  int nregs = UBICOM32_FUNCTION_ARG_REGS;
+  
+  /* Figure out the size of the object to be passed.  */
+  if (mode == BLKmode)
+    size = int_size_in_bytes (type);
+  else
+    size = GET_MODE_SIZE (mode);
+
+  /* Figure out the alignment of the object to be passed.  */
+  align = size;
+
+  cum->nbytes = (cum->nbytes + 3) & ~3;
+
+  /* Don't pass this arg via a register if all the argument registers
+     are used up.  */
+  if (cum->nbytes >= nregs * UNITS_PER_WORD)
+    return 0;
+
+  /* Don't pass this arg via a register if it would be split between
+     registers and memory.  */
+  result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
+
+  return result;
+}
+
+rtx
+function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
+		       int named ATTRIBUTE_UNUSED)
+{
+  if (cfun->stdarg)
+    return 0;
+
+  return function_arg (cum, mode, type, named);
+}
+
+
+/* Implement hook TARGET_ARG_PARTIAL_BYTES.
+
+   Returns the number of bytes at the beginning of an argument that
+   must be put in registers.  The value must be zero for arguments
+   that are passed entirely in registers or that are entirely pushed
+   on the stack.  */
+static int
+ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
+			    tree type, bool named ATTRIBUTE_UNUSED)
+{
+  int size, diff;
+
+  int nregs = UBICOM32_FUNCTION_ARG_REGS;
+
+  /* round up to full word */
+  cum->nbytes = (cum->nbytes + 3) & ~3;
+
+  if (targetm.calls.pass_by_reference (cum, mode, type, named))
+      return 0;
+
+  /* number of bytes left in registers */
+  diff = nregs*UNITS_PER_WORD - cum->nbytes;
+
+  /* regs all used up */
+  if (diff <= 0)
+    return 0;
+
+  /* Figure out the size of the object to be passed.  */
+  if (mode == BLKmode)
+    size = int_size_in_bytes (type);
+  else
+    size = GET_MODE_SIZE (mode);
+
+  /* enough space left in regs for size */
+  if (size <= diff)
+    return 0;
+
+  /* put diff bytes in regs and rest on stack */
+  return diff;
+
+}
+
+static bool
+ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+			    enum machine_mode mode, const_tree type,
+			    bool named ATTRIBUTE_UNUSED)
+{
+  int size;
+
+  if (type)
+    size = int_size_in_bytes (type);
+  else
+    size = GET_MODE_SIZE (mode);
+
+  return size <= 0 || size > 8;
+}
+
+static bool
+ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+			enum machine_mode mode, const_tree type,
+			bool named ATTRIBUTE_UNUSED)
+{
+  int size;
+
+  if (type)
+    size = int_size_in_bytes (type);
+  else
+    size = GET_MODE_SIZE (mode);
+
+  return size <= 0 || size > 8;
+}
+ 
+static bool
+ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+  int size, mode;
+
+  if (!type)
+    return true;
+
+  size = int_size_in_bytes(type);
+  if (size > 8) 
+    return true;
+
+  mode = TYPE_MODE(type);
+  if (mode == BLKmode)
+    return true;
+
+  return false;
+}
+
+/* Return true if a given register number REGNO is acceptable for machine
+   mode MODE.  */
+bool
+ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
+{
+  /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits.  */
+  if (! ubicom32_v3)
+    {
+      if (regno == ACC0_HI_REGNUM)
+	return (mode == QImode || mode == HImode);
+    }
+
+  /* Only the flags reg can hold CCmode.  */
+  if (GET_MODE_CLASS (mode) == MODE_CC)
+    return regno == CC_REGNUM;
+
+  /* We restrict the choice of DImode registers to only being address,
+     data or accumulator regs.  We also restrict them to only start on
+     even register numbers so we never have to worry about partial
+     overlaps between operands in instructions.  */
+  if (GET_MODE_SIZE (mode) > 4)
+    {
+      switch (REGNO_REG_CLASS (regno))
+	{
+	case ADDRESS_REGS:
+	case DATA_REGS:
+	case ACC_REGS:
+	  return (regno & 1) == 0;
+
+        default:
+	  return false;
+	}
+    }
+
+  return true;
+}
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+   and check its validity for a certain class.
+   We have two alternate definitions for each of them.
+   The usual definition accepts all pseudo regs; the other rejects
+   them unless they have been allocated suitable hard regs.
+   The symbol REG_OK_STRICT causes the latter definition to be used.
+
+   Most source files want to accept pseudo regs in the hope that
+   they will get allocated to the class that the insn wants them to be in.
+   Source files for reload pass need to be strict.
+   After reload, it makes no difference, since pseudo regs have
+   been eliminated by then.  
+
+   These assume that REGNO is a hard or pseudo reg number.
+   They give nonzero only if REGNO is a hard reg of the suitable class
+   or a pseudo reg currently allocated to a suitable hard reg.
+   Since they use reg_renumber, they are safe only once reg_renumber
+   has been allocated, which happens in local-alloc.c.  */
+
+int
+ubicom32_regno_ok_for_base_p (int regno, int strict)
+{
+  if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM) 
+      || (!strict
+	  && (regno >= FIRST_PSEUDO_REGISTER
+	      || regno == ARG_POINTER_REGNUM))
+      || (strict && (reg_renumber 
+		     && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM
+		     && reg_renumber[regno] <= STACK_POINTER_REGNUM)))
+    return 1;
+
+  return 0;
+}
+
+int
+ubicom32_regno_ok_for_index_p (int regno, int strict)
+{
+  if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM)
+      || (!strict && regno >= FIRST_PSEUDO_REGISTER)
+      || (strict && (reg_renumber 
+		     && reg_renumber[regno] >= FIRST_DATA_REGNUM
+		     && reg_renumber[regno] <= LAST_DATA_REGNUM)))
+    return 1;
+
+  return 0;
+}
+
+/* Returns 1 if X is a valid index register.  STRICT is 1 if only hard
+   registers should be accepted.  Accept either REG or SUBREG where a
+   register is valid.  */
+
+static bool
+ubicom32_is_index_reg (rtx x, int strict)
+{
+  if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict))
+      || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
+	  && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict)))
+    return true;
+
+  return false;
+}
+
+/* Return 1 if X is a valid index for a memory address.  */
+
+static bool
+ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict)
+{
+  /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2
+     or 4 depending on mode.  */
+  if (CONST_INT_P (x))
+    {
+      switch (mode)
+	{
+	case QImode:
+	  return satisfies_constraint_J (x);
+	  
+	case HImode:
+	  return satisfies_constraint_K (x);
+
+	case SImode:
+	case SFmode:
+	  return satisfies_constraint_L (x);
+
+	case DImode:
+	  return satisfies_constraint_L (x)
+		 && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4));
+	  
+	default:	  
+	  return false;
+	}
+    }
+
+  if (mode != SImode && mode != HImode && mode != QImode)
+    return false;
+
+  /* Register index scaled by mode of operand: REG + REG * modesize.
+     Valid scaled index registers are:
+
+     SImode	(mult (dreg) 4))
+     HImode	(mult (dreg) 2))
+     QImode	(mult (dreg) 1))  */
+  if (GET_CODE (x) == MULT
+      && ubicom32_is_index_reg (XEXP (x, 0), strict)
+      && CONST_INT_P (XEXP (x, 1))
+      && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode))
+    return true;
+
+  /* REG + REG addressing is allowed for QImode.  */
+  if (ubicom32_is_index_reg (x, strict) && mode == QImode)
+    return true;
+
+  return false;
+}
+
+static bool
+ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs)
+{
+  if (offs < 0)
+    return false;
+
+  switch (mode)
+    {
+    case QImode:
+      return offs <= 127;
+
+    case HImode:
+      return offs <= 254;
+
+    case SImode:
+    case SFmode:
+      return offs <= 508;
+
+    case DImode:
+      return offs <= 504;
+
+    default:
+      return false;
+    }
+}
+
+static int
+ubicom32_get_valid_offset_mask (enum machine_mode mode)
+{
+  switch (mode)
+    {
+    case QImode:
+      return 127;
+
+    case HImode:
+      return 255;
+
+    case SImode:
+    case SFmode:
+      return 511;
+
+    case DImode:
+      return 255;
+
+    default:
+      return 0;
+    }
+}
+
+/* Returns 1 if X is a valid base register.  STRICT is 1 if only hard
+   registers should be accepted.  Accept either REG or SUBREG where a
+   register is valid.  */
+
+static bool
+ubicom32_is_base_reg (rtx x, int strict)
+{
+  if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict))
+      || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
+	  && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict)))
+    return true;
+
+  return false;
+}
+
+static bool
+ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
+{
+  return TARGET_FDPIC;
+}
+
+/* Determine if X is a legitimate constant.  */
+
+bool
+ubicom32_legitimate_constant_p (rtx x)
+{
+  /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether
+     a constant can be entered into reg_equiv_constant[].  If we return true,
+     reload can create new instances of the constant whenever it likes.
+
+     The idea is therefore to accept as many constants as possible (to give
+     reload more freedom) while rejecting constants that can only be created
+     at certain times.  In particular, anything with a symbolic component will
+     require use of the pseudo FDPIC register, which is only available before
+     reload.  */
+  if (TARGET_FDPIC)
+    {
+      if (GET_CODE (x) == SYMBOL_REF
+	  || (GET_CODE (x) == CONST
+	      && GET_CODE (XEXP (x, 0)) == PLUS
+	      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
+	  || CONSTANT_ADDRESS_P (x))
+	return false;
+
+      return true;
+    }
+
+  /* For non-PIC code anything goes!  */
+  return true;
+}
+
+/* Address validation.  */
+
+bool
+ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
+{
+  if (TARGET_DEBUG_ADDRESS)
+    {									
+      fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n",
+	       (strict) ? " (STRICT)" : "");
+      debug_rtx (x);
+    }									
+
+  if (CONSTANT_ADDRESS_P (x))
+    return false;
+
+  if (ubicom32_is_base_reg (x, strict)) 
+    return true;
+
+  if ((GET_CODE (x) == POST_INC 
+       || GET_CODE (x) == PRE_INC 
+       || GET_CODE (x) == POST_DEC 
+       || GET_CODE (x) == PRE_DEC)
+      && REG_P (XEXP (x, 0))
+      && ubicom32_is_base_reg (XEXP (x, 0), strict)
+      && mode != DImode)
+    return true;
+
+  if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
+      && ubicom32_is_base_reg (XEXP (x, 0), strict)
+      && GET_CODE (XEXP (x, 1)) == PLUS
+      && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))
+      && CONST_INT_P (XEXP (XEXP (x, 1), 1))
+      && mode != DImode)
+    {
+      HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1));
+      switch (mode)
+	{
+	case QImode:
+	  return disp >= -8 && disp <= 7;
+	  
+	case HImode:
+	  return disp >= -16 && disp <= 14 && ! (disp & 1);
+	  
+	case SImode:
+	  return disp >= -32 && disp <= 28 && ! (disp & 3);
+	  
+	default:
+	  return false;
+	}
+    }
+  
+  /* Accept base + index * scale.  */
+  if (GET_CODE (x) == PLUS
+      && ubicom32_is_base_reg (XEXP (x, 0), strict)
+      && ubicom32_is_index_expr (mode, XEXP (x, 1), strict))
+    return true;
+
+  /* Accept index * scale + base.  */
+  if (GET_CODE (x) == PLUS
+      && ubicom32_is_base_reg (XEXP (x, 1), strict)
+      && ubicom32_is_index_expr (mode, XEXP (x, 0), strict))
+    return true;
+
+  if (! TARGET_FDPIC)
+    {
+      /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits
+	 displacement operand:
+
+	 moveai a1, #%hi(SYM)
+	 move.4 d3, %lo(SYM)(a1)  */
+      if (GET_CODE (x) == LO_SUM
+	  && ubicom32_is_base_reg (XEXP (x, 0), strict)
+	  && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
+	      || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */)
+	  && mode != DImode)
+	return true;
+    }
+
+  if (TARGET_DEBUG_ADDRESS)
+    fprintf (stderr, "\nNot a legitimate address.\n");
+
+  return false;
+}
+
+rtx
+ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+			     enum machine_mode mode)
+{
+  if (mode == BLKmode)
+    return NULL_RTX;
+
+  if (GET_CODE (x) == PLUS
+      && REG_P (XEXP (x, 0))
+      && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0))) 
+      && CONST_INT_P (XEXP (x, 1))
+      && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1))))
+    {
+      rtx base;
+      rtx plus;
+      rtx new_rtx;
+      HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
+      HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
+      HOST_WIDE_INT high = val ^ low;
+
+      if (val < 0)
+	return NULL_RTX;
+
+      if (! low)
+	return NULL_RTX;
+
+      /* Reload the high part into a base reg; leave the low part
+	 in the mem directly.  */
+      base = XEXP (x, 0);
+      if (! ubicom32_is_base_reg (base, 0))
+	base = copy_to_mode_reg (Pmode, base);
+
+      plus = expand_simple_binop (Pmode, PLUS,
+				  gen_int_mode (high, Pmode),
+				  base, NULL, 0, OPTAB_WIDEN);
+      new_rtx = plus_constant (plus, low);
+
+      return new_rtx;
+    }
+
+  return NULL_RTX;
+}
+
+/* Try a machine-dependent way of reloading an illegitimate address AD
+   operand.  If we find one, push the reload and and return the new address.
+
+   MODE is the mode of the enclosing MEM.  OPNUM is the operand number
+   and TYPE is the reload type of the current reload.  */
+
+rtx 
+ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode,
+				    int opnum, int type)
+{
+  /* Is this an address that we've already fixed up?  If it is then
+     recognize it and move on.  */
+  if (GET_CODE (ad) == PLUS
+      && GET_CODE (XEXP (ad, 0)) == PLUS
+      && REG_P (XEXP (XEXP (ad, 0), 0))
+      && CONST_INT_P (XEXP (XEXP (ad, 0), 1))
+      && CONST_INT_P (XEXP (ad, 1)))
+    {
+      push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL,
+		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
+		   opnum, (enum reload_type) type);
+      return ad;
+    }
+
+  /* Have we got an address where the offset is simply out of range?  If
+     yes then reload the range as a high part and smaller offset.  */
+  if (GET_CODE (ad) == PLUS
+      && REG_P (XEXP (ad, 0))
+      && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+      && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))
+      && CONST_INT_P (XEXP (ad, 1))
+      && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1))))
+    {
+      rtx temp;
+      rtx new_rtx;
+
+      HOST_WIDE_INT val = INTVAL (XEXP (ad, 1));
+      HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
+      HOST_WIDE_INT high = val ^ low;
+
+      /* Reload the high part into a base reg; leave the low part
+	 in the mem directly.  */
+      temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high));
+      new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low));
+
+      push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL,
+		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
+		   opnum, (enum reload_type) type);
+      return new_rtx;
+    }
+
+  /* If we're presented with an pre/post inc/dec then we must force this
+     to be done in an address register.  The register allocator should
+     work this out for itself but at times ends up trying to use the wrong
+     class.  If we get the wrong class then reload will end up generating
+     at least 3 instructions whereas this way we can hopefully keep it to
+     just 2.  */
+  if ((GET_CODE (ad) == POST_INC 
+       || GET_CODE (ad) == PRE_INC 
+       || GET_CODE (ad) == POST_DEC 
+       || GET_CODE (ad) == PRE_DEC)
+      && REG_P (XEXP (ad, 0))
+      && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+      && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))))
+    {
+      push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0),
+		   BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0,
+		   opnum, RELOAD_OTHER);
+      return ad;
+    }
+
+  return NULL_RTX;
+}
+
+/* Compute a (partial) cost for rtx X.  Return true if the complete
+   cost has been computed, and false if subexpressions should be
+   scanned.  In either case, *TOTAL contains the cost result.  */
+
+static bool
+ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total,
+		    bool speed ATTRIBUTE_UNUSED)
+{
+  enum machine_mode mode = GET_MODE (x);
+
+  switch (code)
+    {
+    case CONST_INT:
+      /* Very short constants often fold into instructions so
+         we pretend that they don't cost anything!  This is
+	 really important as regards zero values as otherwise
+	 the compiler has a nasty habit of wanting to reuse
+	 zeroes that are in regs but that tends to pessimize
+	 the code.  */
+      if (satisfies_constraint_I (x))
+	{
+	  *total = 0;
+	  return true;
+	}
+
+      /* Bit clearing costs nothing  */
+      if (outer_code == AND
+	  && exact_log2 (~INTVAL (x)) != -1)
+	{
+	  *total = 0;
+	  return true;
+	}
+
+      /* Masking the lower set of bits costs nothing.  */
+      if (outer_code == AND
+	  && exact_log2 (INTVAL (x) + 1) != -1)
+	{
+	  *total = 0;
+	  return true;
+	}
+
+      /* Bit setting costs nothing.  */
+      if (outer_code == IOR
+	  && exact_log2 (INTVAL (x)) != -1)
+	{
+	  *total = 0;
+	  return true;
+	}
+
+      /* Larger constants that can be loaded via movei aren't too
+         bad.  If we're just doing a set they cost nothing extra.  */
+      if (satisfies_constraint_N (x))
+	{
+	  if (mode == DImode)
+	    *total = COSTS_N_INSNS (2);
+	  else 
+	    *total = COSTS_N_INSNS (1);
+	  return true;
+	}
+
+      if (mode == DImode)
+	*total = COSTS_N_INSNS (5);
+      else
+        *total = COSTS_N_INSNS (3);
+      return true;
+
+    case CONST_DOUBLE:
+      /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
+	 so their cost is very high.  */
+      *total = COSTS_N_INSNS (6);
+      return true;
+
+    case CONST:
+    case SYMBOL_REF:
+    case MEM:
+      *total = 0;
+      return true;
+
+    case IF_THEN_ELSE:
+      *total = COSTS_N_INSNS (1);
+      return true;
+
+    case LABEL_REF:
+    case HIGH:
+    case LO_SUM:
+    case BSWAP:
+    case PLUS:
+    case MINUS:
+    case AND:
+    case IOR:
+    case XOR:
+    case ASHIFT:
+    case ASHIFTRT:
+    case LSHIFTRT:
+    case NEG:
+    case NOT:
+    case SIGN_EXTEND:
+    case ZERO_EXTEND:
+    case ZERO_EXTRACT:
+      if (outer_code == SET)
+	{
+	  if (mode == DImode)
+	    *total = COSTS_N_INSNS (2);
+	  else
+	    *total = COSTS_N_INSNS (1);
+	}
+      return true;
+
+    case COMPARE:
+      if (outer_code == SET)
+	{
+	  if (GET_MODE (XEXP (x, 0)) == DImode
+	      || GET_MODE (XEXP (x, 1)) == DImode)
+	    *total = COSTS_N_INSNS (2);
+	  else
+	    *total = COSTS_N_INSNS (1);
+	}
+      return true;
+
+    case UMOD:
+    case UDIV:
+    case MOD:
+    case DIV:
+      if (outer_code == SET)
+	{
+	  if (mode == DImode)
+	    *total = COSTS_N_INSNS (600);
+	  else
+	    *total = COSTS_N_INSNS (200);
+	}
+      return true;
+
+    case MULT:
+      if (outer_code == SET)
+	{
+	  if (! ubicom32_v4)
+	    {
+	      if (mode == DImode)
+		*total = COSTS_N_INSNS (15);
+	      else
+		*total = COSTS_N_INSNS (5);
+	    }
+	  else
+	    {
+	      if (mode == DImode)
+		*total = COSTS_N_INSNS (6);
+	      else
+		*total = COSTS_N_INSNS (2);
+	    }
+	}
+      return true;
+
+    case UNSPEC:
+      if (XINT (x, 1) == UNSPEC_FDPIC_GOT
+	  || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC)
+	*total = 0;
+      return true;
+
+    default:
+      return false;
+    }
+}
+
+/* Return 1 if ADDR can have different meanings depending on the machine
+   mode of the memory reference it is used for or if the address is
+   valid for some modes but not others.
+
+   Autoincrement and autodecrement addresses typically have
+   mode-dependent effects because the amount of the increment or
+   decrement is the size of the operand being addressed.  Some machines
+   have other mode-dependent addresses. Many RISC machines have no
+   mode-dependent addresses.
+
+   You may assume that ADDR is a valid address for the machine.  */
+
+int
+ubicom32_mode_dependent_address_p (rtx addr)
+{
+  if (GET_CODE (addr) == POST_INC 
+      || GET_CODE (addr) == PRE_INC 
+      || GET_CODE (addr) == POST_DEC 
+      || GET_CODE (addr) == PRE_DEC 
+      || GET_CODE (addr) == POST_MODIFY 
+      || GET_CODE (addr) == PRE_MODIFY)
+    return 1;
+
+  return 0;
+}
+
+static void
+ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+  fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d  %s */\n",
+	   get_frame_size (), crtl->args.pretend_args_size,
+	   save_regs_size, crtl->outgoing_args_size,
+	   current_function_is_leaf ? "leaf" : "nonleaf");
+}
+
+static void
+ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
+			    HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+  ubicom32_reorg_completed = 0;  
+}
+
+static void
+ubicom32_machine_dependent_reorg (void)
+{
+#if 0 /* Commenting out this optimization until it is fixed */
+  if (optimize)
+    {
+      compute_bb_for_insn ();
+
+      /* Do a very simple CSE pass over just the hard registers.  */
+      reload_cse_regs (get_insns ());
+
+      /* Reload_cse_regs can eliminate potentially-trapping MEMs.
+	 Remove any EH edges associated with them.  */
+      if (flag_non_call_exceptions)
+	purge_all_dead_edges ();
+    }
+#endif
+  ubicom32_reorg_completed = 1;
+}
+
+void
+ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target)
+{
+  rtx note;
+  int mostly_false_jump;
+  rtx xoperands[2];
+  rtx cc_reg;
+
+  note = find_reg_note (insn, REG_BR_PROB, 0);
+  mostly_false_jump = !note || (INTVAL (XEXP (note, 0))
+				<= REG_BR_PROB_BASE / 2);
+
+  xoperands[0] = target;
+  xoperands[1] = cond;
+  cc_reg = XEXP (cond, 0);
+
+  if (GET_MODE (cc_reg) == CCWmode
+      || GET_MODE (cc_reg) == CCWZmode
+      || GET_MODE (cc_reg) == CCWZNmode)
+    {
+      if (mostly_false_jump)
+        output_asm_insn ("jmp%b1.w.f\t%0", xoperands);
+      else
+        output_asm_insn ("jmp%b1.w.t\t%0", xoperands);
+      return;
+    }
+
+  if (GET_MODE (cc_reg) == CCSmode
+      || GET_MODE (cc_reg) == CCSZmode
+      || GET_MODE (cc_reg) == CCSZNmode)
+    {
+      if (mostly_false_jump)
+        output_asm_insn ("jmp%b1.s.f\t%0", xoperands);
+      else
+        output_asm_insn ("jmp%b1.s.t\t%0", xoperands);
+      return;
+    }
+
+  abort ();
+}
+
+/* Return non-zero if FUNC is a naked function.  */
+
+static int
+ubicom32_naked_function_p (void)
+{
+  return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
+}
+
+/* Return an RTX indicating where the return address to the
+   calling function can be found.  */
+rtx
+ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+  if (count != 0)
+    return NULL_RTX;
+
+  return get_hard_reg_initial_val (Pmode, LINK_REGNO);
+}
+
+/*
+ * ubicom32_readonly_data_section: This routtine handles code
+ * at the start of readonly data sections
+ */
+static void
+ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED)
+{
+  static int num = 0;
+  if (in_section == readonly_data_section){
+    fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP);
+    if (flag_data_sections){
+      fprintf (asm_out_file, ".rodata%d", num);
+      fprintf (asm_out_file, ",\"a\"");
+    }
+    fprintf (asm_out_file, "\n");
+  }
+  num++;
+}
+
+/*
+ * ubicom32_text_section: not in readonly section
+ */
+static void
+ubicom32_text_section(const void *data ATTRIBUTE_UNUSED)
+{
+  fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
+}
+
+/*
+ * ubicom32_data_section: not in readonly section
+ */
+static void
+ubicom32_data_section(const void *data ATTRIBUTE_UNUSED)
+{
+  fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP);
+}
+
+/*
+ * ubicom32_asm_init_sections: This routine implements special
+ * section handling
+ */
+static void
+ubicom32_asm_init_sections(void)
+{
+  text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL);
+
+  data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL);
+
+  readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL);
+}
+
+/*
+ * ubicom32_profiler:  This routine would call
+ * mcount to support prof and gprof if mcount
+ * was supported. Currently, do nothing.
+ */
+void
+ubicom32_profiler(void)
+{
+}
+
+/* Initialise the builtin functions.  Start by initialising
+   descriptions of different types of functions (e.g., void fn(int),
+   int fn(void)), and then use these to define the builtins. */
+static void
+ubicom32_init_builtins (void)
+{
+  tree endlink;
+  tree short_unsigned_endlink;
+  tree unsigned_endlink;
+  tree short_unsigned_ftype_short_unsigned;
+  tree unsigned_ftype_unsigned;
+
+  endlink = void_list_node;
+
+  short_unsigned_endlink
+    = tree_cons (NULL_TREE, short_unsigned_type_node, endlink);
+
+  unsigned_endlink
+    = tree_cons (NULL_TREE, unsigned_type_node, endlink);
+
+  short_unsigned_ftype_short_unsigned
+    = build_function_type (short_unsigned_type_node, short_unsigned_endlink);
+
+  unsigned_ftype_unsigned
+    = build_function_type (unsigned_type_node, unsigned_endlink);
+
+  /* Initialise the byte swap function. */
+  add_builtin_function ("__builtin_ubicom32_swapb_2",
+  			short_unsigned_ftype_short_unsigned,
+			UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
+			BUILT_IN_MD, NULL,
+			NULL_TREE);
+
+  /* Initialise the byte swap function. */
+  add_builtin_function ("__builtin_ubicom32_swapb_4",
+  			unsigned_ftype_unsigned,
+			UBICOM32_BUILTIN_UBICOM32_SWAPB_4,
+			BUILT_IN_MD, NULL,
+			NULL_TREE);
+}
+
+/* Given a builtin function taking 2 operands (i.e., target + source),
+   emit the RTL for the underlying instruction. */
+static rtx
+ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target)
+{
+  tree arg0;
+  rtx op0, pat;
+  enum machine_mode tmode, mode0;
+
+  /* Grab the incoming argument and emit its RTL. */
+  arg0 = TREE_VALUE (arglist);
+  op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
+
+  /* Determine the modes of the instruction operands. */
+  tmode = insn_data[icode].operand[0].mode;
+  mode0 = insn_data[icode].operand[1].mode;
+
+  /* Ensure that the incoming argument RTL is in a register of the
+     correct mode. */
+  if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
+    op0 = copy_to_mode_reg (mode0, op0);
+
+  /* If there isn't a suitable target, emit a target register. */
+  if (target == 0
+      || GET_MODE (target) != tmode
+      || !(*insn_data[icode].operand[0].predicate) (target, tmode))
+    target = gen_reg_rtx (tmode);
+
+  /* Emit and return the new instruction. */
+  pat = GEN_FCN (icode) (target, op0);
+  if (!pat)
+    return 0;
+  emit_insn (pat);
+
+  return target;
+}
+
+/* Expand a call to a builtin function. */
+static rtx
+ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
+			 enum machine_mode mode ATTRIBUTE_UNUSED,
+			 int ignore ATTRIBUTE_UNUSED)
+{
+  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+  tree arglist = CALL_EXPR_ARGS(exp);
+  int fcode = DECL_FUNCTION_CODE (fndecl);
+
+  switch (fcode)
+    {
+    case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
+      return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target);
+
+    case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
+      return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target);
+
+    default:
+      gcc_unreachable();
+    }
+
+  /* Should really do something sensible here.  */
+  return NULL_RTX;
+}
+
+/* Fold any constant argument for a swapb.2 instruction.  */
+static tree
+ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist)
+{
+  tree arg0;
+
+  arg0 = TREE_VALUE (arglist);
+
+  /* Optimize constant value.  */
+  if (TREE_CODE (arg0) == INTEGER_CST)
+    {
+      HOST_WIDE_INT v;
+      HOST_WIDE_INT res;
+
+      v = TREE_INT_CST_LOW (arg0);
+      res = ((v >> 8) & 0xff)
+	     | ((v & 0xff) << 8);
+
+      return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
+    }
+
+  return NULL_TREE;
+}
+
+/* Fold any constant argument for a swapb.4 instruction.  */
+static tree
+ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist)
+{
+  tree arg0;
+
+  arg0 = TREE_VALUE (arglist);
+
+  /* Optimize constant value.  */
+  if (TREE_CODE (arg0) == INTEGER_CST)
+    {
+      unsigned HOST_WIDE_INT v;
+      unsigned HOST_WIDE_INT res;
+
+      v = TREE_INT_CST_LOW (arg0);
+      res = ((v >> 24) & 0xff)
+	     | (((v >> 16) & 0xff) << 8)
+	     | (((v >> 8) & 0xff) << 16)
+	     | ((v & 0xff) << 24);
+
+      return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0);
+    }
+
+  return NULL_TREE;
+}
+
+/* Fold any constant arguments for builtin functions.  */
+static tree
+ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
+{
+  switch (DECL_FUNCTION_CODE (fndecl))
+    {
+    case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
+      return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist);
+
+    case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
+      return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist);
+
+    default:
+      return NULL;
+    }
+}
+
+/* Implementation of TARGET_ASM_INTEGER.  When using FD-PIC, we need to
+   tell the assembler to generate pointers to function descriptors in
+   some cases.  */
+static bool
+ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p)
+{
+  if (TARGET_FDPIC && size == UNITS_PER_WORD)
+    {
+      if (GET_CODE (value) == SYMBOL_REF
+	  && SYMBOL_REF_FUNCTION_P (value))
+	{
+	  fputs ("\t.picptr\t%funcdesc(", asm_out_file);
+	  output_addr_const (asm_out_file, value);
+	  fputs (")\n", asm_out_file);
+	  return true;
+	}
+
+      if (!aligned_p)
+	{
+	  /* We've set the unaligned SI op to NULL, so we always have to
+	     handle the unaligned case here.  */
+	  assemble_integer_with_op ("\t.4byte\t", value);
+	  return true;
+	}
+    }
+
+  return default_assemble_integer (value, size, aligned_p);
+}
+
+/* If the constant I can be constructed by shifting a source-1 immediate
+   by a constant number of bits then return the bit count.  If not
+   return 0.  */
+
+int
+ubicom32_shiftable_const_int (int i)
+{
+  int shift = 0;
+
+  /* Note that any constant that can be represented as an immediate to
+     a movei instruction is automatically ignored here in the interests
+     of the clarity of the output asm code.  */
+  if (i >= -32768 && i <= 32767)
+    return 0;
+
+  /* Find the number of trailing zeroes.  We could use __builtin_ctz
+     here but it's not obvious if this is supported on all build
+     compilers so we err on the side of caution.  */
+  if ((i & 0xffff) == 0)
+    {
+      shift += 16;
+      i >>= 16;
+    }
+
+  if ((i & 0xff) == 0)
+    {
+      shift += 8;
+      i >>= 8;
+    }
+
+  if ((i & 0xf) == 0)
+    {
+      shift += 4;
+      i >>= 4;
+    }
+
+  if ((i & 0x3) == 0)
+    {
+      shift += 2;
+      i >>= 2;
+    }
+
+  if ((i & 0x1) == 0)
+    {
+      shift += 1;
+      i >>= 1;
+    }
+
+  if (i >= -128 && i <= 127)
+    return shift;
+
+  return 0;
+}
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.h
@@ -0,0 +1,1564 @@
+/* Definitions of target machine for Ubicom32
+
+   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+   2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GCC.
+
+   GCC is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published
+   by the Free Software Foundation; either version 3, or (at your
+   option) any later version.
+
+   GCC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+   License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with GCC; see the file COPYING3.  If not see
+   <http://www.gnu.org/licenses/>.  */
+
+
+
+#define OBJECT_FORMAT_ELF
+
+/* Run-time target specifications. */
+
+/* Target CPU builtins.  */
+#define TARGET_CPU_CPP_BUILTINS()			\
+  do							\
+    {							\
+      builtin_define_std ("__UBICOM32__");		\
+      builtin_define_std ("__ubicom32__");		\
+							\
+      if (TARGET_FDPIC)					\
+	{						\
+	  builtin_define ("__UBICOM32_FDPIC__");	\
+	  builtin_define ("__FDPIC__");			\
+	}						\
+    }							\
+  while (0)
+
+#ifndef TARGET_DEFAULT
+#define TARGET_DEFAULT 0
+#endif
+
+extern int ubicom32_case_values_threshold;
+
+/* Nonzero if this chip supports the Ubicom32 v3 ISA.  */
+extern int ubicom32_v3;
+
+/* Nonzero if this chip supports the Ubicom32 v4 ISA.  */
+extern int ubicom32_v4;
+
+extern int ubicom32_stack_size;
+
+/* Flag for whether we can use calli instead of ret in returns.  */
+extern int ubicom32_can_use_calli_to_ret;
+
+/* This macro is a C statement to print on `stderr' a string describing the
+   particular machine description choice.  Every machine description should
+   define `TARGET_VERSION'. */
+#define TARGET_VERSION fprintf (stderr, " (UBICOM32)");
+
+/* We don't need a frame pointer to debug things.  Doing this means
+   that gcc can turn on -fomit-frame-pointer when '-O' is specified.  */
+#define CAN_DEBUG_WITHOUT_FP
+
+/* We need to handle processor-specific options.  */
+#define OVERRIDE_OPTIONS ubicom32_override_options ()
+
+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
+  ubicom32_optimization_options (LEVEL, SIZE)
+
+/* For Ubicom32 the least significant bit has the lowest bit number
+   so we define this to be 0.  */
+#define BITS_BIG_ENDIAN 0
+
+/* For Ubicom32 the most significant byte in a word has the lowest
+   number.  */
+#define BYTES_BIG_ENDIAN 1
+
+/* For Ubicom32, in a multiword object, the most signifant word has the
+   lowest number.  */
+#define WORDS_BIG_ENDIAN 1
+
+/* Ubicom32 has 8 bits per byte.  */
+#define BITS_PER_UNIT 8
+
+/* Ubicom32 has 32 bits per word.  */
+#define BITS_PER_WORD 32
+
+/* Width of a word, in units (bytes).  */
+#define UNITS_PER_WORD 4
+
+/* Width of a pointer, in bits.  */
+#define POINTER_SIZE 32
+
+/* Alias for pointers.  Ubicom32 is a 32-bit architecture so we use
+   SImode.  */
+#define Pmode SImode
+
+/* Normal alignment required for function parameters on the stack, in
+   bits.  */
+#define PARM_BOUNDARY 32
+
+/* We need to maintain the stack on a 32-bit boundary.  */
+#define STACK_BOUNDARY 32
+
+/* Alignment required for a function entry point, in bits.  */
+#define FUNCTION_BOUNDARY 32
+
+/* Alias for the machine mode used for memory references to functions being
+   called, in `call' RTL expressions.  We use byte-oriented addresses
+   here.  */
+#define FUNCTION_MODE QImode
+
+/* Biggest alignment that any data type can require on this machine,
+   in bits.  */
+#define BIGGEST_ALIGNMENT 32
+
+/* this default to BIGGEST_ALIGNMENT unless defined       */
+/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/
+#undef MAX_OFILE_ALIGNMENT
+#define MAX_OFILE_ALIGNMENT (128 * 8)
+
+/* Alignment in bits to be given to a structure bit field that follows an empty
+   field such as `int : 0;'.  */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* All structures must be a multiple of 32 bits in size.  */
+#define STRUCTURE_SIZE_BOUNDARY 32
+
+/* A bit-field declared as `int' forces `int' alignment for the struct.  */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* For Ubicom32 we absolutely require that data be aligned with nominal
+   alignment.  */
+#define STRICT_ALIGNMENT 1
+
+/* Make strcpy of constants fast.  */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
+  (TREE_CODE (EXP) == STRING_CST	\
+   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Define this macro as an expression for the alignment of a structure
+   (given by STRUCT as a tree node) if the alignment computed in the
+   usual way is COMPUTED and the alignment explicitly specified was
+   SPECIFIED. */
+#define DATA_ALIGNMENT(TYPE, ALIGN)					\
+  ((((ALIGN) < BITS_PER_WORD)						\
+    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
+	|| TREE_CODE (TYPE) == UNION_TYPE				\
+	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
+
+#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN)
+
+/* For Ubicom32 we default to unsigned chars.  */
+#define DEFAULT_SIGNED_CHAR 0
+
+/* Machine-specific data register numbers.  */
+#define FIRST_DATA_REGNUM 0
+#define D10_REGNUM 10
+#define D11_REGNUM 11
+#define D12_REGNUM 12
+#define D13_REGNUM 13
+#define LAST_DATA_REGNUM 15
+
+/* Machine-specific address register numbers.  */
+#define FIRST_ADDRESS_REGNUM 16
+#define LAST_ADDRESS_REGNUM 22
+
+/* Register numbers used for passing a function's static chain pointer.  If
+   register windows are used, the register number as seen by the called
+   function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
+   seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
+   are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
+
+   The static chain register need not be a fixed register.
+
+   If the static chain is passed in memory, these macros should not be defined;
+   instead, the next two macros should be defined.  */
+#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
+
+/* The register number of the frame pointer register, which is used to access
+   automatic variables in the stack frame.  We generally eliminate this anyway
+   for Ubicom32 but we make it A6 by default.  */
+#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM)
+
+/* The register number of the stack pointer register, which is also be a
+   fixed register according to `FIXED_REGISTERS'.  For Ubicom32 we don't
+   have a hardware requirement about which register this is, but by convention
+   we use A7.  */
+#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
+
+/* Machine-specific accumulator register numbers.  */
+#define ACC0_HI_REGNUM 24
+#define ACC0_LO_REGNUM 25
+#define ACC1_HI_REGNUM 26
+#define ACC1_LO_REGNUM 27
+
+/* source3 register number */
+#define SOURCE3_REGNUM 28
+
+/* The register number of the arg pointer register, which is used to access the
+   function's argument list.  On some machines, this is the same as the frame
+   pointer register.  On some machines, the hardware determines which register
+   this is.  On other machines, you can choose any register you wish for this
+   purpose.  If this is not the same register as the frame pointer register,
+   then you must mark it as a fixed register according to `FIXED_REGISTERS', or
+   arrange to be able to eliminate it.  */
+#define ARG_POINTER_REGNUM 29
+
+/* Pseudo-reg for condition code.  */
+#define CC_REGNUM 30
+
+/* Interrupt set/clear registers.  */
+#define INT_SET0_REGNUM 31
+#define INT_SET1_REGNUM 32
+#define INT_CLR0_REGNUM 33
+#define INT_CLR1_REGNUM 34
+
+/* Scratchpad registers.  */
+#define SCRATCHPAD0_REGNUM 35
+#define SCRATCHPAD1_REGNUM 36
+#define SCRATCHPAD2_REGNUM 37
+#define SCRATCHPAD3_REGNUM 38
+
+/* FDPIC register.  */
+#define FDPIC_REGNUM 16
+
+/* Number of hardware registers known to the compiler.  They receive numbers 0
+   through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
+   really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
+#define FIRST_PSEUDO_REGISTER 39
+
+/* An initializer that says which registers are used for fixed purposes all
+   throughout the compiled code and are therefore not available for general
+   allocation.  These would include the stack pointer, the frame pointer
+   (except on machines where that can be used as a general register when no
+   frame pointer is needed), the program counter on machines where that is
+   considered one of the addressable registers, and any other numbered register
+   with a standard use.
+
+   This information is expressed as a sequence of numbers, separated by commas
+   and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
+   otherwise.
+
+   The table initialized from this macro, and the table initialized by the
+   following one, may be overridden at run time either automatically, by the
+   actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
+   command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
+#define FIXED_REGISTERS					\
+  {							\
+    0, 0, 0, 0, 0, 0, 0, 0,	/* d0 - d7 */		\
+    0, 0, 0, 0, 0, 0, 0, 1,	/* d8 - d15 */		\
+    0, 0, 0, 0, 0, 0, 0, 1,	/* a0 - a7 */		\
+    0, 0,			/* acc0 hi/lo */	\
+    0, 0,			/* acc1 hi/lo */	\
+    0,				/* source3 */		\
+    1,				/* arg */		\
+    1,				/* cc */		\
+    1, 1,			/* int_set[01] */	\
+    1, 1,			/* int_clr[01] */	\
+    1, 1, 1, 1			/* scratchpad[0123] */	\
+  }
+
+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
+   general) by function calls as well as for fixed registers.  This macro
+   therefore identifies the registers that are not available for general
+   allocation of values that must live across function calls.
+
+   If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
+   saves it on function entry and restores it on function exit, if the register
+   is used within the function.  */
+#define CALL_USED_REGISTERS				\
+  {							\
+    1, 1, 1, 1, 1, 1, 1, 1,	/* d0 - d7 */		\
+    1, 1, 0, 0, 0, 0, 1, 1,	/* d8 - d15 */		\
+    1, 0, 0, 1, 1, 1, 0, 1,	/* a0 - a7 */		\
+    1, 1,			/* acc0 hi/lo */	\
+    1, 1,			/* acc1 hi/lo */	\
+    1,				/* source3 */		\
+    1,				/* arg */		\
+    1,				/* cc */		\
+    1, 1,			/* int_set[01] */	\
+    1, 1,			/* int_clr[01] */	\
+    1, 1, 1, 1			/* scratchpad[0123] */	\
+  }
+
+/* How to refer to registers in assembler output.
+   This sequence is indexed by compiler's hard-register-number (see above).  */
+
+/* A C initializer containing the assembler's names for the machine registers,
+   each one as a C string constant.  This is what translates register numbers
+   in the compiler into assembler language.  */
+#define REGISTER_NAMES						\
+  {								\
+    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",		\
+    "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",	\
+    "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",		\
+    "acc0_hi", "acc0_lo",					\
+    "acc1_hi", "acc1_lo",					\
+    "source3",							\
+    "arg",							\
+    "cc",							\
+    "int_set0", "int_set1",					\
+    "int_clr0", "int_clr1",					\
+    "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3"	\
+  }
+
+#define CONDITIONAL_REGISTER_USAGE				\
+  ubicom32_conditional_register_usage ();
+
+/* Order of allocation of registers.  */
+
+/* If defined, an initializer for a vector of integers, containing the numbers
+   of hard registers in the order in which GNU CC should prefer to use them
+   (from most preferred to least).
+
+   For Ubicom32 we try using caller-clobbered data registers first, then
+   callee-saved data registers, then caller-clobbered address registers,
+   then callee-saved address registers and finally everything else.
+
+   The caller-clobbered registers are usually slightly cheaper to use because
+   there's no need to save/restore.  */
+#define REG_ALLOC_ORDER						\
+  {								\
+    0, 1, 2, 3, 4,		/* d0 - d4 */			\
+    5, 6, 7, 8, 9,		/* d5 - d9 */			\
+    14,				/* d14 */			\
+    10, 11, 12, 13,		/* d10 - d13 */			\
+    19, 20, 16, 21,		/* a3, a4, a0, a5 */		\
+    17, 18, 22,			/* a1, a2, a6 */		\
+    24, 25,			/* acc0 hi/lo */		\
+    26, 27,			/* acc0 hi/lo */		\
+    28				/* source3 */			\
+  }
+
+/* C expression for the number of consecutive hard registers, starting at
+   register number REGNO, required to hold a value of mode MODE.  */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* Most registers can hold QImode, HImode and SImode values but we have to
+   be able to indicate any hard registers that cannot hold values with some
+   modes.  */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+  ubicom32_hard_regno_mode_ok(REGNO, MODE)
+
+/* We can rename most registers aside from the FDPIC register if we're using
+   FDPIC.  */
+#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1)
+
+/* A C expression that is nonzero if it is desirable to choose register
+   allocation so as to avoid move instructions between a value of mode MODE1
+   and a value of mode MODE2.
+
+   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
+   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
+   zero.  */
+#define MODES_TIEABLE_P(MODE1, MODE2) 1
+
+/* An enumeral type that must be defined with all the register class names as
+   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
+   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
+   which is not a register class but rather tells how many classes there are.
+
+   Each register class has a number, which is the value of casting the class
+   name to type `int'.  The number serves as an index in many of the tables
+   described below.  */
+
+enum reg_class
+{
+  NO_REGS,
+  DATA_REGS,
+  FDPIC_REG,
+  ADDRESS_REGS,
+  ALL_ADDRESS_REGS,
+  ACC_LO_REGS,
+  ACC_REGS,
+  CC_REG,
+  DATA_ACC_REGS,
+  SOURCE3_REG,
+  SPECIAL_REGS,
+  GENERAL_REGS,
+  ALL_REGS,
+  LIM_REG_CLASSES
+};
+
+/* The number of distinct register classes.  */
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* An initializer containing the names of the register classes as C string
+   constants.  These names are used in writing some of the debugging dumps.  */
+
+#define REG_CLASS_NAMES		\
+{				\
+  "NO_REGS",			\
+  "DATA_REGS",			\
+  "FDPIC_REG",			\
+  "ADDRESS_REGS",		\
+  "ALL_ADDRESS_REGS",		\
+  "ACC_LO_REGS",		\
+  "ACC_REGS",			\
+  "CC_REG",			\
+  "DATA_ACC_REGS",		\
+  "SOURCE3_REG",		\
+  "SPECIAL_REGS",		\
+  "GENERAL_REGS",		\
+  "ALL_REGS",			\
+  "LIM_REGS"			\
+}
+
+/* An initializer containing the contents of the register classes, as integers
+   which are bit masks.  The Nth integer specifies the contents of class N.
+   The way the integer MASK is interpreted is that register R is in the class
+   if `MASK & (1 << R)' is 1.
+
+   When the machine has more than 32 registers, an integer does not suffice.
+   Then the integers are replaced by sub-initializers, braced groupings
+   containing several integers.  Each sub-initializer must be suitable as an
+   initializer for the type `HARD_REG_SET' which is defined in
+   `hard-reg-set.h'.  */
+#define REG_CLASS_CONTENTS					\
+{								\
+  {0x00000000, 0x00000000},	/* No regs */			\
+  {0x0000ffff, 0x00000000},	/* DATA_REGS */			\
+  {0x00010000, 0x00000000},	/* FDPIC_REG */			\
+  {0x20fe0000, 0x00000000},	/* ADDRESS_REGS */		\
+  {0x20ff0000, 0x00000000},	/* ALL_ADDRESS_REGS */		\
+  {0x0a000000, 0x00000000},	/* ACC_LO_REGS */		\
+  {0x0f000000, 0x00000000},	/* ACC_REGS */			\
+  {0x40000000, 0x00000000},	/* CC_REG */			\
+  {0x0f00ffff, 0x00000000},	/* DATA_ACC_REGS */		\
+  {0x10000000, 0x00000000},	/* SOURGE3_REG */		\
+  {0x80000000, 0x0000007f},	/* SPECIAL_REGS */		\
+  {0xbfffffff, 0x0000007f},	/* GENERAL_REGS */		\
+  {0xbfffffff, 0x0000007f}	/* ALL_REGS	*/		\
+}
+
+extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER];
+
+/* A C expression whose value is a register class containing hard register
+   REGNO.  In general there is more than one such class; choose a class which
+   is "minimal", meaning that no smaller class also contains the register.  */
+#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO])
+
+#define IRA_COVER_CLASSES		\
+{					\
+  GENERAL_REGS,				\
+  LIM_REG_CLASSES			\
+}
+
+/* Ubicom32 base registers must be address registers since addresses can
+   only be reached via address registers.  */
+#define BASE_REG_CLASS ALL_ADDRESS_REGS
+
+/* Ubicom32 index registers must be data registers since we cannot add
+   two address registers together to form an address.  */
+#define INDEX_REG_CLASS DATA_REGS
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+   as a base register in operand addresses.  It may be either a suitable hard
+   register or a pseudo register that has been allocated such a hard register.  */
+
+#ifndef REG_OK_STRICT
+#define REGNO_OK_FOR_BASE_P(regno) \
+  ubicom32_regno_ok_for_base_p (regno, 0)
+#else
+#define REGNO_OK_FOR_BASE_P(regno) \
+  ubicom32_regno_ok_for_base_p (regno, 1)
+#endif
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+   as an index register in operand addresses.  It may be either a suitable hard
+   register or a pseudo register that has been allocated such a hard register.
+
+   The difference between an index register and a base register is that the
+   index register may be scaled.  If an address involves the sum of two
+   registers, neither one of them scaled, then either one may be labeled the
+   "base" and the other the "index"; but whichever labeling is used must fit
+   the machine's constraints of which registers may serve in each capacity.
+   The compiler will try both labelings, looking for one that is valid, and
+   will reload one or both registers only if neither labeling works.  */
+#ifndef REG_OK_STRICT
+#define REGNO_OK_FOR_INDEX_P(regno) \
+  ubicom32_regno_ok_for_index_p (regno, 0)
+#else
+#define REGNO_OK_FOR_INDEX_P(regno) \
+  ubicom32_regno_ok_for_index_p (regno, 1)
+#endif
+
+/* Attempt to restrict the register class we need to copy value X intoto the
+   would-be register class CLASS.  Most things are fine for Ubicom32 but we
+   have to restrict certain types of address loads.  */
+#define PREFERRED_RELOAD_CLASS(X, CLASS) \
+  ubicom32_preferred_reload_class (X, CLASS)
+
+/* A C expression for the maximum number of consecutive registers of
+   class CLASS needed to hold a value of mode MODE.  For Ubicom32 this
+   is pretty much identical to HARD_REGNO_NREGS.  */
+#define CLASS_MAX_NREGS(CLASS, MODE)	\
+  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* For Ubicom32 the stack grows downwards when we push a word onto the stack
+   - i.e. it moves to a smaller address.  */
+#define STACK_GROWS_DOWNWARD 1
+
+/* Offset from the frame pointer to the first local variable slot to
+   be allocated.  */
+#define STARTING_FRAME_OFFSET 0
+
+/* Offset from the argument pointer register to the first argument's
+   address.  */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* A C expression whose value is RTL representing the value of the return
+   address for the frame COUNT steps up from the current frame, after the
+   prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
+   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
+   defined.
+
+   The value of the expression must always be the correct address when COUNT is
+   zero, but may be `NULL_RTX' if there is not way to determine the return
+   address of other frames.  */
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+  ubicom32_return_addr_rtx (COUNT, FRAME)
+
+/* Register That Address the Stack Frame.  */
+
+/* We don't actually require a frame pointer in most functions with the
+   Ubicom32 architecture so we allow it to be eliminated.  */
+#define FRAME_POINTER_REQUIRED 0
+
+/* Macro that defines a table of register pairs used to eliminate unecessary
+   registers that point into the stack frame.
+
+   For Ubicom32 we don't generally need an arg pointer of a frame pointer
+   so we allow the arg pointer to be replaced by either the frame pointer or
+   the stack pointer.  We also allow the frame pointer to be replaced by
+   the stack pointer.  */
+#define ELIMINABLE_REGS					\
+{							\
+  {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},		\
+  {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},		\
+  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}		\
+}
+
+/* Let the compiler know that we want to use the ELIMINABLE_REGS macro
+   above.  */
+#define CAN_ELIMINATE(FROM, TO) 1
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
+   initial difference between the specified pair of registers.  This macro must
+   be defined if `ELIMINABLE_REGS' is defined.  */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+  (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO)
+
+/* If defined, the maximum amount of space required for outgoing arguments will
+   be computed and placed into the variable
+   `current_function_outgoing_args_size'.  No space will be pushed onto the
+   stack for each call; instead, the function prologue should increase the
+   stack frame size by this amount.
+
+   Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
+   proper.  */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/* Define this macro if functions should assume that stack space has been
+   allocated for arguments even when their values are passed in registers.
+
+   The value of this macro is the size, in bytes, of the area reserved for
+   arguments passed in registers for the function represented by FNDECL.
+
+   This space can be allocated by the caller, or be a part of the
+   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
+   which.  */
+#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL)
+
+/* A C expression that should indicate the number of bytes of its own arguments
+   that a function pops on returning, or 0 if the function pops no arguments
+   and the caller must therefore pop them all after the function returns.
+
+   FUNDECL is a C variable whose value is a tree node that describes the
+   function in question.  Normally it is a node of type `FUNCTION_DECL' that
+   describes the declaration of the function.  From this it is possible to
+   obtain the DECL_MACHINE_ATTRIBUTES of the function.
+
+   FUNTYPE is a C variable whose value is a tree node that describes the
+   function in question.  Normally it is a node of type `FUNCTION_TYPE' that
+   describes the data type of the function.  From this it is possible to obtain
+   the data types of the value and arguments (if known).
+
+   When a call to a library function is being considered, FUNTYPE will contain
+   an identifier node for the library function.  Thus, if you need to
+   distinguish among various library functions, you can do so by their names.
+   Note that "library function" in this context means a function used to
+   perform arithmetic, whose name is known specially in the compiler and was
+   not mentioned in the C code being compiled.
+
+   STACK-SIZE is the number of bytes of arguments passed on the stack.  If a
+   variable number of bytes is passed, it is zero, and argument popping will
+   always be the responsibility of the calling function.
+
+   On the Vax, all functions always pop their arguments, so the definition of
+   this macro is STACK-SIZE.  On the 68000, using the standard calling
+   convention, no functions pop their arguments, so the value of the macro is
+   always 0 in this case.  But an alternative calling convention is available
+   in which functions that take a fixed number of arguments pop them but other
+   functions (such as `printf') pop nothing (the caller pops all).  When this
+   convention is in use, FUNTYPE is examined to determine whether a function
+   takes a fixed number of arguments.  */
+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
+
+/* A C expression that controls whether a function argument is passed in a
+   register, and which register.
+
+   The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
+   defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
+   arguments so far passed in registers; MODE, the machine mode of the argument;
+   TYPE, the data type of the argument as a tree node or 0 if that is not known
+   (which happens for C support library functions); and NAMED, which is 1 for an
+   ordinary argument and 0 for nameless arguments that correspond to `...' in the
+   called function's prototype.
+
+   The value of the expression should either be a `reg' RTX for the hard
+   register in which to pass the argument, or zero to pass the argument on the
+   stack.
+
+   For machines like the Vax and 68000, where normally all arguments are
+   pushed, zero suffices as a definition.
+
+   The usual way to make the ANSI library `stdarg.h' work on a machine where
+   some arguments are usually passed in registers, is to cause nameless
+   arguments to be passed on the stack instead.  This is done by making
+   `FUNCTION_ARG' return 0 whenever NAMED is 0.
+
+   You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
+   this macro to determine if this argument is of a type that must be passed in
+   the stack.  If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
+   returns non-zero for such an argument, the compiler will abort.  If
+   `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
+   stack and then loaded into a register.  */
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+  function_arg (&CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
+  function_incoming_arg (&CUM, MODE, TYPE, NAMED)
+
+/* A C expression for the number of words, at the beginning of an argument,
+   must be put in registers.  The value must be zero for arguments that are
+   passed entirely in registers or that are entirely pushed on the stack.
+
+   On some machines, certain arguments must be passed partially in registers
+   and partially in memory.  On these machines, typically the first N words of
+   arguments are passed in registers, and the rest on the stack.  If a
+   multi-word argument (a `double' or a structure) crosses that boundary, its
+   first few words must be passed in registers and the rest must be pushed.
+   This macro tells the compiler when this occurs, and how many of the words
+   should go in registers.
+
+   `FUNCTION_ARG' for these arguments should return the first register to be
+   used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
+   the called function.  */
+
+/* A C expression that indicates when an argument must be passed by reference.
+   If nonzero for an argument, a copy of that argument is made in memory and a
+   pointer to the argument is passed instead of the argument itself.  The
+   pointer is passed in whatever way is appropriate for passing a pointer to
+   that type.
+
+   On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
+   definition of this macro might be
+	#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)  \
+	  MUST_PASS_IN_STACK (MODE, TYPE)  */
+
+/* If defined, a C expression that indicates when it is the called function's
+   responsibility to make a copy of arguments passed by invisible reference.
+   Normally, the caller makes a copy and passes the address of the copy to the
+   routine being called.  When FUNCTION_ARG_CALLEE_COPIES is defined and is
+   nonzero, the caller does not make a copy.  Instead, it passes a pointer to
+   the "live" value.  The called function must not modify this value.  If it
+   can be determined that the value won't be modified, it need not make a copy;
+   otherwise a copy must be made.  */
+
+/* A C type for declaring a variable that is used as the first argument of
+   `FUNCTION_ARG' and other related values.  For some target machines, the type
+   `int' suffices and can hold the number of bytes of argument so far.
+
+   There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
+   that have been passed on the stack.  The compiler has other variables to
+   keep track of that.  For target machines on which all arguments are passed
+   on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
+   however, the data structure must exist and should not be empty, so use
+   `int'.  */
+struct cum_arg
+{
+  int nbytes;
+  int reg;
+  int stdarg;
+};
+#define CUMULATIVE_ARGS struct cum_arg
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+   state at the beginning of the argument list.  The variable has type
+   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
+   of the function which will receive the args, or 0 if the args are to a
+   compiler support library function.  The value of INDIRECT is nonzero when
+   processing an indirect call, for example a call through a function pointer.
+   The value of INDIRECT is zero for a call to an explicitly named function, a
+   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+   arguments for the function being compiled.
+
+   When processing a call to a compiler support library function, LIBNAME
+   identifies which one.  It is a `symbol_ref' rtx which contains the name of
+   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
+   being processed.  Thus, each time this macro is called, either LIBNAME or
+   FNTYPE is nonzero, but never both of them at once.  */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS)	\
+ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT);
+
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
+   advance past an argument in the argument list.  The values MODE, TYPE and
+   NAMED describe that argument.  Once this is done, the variable CUM is
+   suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
+
+   This macro need not do anything if the argument in question was passed on
+   the stack.  The compiler knows how to track the amount of stack space used
+   for arguments without any special help.  */
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
+ ((CUM).nbytes += ((MODE) != BLKmode			\
+		   ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
+		   : (int_size_in_bytes (TYPE) + 3) & ~3))
+
+/* For the Ubicom32 we define the upper function argument register here.  */
+#define UBICOM32_FUNCTION_ARG_REGS 10
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+   which function arguments are sometimes passed.  This does *not* include
+   implicit arguments such as the static chain and the structure-value address.
+   On many machines, no registers can be used for this purpose since all
+   function arguments are pushed on the stack.  */
+#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS)
+
+
+/* How Scalar Function Values are Returned.  */
+
+/* The number of the hard register that is used to return a scalar value from a
+   function call.  */
+#define RETURN_VALUE_REGNUM 0
+
+/* A C expression to create an RTX representing the place where a function
+   returns a value of data type VALTYPE.  VALTYPE is a tree node representing a
+   data type.  Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
+   represent that type.  On many machines, only the mode is relevant.
+   (Actually, on most machines, scalar values are returned in the same place
+   regardless of mode).
+
+   If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
+   rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
+
+   If the precise function being called is known, FUNC is a tree node
+   (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This makes it
+   possible to use a different value-returning convention for specific
+   functions when all their calls are known.
+
+   `FUNCTION_VALUE' is not used for return vales with aggregate data types,
+   because these are returned in another way.  See `STRUCT_VALUE_REGNUM' and
+   related macros, below.  */
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+  gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM)
+
+/* A C expression to create an RTX representing the place where a library
+   function returns a value of mode MODE.
+
+   Note that "library function" in this context means a compiler support
+   routine, used to perform arithmetic, whose name is known specially by the
+   compiler and was not mentioned in the C code being compiled.
+
+   The definition of `LIBRARY_VALUE' need not be concerned aggregate data
+   types, because none of the library functions returns such types.  */
+#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+   which the values of called function may come back.
+
+   A register whose use for returning values is limited to serving as the
+   second of a pair (for a value of type `double', say) need not be recognized
+   by this macro.  So for most machines, this definition suffices:
+
+	#define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
+
+   If the machine has register windows, so that the caller and the called
+   function use different registers for the return value, this macro should
+   recognize only the caller's register numbers.  */
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM)
+
+
+/* How Large Values are Returned.  */
+
+/* A C expression which can inhibit the returning of certain function values in
+   registers, based on the type of value.  A nonzero value says to return the
+   function value in memory, just as large structures are always returned.
+   Here TYPE will be a C expression of type `tree', representing the data type
+   of the value.
+
+   Note that values of mode `BLKmode' must be explicitly handled by this macro.
+   Also, the option `-fpcc-struct-return' takes effect regardless of this
+   macro.  On most systems, it is possible to leave the macro undefined; this
+   causes a default definition to be used, whose value is the constant 1 for
+   `BLKmode' values, and 0 otherwise.
+
+   Do not use this macro to indicate that structures and unions should always
+   be returned in memory.  You should instead use `DEFAULT_PCC_STRUCT_RETURN'
+   to indicate this.  */
+#define RETURN_IN_MEMORY(TYPE)  \
+  (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
+
+/* Define this macro to be 1 if all structure and union return values must be
+   in memory.  Since this results in slower code, this should be defined only
+   if needed for compatibility with other compilers or with an ABI.  If you
+   define this macro to be 0, then the conventions used for structure and union
+   return values are decided by the `RETURN_IN_MEMORY' macro.
+
+   If not defined, this defaults to the value 1.  */
+#define DEFAULT_PCC_STRUCT_RETURN 0
+
+/*   If the structure value address is not passed in a register, define
+     `STRUCT_VALUE' as an expression returning an RTX for the place
+     where the address is passed.  If it returns 0, the address is
+     passed as an "invisible" first argument.  */
+#define STRUCT_VALUE 0
+
+/* Define this macro as a C expression that is nonzero if the return
+   instruction or the function epilogue ignores the value of the stack pointer;
+   in other words, if it is safe to delete an instruction to adjust the stack
+   pointer before a return from the function.
+
+   Note that this macro's value is relevant only for functions for which frame
+   pointers are maintained.  It is never safe to delete a final stack
+   adjustment in a function that has no frame pointer, and the compiler knows
+   this regardless of `EXIT_IGNORE_STACK'.  */
+#define EXIT_IGNORE_STACK 1
+
+/* A C statement or compound statement to output to FILE some assembler code to
+   call the profiling subroutine `mcount'.  Before calling, the assembler code
+   must load the address of a counter variable into a register where `mcount'
+   expects to find the address.  The name of this variable is `LP' followed by
+   the number LABELNO, so you would generate the name using `LP%d' in a
+   `fprintf'.
+
+   The details of how the address should be passed to `mcount' are determined
+   by your operating system environment, not by GNU CC.  To figure them out,
+   compile a small program for profiling using the system's installed C
+   compiler and look at the assembler code that results.
+
+   This declaration must be present, but it can be an abort if profiling is
+   not implemented.  */
+
+#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno)
+
+/* A C statement to output, on the stream FILE, assembler code for a block of
+   data that contains the constant parts of a trampoline.  This code should not
+   include a label--the label is taken care of automatically.  */
+#if 0
+#define TRAMPOLINE_TEMPLATE(FILE)			\
+  do {							\
+    fprintf (FILE, "\tadd -4,sp\n");			\
+    fprintf (FILE, "\t.long 0x0004fffa\n");		\
+    fprintf (FILE, "\tmov (0,sp),a0\n");		\
+    fprintf (FILE, "\tadd 4,sp\n");			\
+    fprintf (FILE, "\tmov (13,a0),a1\n");		\
+    fprintf (FILE, "\tmov (17,a0),a0\n");		\
+    fprintf (FILE, "\tjmp (a0)\n");			\
+    fprintf (FILE, "\t.long 0\n");			\
+    fprintf (FILE, "\t.long 0\n");			\
+  } while (0)
+#endif
+
+/* A C expression for the size in bytes of the trampoline, as an integer.  */
+#define TRAMPOLINE_SIZE 0x1b
+
+/* Alignment required for trampolines, in bits.
+
+   If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
+   aligning trampolines.  */
+#define TRAMPOLINE_ALIGNMENT 32
+
+/* A C statement to initialize the variable parts of a trampoline.  ADDR is an
+   RTX for the address of the trampoline; FNADDR is an RTX for the address of
+   the nested function; STATIC_CHAIN is an RTX for the static chain value that
+   should be passed to the function when it is called.  */
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
+{									\
+  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)),	\
+		 (CXT));						\
+  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)),	\
+		 (FNADDR));						\
+}
+
+/* Ubicom32 supports pre and post increment/decrement addressing.  */
+#define HAVE_POST_INCREMENT 1
+#define HAVE_PRE_INCREMENT 1
+#define HAVE_POST_DECREMENT 1
+#define HAVE_PRE_DECREMENT 1
+
+/* Ubicom32 supports pre and post address side-effects with constants
+   other than the size of the memory operand.  */
+#define HAVE_PRE_MODIFY_DISP 1
+#define HAVE_POST_MODIFY_DISP 1
+
+/* A C expression that is 1 if the RTX X is a constant which is a valid
+   address.  On most machines, this can be defined as `CONSTANT_P (X)',
+   but a few machines are more restrictive in which constant addresses
+   are supported.
+
+   `CONSTANT_P' accepts integer-values expressions whose values are not
+   explicitly known, such as `symbol_ref', `label_ref', and `high'
+   expressions and `const' arithmetic expressions, in addition to
+   `const_int' and `const_double' expressions.  */
+#define CONSTANT_ADDRESS_P(X)						\
+  (GET_CODE (X) == LABEL_REF						\
+   || (GET_CODE (X) == CONST						\
+       && GET_CODE (XEXP (X, 0)) == PLUS				\
+       && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF))
+
+/* Ubicom32 supports a maximum of 2 registers in a valid memory address.
+   One is always an address register while a second, optional, one may be a
+   data register.  */
+#define MAX_REGS_PER_ADDRESS 2
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+   RTX) is a legitimate memory address on the target machine for a memory
+   operand of mode MODE.
+
+   It usually pays to define several simpler macros to serve as subroutines for
+   this one.  Otherwise it may be too complicated to understand.
+
+   This macro must exist in two variants: a strict variant and a non-strict
+   one.  The strict variant is used in the reload pass.  It must be defined so
+   that any pseudo-register that has not been allocated a hard register is
+   considered a memory reference.  In contexts where some kind of register is
+   required, a pseudo-register with no hard register must be rejected.
+
+   The non-strict variant is used in other passes.  It must be defined to
+   accept all pseudo-registers in every context where some kind of register is
+   required.
+
+   Compiler source files that want to use the strict variant of this macro
+   define the macro `REG_OK_STRICT'.  You should use an `#ifdef REG_OK_STRICT'
+   conditional to define the strict variant in that case and the non-strict
+   variant otherwise.
+
+   Subroutines to check for acceptable registers for various purposes (one for
+   base registers, one for index registers, and so on) are typically among the
+   subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'.  Then only these
+   subroutine macros need have two variants; the higher levels of macros may be
+   the same whether strict or not.
+
+   Normally, constant addresses which are the sum of a `symbol_ref' and an
+   integer are stored inside a `const' RTX to mark them as constant.
+   Therefore, there is no need to recognize such sums specifically as
+   legitimate addresses.  Normally you would simply recognize any `const' as
+   legitimate.
+
+   Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
+   are not marked with `const'.  It assumes that a naked `plus' indicates
+   indexing.  If so, then you *must* reject such naked constant sums as
+   illegitimate addresses, so that none of them will be given to
+   `PRINT_OPERAND_ADDRESS'.
+
+   On some machines, whether a symbolic address is legitimate depends on the
+   section that the address refers to.  On these machines, define the macro
+   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+   then check for it here.  When you see a `const', you will have to look
+   inside it to find the `symbol_ref' in order to determine the section.
+
+   The best way to modify the name string is by adding text to the beginning,
+   with suitable punctuation to prevent any ambiguity.  Allocate the new name
+   in `saveable_obstack'.  You will have to modify `ASM_OUTPUT_LABELREF' to
+   remove and decode the added text and output the name accordingly, and define
+   `STRIP_NAME_ENCODING' to access the original name string.
+
+   You can check the information stored here into the `symbol_ref' in the
+   definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
+   `PRINT_OPERAND_ADDRESS'.  */
+/* On the ubicom32, the value in the address register must be
+   in the same memory space/segment as the effective address.
+
+   This is problematical for reload since it does not understand
+   that base+index != index+base in a memory reference.  */
+
+#ifdef REG_OK_STRICT
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
+  if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR;
+#else
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
+  if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR;
+#endif
+
+/* Try machine-dependent ways of modifying an illegitimate address
+   to be legitimate.  If we find one, return the new, valid address.
+   This macro is used in only one place: `memory_address' in explow.c.
+
+   OLDX is the address as it was before break_out_memory_refs was called.
+   In some cases it is useful to look at this to decide what needs to be done.
+
+   MODE and WIN are passed so that this macro can use
+   GO_IF_LEGITIMATE_ADDRESS.
+
+   It is always safe for this macro to do nothing.  It exists to recognize
+   opportunities to optimize the output.
+
+   On RS/6000, first check for the sum of a register with a constant
+   integer that is out of range.  If so, generate code to add the
+   constant with the low-order 16 bits masked to the register and force
+   this result into another register (this can be done with `cau').
+   Then generate an address of REG+(CONST&0xffff), allowing for the
+   possibility of bit 16 being a one.
+
+   Then check for the sum of a register and something not constant, try to
+   load the other things into a register and return the sum.  */
+
+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
+{									\
+   rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE));	\
+   if (result != NULL_RTX)						\
+     {									\
+       (X) = result;							\
+       goto WIN;							\
+     }									\
+}
+
+/* Try a machine-dependent way of reloading an illegitimate address
+   operand.  If we find one, push the reload and jump to WIN.  This
+   macro is used in only one place: `find_reloads_address' in reload.c.  */
+#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)	\
+{									\
+  rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE));	\
+  if (new_rtx)								\
+    {									\
+      (AD) = new_rtx;							\
+      goto WIN;								\
+    }									\
+}
+
+/* A C statement or compound statement with a conditional `goto LABEL;'
+   executed if memory address X (an RTX) can have different meanings depending
+   on the machine mode of the memory reference it is used for or if the address
+   is valid for some modes but not others.
+
+   Autoincrement and autodecrement addresses typically have mode-dependent
+   effects because the amount of the increment or decrement is the size of the
+   operand being addressed.  Some machines have other mode-dependent addresses.
+   Many RISC machines have no mode-dependent addresses.
+
+   You may assume that ADDR is a valid address for the machine.  */
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
+  if (ubicom32_mode_dependent_address_p (ADDR))		\
+    goto LABEL;
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+   immediate operand on the target machine.  You can assume that X
+   satisfies `CONSTANT_P', so you need not check this.  In fact, `1' is
+   a suitable definition for this macro on machines where anything
+   `CONSTANT_P' is valid.  */
+#define LEGITIMATE_CONSTANT_P(X) \
+  ubicom32_legitimate_constant_p ((X))
+
+/* Moves between registers are pretty-much single instructions for
+   Ubicom32.  We make this the default "2" that gcc likes.  */
+#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
+
+/* This is a little bit of magic from the S390 port that wins 2% on code
+   size when building the Linux kernel!  Unfortunately while it wins on
+   that size the user-space apps built using FD-PIC don't improve and the
+   performance is lower because we put more pressure on the caches.  We may
+   want this back on some future CPU that has higher cache performance.  */
+/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */
+
+/* Moves between registers and memory are more expensive than between
+   registers because we have caches and write buffers that slow things
+   down!  */
+#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2
+
+/* A fall-through branch is very low cost but anything that changes the PC
+   incurs a major pipeline hazard.  We don't make the full extent of this
+   hazard visible because we hope that multiple threads will absorb much
+   of the cost and so we don't want a jump being replaced with, say, 7
+   instructions.  */
+#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
+  ((PREDICTABLE_P) ? 1 : 3)
+
+/* Define this macro as a C expression which is nonzero if accessing less than
+   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
+   word of memory, i.e., if such access require more than one instruction or if
+   there is no difference in cost between byte and (aligned) word loads.
+
+   When this macro is not defined, the compiler will access a field by finding
+   the smallest containing object; when it is defined, a fullword load will be
+   used if alignment permits.  Unless bytes accesses are faster than word
+   accesses, using word accesses is preferable since it may eliminate
+   subsequent memory access if subsequent accesses occur to other fields in the
+   same word of the structure, but to different bytes.  */
+#define SLOW_BYTE_ACCESS 0
+
+/* The number of scalar move insns which should be generated instead of a
+   string move insn or a library call.  Increasing the value will always make
+   code faster, but eventually incurs high cost in increased code size.
+
+   If you don't define this, a reasonable default is used.  */
+/* According to expr.c, a value of around 6 should minimize code size.  */
+#define MOVE_RATIO(SPEED) 6
+
+/* We're much better off calling a constant function address with the
+   Ubicom32 architecture because we have an opcode for doing so.  Don't
+   let the compiler extract function addresses as common subexpressions
+   into an address register.  */
+#define NO_FUNCTION_CSE
+
+#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y)
+
+#define REVERSIBLE_CC_MODE(MODE) 1
+
+/* Canonicalize a comparison from one we don't have to one we do have.  */
+#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
+  ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
+
+/* Dividing the output into sections.  */
+
+/* A C expression whose value is a string containing the assembler operation
+   that should precede instructions and read-only data.  Normally `".text"' is
+   right.  */
+#define TEXT_SECTION_ASM_OP "\t.section .text"
+
+/* A C expression whose value is a string containing the assembler operation to
+   identify the following data as writable initialized data.  Normally
+   `".data"' is right.  */
+#define DATA_SECTION_ASM_OP "\t.section .data"
+
+
+/* If defined, a C expression whose value is a string containing the
+   assembler operation to identify the following data as
+   uninitialized global data.  If not defined, and neither
+   `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
+   uninitialized global data will be output in the data section if
+   `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
+   used.  */
+#define BSS_SECTION_ASM_OP "\t.section .bss"
+
+/* This is how we tell the assembler that a symbol is weak.  */
+
+#define ASM_WEAKEN_LABEL(FILE, NAME)	\
+  do					\
+    {					\
+      fputs ("\t.weak\t", (FILE));	\
+      assemble_name ((FILE), (NAME));	\
+      fputc ('\n', (FILE));		\
+    }					\
+  while (0)
+
+/* The Overall Framework of an Assembler File.  */
+
+#undef SET_ASM_OP
+#define SET_ASM_OP "\t.set\t"
+
+/* A C string constant describing how to begin a comment in the target
+   assembler language.  The compiler assumes that the comment will end at the
+   end of the line.  */
+#define ASM_COMMENT_START ";"
+
+/* A C string constant for text to be output before each `asm' statement or
+   group of consecutive ones.  Normally this is `"#APP"', which is a comment
+   that has no effect on most assemblers but tells the GNU assembler that it
+   must check the lines that follow for all valid assembler constructs.  */
+#define ASM_APP_ON "#APP\n"
+
+/* A C string constant for text to be output after each `asm' statement or
+   group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
+   GNU assembler to resume making the time-saving assumptions that are valid
+   for ordinary compiler output.  */
+#define ASM_APP_OFF "#NO_APP\n"
+
+/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
+   explicit argument.  If you define this macro, it is used in place of
+   `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
+   alignment of the variable.  The alignment is specified as the number of
+   bits.
+
+   Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
+   defining this macro.  */
+#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
+  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
+
+/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
+   newly allocated string made from the string NAME and the number NUMBER, with
+   some suitable punctuation added.  Use `alloca' to get space for the string.
+
+   The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
+   an assembler label for an internal static variable whose name is NAME.
+   Therefore, the string must be such as to result in valid assembler code.
+   The argument NUMBER is different each time this macro is executed; it
+   prevents conflicts between similarly-named internal static variables in
+   different scopes.
+
+   Ideally this string should not be a valid C identifier, to prevent any
+   conflict with the user's own symbols.  Most assemblers allow periods or
+   percent signs in assembler symbols; putting at least one of these between
+   the name and the number will suffice.  */
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
+  ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
+   sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
+
+#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM)	\
+  sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM))
+/* A C statement to store into the string STRING a label whose name
+   is made from the string PREFIX and the number NUM.
+
+   This string, when output subsequently by `assemble_name', should
+   produce the output that `(*targetm.asm_out.internal_label)' would produce
+   with the same PREFIX and NUM.
+
+   If the string begins with `*', then `assemble_name' will output
+   the rest of the string unchanged.  It is often convenient for
+   `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way.  If the
+   string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
+   output the string, and may change it.  (Of course,
+   `ASM_OUTPUT_LABELREF' is also part of your machine description, so
+   you should know what it does on your machine.)  */
+
+/* This says how to output assembler code to declare an
+   uninitialized external linkage data object.  Under SVR4,
+   the linker seems to want the alignment of data objects
+   to depend on their types.  We do exactly that here.  */
+
+#define COMMON_ASM_OP	"\t.comm\t"
+
+#undef  ASM_OUTPUT_COMMON
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)		\
+  do								\
+    {								\
+      fprintf ((FILE), "%s", COMMON_ASM_OP);			\
+      assemble_name ((FILE), (NAME));				\
+      fprintf ((FILE), ", %u\n", (SIZE));			\
+    }								\
+  while (0)
+
+/* This says how to output assembler code to declare an
+   uninitialized internal linkage data object.  Under SVR4,
+   the linker seems to want the alignment of data objects
+   to depend on their types.  We do exactly that here.  */
+#define LOCAL_ASM_OP	"\t.lcomm\t"
+
+#undef  ASM_OUTPUT_LOCAL
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)		\
+  do								\
+    {								\
+      fprintf ((FILE), "%s", LOCAL_ASM_OP);			\
+      assemble_name ((FILE), (NAME));				\
+      fprintf ((FILE), ", %u\n", (SIZE));			\
+    }								\
+  while (0)
+
+/* Globalizing directive for a label.  */
+#define GLOBAL_ASM_OP ".global\t"
+
+/* Output the operand of an instruction.  */
+#define PRINT_OPERAND(FILE, X, CODE) \
+  ubicom32_print_operand(FILE, X, CODE)
+
+/* Output the address of an operand.  */
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+  ubicom32_print_operand_address (FILE, ADDR)
+
+/* A C expression to output to STREAM some assembler code which will push hard
+   register number REGNO onto the stack.  The code need not be optimal, since
+   this macro is used only when profiling.  */
+#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)
+
+/* A C expression to output to STREAM some assembler code which will pop hard
+   register number REGNO off of the stack.  The code need not be optimal, since
+   this macro is used only when profiling.  */
+#define ASM_OUTPUT_REG_POP(FILE, REGNO)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+   table are relative to the table's own address.
+
+   The definition should be a C statement to output to the stdio stream STREAM
+   an assembler pseudo-instruction to generate a difference between two labels.
+   VALUE and REL are the numbers of two internal labels.  The definitions of
+   these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
+   printed in the same way here.  For example,
+
+	fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+  fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+   table are absolute.
+
+   The definition should be a C statement to output to the stdio stream STREAM
+   an assembler pseudo-instruction to generate a reference to a label.  VALUE
+   is the number of an internal label whose definition is output using
+   `ASM_OUTPUT_INTERNAL_LABEL'.  For example,
+
+	fprintf (STREAM, "\t.word L%d\n", VALUE)  */
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
+  fprintf (STREAM, "\t.word .L%d\n", VALUE)
+
+/* Switch into a generic section.  */
+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
+
+/* Assembler Commands for Alignment.  */
+
+#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N)
+/* A C statement to output to the stdio stream STREAM an assembler
+   instruction to advance the location counter by NBYTES bytes.
+   Those bytes should be zero when loaded.  NBYTES will be a C
+   expression of type `int'.  */
+
+/* A C statement to output to the stdio stream STREAM an assembler command to
+   advance the location counter to a multiple of 2 to the POWER bytes.  POWER
+   will be a C expression of type `int'.  */
+#define ASM_OUTPUT_ALIGN(FILE, LOG)	\
+  if ((LOG) != 0)			\
+    fprintf (FILE, "\t.align %d\n", (LOG))
+
+/* A C expression that returns the DBX register number for the compiler
+   register number REGNO.  In simple cases, the value of this expression may be
+   REGNO itself.  But sometimes there are some registers that the compiler
+   knows about and DBX does not, or vice versa.  In such cases, some register
+   may need to have one number in the compiler and another for DBX.
+
+   If two registers have consecutive numbers inside GNU CC, and they can be
+   used as a pair to hold a multiword value, then they *must* have consecutive
+   numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
+   will be unable to access such a pair, because they expect register pairs to
+   be consecutive in their own numbering scheme.
+
+   If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
+   preserve register pairs, then what you must do instead is redefine the
+   actual register numbering scheme.
+
+   This declaration is required.  */
+#define DBX_REGISTER_NUMBER(REGNO) REGNO
+
+/* A C expression that returns the integer offset value for an automatic
+   variable having address X (an RTL expression).  The default computation
+   assumes that X is based on the frame-pointer and gives the offset from the
+   frame-pointer.  This is required for targets that produce debugging output
+   for DBX or COFF-style debugging output for SDB and allow the frame-pointer
+   to be eliminated when the `-g' options is used.  */
+#define DEBUGGER_AUTO_OFFSET(X)						\
+  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0)			\
+    + (frame_pointer_needed						\
+       ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM,		\
+					  STACK_POINTER_REGNUM)))
+
+/* A C expression that returns the integer offset value for an argument having
+   address X (an RTL expression).  The nominal offset is OFFSET.  */
+#define DEBUGGER_ARG_OFFSET(OFFSET, X)					\
+  ((GET_CODE (X) == PLUS ? OFFSET : 0)					\
+    + (frame_pointer_needed						\
+       ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM,		\
+					  STACK_POINTER_REGNUM)))
+
+/* A C expression that returns the type of debugging output GNU CC produces
+   when the user specifies `-g' or `-ggdb'.  Define this if you have arranged
+   for GNU CC to support more than one format of debugging output.  Currently,
+   the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
+   `DWARF2_DEBUG', and `XCOFF_DEBUG'.
+
+   The value of this macro only affects the default debugging output; the user
+   can always get a specific type of output by using `-gstabs', `-gcoff',
+   `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
+
+   Defined in svr4.h.
+*/
+#undef PREFERRED_DEBUGGING_TYPE
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
+
+/* Define this macro if GNU CC should produce dwarf version 2 format debugging
+   output in response to the `-g' option.
+
+   To support optional call frame debugging information, you must also define
+   `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
+   prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
+   and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you
+   don't.
+
+   Defined in svr4.h.  */
+
+#define DWARF2_DEBUGGING_INFO 1
+/*#define DWARF2_UNWIND_INFO 1*/
+#define DWARF2_UNWIND_INFO 0
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO)
+#define INCOMING_FRAME_SP_OFFSET 0
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO)
+#define EH_RETURN_FIRST 9
+#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM)
+
+/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
+   location used to store the amount to ajdust the stack.  This is
+   usually a registers that is available from end of the function's body
+   to the end of the epilogue. Thus, this cannot be a register used as a
+   temporary by the epilogue.
+
+   This must be an integer register.  */
+#define EH_RETURN_STACKADJ_REGNO	11
+#define EH_RETURN_STACKADJ_RTX		\
+	gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
+
+/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
+   location used to store the address the processor should jump to
+   catch exception.  This is usually a registers that is available from
+   end of the function's body to the end of the epilogue. Thus, this
+   cannot be a register used as a temporary by the epilogue.
+
+   This must be an address register.  */
+#define EH_RETURN_HANDLER_REGNO		18
+#define EH_RETURN_HANDLER_RTX		\
+	gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
+
+/* #define DWARF2_DEBUGGING_INFO */
+
+/* Define this macro if GNU CC should produce dwarf version 2-style
+   line numbers.  This usually requires extending the assembler to
+   support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the
+   assembler configuration header files.  */
+/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */
+
+
+/* An alias for a machine mode name.  This is the machine mode that elements
+   of a jump-table have.  */
+#define CASE_VECTOR_MODE Pmode
+
+/* Smallest number of different values for which it is best to use a
+   jump-table instead of a tree of conditional branches.  For most Ubicom32
+   targets this is quite small, but for the v1 architecture implementations
+   we had very little data memory and so heavily prefer the tree approach
+   rather than the jump tables.  */
+#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold
+
+/* Register operations within the Ubicom32 architecture always operate on
+   the whole register word and not just the sub-bits required for the opcode
+   mode size.  */
+#define WORD_REGISTER_OPERATIONS
+
+/* The maximum number of bytes that a single instruction can move quickly from
+   memory to memory.  */
+#define MOVE_MAX 4
+
+/* A C expression that is nonzero if on this machine the number of bits
+   actually used for the count of a shift operation is equal to the number of
+   bits needed to represent the size of the object being shifted.  When this
+   macro is non-zero, the compiler will assume that it is safe to omit a
+   sign-extend, zero-extend, and certain bitwise `and' instructions that
+   truncates the count of a shift operation.  On machines that have
+   instructions that act on bitfields at variable positions, which may include
+   `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
+   deletion of truncations of the values that serve as arguments to bitfield
+   instructions.
+
+   If both types of instructions truncate the count (for shifts) and position
+   (for bitfield operations), or if no variable-position bitfield instructions
+   exist, you should define this macro.
+
+   However, on some machines, such as the 80386 and the 680x0, truncation only
+   applies to shift operations and not the (real or pretended) bitfield
+   operations.  Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
+   Instead, add patterns to the `md' file that include the implied truncation
+   of the shift instructions.
+
+   You need not define this macro if it would always have the value of zero.  */
+#define SHIFT_COUNT_TRUNCATED 1
+
+/* A C expression which is nonzero if on this machine it is safe to "convert"
+   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
+   than INPREC) by merely operating on it as if it had only OUTPREC bits.
+
+   On many machines, this expression can be 1.
+
+   When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
+   which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
+   case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
+   things.  */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* A C string constant that tells the GNU CC driver program options to pass
+   to the assembler.  It can also specify how to translate options you give
+   to GNU CC into options for GNU CC to pass to the assembler.  See the
+   file `sun3.h' for an example of this.
+
+   Defined in svr4.h.  */
+#undef ASM_SPEC
+#define ASM_SPEC \
+  "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}"
+
+#define LINK_SPEC "\
+%{h*} %{v:-V} \
+%{b} \
+%{mfdpic:-melf32ubicom32fdpic -z text} \
+%{static:-dn -Bstatic} \
+%{shared:-G -Bdynamic} \
+%{symbolic:-Bsymbolic} \
+%{G*} \
+%{YP,*} \
+%{Qy:} %{!Qn:-Qy}"
+
+#undef STARTFILE_SPEC
+#undef ENDFILE_SPEC
+
+/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
+
+#undef  LIB_SPEC
+#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
+
+#undef HAVE_GAS_SHF_MERGE
+#define HAVE_GAS_SHF_MERGE 0
+
+#define HANDLE_SYSV_PRAGMA 1
+#undef HANDLE_PRAGMA_PACK
+
+typedef void (*ubicom32_func_ptr) (void);
+
+/* Define builtins for selected special-purpose instructions. */
+enum ubicom32_builtins
+{
+  UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
+  UBICOM32_BUILTIN_UBICOM32_SWAPB_4
+};
+
+extern rtx ubicom32_compare_op0;
+extern rtx ubicom32_compare_op1;
+
+#define TYPE_ASM_OP	"\t.type\t"
+#define TYPE_OPERAND_FMT	"@%s"
+
+#ifndef ASM_DECLARE_RESULT
+#define ASM_DECLARE_RESULT(FILE, RESULT)
+#endif
+
+/* These macros generate the special .type and .size directives which
+   are used to set the corresponding fields of the linker symbol table
+   entries in an ELF object file under SVR4.  These macros also output
+   the starting labels for the relevant functions/objects.  */
+
+/* Write the extra assembler code needed to declare a function properly.
+   Some svr4 assemblers need to also have something extra said about the
+   function's return value.  We allow for that here.  */
+
+#ifndef ASM_DECLARE_FUNCTION_NAME
+#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)		\
+  do								\
+    {								\
+      ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function");	\
+      ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL));		\
+      ASM_OUTPUT_LABEL (FILE, NAME);				\
+    }								\
+  while (0)
+#endif
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.md
@@ -0,0 +1,3753 @@
+; GCC machine description for Ubicom32
+;
+; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
+; Foundation, Inc.
+; Contributed by Ubicom, Inc.
+;
+; This file is part of GCC.
+;
+; GCC is free software; you can redistribute it and/or modify
+; it under the terms of the GNU General Public License as published by
+; the Free Software Foundation; either version 3, or (at your option)
+; any later version.
+;
+; GCC is distributed in the hope that it will be useful,
+; but WITHOUT ANY WARRANTY; without even the implied warranty of
+; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+; GNU General Public License for more details.
+;
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3.  If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_constants
+  [(AUX_DATA_REGNO 15)
+   (LINK_REGNO     21)
+   (SP_REGNO       23)
+   (ACC0_HI_REGNO  24)
+   (ACC1_HI_REGNO  26)
+   (CC_REGNO       30)])
+
+(define_constants
+  [(UNSPEC_FDPIC_GOT 0)
+   (UNSPEC_FDPIC_GOT_FUNCDESC 1)])
+
+(define_constants
+  [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)])
+
+;; Types of instructions (for scheduling purposes).
+
+(define_attr "type" "mul,addr,other"
+  (const_string "other"))
+
+; Define instruction scheduling characteristics.  We can only issue
+; one instruction per clock so we don't need to define CPU units.
+;
+(define_automaton "ubicom32")
+
+(define_cpu_unit "i_pipeline" "ubicom32");
+
+; We have a 4 cycle hazard associated with address calculations which
+; seems rather tricky to avoid so we go with a defensive assumption
+; that almost anything can be used to generate addresses.
+;
+;(define_insn_reservation "ubicom32_other" 4
+;			 (eq_attr "type" "other")
+;			 "i_pipeline")
+
+; Some moves don't generate hazards.
+;
+;(define_insn_reservation "ubicom32_addr" 1
+;			 (eq_attr "type" "addr")
+;			 "i_pipeline")
+
+; We need 3 cycles between a multiply instruction and any use of the
+; matching accumulator register(s).
+;
+(define_insn_reservation "ubicom32_mul" 4
+			 (eq_attr "type" "mul")
+			 "i_pipeline")
+
+(define_attr "length" ""
+  (const_int 4))
+
+(include "predicates.md")
+(include "constraints.md")
+
+; 8-bit move with no change to the flags reg.
+;
+(define_insn "movqi"
+  [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
+	(match_operand:QI 1 "ubicom32_move_operand"  "g"))]
+  ""
+  "move.1\\t%0, %1")
+
+; Combiner-generated 8-bit move with the zero flag set accordingly.
+;
+(define_insn "movqi_ccszn"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:QI 0 "nonimmediate_operand" "rm")
+		 (const_int 0)))
+   (set (match_operand:QI 1 "nonimmediate_operand"	   "=rm")
+	(match_dup 0))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "ext.1\\t%1, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:QI 0 "nonimmediate_operand" "")
+	(match_operand:QI 1 "nonimmediate_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(match_operator 3 "ubicom32_compare_operator"
+	  [(match_dup 0)
+	   (const_int 0)]))]
+  "(GET_MODE (operands[2]) == CCSZNmode
+    || GET_MODE (operands[2]) == CCSZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:QI 0 "nonimmediate_operand" "")
+	(match_operand:QI 1 "nonimmediate_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(match_operator 3 "ubicom32_compare_operator"
+	  [(match_dup 1)
+	   (const_int 0)]))]
+  "(GET_MODE (operands[2]) == CCSZNmode
+    || GET_MODE (operands[2]) == CCSZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; 16-bit move with no change to the flags reg.
+;
+(define_insn "movhi"
+  [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
+	(match_operand:HI 1 "ubicom32_move_operand"  "g"))]
+  ""
+  "*
+   {
+     if (CONST_INT_P (operands[1]))
+       return \"movei\\t%0, %1\";
+
+     return \"move.2\\t%0, %1\";
+   }")
+
+; Combiner-generated 16-bit move with the zero flag set accordingly.
+;
+(define_insn "movhi_ccszn"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+		 (const_int 0)))
+   (set (match_operand:HI 1 "nonimmediate_operand"	   "=rm")
+	(match_dup 0))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "ext.2\\t%1, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:HI 0 "nonimmediate_operand" "")
+	(match_operand:HI 1 "nonimmediate_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(match_operator 3 "ubicom32_compare_operator"
+	  [(match_dup 0)
+	   (const_int 0)]))]
+  "(GET_MODE (operands[2]) == CCSZNmode
+    || GET_MODE (operands[2]) == CCSZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:HI 0 "nonimmediate_operand" "")
+	(match_operand:HI 1 "nonimmediate_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(match_operator 3 "ubicom32_compare_operator"
+	  [(match_dup 1)
+	   (const_int 0)]))]
+  "(GET_MODE (operands[2]) == CCSZNmode
+    || GET_MODE (operands[2]) == CCSZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; 32-bit move with no change to the flags reg.
+;
+(define_expand "movsi"
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "general_operand" ""))]
+  ""
+  "{
+     /* Convert any complexities in operand 1 into something that can just
+        fall into the default expander code.  */
+     ubicom32_expand_movsi (operands);
+   }")
+
+(define_insn "movsi_high"
+  [(set (match_operand:SI 0 "ubicom32_address_register_operand"		"=a")
+	(high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))]
+  ""
+  "moveai\\t%0, #%%hi(%E1)")
+
+(define_insn "movsi_lo_sum"
+  [(set (match_operand:SI 0 "nonimmediate_operand"			 "=rm")
+	(lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a")
+                   (match_operand:SI 2 "immediate_operand"		   "s")))]
+  ""
+  "lea.1\\t%0, %%lo(%E2)(%1)")
+
+(define_insn "movsi_internal"
+  [(set (match_operand:SI 0 "nonimmediate_operand"   "=rm")
+	(match_operand:SI 1 "ubicom32_move_operand" "rmnY"))]
+  ""
+  "*
+   {
+     if (CONST_INT_P (operands[1]))
+       {
+         ubicom32_emit_move_const_int (operands[0], operands[1]);
+         return \"\";
+       }
+
+     if (GET_CODE (operands[1]) == CONST_DOUBLE)
+       {
+         HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]);
+
+         ubicom32_emit_move_const_int (operands[0], GEN_INT (i));
+         return \"\";
+       }
+
+     if (ubicom32_address_register_operand (operands[0], VOIDmode)
+	 && register_operand (operands[1], VOIDmode))
+       {
+	 if (ubicom32_address_register_operand (operands[1], VOIDmode))
+	   return \"lea.1\\t%0, 0(%1)\";
+
+	 /* Use movea here to utilize the hazard bypass in the >= v4 ISA.  */
+         if (ubicom32_v4)
+	   return \"movea\\t%0, %1\";
+
+         return \"move.4\\t%0, %1\";
+       }
+
+     return \"move.4\\t%0, %1\";
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value 2^n by using a bset.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(exact_log2 (INTVAL (operands[1])) > 14
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 0)
+	   (ior:SI (const_int 0)
+		   (match_dup 1)))
+      (clobber (reg:CC CC_REGNO))])]
+  "")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value ~(2^n) by using a bclr.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(exact_log2 (~INTVAL (operands[1])) > 14
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 0)
+	   (and:SI (const_int -1)
+		   (match_dup 1)))
+      (clobber (reg:CC CC_REGNO))])]
+  "")
+
+; For 32-bit constants that have bits 0 through 24 and bit 31 set the same
+; we can use swapb.4!
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(ubicom32_v4
+    && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff
+    && (INTVAL (operands[1]) & 0xffffffff) != 0
+    && ((INTVAL (operands[1]) & 0x80ffffff) == 0
+	|| (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))"
+  [(set (match_dup 0)
+	(bswap:SI (match_dup 2)))]
+  "{
+     operands[2] = GEN_INT (INTVAL (operands[1]) >> 24);
+   }")
+
+; If this is a write of a constant to memory look to see if we can usefully
+; transform this into 2 smaller writes.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "memory_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "! satisfies_constraint_I (operands[1])
+   && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)"
+  [(set (match_dup 4) (match_dup 2))
+   (set (match_dup 5) (match_dup 3))]
+  "{
+     rtx low_hword_addr;
+
+     operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
+     operands[3] = gen_lowpart (HImode, operands[1]);
+
+     operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0));
+     MEM_COPY_ATTRIBUTES (operands[4], operands[0]);
+
+     low_hword_addr = plus_constant (XEXP (operands[0], 0), 2);
+     operands[5] = gen_rtx_MEM (HImode, low_hword_addr);
+     MEM_COPY_ATTRIBUTES (operands[5], operands[0]);
+   }")
+
+; If we're writing memory and we've not found a better way to do this then
+; try loading into a D register and then copying to memory.  This will
+; perform the fewest possible memory read/writes.
+;
+(define_peephole2
+  [(match_scratch:SI 2 "d")
+   (set (match_operand:SI 0 "memory_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "! satisfies_constraint_I (operands[1])"
+  [(set (match_dup 2) (match_dup 1))
+   (set (match_dup 0) (match_dup 2))]
+  "")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value (2^n - 1) by using an lsr.4.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(exact_log2 (INTVAL (operands[1]) + 1) > 14
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 0)
+	   (lshiftrt:SI (const_int -1)
+			(match_dup 2)))
+      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value (2^n - 1) by using an lsr.4.
+;
+(define_peephole2
+  [(match_scratch:SI 2 "d")
+   (set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(exact_log2 (INTVAL (operands[1]) + 1) > 14
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 2)
+	   (lshiftrt:SI (const_int -1)
+			(match_dup 3)))
+      (clobber (reg:CC CC_REGNO))])
+   (set (match_dup 0)
+	(match_dup 2))]
+  "{
+     operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; some other constants by using an lsl.4 to shift 7 bits left by some
+; constant.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 0)
+	   (ashift:SI (match_dup 2)
+		      (match_dup 3)))
+      (clobber (reg:CC CC_REGNO))])]
+  "{
+     int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
+     operands[2] = GEN_INT (INTVAL (operands[1]) >> shift);
+     operands[3] = GEN_INT (shift);
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; some other constants by using an lsl.4 to shift 7 bits left by some
+; constant.
+;
+(define_peephole2
+  [(match_scratch:SI 2 "d")
+   (set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(parallel
+     [(set (match_dup 2)
+	   (ashift:SI (match_dup 3)
+		      (match_dup 4)))
+      (clobber (reg:CC CC_REGNO))])
+   (set (match_dup 0)
+	(match_dup 2))]
+  "{
+     int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
+     operands[3] = GEN_INT (INTVAL (operands[1]) >> shift);
+     operands[4] = GEN_INT (shift);
+   }")
+
+; For some 16-bit unsigned constants that have bit 15 set we can use
+; swapb.2!
+;
+; Note that the movsi code emits the same sequence but by using a peephole2
+; we split the pattern early enough to allow instruction scheduling to
+; occur.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(ubicom32_v4
+    && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)"
+  [(set (match_dup 0)
+	(zero_extend:SI (bswap:HI (match_dup 2))))]
+  "{
+     HOST_WIDE_INT i = INTVAL (operands[1]) >> 8;
+     if (i >= 0x80)
+       i -= 0x100;
+     operands[2] = GEN_INT (i);
+   }")
+
+; In general for a 16-bit unsigned constant that has bit 15 set
+; then we need a movei/move.2 pair unless we can represent it
+; via just a move.2.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(INTVAL (operands[1]) & 0xffff8000) == 0x8000
+    && (INTVAL (operands[1]) & 0xffff) < 0xff80"
+  [(set (match_dup 2)
+	(match_dup 1))
+   (set (match_dup 0)
+	(zero_extend:SI (match_dup 2)))]
+  "{
+     operands[2] = gen_rtx_REG (HImode, REGNO (operands[0]));
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; 32-bit constants that have bits 16 through 31 set to arbitrary values
+; and have bits 0 through 15 set to something representable as a default
+; source-1 immediate - we use movei/shmrg.2
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(((INTVAL (operands[1]) >= 0x8000
+      && INTVAL (operands[1]) < 0xff80)
+     || INTVAL (operands[1]) >= 0x10000
+     || INTVAL (operands[1]) < -0x8000)
+    && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
+	|| (INTVAL (operands[1]) & 0xffff) < 0x80)
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(set (match_dup 0)
+	(match_dup 2))
+   (parallel
+     [(set (match_dup 0)
+	   (ior:SI
+	     (ashift:SI (match_dup 0)
+			(const_int 16))
+	     (zero_extend:SI
+	       (match_dup 3))))
+      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
+     operands[3] = gen_lowpart (HImode, operands[1]);
+   }")
+
+; Exactly the same as the peephole2 preceding except that this targets a
+; general register instead of D register.  Hopefully the later optimization
+; passes will notice that the value ended up in a D register first here
+; and eliminate away the other register!
+;
+(define_peephole2
+  [(match_scratch:SI 2 "d")
+   (set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(((INTVAL (operands[1]) >= 0x8000
+      && INTVAL (operands[1]) < 0xff80)
+     || INTVAL (operands[1]) >= 0x10000
+     || INTVAL (operands[1]) < -0x8000)
+    && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
+	|| (INTVAL (operands[1]) & 0xffff) < 0x80)
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(set (match_dup 2)
+	(match_dup 3))
+   (parallel
+     [(set (match_dup 2)
+	   (ior:SI
+	     (ashift:SI (match_dup 2)
+			(const_int 16))
+	     (zero_extend:SI
+	       (match_dup 4))))
+      (clobber (reg:CC CC_REGNO))])
+   (set (match_dup 0)
+	(match_dup 2))]
+  "{
+     operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
+     operands[4] = gen_lowpart (HImode, operands[1]);
+   }")
+
+; If we have a load of a large integer constant which does not have bit 31
+; set and we have a spare A reg then construct it with a moveai/lea.1 pair
+; instead.  This avoids constructing it in 3 instructions on the stack.
+;
+; Note that we have to be careful not to match anything that matches
+; something we can do in a single instruction!  There aren't many such
+; constants but there are some.
+;
+(define_peephole2
+  [(match_scratch:SI 2 "a")
+   (set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))]
+  "(! (INTVAL (operands[1]) & 0x80000000)
+    && ((INTVAL (operands[1]) >= 0x8000
+	 && INTVAL (operands[1]) < 0xff80)
+	|| INTVAL (operands[1]) >= 0x10000))"
+  [(set (match_dup 2)
+	(match_dup 3))
+   (set (match_dup 0)
+	(plus:SI (match_dup 2)
+		 (match_dup 4)))]
+  "{
+     HOST_WIDE_INT i = INTVAL (operands[1]);
+     operands[3] = GEN_INT (i & 0xffffff80);
+     operands[4] = GEN_INT (i & 0x7f);
+   }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible.
+;
+(define_peephole2
+  [(match_scratch:HI 2 "d")
+   (set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))
+   (match_dup 2)]
+  "(INTVAL (operands[1]) & 0x80000000
+    && INTVAL (operands[1]) < -0x8000
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(set (match_dup 0)
+	(match_dup 3))
+   (set (match_dup 2)
+	(match_dup 4))
+   (parallel
+     [(set (match_dup 0)
+	   (ior:SI
+	     (ashift:SI (match_dup 0)
+			(const_int 16))
+	     (zero_extend:SI
+	       (match_dup 2))))
+      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
+     operands[4] = gen_lowpart (HImode, operands[1]);
+   }")
+
+; Exactly the same as the peephole2 preceding except that this targets a
+; general register instead of D register.  Hopefully the later optimization
+; passes will notice that the value ended up in a D register first here
+; and eliminate away the other register!
+;
+(define_peephole2
+  [(match_scratch:SI 2 "d")
+   (match_scratch:HI 3 "d")
+   (set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))
+   (match_dup 3)]
+  "(INTVAL (operands[1]) & 0x80000000
+    && INTVAL (operands[1]) < -0x8000
+    && peep2_regno_dead_p (0, CC_REGNO))"
+  [(set (match_dup 2)
+	(match_dup 4))
+   (set (match_dup 3)
+	(match_dup 5))
+   (parallel
+     [(set (match_dup 2)
+	   (ior:SI
+	     (ashift:SI (match_dup 2)
+			(const_int 16))
+	     (zero_extend:SI
+	       (match_dup 3))))
+      (clobber (reg:CC CC_REGNO))])
+   (set (match_dup 0)
+	(match_dup 2))]
+  "{
+     operands[4] = gen_highpart_mode (HImode, SImode, operands[1]);
+     operands[5] = gen_lowpart (HImode, operands[1]);
+   }")
+
+(define_insn "movsi_fdpic_got_offset"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"   "=d")
+	(match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))]
+  ""
+  "movei\\t%0, %1")
+
+; The explicit MEM inside the UNSPEC prevents the compiler from moving
+; the load before a branch after a NULL test, or before a store that
+; initializes a function descriptor.
+
+(define_insn_and_split "load_fdpic_funcdesc"
+  [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
+	(unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))]
+			     UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 0)
+	(mem:SI (match_dup 1)))])
+
+; Combiner-generated 32-bit move with the zero flag set accordingly.
+;
+(define_insn "movsi_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "nonimmediate_operand" "rm, d")
+		 (const_int 0)))
+   (set (match_operand:SI 1 "nonimmediate_operand"	    "=d,rm")
+	(match_dup 0))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   lsl.4\\t%1, %0, #0
+   add.4\\t%1, #0, %0")
+
+; Combiner-generated 32-bit move with all flags set accordingly.
+;
+(define_insn "movsi_ccw"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		 (const_int 0)))
+   (set (match_operand:SI 1 "nonimmediate_operand"		    "=rm")
+	(match_dup 0))]
+  "ubicom32_match_cc_mode(insn, CCWmode)"
+  "add.4\\t%1, #0, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (parallel
+     [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+	   (match_operator 3 "ubicom32_compare_operator"
+	     [(match_dup 0)
+	      (const_int 0)]))
+      (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+  "(GET_MODE (operands[2]) == CCWZNmode
+    || GET_MODE (operands[2]) == CCWZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(match_operand:SI 1 "ubicom32_data_register_operand" ""))
+   (parallel
+     [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+	   (match_operator 3 "ubicom32_compare_operator"
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+  "(GET_MODE (operands[2]) == CCWZNmode
+    || GET_MODE (operands[2]) == CCWZmode)"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 0)
+	   (match_dup 1))])]
+   "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole.  It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (parallel
+     [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+	   (match_operator 3 "ubicom32_compare_operator"
+	     [(match_dup 0)
+	      (const_int 0)]))
+      (set (match_operand:SI 4 "ubicom32_data_register_operand" "")
+	   (match_dup 0))])]
+  "(peep2_reg_dead_p (2, operands[0])
+    && (GET_MODE (operands[2]) == CCWZNmode
+	|| GET_MODE (operands[2]) == CCWZmode))"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (set (match_dup 4)
+	   (match_dup 1))])]
+   "")
+
+; Register renaming may make a general reg into a D reg in which case
+; we may be able to simplify a compare.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (parallel
+     [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+	   (match_operator 3 "ubicom32_compare_operator"
+	     [(match_dup 0)
+	      (const_int 0)]))
+      (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+  "(peep2_reg_dead_p (2, operands[0])
+    && (GET_MODE (operands[2]) == CCWZNmode
+	|| GET_MODE (operands[2]) == CCWZmode))"
+  [(parallel
+     [(set (match_dup 2)
+	   (match_op_dup 3
+	     [(match_dup 1)
+	      (const_int 0)]))
+      (clobber (match_dup 4))])]
+   "")
+
+(define_insn_and_split "movdi"
+  [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm")
+	(match_operand:DI 1 "general_operand"	  "rmi,ri"))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 2) (match_dup 3))
+   (set (match_dup 4) (match_dup 5))]
+  "{
+     rtx dest_low;
+     rtx src_low;
+
+     dest_low = gen_lowpart (SImode, operands[0]);
+     src_low = gen_lowpart (SImode, operands[1]);
+
+     if (REG_P (operands[0])
+	 && REG_P (operands[1])
+	 && REGNO (operands[0]) < REGNO (operands[1]))
+       {
+	 operands[2] = gen_highpart (SImode, operands[0]);
+	 operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
+	 operands[4] = dest_low;
+	 operands[5] = src_low;
+       }
+     else if (reg_mentioned_p (dest_low, src_low))
+       {
+	 operands[2] = gen_highpart (SImode, operands[0]);
+	 operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
+	 operands[4] = dest_low;
+	 operands[5] = src_low;
+       }
+     else
+       {
+	 operands[2] = dest_low;
+	 operands[3] = src_low;
+	 operands[4] = gen_highpart (SImode, operands[0]);
+	 operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+       }
+   }"
+  [(set_attr "length" "8")])
+
+; Combiner-generated 64-bit move with all flags set accordingly.
+;
+(define_insn "movdi_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:DI 0 "nonimmediate_operand" "d, m,   r")
+		 (const_int 0)))
+   (set (match_operand:DI 1 "nonimmediate_operand"	 "=&rm,rm,!&rm")
+	(match_dup 0))
+   (clobber (match_scratch:SI 2				   "=X, d,   d"))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_highpart (SImode, operands[0]);
+     operands[6] = gen_highpart (SImode, operands[1]);
+
+     if (ubicom32_data_register_operand (operands[0], VOIDmode))
+       return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
+
+     return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "movdi_ccw"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:DI 0 "nonimmediate_operand" "d, m,   r")
+		 (const_int 0)))
+   (set (match_operand:DI 1 "nonimmediate_operand"	 "=&rm,rm,!&rm")
+	(match_dup 0))
+   (clobber (match_scratch:SI 2				   "=X, d,   d"))]
+  "ubicom32_match_cc_mode(insn, CCWmode)"
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_highpart (SImode, operands[0]);
+     operands[6] = gen_highpart (SImode, operands[1]);
+
+     if (ubicom32_data_register_operand (operands[0], VOIDmode))
+       return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
+
+     return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "movsf"
+  [(set (match_operand:SF 0 "nonimmediate_operand"  "=!d,*rm")
+	(match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))]
+  ""
+  "*
+   {
+     if (GET_CODE (operands[1]) == CONST_DOUBLE)
+       {
+	 HOST_WIDE_INT val;
+	 REAL_VALUE_TYPE rv;
+
+	 REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
+	 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+
+	 ubicom32_emit_move_const_int (operands[0], GEN_INT (val));
+	 return \"\";
+       }
+
+     return \"move.4\\t%0, %1\";
+   }")
+
+(define_insn "zero_extendqihi2"
+  [(set (match_operand:HI 0 "register_operand"			   "=r")
+	(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "move.1\\t%0, %1")
+
+(define_insn "zero_extendqisi2"
+  [(set (match_operand:SI 0 "register_operand"			   "=r")
+	(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "move.1\\t%0, %1")
+
+(define_insn "zero_extendqisi2_ccwz_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))
+          (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"	     "=d")
+	(zero_extend:SI (match_dup 1)))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "shmrg.1\\t%0, %1, #0")
+
+(define_insn "zero_extendhisi2"
+  [(set (match_operand:SI 0 "register_operand"			   "=r")
+	(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "move.2\\t%0, %1")
+
+(define_insn "zero_extendhisi2_ccwz_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))
+          (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"	     "=d")
+	(zero_extend:SI (match_dup 1)))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "shmrg.2\\t%0, %1, #0")
+
+(define_insn_and_split "zero_extendqidi2"
+  [(set (match_operand:DI 0 "register_operand"			   "=r")
+	(zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 2)
+	(zero_extend:SI (match_dup 1)))
+   (set (match_dup 3)
+	(const_int 0))]
+  "{
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_highpart (SImode, operands[0]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn_and_split "zero_extendhidi2"
+  [(set (match_operand:DI 0 "register_operand"			   "=r")
+	(zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 2)
+	(zero_extend:SI (match_dup 1)))
+   (set (match_dup 3)
+	(const_int 0))]
+  "{
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_highpart (SImode, operands[0]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn_and_split "zero_extendsidi2"
+  [(set (match_operand:DI 0 "nonimmediate_operand"		  "=rm")
+	(zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 2)
+	(match_dup 1))
+   (set (match_dup 3)
+	(const_int 0))]
+  "{
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_highpart (SImode, operands[0]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "extendqihi2"
+  [(set (match_operand:HI 0 "register_operand"			   "=r")
+	(sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "ext.1\\t%0, %1")
+
+(define_insn "extendqisi2"
+  [(set (match_operand:SI 0 "register_operand"			   "=r")
+	(sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "ext.1\\t%0, %1")
+
+(define_insn "extendhisi2"
+  [(set (match_operand:SI 0 "register_operand"			   "=r")
+	(sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "ext.2\\t%0, %1")
+
+(define_insn_and_split "extendsidi2"
+  [(set (match_operand:DI 0 "nonimmediate_operand"		   "=d")
+	(sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (match_dup 2)
+	(match_dup 1))
+   (parallel
+     [(set (match_dup 3)
+	   (ashiftrt:SI (match_dup 2)
+		        (const_int 31)))
+      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_highpart (SImode, operands[0]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "bswaphi"
+  [(set (match_operand:HI 0 "nonimmediate_operand"	       "=rm")
+	(bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
+  "(ubicom32_v4)"
+  "swapb.2\\t%0, %1");
+
+(define_insn "bswaphisi"
+  [(set (match_operand:SI 0 "register_operand"			  "=r")
+	(zero_extend:SI
+	  (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))]
+  "(ubicom32_v4)"
+  "swapb.2\\t%0, %1");
+
+(define_insn "bswapsi"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	       "=rm")
+	(bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))]
+  "(ubicom32_v4)"
+  "swapb.4\\t%0, %1");
+
+(define_insn "tstqi_ext1"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:QI 0 "nonimmediate_operand" "rm")
+		 (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "ext.1\\t#0, %0")
+
+(define_expand "cmpqi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:QI 0 "ubicom32_arith_operand" "")
+		 (match_operand:QI 1 "ubicom32_data_register_operand" "")))]
+  "(ubicom32_v4)"
+  "{
+     ubicom32_compare_op0 = operands[0];
+     ubicom32_compare_op1 = operands[1];
+     DONE;
+   }")
+
+(define_insn "sub1_ccs"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:QI 0 "ubicom32_arith_operand"       "rmI")
+		 (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
+  "(ubicom32_v4)"
+  "sub.1\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "sub1_ccsz_1"
+  [(set (reg:CCSZ CC_REGNO)
+	(compare:CCSZ (match_operand:QI 0 "nonimmediate_operand"	  "rm")
+		      (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
+  "(ubicom32_v4)"
+  "sub.1\\t#0, %0, %1")
+
+(define_insn "sub1_ccsz_2"
+  [(set (reg:CCSZ CC_REGNO)
+	(compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d")
+		      (match_operand:QI 1 "ubicom32_arith_operand"	 "rmI")))]
+  "(ubicom32_v4)"
+  "sub.1\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.1 more effectively.  We peephole this case here.
+;
+(define_peephole2
+  [(set (match_operand:QI 0 "register_operand" "")
+	(match_operand:QI 1 "ubicom32_arith_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(compare (match_operand:QI 3 "ubicom32_data_register_operand" "")
+		 (match_dup 0)))
+   (set (pc)
+	(if_then_else (match_operator 4 "comparison_operator"
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_operand 5 "" ""))
+		      (pc)))]
+  "(peep2_reg_dead_p (2, operands[0])
+    && peep2_regno_dead_p (3, CC_REGNO))"
+  [(set (match_dup 2)
+	(compare (match_dup 1)
+		 (match_dup 3)))
+   (set (pc)
+	(if_then_else (match_op_dup 6
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_dup 5))
+		      (pc)))]
+  "{
+     rtx cc_reg;
+
+     cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+     operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+	 			   GET_MODE (operands[4]),
+				   cc_reg,
+				   const0_rtx);
+   }")
+
+(define_insn "tsthi_ext2"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+		 (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "ext.2\\t#0, %0")
+
+(define_expand "cmphi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:HI 0 "ubicom32_arith_operand" "")
+		 (match_operand:HI 1 "ubicom32_compare_operand" "")))]
+  ""
+  "{
+     do
+       {
+	 /* Is this a cmpi? */
+	 if (CONST_INT_P (operands[1]))
+	   break;
+
+	 /* Must be a sub.2 - if necessary copy an operand into a reg.  */
+	 if (! ubicom32_data_register_operand (operands[1], HImode))
+	   operands[1] = copy_to_mode_reg (HImode, operands[1]);
+       }
+     while (0);
+
+     ubicom32_compare_op0 = operands[0];
+     ubicom32_compare_op1 = operands[1];
+     DONE;
+   }")
+
+(define_insn "cmpi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+		 (match_operand 1 "const_int_operand"	     "N")))]
+  ""
+  "cmpi\\t%0, %1")
+
+(define_insn "sub2_ccs"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:HI 0 "ubicom32_arith_operand"	    "rmI")
+		 (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
+  ""
+  "sub.2\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "sub2_ccsz_1"
+  [(set (reg:CCSZ CC_REGNO)
+	(compare:CCSZ (match_operand:HI 0 "nonimmediate_operand"	  "rm")
+		      (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
+  ""
+  "sub.2\\t#0, %0, %1")
+
+(define_insn "sub2_ccsz_2"
+  [(set (reg:CCSZ CC_REGNO)
+	(compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d")
+		      (match_operand:HI 1 "ubicom32_arith_operand"	 "rmI")))]
+  ""
+  "sub.2\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.2 more effectively.  We peephole this case here.
+;
+(define_peephole2
+  [(set (match_operand:HI 0 "register_operand" "")
+	(match_operand:HI 1 "ubicom32_arith_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(compare (match_operand:HI 3 "ubicom32_data_register_operand" "")
+		 (match_dup 0)))
+   (set (pc)
+	(if_then_else (match_operator 4 "comparison_operator"
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_operand 5 "" ""))
+		      (pc)))]
+  "(peep2_reg_dead_p (2, operands[0])
+    && peep2_regno_dead_p (3, CC_REGNO))"
+  [(set (match_dup 2)
+	(compare (match_dup 1)
+		 (match_dup 3)))
+   (set (pc)
+	(if_then_else (match_op_dup 6
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_dup 5))
+		      (pc)))]
+  "{
+     rtx cc_reg;
+
+     cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+     operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+	 			   GET_MODE (operands[4]),
+				   cc_reg,
+				   const0_rtx);
+   }")
+
+(define_insn_and_split "tstsi_lsl4"
+  [(set (match_operand 0 "ubicom32_cc_register_operand" "=r")
+	(match_operator 1 "ubicom32_compare_operator"
+	  [(match_operand:SI 2 "nonimmediate_operand"   "rm")
+	   (const_int 0)]))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "#"
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  [(parallel
+     [(set (match_dup 0)
+	   (match_op_dup 1
+	     [(match_dup 2)
+	      (const_int 0)]))
+      (clobber (match_dup 3))])]
+  "{
+     operands[3] = gen_reg_rtx (SImode);
+   }")
+
+(define_insn "tstsi_lsl4_d"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "nonimmediate_operand" "rm")
+		 (const_int 0)))
+   (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "lsl.4\\t%1, %0, #0")
+
+; Comparison for equality with -1.
+;
+(define_insn "cmpsi_not4_ccwz"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "nonimmediate_operand" "rm")
+		 (const_int -1)))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "not.4\\t#0, %0")
+
+(define_expand "cmpsi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "ubicom32_arith_operand" "")
+		 (match_operand:SI 1 "ubicom32_compare_operand" "")))]
+  ""
+  "{
+     do
+       {
+	 /* Is this a cmpi?  We can't take a memory address as cmpi takes
+            16-bit operands.  */
+	 if (register_operand (operands[0], SImode)
+	     && CONST_INT_P (operands[1])
+	     && satisfies_constraint_N (operands[1]))
+	   break;
+
+	 /* Must be a sub.4 - if necessary copy an operand into a reg.  */
+	 if (! ubicom32_data_register_operand (operands[1], SImode))
+	   operands[1] = copy_to_mode_reg (SImode, operands[1]);
+       }
+     while (0);
+
+     ubicom32_compare_op0 = operands[0];
+     ubicom32_compare_op1 = operands[1];
+     DONE;
+   }")
+
+(define_insn "cmpsi_cmpi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "register_operand" "r")
+		 (match_operand 1 "const_int_operand"   "N")))]
+  "(satisfies_constraint_N (operands[1]))"
+  "cmpi\\t%0, %1")
+
+(define_insn "cmpsi_sub4"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "ubicom32_arith_operand"	    "rmI")
+		 (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
+  ""
+  "sub.4\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "cmpsi_sub4_ccwz_1"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "nonimmediate_operand"	     "rm")
+		 (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "sub.4\\t#0, %0, %1")
+
+(define_insn "cmpsi_sub4_ccwz_2"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		 (match_operand:SI 1 "nonimmediate_operand"	     "rm")))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "sub.4\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.4 more effectively.  We peephole this case here.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "ubicom32_arith_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(compare (match_operand:SI 3 "ubicom32_data_register_operand" "")
+		 (match_dup 0)))
+   (set (pc)
+	(if_then_else (match_operator 4 "comparison_operator"
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_operand 5 "" ""))
+		      (pc)))]
+  "(peep2_reg_dead_p (2, operands[0])
+    && peep2_regno_dead_p (3, CC_REGNO))"
+  [(set (match_dup 2)
+	(compare (match_dup 1)
+		 (match_dup 3)))
+   (set (pc)
+	(if_then_else (match_op_dup 6
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_dup 5))
+		      (pc)))]
+  "{
+     rtx cc_reg;
+
+     cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+     operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+	 			   GET_MODE (operands[4]),
+				   cc_reg,
+				   const0_rtx);
+   }")
+
+(define_insn_and_split "tstdi_or4"
+  [(set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
+		      (const_int 0)))]
+  ""
+  "#"
+  ""
+  [(parallel
+     [(set (reg:CCWZ CC_REGNO)
+	   (compare:CCWZ (match_dup 0)
+			 (const_int 0)))
+      (clobber (match_dup 1))])]
+  "{
+     operands[1] = gen_reg_rtx (SImode);
+   }")
+
+(define_insn "tstdi_or4_d"
+  [(set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
+		      (const_int 0)))
+   (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
+  ""
+  "*
+   {
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_highpart_mode (SImode, DImode, operands[0]);
+
+     if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
+       return \"or.4\\t#0, %2, %3\";
+
+     return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_expand "cmpdi"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:DI 0 "ubicom32_arith_operand" "")
+		 (match_operand:DI 1 "ubicom32_data_register_operand" "")))]
+  ""
+  "{
+     ubicom32_compare_op0 = operands[0];
+     ubicom32_compare_op1 = operands[1];
+     DONE;
+   }")
+
+(define_insn "cmpdi_sub4subc"
+  [(set (reg CC_REGNO)
+	(compare (match_operand:DI 0 "ubicom32_arith_operand"	    "rmI")
+		 (match_operand:DI 1 "ubicom32_data_register_operand" "d")))]
+  ""
+  "*
+   {
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_lowpart (SImode, operands[1]);
+     operands[4] = gen_highpart_mode (SImode, DImode, operands[0]);
+     operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+
+     return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\";
+   }"
+  [(set_attr "length" "8")])
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.4/subc more effectively.  We peephole this case here.
+;
+(define_peephole2
+  [(set (match_operand:DI 0 "register_operand" "")
+	(match_operand:DI 1 "ubicom32_arith_operand" ""))
+   (set (match_operand 2 "ubicom32_cc_register_operand" "")
+	(compare (match_operand:DI 3 "ubicom32_data_register_operand" "")
+		 (match_dup 0)))
+   (set (pc)
+	(if_then_else (match_operator 4 "comparison_operator"
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_operand 5 "" ""))
+		      (pc)))]
+  "(peep2_reg_dead_p (2, operands[0])
+    && peep2_regno_dead_p (3, CC_REGNO))"
+  [(set (match_dup 2)
+	(compare (match_dup 1)
+		 (match_dup 3)))
+   (set (pc)
+	(if_then_else (match_op_dup 6
+			[(match_dup 2)
+			 (const_int 0)])
+		      (label_ref (match_dup 5))
+		      (pc)))]
+  "{
+     rtx cc_reg;
+
+     cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+     operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+	 			   GET_MODE (operands[4]),
+				   cc_reg,
+				   const0_rtx);
+   }")
+
+(define_insn "btst"
+  [(set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ
+	  (zero_extract:SI
+	    (match_operand:SI 0 "nonimmediate_operand"   "rm")
+	    (const_int 1)
+	    (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
+	  (const_int 0)))]
+  ""
+  "btst\\t%0, %1")
+
+(define_insn "bfextu_ccwz_null"
+  [(set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ
+	  (zero_extract:SI
+	    (match_operand:SI 0 "nonimmediate_operand" "rm")
+	    (match_operand 1 "const_int_operand"        "M")
+	    (const_int 0))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2			       "=d"))]
+  ""
+  "bfextu\\t%2, %0, %1")
+
+(define_expand "addqi3"
+  [(parallel
+     [(set (match_operand:QI 0 "memory_operand" "")
+	   (plus:QI (match_operand:QI 1 "nonimmediate_operand" "")
+		    (match_operand:QI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], QImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+   }")
+
+(define_insn "addqi3_add1"
+  [(set (match_operand:QI 0 "memory_operand"		       "=m, m")
+	(plus:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		 (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "@
+   add.1\\t%0, %2, %1
+   add.1\\t%0, %1, %2")
+
+(define_insn "addqi3_add1_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm"))
+	  (match_operand:QI 1 "ubicom32_arith_operand"      "rmI, d")))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "@
+   add.1\\t#0, %1, %0
+   add.1\\t#0, %0, %1")
+
+(define_expand "addhi3"
+  [(parallel
+     [(set (match_operand:HI 0 "memory_operand" "")
+	   (plus:HI (match_operand:HI 1 "nonimmediate_operand" "")
+		    (match_operand:HI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     if (!memory_operand (operands[0], HImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+   }")
+
+(define_insn "addhi3_add2"
+  [(set (match_operand:HI 0 "memory_operand"		       "=m, m")
+	(plus:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		 (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   add.2\\t%0, %2, %1
+   add.2\\t%0, %1, %2")
+
+(define_insn "addhi3_add2_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm"))
+	  (match_operand:HI 1 "ubicom32_arith_operand"      "rmI, d")))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "@
+   add.2\\t#0, %1, %0
+   add.2\\t#0, %0, %1")
+
+(define_expand "addsi3"
+  [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	(plus:SI (match_operand:SI 1 "nonimmediate_operand" "")
+		 (match_operand:SI 2 "ubicom32_move_operand" "")))]
+  ""
+  "{
+     ubicom32_expand_addsi3 (operands);
+     DONE;
+   }")
+
+; We start with an instruction pattern that can do all sorts of interesting
+; things but we split out any uses of lea or pdec instructions because
+; those instructions don't clobber the condition codes.
+;
+(define_insn_and_split "addsi3_1"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	   "=rm,rm,rm,rm,rm, rm,rm")
+	(plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a,  d,rm")
+		 (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   #
+   #
+   #
+   #
+   #
+   add.4\\t%0, %2, %1
+   add.4\\t%0, %1, %2"
+  "(reload_completed
+    && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))"
+  [(set (match_dup 0)
+	(plus:SI (match_dup 1)
+		 (match_dup 2)))]
+  ""
+)
+
+(define_insn "addsi3_1_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (plus:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		   (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"	        "=rm,rm")
+	(plus:SI (match_dup 1)
+		 (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   add.4\\t%0, %2, %1
+   add.4\\t%0, %1, %2")
+
+(define_insn "addsi3_1_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm"))
+	  (match_operand:SI 1 "ubicom32_arith_operand"      "rmI, d")))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   add.4\\t#0, %1, %0
+   add.4\\t#0, %0, %1")
+
+(define_insn_and_split "addsi3_2"
+  [(set (match_operand:SI 0 "nonimmediate_operand"			"=rm,rm,rm,rm,rm,rm")
+	(plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a")
+		 (match_operand:SI 2 "ubicom32_move_operand"		  "L, K, J, P, d, n")))]
+  ""
+  "@
+   lea.4\\t%0, %E2(%1)
+   lea.2\\t%0, %E2(%1)
+   lea.1\\t%0, %E2(%1)
+   pdec\\t%0, %n2(%1)
+   lea.1\\t%0, (%1,%2)
+   #"
+  "(reload_completed
+    && ! satisfies_constraint_L (operands[2])
+    && ! satisfies_constraint_K (operands[2])
+    && ! satisfies_constraint_J (operands[2])
+    && ! satisfies_constraint_P (operands[2])
+    && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))"
+  [(set (reg:SI AUX_DATA_REGNO)
+  	(match_dup 2))
+   (set (match_dup 0)
+	(plus:SI (match_dup 1)
+		 (reg:SI AUX_DATA_REGNO)))]
+  ""
+)
+
+(define_insn "lea_2"
+  [(set (match_operand:SI 0 "nonimmediate_operand"			     "=rm")
+	(plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+			  (const_int 2))
+		 (match_operand:SI 2 "ubicom32_address_register_operand"       "a")))]
+  ""
+  "lea.2\\t%0, (%2,%1)")
+
+(define_insn "lea_4"
+  [(set (match_operand:SI 0 "nonimmediate_operand"			     "=rm")
+	(plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+			  (const_int 4))
+		 (match_operand:SI 2 "ubicom32_address_register_operand"       "a")))]
+  ""
+  "lea.4\\t%0, (%2,%1)")
+
+(define_expand "adddi3"
+  [(parallel
+     [(set (match_operand:DI 0 "nonimmediate_operand" "")
+	   (plus:DI (match_operand:DI 1 "nonimmediate_operand" "")
+		    (match_operand:DI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+   }")
+
+; We construct a 64-bit add from 32-bit operations.  Note that we use the
+; & constraint to prevent overlapping registers being allocated.  We do
+; allow identical registers though as that won't break anything.
+;
+(define_insn "adddi3_add4addc"
+  [(set (match_operand:DI 0 "nonimmediate_operand"	      "=&r,&r,rm,  d,  m, m")
+	(plus:DI (match_operand:DI 1 "nonimmediate_operand"    "%d,rm, 0,  0,  d,rm")
+		 (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart (SImode, operands[1]);
+     operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+
+     if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+       return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\";
+
+     return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "adddi3_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (plus:DI (match_operand:DI 1 "nonimmediate_operand"    "%d,rm, 0,  0,  d,rm")
+		   (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:DI 0 "nonimmediate_operand"		"=&r,&r,rm,  d,  m, m")
+	(plus:DI (match_dup 1)
+		 (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+
+     if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+       {
+	 operands[4] = gen_lowpart (SImode, operands[1]);
+	 operands[5] = gen_lowpart (SImode, operands[2]);
+	 operands[7] = gen_highpart (SImode, operands[1]);
+	 operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+       }
+     else
+       {
+	 operands[4] = gen_lowpart (SImode, operands[2]);
+	 operands[5] = gen_lowpart (SImode, operands[1]);
+	 operands[7] = gen_highpart (SImode, operands[2]);
+	 operands[8] = gen_highpart (SImode, operands[1]);
+       }
+
+     return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "adddi3_ccwz_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm"))
+	  (match_operand:DI 1 "ubicom32_arith_operand"      "rmI, d")))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "*
+   {
+     if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
+       {
+	 operands[2] = gen_lowpart (SImode, operands[0]);
+	 operands[3] = gen_lowpart (SImode, operands[1]);
+	 operands[4] = gen_highpart (SImode, operands[0]);
+	 operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+       }
+     else
+       {
+	 operands[2] = gen_lowpart (SImode, operands[1]);
+	 operands[3] = gen_lowpart (SImode, operands[0]);
+	 operands[4] = gen_highpart (SImode, operands[1]);
+	 operands[5] = gen_highpart (SImode, operands[0]);
+       }
+
+     return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_expand "subqi3"
+  [(parallel
+     [(set (match_operand:QI 0 "memory_operand" "")
+	   (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "")
+		     (match_operand:QI 2 "ubicom32_data_register_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], QImode))
+       FAIL;
+   }")
+
+(define_insn "subqi3_sub1"
+  [(set (match_operand:QI 0 "memory_operand"			      "=m")
+	(minus:QI (match_operand:QI 1 "ubicom32_arith_operand"	     "rmI")
+		  (match_operand:QI 2 "ubicom32_data_register_operand" "d")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "sub.1\\t%0, %1, %2")
+
+(define_expand "subhi3"
+  [(parallel
+     [(set (match_operand:HI 0 "memory_operand" "")
+	   (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "")
+		     (match_operand:HI 2 "ubicom32_data_register_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], HImode))
+       FAIL;
+   }")
+
+(define_insn "subhi3_sub2"
+  [(set (match_operand:HI 0 "memory_operand"			      "=m")
+	(minus:HI (match_operand:HI 1 "ubicom32_arith_operand"	     "rmI")
+		  (match_operand:HI 2 "ubicom32_data_register_operand" "d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "sub.2\\t%0, %1, %2")
+
+(define_insn "subsi3"
+  [(set (match_operand:SI 0 "nonimmediate_operand"		     "=rm")
+	(minus:SI (match_operand:SI 1 "ubicom32_arith_operand"	     "rmI")
+		  (match_operand:SI 2 "ubicom32_data_register_operand" "d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "sub.4\\t%0, %1, %2")
+
+(define_insn "subsi3_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (minus:SI (match_operand:SI 1 "ubicom32_arith_operand"       "rmI")
+		    (match_operand:SI 2 "ubicom32_data_register_operand" "d"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"		       "=rm")
+	(minus:SI (match_dup 1)
+		  (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "sub.4\\t%0, %1, %2")
+
+; We construct a 64-bit add from 32-bit operations.  Note that we use the
+; & constraint to prevent overlapping registers being allocated.  We do
+; allow identical registers though as that won't break anything.
+;
+(define_insn "subdi3"
+  [(set (match_operand:DI 0 "nonimmediate_operand"		     "=&r,r,  d,  m")
+	(minus:DI (match_operand:DI 1 "ubicom32_arith_operand"	     "rmI,0,rmI,rmI")
+		  (match_operand:DI 2 "ubicom32_data_register_operand" "d,d,  0,  d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
+     operands[8] = gen_highpart (SImode, operands[2]);
+
+     return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "subdi3_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (minus:DI (match_operand:DI 1 "ubicom32_arith_operand"       "rmI,rmI")
+		    (match_operand:DI 2 "ubicom32_data_register_operand" "d,  d"))
+	  (const_int 0)))
+   (set (match_operand:DI 0 "nonimmediate_operand"		       "=&r,  m")
+	(minus:DI (match_dup 1)
+		  (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "*
+   {
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
+     operands[8] = gen_highpart (SImode, operands[2]);
+
+     return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
+   }"
+  [(set_attr "length" "8")])
+
+;(define_insn "negqi2"
+;  [(set (match_operand:QI 0 "nonimmediate_operand"		   "=rm")
+;	(neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d")))
+;   (clobber (reg:CC CC_REGNO))]
+;  "(ubicom32_v4)"
+;  "sub.1\\t%0, #0, %1")
+
+;(define_insn "neghi2"
+;  [(set (match_operand:HI 0 "nonimmediate_operand"		   "=rm")
+;	(neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d")))
+;   (clobber (reg:CC CC_REGNO))]
+;  ""
+;  "sub.2\\t%0, #0, %1")
+
+(define_insn "negsi2"
+  [(set (match_operand:SI 0 "nonimmediate_operand"		   "=rm")
+	(neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "sub.4\\t%0, #0, %1")
+
+(define_insn_and_split "negdi2"
+  [(set (match_operand:DI 0 "nonimmediate_operand"		  "=&rm")
+	(neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  "reload_completed"
+  [(parallel [(set (match_dup 0)
+		   (minus:DI (const_int 0)
+			     (match_dup 1)))
+	      (clobber (reg:CC CC_REGNO))])]
+  ""
+  [(set_attr "length" "8")])
+
+(define_insn "umulhisi3"
+  [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand"	     "=l, l")
+	(mult:SI
+	  (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
+	  (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
+   (clobber (reg:HI ACC0_HI_REGNO))
+   (clobber (reg:HI ACC1_HI_REGNO))]
+  ""
+  "@
+   mulu\\t%A0, %2, %1
+   mulu\\t%A0, %1, %2"
+  [(set_attr "type" "mul,mul")])
+
+(define_insn "mulhisi3"
+  [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand"	     "=l, l")
+	(mult:SI
+	  (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
+	  (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
+   (clobber (reg:HI ACC0_HI_REGNO))
+   (clobber (reg:HI ACC1_HI_REGNO))]
+  ""
+  "@
+   muls\\t%A0, %2, %1
+   muls\\t%A0, %1, %2"
+  [(set_attr "type" "mul,mul")])
+
+(define_expand "mulsi3"
+  [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "")
+	(mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "")
+		 (match_operand:SI 2 "ubicom32_arith_operand" "")))]
+  ""
+  "{
+     if (ubicom32_emit_mult_sequence (operands))
+       DONE;
+   }")
+
+(define_insn "umulsidi3"
+  [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand"	     "=h, h")
+	(mult:DI
+	  (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
+	  (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
+  "(ubicom32_v4)"
+  "@
+   mulu.4\\t%A0, %2, %1
+   mulu.4\\t%A0, %1, %2"
+  [(set_attr "type" "mul,mul")])
+
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+	(mult:DI
+	  (zero_extend:DI (match_dup 0))
+	  (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
+  "(peep2_reg_dead_p (2, operands[0])
+    || REGNO (operands[0]) == REGNO (operands[2])
+    || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+   && ! rtx_equal_p (operands[0], operands[3])"
+  [(set (match_dup 2)
+	(mult:DI
+	  (zero_extend:DI (match_dup 1))
+	  (zero_extend:DI (match_dup 3))))]
+  "")
+
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+	(mult:DI
+	  (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
+	  (zero_extend:DI (match_dup 0))))]
+  "(peep2_reg_dead_p (2, operands[0])
+    || REGNO (operands[0]) == REGNO (operands[2])
+    || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+   && ! rtx_equal_p (operands[0], operands[3])"
+  [(set (match_dup 2)
+	(mult:DI
+	  (zero_extend:DI (match_dup 1))
+	  (zero_extend:DI (match_dup 3))))]
+  "")
+
+(define_insn "umulsidi3_const"
+  [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand"		       "=h")
+	(mult:DI
+	  (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
+	  (match_operand 2 "const_int_operand"					"I")))]
+  "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
+  "mulu.4\\t%A0, %2, %1"
+  [(set_attr "type" "mul")])
+
+(define_insn "mulsidi3"
+  [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand"	     "=h, h")
+	(mult:DI
+	  (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
+	  (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
+  "(ubicom32_v4)"
+  "@
+   muls.4\\t%A0, %2, %1
+   muls.4\\t%A0, %1, %2"
+  [(set_attr "type" "mul,mul")])
+
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+	(mult:DI
+	  (sign_extend:DI (match_dup 0))
+	  (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
+  "(peep2_reg_dead_p (2, operands[0])
+    || REGNO (operands[0]) == REGNO (operands[2])
+    || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+   && ! rtx_equal_p (operands[0], operands[3])"
+  [(set (match_dup 2)
+	(mult:DI
+	  (sign_extend:DI (match_dup 1))
+	  (sign_extend:DI (match_dup 3))))]
+  "")
+
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "nonimmediate_operand" ""))
+   (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+	(mult:DI
+	  (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
+	  (sign_extend:DI (match_dup 0))))]
+  "(peep2_reg_dead_p (2, operands[0])
+    || REGNO (operands[0]) == REGNO (operands[2])
+    || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+   && ! rtx_equal_p (operands[0], operands[3])"
+  [(set (match_dup 2)
+	(mult:DI
+	  (sign_extend:DI (match_dup 1))
+	  (sign_extend:DI (match_dup 3))))]
+  "")
+
+(define_insn "mulsidi3_const"
+  [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand"		       "=h")
+	(mult:DI
+	  (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
+	  (match_operand 2 "const_int_operand"					"I")))]
+  "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
+  "muls.4\\t%A0, %2, %1"
+  [(set_attr "type" "mul")])
+
+(define_expand "andqi3"
+  [(parallel
+     [(set (match_operand:QI 0 "memory_operand" "")
+	   (and:QI (match_operand:QI 1 "nonimmediate_operand" "")
+		   (match_operand:QI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], QImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+   }")
+
+(define_insn "andqi3_and1"
+  [(set (match_operand:QI 0 "memory_operand"		      "=m, m")
+	(and:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "@
+   and.1\\t%0, %2, %1
+   and.1\\t%0, %1, %2")
+
+(define_insn "andqi3_and1_ccszn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:QI 0 "memory_operand"		        "=m, m")
+	(and:QI (match_dup 1)
+		(match_dup 2)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "@
+   and.1\\t%0, %2, %1
+   and.1\\t%0, %1, %2")
+
+(define_insn "andqi3_and1_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:QI (match_operand:QI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "@
+   and.1\\t#0, %1, %0
+   and.1\\t#0, %0, %1")
+
+(define_insn "and1_ccszn_null_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+		    (match_operand:SI 1 "ubicom32_arith_operand"	 "rI"))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "and.1\\t#0, %1, %0")
+
+(define_insn "and1_ccszn_null_2"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		    (subreg:SI
+		      (match_operand:QI 1 "memory_operand"		 "m")
+		      0))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "and.1\\t#0, %1, %0")
+
+(define_insn "and1_ccszn_null_3"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (and:SI (subreg:SI
+		      (match_operand:QI 0 "memory_operand"		 "m")
+		      0)
+		    (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "and.1\\t#0, %0, %1")
+
+(define_expand "andhi3"
+  [(parallel
+     [(set (match_operand:HI 0 "memory_operand" "")
+	   (and:HI (match_operand:HI 1 "nonimmediate_operand" "")
+		   (match_operand:HI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     if (!memory_operand (operands[0], HImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+   }")
+
+(define_insn "andhi3_and2"
+  [(set (match_operand:HI 0 "memory_operand"		      "=m, m")
+	(and:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   and.2\\t%0, %2, %1
+   and.2\\t%0, %1, %2")
+
+(define_insn "andhi3_and2_ccszn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:HI 0 "memory_operand"		        "=m, m")
+	(and:HI (match_dup 1)
+		(match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "@
+   and.2\\t%0, %2, %1
+   and.2\\t%0, %1, %2")
+
+(define_insn "andhi3_and2_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:HI (match_operand:HI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "@
+   and.2\\t#0, %1, %0
+   and.2\\t#0, %0, %1")
+
+(define_insn "and2_ccszn_null_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+		    (match_operand:SI 1 "ubicom32_arith_operand"	 "rI"))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "and.2\\t#0, %1, %0")
+
+(define_insn "and2_ccszn_null_2"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		    (subreg:SI
+		      (match_operand:HI 1 "memory_operand"		 "m")
+		      0))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "and.2\\t#0, %1, %0")
+
+(define_insn "and2_ccszn_null_3"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (and:SI (subreg:SI
+		      (match_operand:HI 0 "memory_operand"		 "m")
+		      0)
+		    (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "and.2\\t#0, %0, %1")
+
+(define_expand "andsi3"
+  [(parallel
+     [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	   (and:SI (match_operand:SI 1 "nonimmediate_operand" "")
+		   (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     do
+       {
+	 /* Is this a bfextu?  */
+	 if (ubicom32_data_register_operand (operands[0], SImode)
+	     && CONST_INT_P (operands[2])
+	     && exact_log2 (INTVAL (operands[2]) + 1) != -1)
+	   break;
+
+	 /* Is this a bclr?  */
+	 if (CONST_INT_P (operands[2])
+	     && exact_log2 (~INTVAL (operands[2])) != -1)
+	   break;
+
+	 /* Must be an and.4  */
+	 if (!ubicom32_data_register_operand (operands[1], SImode))
+	   operands[1] = copy_to_mode_reg (SImode, operands[1]);
+
+	 if (!ubicom32_arith_operand (operands[2], SImode))
+	   operands[2] = copy_to_mode_reg (SImode, operands[2]);
+       }
+     while (0);
+   }")
+
+(define_insn "andsi3_bfextu"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+  	(and:SI (match_operand:SI 1 "nonimmediate_operand"  "%rm")
+		(match_operand:SI 2 "const_int_operand"	      "O")))
+   (clobber (reg:CC CC_REGNO))]
+  "(satisfies_constraint_O (operands[2]))"
+  "*
+   {
+     operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
+
+     return \"bfextu\\t%0, %1, %3\";
+   }")
+
+(define_insn "andsi3_bfextu_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
+		  (match_operand:SI 2 "const_int_operand"      "O"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"  "=d")
+	(and:SI (match_dup 1)
+		(match_dup 2)))]
+  "(satisfies_constraint_O (operands[2])
+    && ubicom32_match_cc_mode(insn, CCWZmode))"
+  "*
+   {
+     operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
+
+     return \"bfextu\\t%0, %1, %3\";
+   }")
+
+(define_insn "andsi3_bfextu_ccwz_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
+		  (match_operand:SI 1 "const_int_operand"      "O"))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2				      "=d"))]
+  "(satisfies_constraint_O (operands[1])
+    && ubicom32_match_cc_mode(insn, CCWZmode))"
+  "*
+   {
+     operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1));
+
+     return \"bfextu\\t%2, %0, %3\";
+   }")
+
+(define_insn "andsi3_bclr"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	      "=rm")
+	(and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
+		(match_operand:SI 2 "const_int_operand"	        "n")))
+   (clobber (reg:CC CC_REGNO))]
+  "(exact_log2 (~INTVAL (operands[2])) != -1)"
+  "bclr\\t%0, %1, #%D2")
+
+(define_insn "andsi3_and4"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	     "=rm,rm")
+	(and:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   and.4\\t%0, %2, %1
+   and.4\\t%0, %1, %2")
+
+(define_insn "andsi3_and4_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"	       "=rm,rm")
+	(and:SI (match_dup 1)
+		(match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   and.4\\t%0, %2, %1
+   and.4\\t%0, %1, %2")
+
+(define_insn "andsi3_and4_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:SI (match_operand:SI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   and.4\\t#0, %1, %0
+   and.4\\t#0, %0, %1")
+
+(define_insn "andsi3_lsr4_ccwz_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
+		  (match_operand:SI 1 "const_int_operand"      "n"))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2				      "=d"))]
+  "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1
+    && ubicom32_match_cc_mode(insn, CCWZmode))"
+  "*
+   {
+     operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1));
+
+     return \"lsr.4\\t%2, %0, %3\";
+   }")
+
+; We really would like the combiner to recognize this scenario and deal with
+; it but unfortunately it tries to canonicalize zero_extract ops on MEMs
+; into QImode operations and we can't match them in any useful way.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(match_operand:SI 1 "const_int_operand" ""))
+   (set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ
+	  (and:SI (match_operand:SI 2 "nonimmediate_operand" "")
+		  (match_dup 0))
+	  (const_int 0)))]
+  "(exact_log2 (INTVAL (operands[1])) != -1
+    && peep2_reg_dead_p (2, operands[0]))"
+  [(set (reg:CCWZ CC_REGNO)
+	(compare:CCWZ
+	  (zero_extract:SI
+	    (match_dup 2)
+	    (const_int 1)
+	    (match_dup 3))
+	  (const_int 0)))]
+  "{
+     operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1])));
+   }")
+
+(define_expand "anddi3"
+  [(parallel
+     [(set (match_operand:DI 0 "nonimmediate_operand" "")
+	   (and:DI (match_operand:DI 1 "nonimmediate_operand" "")
+		   (match_operand:DI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+   }")
+
+(define_insn_and_split "anddi3_and4"
+  [(set (match_operand:DI 0 "nonimmediate_operand"	     "=&r,&r,  d,rm,  m, m")
+	(and:DI (match_operand:DI 1 "nonimmediate_operand"    "%d,rm,  0, 0,  d,rm")
+		(match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  "reload_completed"
+  [(parallel [(set (match_dup 3)
+		   (and:SI (match_dup 4)
+			   (match_dup 5)))
+	      (clobber (reg:CC CC_REGNO))])
+   (parallel [(set (match_dup 6)
+		   (and:SI (match_dup 7)
+			   (match_dup 8)))
+	      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart (SImode, operands[1]);
+     operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_expand "iorqi3"
+  [(parallel
+     [(set (match_operand:QI 0 "memory_operand" "")
+	   (ior:QI (match_operand:QI 1 "nonimmediate_operand" "")
+		   (match_operand:QI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], QImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+   }")
+
+(define_insn "iorqi3_or1"
+  [(set (match_operand:QI 0 "memory_operand"		      "=m, m")
+	(ior:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "@
+   or.1\\t%0, %2, %1
+   or.1\\t%0, %1, %2")
+
+(define_expand "iorhi3"
+  [(parallel
+     [(set (match_operand:HI 0 "memory_operand" "")
+	   (ior:HI (match_operand:HI 1 "nonimmediate_operand" "")
+		   (match_operand:HI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     if (!memory_operand (operands[0], HImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+   }")
+
+(define_insn "iorhi3_or2"
+  [(set (match_operand:HI 0 "memory_operand"		      "=m, m")
+	(ior:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   or.2\\t%0, %2, %1
+   or.2\\t%0, %1, %2")
+
+(define_expand "iorsi3"
+  [(parallel
+     [(set (match_operand:SI 0 "nonimmediate_operand" "")
+	   (ior:SI (match_operand:SI 1 "nonimmediate_operand" "")
+		   (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     do
+       {
+	 /* Is this a bset?  */
+	 if (CONST_INT_P (operands[2])
+	     && exact_log2 (INTVAL (operands[2])) != -1)
+	   break;
+
+	 /* Must be an or.4  */
+	 if (!ubicom32_data_register_operand (operands[1], SImode))
+	   operands[1] = copy_to_mode_reg (SImode, operands[1]);
+
+	 if (!ubicom32_arith_operand (operands[2], SImode))
+	   operands[2] = copy_to_mode_reg (SImode, operands[2]);
+       } 
+     while (0);
+   }")
+
+(define_insn "iorsi3_bset"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	      "=rm")
+  	(ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
+		(match_operand 2 "const_int_operand"	        "n")))
+   (clobber (reg:CC CC_REGNO))]
+  "(exact_log2 (INTVAL (operands[2])) != -1)"
+  "bset\\t%0, %1, #%d2")
+
+(define_insn "iorsi3_or4"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	     "=rm,rm")
+	(ior:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   or.4\\t%0, %2, %1
+   or.4\\t%0, %1, %2")
+
+(define_insn "iorsi3_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ior:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"	       "=rm,rm")
+	(ior:SI (match_dup 1)
+		(match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   or.4\\t%0, %2, %1
+   or.4\\t%0, %1, %2")
+
+(define_insn "iorsi3_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ior:SI (match_operand:SI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   or.4\\t#0, %1, %0
+   or.4\\t#0, %0, %1")
+
+(define_expand "iordi3"
+  [(parallel
+     [(set (match_operand:DI 0 "nonimmediate_operand" "")
+	   (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
+		   (match_operand:DI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+   }")
+
+(define_insn_and_split "iordi3_or4"
+  [(set (match_operand:DI 0 "nonimmediate_operand"	     "=&r,&r,  d,rm,  m, m")
+	(ior:DI (match_operand:DI 1 "nonimmediate_operand"    "%d,rm,  0, 0,  d,rm")
+		(match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  "reload_completed"
+  [(parallel [(set (match_dup 3)
+		   (ior:SI (match_dup 4)
+			   (match_dup 5)))
+	      (clobber (reg:CC CC_REGNO))])
+   (parallel [(set (match_dup 6)
+		   (ior:SI (match_dup 7)
+			   (match_dup 8)))
+	      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart (SImode, operands[1]);
+     operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_expand "xorqi3"
+  [(parallel
+     [(set (match_operand:QI 0 "memory_operand" "")
+	   (xor:QI (match_operand:QI 1 "nonimmediate_operand" "")
+		   (match_operand:QI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  "(ubicom32_v4)"
+  "{
+     if (!memory_operand (operands[0], QImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (QImode, operands[2]);
+   }")
+
+(define_insn "xorqi3_xor1"
+  [(set (match_operand:QI 0 "memory_operand"		      "=m, m")
+	(xor:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "@
+   xor.1\\t%0, %2, %1
+   xor.1\\t%0, %1, %2")
+
+(define_insn "xorqi3_xor1_ccszn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:QI (match_operand:QI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:QI 0 "memory_operand"		        "=m, m")
+	(xor:QI (match_dup 1)
+		(match_dup 2)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "@
+   xor.1\\t%0, %2, %1
+   xor.1\\t%0, %1, %2")
+
+(define_insn "xorqi3_xor1_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:QI (match_operand:QI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "@
+   xor.1\\t#0, %1, %0
+   xor.1\\t#0, %0, %1")
+
+(define_insn "xor1_ccszn_null_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+		    (match_operand:SI 1 "ubicom32_arith_operand"	 "rI"))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "xor.1\\t#0, %1, %0")
+
+(define_insn "xor1_ccszn_null_2"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		    (subreg:SI
+		      (match_operand:QI 1 "memory_operand"		 "m")
+		      0))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "xor.1\\t#0, %1, %0")
+
+(define_insn "xor1_ccwzn_null_3"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:QI
+	    (xor:SI (subreg:SI
+		      (match_operand:QI 0 "memory_operand"		 "m")
+		      0)
+		    (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+	    3)
+	  (const_int 0)))]
+  "(ubicom32_v4
+    && ubicom32_match_cc_mode(insn, CCSZNmode))"
+  "xor.1\\t#0, %0, %1")
+
+(define_expand "xorhi3"
+  [(parallel
+     [(set (match_operand:HI 0 "memory_operand" "")
+	   (xor:HI (match_operand:HI 1 "nonimmediate_operand" "")
+		   (match_operand:HI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     if (!memory_operand (operands[0], HImode))
+       FAIL;
+
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (HImode, operands[2]);
+   }")
+
+(define_insn "xorhi3_xor2"
+  [(set (match_operand:HI 0 "memory_operand"		      "=m, m")
+	(xor:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   xor.2\\t%0, %2, %1
+   xor.2\\t%0, %1, %2")
+
+(define_insn "xorhi3_xor2_ccszn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:HI (match_operand:HI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:HI 0 "memory_operand"		        "=m, m")
+	(xor:HI (match_dup 1)
+		(match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "@
+   xor.2\\t%0, %2, %1
+   xor.2\\t%0, %1, %2")
+
+(define_insn "xorhi3_xor2_ccszn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:HI (match_operand:HI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "@
+   xor.2\\t#0, %1, %0
+   xor.2\\t#0, %0, %1")
+
+(define_insn "xor2_ccszn_null_1"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+		    (match_operand:SI 1 "ubicom32_arith_operand"	 "rI"))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "xor.2\\t#0, %1, %0")
+
+(define_insn "xor2_ccszn_null_2"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+		    (subreg:SI
+		      (match_operand:HI 1 "memory_operand"		 "m")
+		      0))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "xor.2\\t#0, %1, %0")
+
+(define_insn "xor2_ccszn_null_3"
+  [(set (reg CC_REGNO)
+	(compare
+	  (subreg:HI
+	    (xor:SI (subreg:SI
+		      (match_operand:HI 0 "memory_operand"		 "m")
+		      0)
+		    (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+	    2)
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCSZNmode)"
+  "xor.2\\t#0, %0, %1")
+
+(define_insn "xorsi3"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	     "=rm,rm")
+	(xor:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		(match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "@
+   xor.4\\t%0, %2, %1
+   xor.4\\t%0, %1, %2")
+
+(define_insn "xorsi3_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:SI (match_operand:SI 1 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"	       "=rm,rm")
+	(xor:SI (match_dup 1)
+		(match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   xor.4\\t%0, %2, %1
+   xor.4\\t%0, %1, %2")
+
+(define_insn "xorsi3_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (xor:SI (match_operand:SI 0 "nonimmediate_operand"    "%d,rm")
+		  (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "@
+   xor.4\\t#0, %1, %0
+   xor.4\\t#0, %0, %1")
+
+(define_expand "xordi3"
+  [(parallel
+     [(set (match_operand:DI 0 "nonimmediate_operand" "")
+	   (xor:DI (match_operand:DI 1 "nonimmediate_operand" "")
+		   (match_operand:DI 2 "ubicom32_arith_operand" "")))
+      (clobber (reg:CC CC_REGNO))])]
+  ""
+  "{
+     /* If we have a non-data reg for operand 1 then prefer that over
+        a CONST_INT in operand 2.  */
+     if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+	 && CONST_INT_P (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+     if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+       operands[2] = copy_to_mode_reg (DImode, operands[2]);
+   }")
+
+(define_insn_and_split "xordi3_xor4"
+  [(set (match_operand:DI 0 "nonimmediate_operand"	     "=&r,&r,  d,rm,  m, m")
+	(xor:DI (match_operand:DI 1 "nonimmediate_operand"    "%d,rm,  0, 0,  d,rm")
+		(match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  "reload_completed"
+  [(parallel [(set (match_dup 3)
+		   (xor:SI (match_dup 4)
+			   (match_dup 5)))
+	      (clobber (reg:CC CC_REGNO))])
+   (parallel [(set (match_dup 6)
+		   (xor:SI (match_dup 7)
+			   (match_dup 8)))
+	      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[3] = gen_lowpart (SImode, operands[0]);
+     operands[4] = gen_lowpart (SImode, operands[1]);
+     operands[5] = gen_lowpart (SImode, operands[2]);
+     operands[6] = gen_highpart (SImode, operands[0]);
+     operands[7] = gen_highpart (SImode, operands[1]);
+     operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+   }"
+  [(set_attr "length" "8")])
+
+(define_insn "not2_2"
+  [(set (match_operand:HI 0 "memory_operand"		        "=m")
+	(subreg:HI
+	  (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
+	  2))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "not.2\\t%0, %1")
+
+(define_insn "one_cmplsi2"
+  [(set (match_operand:SI 0 "nonimmediate_operand"	     "=rm")
+	(not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "not.4\\t%0, %1")
+
+(define_insn "one_cmplsi2_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "nonimmediate_operand"	       "=rm")
+	(not:SI (match_dup 1)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "not.4\\t%0, %1")
+
+(define_insn "one_cmplsi2_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI"))
+	  (const_int 0)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "not.4\\t#0, %0")
+
+(define_insn_and_split "one_cmpldi2"
+  [(set (match_operand:DI 0 "nonimmediate_operand"	   "=&rm")
+	(not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "#"
+  ""
+  [(parallel [(set (match_dup 2)
+		   (not:SI (match_dup 3)))
+	      (clobber (reg:CC CC_REGNO))])
+   (parallel [(set (match_dup 4)
+		   (not:SI (match_dup 5)))
+	      (clobber (reg:CC CC_REGNO))])]
+  "{
+     operands[2] = gen_lowpart (SImode, operands[0]);
+     operands[3] = gen_lowpart (SImode, operands[1]);
+     operands[4] = gen_highpart (SImode, operands[0]);
+     operands[5] = gen_highpart (SImode, operands[1]);
+   }"
+  [(set_attr "length" "8")])
+
+; Conditional jump instructions
+
+(define_expand "beq"
+  [(set (pc)
+	(if_then_else (eq (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bne"
+  [(set (pc)
+	(if_then_else (ne (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bgt"
+  [(set (pc)
+	(if_then_else (gt (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "ble"
+  [(set (pc)
+	(if_then_else (le (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bge"
+  [(set (pc)
+	(if_then_else (ge (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "blt"
+  [(set (pc)
+	(if_then_else (lt (match_dup 1)
+			  (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bgtu"
+  [(set (pc)
+	(if_then_else (gtu (match_dup 1)
+			   (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bleu"
+  [(set (pc)
+	(if_then_else (leu (match_dup 1)
+			   (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bgeu"
+  [(set (pc)
+	(if_then_else (geu (match_dup 1)
+			   (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_expand "bltu"
+  [(set (pc)
+	(if_then_else (ltu (match_dup 1)
+			   (const_int 0))
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "{
+     operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0,
+					     ubicom32_compare_op1);
+   }")
+
+(define_insn "jcc"
+  [(set (pc)
+	(if_then_else (match_operator 1 "comparison_operator"
+			[(match_operand 2 "ubicom32_cc_register_operand" "")
+			 (const_int 0)])
+		      (label_ref (match_operand 0 "" ""))
+		      (pc)))]
+  ""
+  "*
+   {
+     ubicom32_output_cond_jump (insn, operands[1], operands[0]);
+     return \"\";
+   }")
+
+; Reverse branch - reverse our comparison condition so that we can
+; branch in the opposite sense.
+;
+(define_insn_and_split "jcc_reverse"
+  [(set (pc)
+	(if_then_else (match_operator 1 "comparison_operator"
+			[(match_operand 2 "ubicom32_cc_register_operand" "")
+			 (const_int 0)])
+		      (pc)
+		      (label_ref (match_operand 0 "" ""))))]
+  ""
+  "#"
+  "reload_completed"
+  [(set (pc)
+	(if_then_else (match_dup 3)
+		      (label_ref (match_dup 0))
+		      (pc)))]
+  "{
+     rtx cc_reg;
+
+     cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+     operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])),
+	 			   GET_MODE (operands[1]),
+				   cc_reg,
+				   const0_rtx);
+   }")
+
+(define_insn "jump"
+  [(set (pc)
+	(label_ref (match_operand 0 "" "")))]
+  ""
+  "jmpt\\t%l0")
+
+(define_expand "indirect_jump"
+  [(parallel [(set (pc)
+  		   (match_operand:SI 0 "register_operand" ""))
+	      (clobber (match_dup 0))])]
+  ""
+  "")
+
+(define_insn "indirect_jump_internal"
+  [(set (pc)
+ 	(match_operand:SI 0 "register_operand" "a"))
+  (clobber (match_dup 0))]
+  ""
+  "calli\\t%0,0(%0)")
+
+; Program Space: The table contains instructions, typically jumps. 
+; CALL An,TABLE_SIZE(PC)	;An = Jump Table Base Address. 
+; <Jump Table is Here>	;An -> Here. 
+; LEA Ak, (An,Dn) 	;Ak -> Table Entry
+; JMP/CALL (Ak) 
+
+(define_expand "tablejump"
+  [(parallel [(set (pc)
+  		   (match_operand:SI 0 "nonimmediate_operand" ""))
+	      (use (label_ref (match_operand 1 "" "")))])]
+  ""
+  "")
+
+(define_insn "tablejump_internal"
+  [(set (pc)
+	(match_operand:SI 0 "nonimmediate_operand" "rm"))
+   (use (label_ref (match_operand 1 "" "")))]
+  ""
+  "ret\\t%0")
+
+; Call subroutine with no return value.
+;
+(define_expand "call"
+  [(call (match_operand:QI 0 "general_operand" "")
+	 (match_operand:SI 1 "general_operand" ""))]
+  ""
+  "{
+     if (TARGET_FDPIC)
+       {
+	 ubicom32_expand_call_fdpic (operands);
+	 DONE;
+       }
+
+     if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode))
+       XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
+   }")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does.  This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_1"
+  [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+	 (match_operand:SI 1 "general_operand"			     "g,g"))]
+  "! TARGET_FDPIC"
+  "#"
+  ""
+  [(parallel
+     [(call (mem:QI (match_dup 0))
+	    (match_dup 1))
+      (clobber (reg:SI LINK_REGNO))])]
+  "")
+
+(define_insn "call_slow"
+  [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+	 (match_operand:SI 1 "general_operand"			     "g,g"))
+   (clobber (reg:SI LINK_REGNO))]
+  "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
+  "@
+   calli\\ta5, 0(%0)
+   moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)")
+
+(define_insn "call_fast"
+  [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+	 (match_operand:SI 1 "general_operand"			     "g,g"))
+   (clobber (reg:SI LINK_REGNO))]
+  "(! TARGET_FDPIC && TARGET_FASTCALL)"
+  "@
+   calli\\ta5, 0(%0)
+   call\\ta5, %C0")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does.  This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_fdpic"
+  [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+	 (match_operand:SI 1 "general_operand"			     "g,g"))
+   (use (match_operand:SI 2 "ubicom32_fdpic_operand"		     "Z,Z"))]
+  "TARGET_FDPIC"
+  "#"
+  ""
+  [(parallel
+     [(call (mem:QI (match_dup 0))
+	    (match_dup 1))
+      (use (match_dup 2))
+      (clobber (reg:SI LINK_REGNO))])]
+  "")
+
+(define_insn "call_fdpic_clobber"
+  [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+	 (match_operand:SI 1 "general_operand"			     "g,g"))
+   (use (match_operand:SI 2 "ubicom32_fdpic_operand"		     "Z,Z"))
+   (clobber (reg:SI LINK_REGNO))]
+  "TARGET_FDPIC"
+  "@
+   move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5)
+   call\\ta5, %C0")
+
+; Call subroutine, returning value in operand 0
+; (which must be a hard register).
+;
+(define_expand "call_value"
+  [(set (match_operand 0 "" "")
+	(call (match_operand:QI 1 "general_operand" "")
+	      (match_operand:SI 2 "general_operand" "")))]
+  ""
+  "{
+     if (TARGET_FDPIC)
+       {
+	 ubicom32_expand_call_value_fdpic (operands);
+	 DONE;
+       }
+
+     if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode))
+       XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
+   }")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does.  This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_value_1"
+  [(set (match_operand 0 "register_operand"				 "=r,r")
+	(call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+	      (match_operand:SI 2 "general_operand"			  "g,g")))]
+  "! TARGET_FDPIC"
+  "#"
+  ""
+  [(parallel
+     [(set (match_dup 0)
+	   (call (mem:QI (match_dup 1))
+		 (match_dup 2)))
+      (clobber (reg:SI LINK_REGNO))])]
+  "")
+
+(define_insn "call_value_slow"
+  [(set (match_operand 0 "register_operand"				 "=r,r")
+	(call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+	      (match_operand:SI 2 "general_operand"			  "g,g")))
+   (clobber (reg:SI LINK_REGNO))]
+  "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
+  "@
+   calli\\ta5, 0(%1)
+   moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)")
+
+(define_insn "call_value_fast"
+  [(set (match_operand 0 "register_operand"				 "=r,r")
+	(call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+	      (match_operand:SI 2 "general_operand"			  "g,g")))
+   (clobber (reg:SI LINK_REGNO))]
+  "(! TARGET_FDPIC && TARGET_FASTCALL)"
+  "@
+   calli\\ta5, 0(%1)
+   call\\ta5, %C1")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does.  This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_value_fdpic"
+  [(set (match_operand 0 "register_operand"				 "=r,r")
+	(call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+	      (match_operand:SI 2 "general_operand"			  "g,g")))
+   (use (match_operand:SI 3 "ubicom32_fdpic_operand"			  "Z,Z"))]
+  "TARGET_FDPIC"
+  "#"
+  ""
+  [(parallel
+     [(set (match_dup 0)
+	   (call (mem:QI (match_dup 1))
+		 (match_dup 2)))
+      (use (match_dup 3))
+      (clobber (reg:SI LINK_REGNO))])]
+  "")
+
+(define_insn "call_value_fdpic_clobber"
+  [(set (match_operand 0 "register_operand"				 "=r,r")
+	(call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+	      (match_operand:SI 2 "general_operand"			  "g,g")))
+   (use (match_operand:SI 3 "ubicom32_fdpic_operand"			  "Z,Z"))
+   (clobber (reg:SI LINK_REGNO))]
+  "TARGET_FDPIC"
+  "@
+   move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5)
+   call\\ta5, %C1")
+
+(define_expand "untyped_call"
+  [(parallel [(call (match_operand 0 "" "")
+                    (const_int 0))
+              (match_operand 1 "" "")
+              (match_operand 2 "" "")])]
+  ""
+  "{
+     int i;
+
+     emit_call_insn (gen_call (operands[0], const0_rtx));
+
+     for (i = 0; i < XVECLEN (operands[2], 0); i++)
+       {
+         rtx set = XVECEXP (operands[2], 0, i);
+         emit_move_insn (SET_DEST (set), SET_SRC (set));
+       }
+     DONE;
+   }")
+
+(define_insn "lsl1_1"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(ashift:SI (subreg:SI
+		     (match_operand:QI 1 "memory_operand"	  "m")
+		     0)
+		   (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "lsl.1\\t%0, %1, %2")
+
+; The combiner gets rather creative about left shifts of sub-word memory
+; operands because it's uncertain about whether the memory is sign or
+; zero extended.  It only wants zero-extended behaviour and so throws
+; in an extra and operation.
+;
+(define_insn "lsl1_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+	(and:SI
+	  (ashift:SI (subreg:SI
+		       (match_operand:QI 1 "memory_operand"   "m")
+		       0)
+		     (match_operand:SI 2 "const_int_operand"  "M"))
+	  (match_operand:SI 3 "const_int_operand"	      "n")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))"
+  "lsl.1\\t%0, %1, %2")
+
+(define_insn "lsl2_1"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(ashift:SI (subreg:SI
+		     (match_operand:HI 1 "memory_operand"	  "m")
+		     0)
+		   (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "lsl.2\\t%0, %1, %2")
+
+; The combiner gets rather creative about left shifts of sub-word memory
+; operands because it's uncertain about whether the memory is sign or
+; zero extended.  It only wants zero-extended behaviour and so throws
+; in an extra and operation.
+;
+(define_insn "lsl2_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+	(and:SI
+	  (ashift:SI (subreg:SI
+		       (match_operand:HI 1 "memory_operand"   "m")
+		       0)
+		     (match_operand:SI 2 "const_int_operand"  "M"))
+	  (match_operand:SI 3 "const_int_operand"	      "n")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))"
+  "lsl.2\\t%0, %1, %2")
+
+(define_insn "ashlsi3"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+		   (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "lsl.4\\t%0, %1, %2")
+
+(define_insn "lshlsi3_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+		     (match_operand:SI 2 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"	   "=d")
+	(ashift:SI (match_dup 1)
+		   (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "lsl.4\\t%0, %1, %2")
+
+(define_insn "lshlsi3_ccwz_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
+		     (match_operand:SI 1 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2					   "=d"))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "lsl.4\\t%2, %0, %1")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "asr1_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(sign_extract:SI (match_operand:QI 1 "memory_operand"	  "m")
+			 (match_operand:SI 2 "const_int_operand"  "M")
+			 (match_operand:SI 3 "const_int_operand"  "M")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
+  "asr.1\\t%0, %1, %3")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "asr2_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(sign_extract:SI (match_operand:HI 1 "memory_operand"	  "m")
+			 (match_operand:SI 2 "const_int_operand"  "M")
+			 (match_operand:SI 3 "const_int_operand"  "M")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
+  "asr.2\\t%0, %1, %3")
+
+(define_insn "ashrsi3"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	   "=d")
+	(ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
+		     (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "asr.4\\t%0, %1, %2")
+
+(define_insn "ashrsi3_ccwzn"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
+		       (match_operand:SI 2 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"	     "=d")
+	(ashiftrt:SI (match_dup 1)
+		     (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "asr.4\\t%0, %1, %2")
+
+(define_insn "ashrsi3_ccwzn_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ")
+		       (match_operand:SI 1 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2					     "=d"))]
+  "ubicom32_match_cc_mode(insn, CCWZNmode)"
+  "asr.4\\t%2, %0, %1")
+
+(define_insn "lsr1_1"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(lshiftrt:SI (subreg:SI
+		       (match_operand:QI 1 "memory_operand"	  "m")
+		       0)
+		   (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "lsr.1\\t%0, %1, %2")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "lsr1_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(zero_extract:SI (match_operand:QI 1 "memory_operand"	  "m")
+			 (match_operand:SI 2 "const_int_operand"  "M")
+			 (match_operand:SI 3 "const_int_operand"  "M")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
+  "lsr.1\\t%0, %1, %3")
+
+(define_insn "lsr2_1"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(lshiftrt:SI (subreg:SI
+		       (match_operand:HI 1 "memory_operand"	  "m")
+		       0)
+		   (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4)"
+  "lsr.2\\t%0, %1, %2")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "lsr2_2"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	 "=d")
+	(zero_extract:SI (match_operand:HI 1 "memory_operand"	  "m")
+			 (match_operand:SI 2 "const_int_operand"  "M")
+			 (match_operand:SI 3 "const_int_operand"  "M")))
+   (clobber (reg:CC CC_REGNO))]
+  "(ubicom32_v4
+    && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
+  "lsr.2\\t%0, %1, %3")
+
+(define_insn "lshrsi3"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	   "=d")
+	(lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+		     (match_operand:SI 2 "ubicom32_arith_operand"  "dM")))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "lsr.4\\t%0, %1, %2")
+
+(define_insn "lshrsi3_ccwz"
+  [(set (reg CC_REGNO)
+	(compare
+	  (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+		       (match_operand:SI 2 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (set (match_operand:SI 0 "ubicom32_data_register_operand"	     "=d")
+	(lshiftrt:SI (match_dup 1)
+		     (match_dup 2)))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "lsr.4\\t%0, %1, %2")
+
+(define_insn "lshrsi3_ccwz_null"
+  [(set (reg CC_REGNO)
+	(compare
+	  (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
+		       (match_operand:SI 1 "ubicom32_arith_operand"  "dM"))
+	  (const_int 0)))
+   (clobber (match_scratch:SI 2					     "=d"))]
+  "ubicom32_match_cc_mode(insn, CCWZmode)"
+  "lsr.4\\t%2, %0, %1")
+
+(define_expand "prologue"
+  [(const_int 0)]
+  ""
+  "{
+     ubicom32_expand_prologue ();
+     DONE;
+   }")
+
+(define_expand "epilogue"
+  [(return)]
+  ""
+  "{
+     ubicom32_expand_epilogue ();
+     DONE;
+   }")
+
+(define_expand "return"
+  [(return)]
+  ""
+  "{
+     ubicom32_expand_epilogue ();
+     DONE;
+   }")
+
+(define_expand "_eh_return"
+  [(use (match_operand:SI 0 "register_operand" "r"))
+   (use (match_operand:SI 1 "register_operand" "r"))]
+  ""
+  "{
+     ubicom32_expand_eh_return (operands);
+     DONE;
+   }")
+
+; XXX - it looks almost certain that we could make return_internal use a Dn
+; register too.  In that instance we'd have to use a ret instruction
+; rather than a calli but it might save cycles.
+;
+(define_insn "return_internal"
+  [(const_int 2)
+   (return)
+   (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))]
+  ""
+  "*
+   {
+     if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO
+	 && ubicom32_can_use_calli_to_ret)
+       return \"calli\\t%0, 0(%0)\";
+
+     return \"ret\\t%0\";
+   }")
+
+(define_insn "return_from_post_modify_sp"
+  [(parallel
+     [(const_int 2)
+      (return)
+      (use (mem:SI (post_modify:SI
+		     (reg:SI SP_REGNO)
+		     (plus:SI (reg:SI SP_REGNO)
+			      (match_operand:SI 0 "const_int_operand" "n")))))])]
+  "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4"
+  "ret\\t(sp)%E0++")
+
+;(define_insn "eh_return_internal"
+;  [(const_int 4)
+;   (return)
+;   (use (reg:SI 34))]
+;  ""
+;  "ret\\ta2")
+
+; No operation, needed in case the user uses -g but not -O.
+(define_expand "nop"
+  [(const_int 0)]
+  ""
+  "")
+
+(define_insn "nop_internal"
+  [(const_int 0)]
+  ""
+  "nop")
+
+; The combiner will generate this pattern given shift and add operations.
+; The canonical form that the combiner wants to use appears to be multiplies
+; instead of shifts even if the compiled sources use shifts.
+;
+(define_insn "shmrg1_add"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	       "=d")
+  	(plus:SI
+	  (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+		   (const_int 256))
+	  (zero_extend:SI
+	    (match_operand:QI 2 "ubicom32_arith_operand"	      "rmI"))))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "shmrg.1\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and or operations.
+;
+(define_insn "shmrg1_ior"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"		 "=d")
+  	(ior:SI
+	  (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+		     (const_int 8))
+	  (zero_extend:SI
+	    (match_operand:QI 2 "ubicom32_arith_operand"		"rmI"))))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "shmrg.1\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and add operations.
+; The canonical form that the combiner wants to use appears to be multiplies
+; instead of shifts even if the compiled sources use shifts.
+;
+(define_insn "shmrg2_add"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"	       "=d")
+  	(plus:SI
+	  (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+		   (const_int 65536))
+	  (zero_extend:SI
+	    (match_operand:HI 2 "ubicom32_arith_operand"	      "rmI"))))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "shmrg.2\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and or operations.
+;
+(define_insn "shmrg2_ior"
+  [(set (match_operand:SI 0 "ubicom32_data_register_operand"		 "=d")
+  	(ior:SI
+	  (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+		     (const_int 16))
+	  (zero_extend:SI
+	    (match_operand:HI 2 "ubicom32_arith_operand"		"rmI"))))
+   (clobber (reg:CC CC_REGNO))]
+  ""
+  "shmrg.2\\t%0, %2, %1")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 16 bits.  We turn this into a zero-extended load of that useful
+; 16 bits direct from the stack where possible.
+;
+
+; XXX - do these peephole2 ops actually work after the CCmode conversion?
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(mem:SI (plus:SI (reg:SI SP_REGNO)
+			 (match_operand:SI 1 "const_int_operand" ""))))
+   (set (match_operand:SI 2 "nonimmediate_operand" "")
+	(zero_extend:SI (match_operand:HI 3 "register_operand" "")))]
+  "(INTVAL (operands[1]) <= 252
+    && REGNO (operands[3]) == REGNO (operands[0])
+    && ((peep2_reg_dead_p (2, operands[0])
+	 && ! reg_mentioned_p (operands[0], operands[2]))
+        || rtx_equal_p (operands[0], operands[2])))"
+  [(set (match_dup 2)
+	(zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO)
+					 (match_dup 4)))))]
+  "{
+     operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
+   }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 16 bits.  We turn this into a 16-bit load of that useful
+; 16 bits direct from the stack where possible.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(mem:SI (plus:SI (reg:SI SP_REGNO)
+			 (match_operand:SI 1 "const_int_operand" ""))))
+   (set (match_operand:HI 2 "nonimmediate_operand" "")
+	(match_operand:HI 3 "register_operand" ""))]
+  "(INTVAL (operands[1]) <= 252
+    && REGNO (operands[3]) == REGNO (operands[0])
+    && ((peep2_reg_dead_p (2, operands[0])
+	 && ! reg_mentioned_p (operands[0], operands[2]))
+        || rtx_equal_p (operands[0], operands[2])))"
+  [(set (match_dup 2)
+	(mem:HI (plus:SI (reg:SI SP_REGNO)
+			 (match_dup 4))))]
+  "{
+     operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
+   }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 24 bits.  We turn this into a zero-extended load of that useful
+; 8 bits direct from the stack where possible.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(mem:SI (plus:SI (reg:SI SP_REGNO)
+			 (match_operand:SI 1 "const_int_operand" ""))))
+   (set (match_operand:SI 2 "nonimmediate_operand" "")
+	(zero_extend:SI (match_operand:QI 3 "register_operand" "")))]
+  "(INTVAL (operands[1]) <= 124
+    && REGNO (operands[3]) == REGNO (operands[0])
+    && ((peep2_reg_dead_p (2, operands[0])
+	 && ! reg_mentioned_p (operands[0], operands[2]))
+        || rtx_equal_p (operands[0], operands[2])))"
+  [(set (match_dup 2)
+	(zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO)
+					 (match_dup 4)))))]
+  "{
+     operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
+   }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 24 bits.  We turn this into an 8-bit load of that useful
+; 8 bits direct from the stack where possible.
+;
+(define_peephole2
+  [(set (match_operand:SI 0 "register_operand" "")
+	(mem:SI (plus:SI (reg:SI SP_REGNO)
+			 (match_operand:SI 1 "const_int_operand" ""))))
+   (set (match_operand:QI 2 "nonimmediate_operand" "")
+	(match_operand:QI 3 "register_operand" ""))]
+  "(INTVAL (operands[1]) <= 124
+    && REGNO (operands[3]) == REGNO (operands[0])
+    && ((peep2_reg_dead_p (2, operands[0])
+	 && ! reg_mentioned_p (operands[0], operands[2]))
+        || rtx_equal_p (operands[0], operands[2])))"
+  [(set (match_dup 2)
+	(mem:QI (plus:SI (reg:SI SP_REGNO)
+			 (match_dup 4))))]
+  "{
+     operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
+   }")
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.opt
@@ -0,0 +1,27 @@
+mdebug-address
+Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS)
+Debug addresses
+
+mdebug-context
+Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT)
+Debug contexts
+
+march=
+Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined
+Specify the name of the target architecture
+
+mfdpic
+Target Report Mask(FDPIC)
+Enable Function Descriptor PIC mode
+
+minline-plt
+Target Report Mask(INLINE_PLT)
+Enable inlining of PLT in function calls
+
+mfastcall
+Target Report Mask(FASTCALL)
+Enable default fast (call) calling sequence for smaller applications
+
+mipos-abi
+Target Report Mask(IPOS_ABI)
+Enable the ipOS ABI in which D10-D13 are caller-clobbered
--- /dev/null
+++ b/gcc/config/ubicom32/uclinux.h
@@ -0,0 +1,67 @@
+/* Definitions of target machine for Ubicom32-uclinux
+
+   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+   2009 Free Software Foundation, Inc.
+   Contributed by Ubicom, Inc.
+
+   This file is part of GCC.
+
+   GCC is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published
+   by the Free Software Foundation; either version 3, or (at your
+   option) any later version.
+
+   GCC is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
+   License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with GCC; see the file COPYING3.  If not see
+   <http://www.gnu.org/licenses/>.  */
+
+/* Don't assume anything about the header files.  */
+#define NO_IMPLICIT_EXTERN_C
+
+#undef  LIB_SPEC
+#define LIB_SPEC  \
+	"%{pthread:-lpthread} " \
+	"%{!shared:%{!symbolic: -lc}} "
+
+
+#undef LINK_GCC_C_SEQUENCE_SPEC
+#define LINK_GCC_C_SEQUENCE_SPEC \
+  "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} "
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC \
+	"%{!shared: crt1%O%s}" \
+	" crti%O%s crtbegin%O%s"
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
+
+/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that
+   we want to support both flat and ELF output.  */
+#define OBJECT_FORMAT_FLAT
+
+#undef DRIVER_SELF_SPECS
+#define DRIVER_SELF_SPECS \
+  "%{!mno-fastcall:-mfastcall}"
+
+/* taken from linux.h */
+/* The GNU C++ standard library requires that these macros be defined.  */
+#undef CPLUSPLUS_CPP_SPEC
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
+
+#define TARGET_OS_CPP_BUILTINS()				\
+    do {							\
+	builtin_define_std ("__UBICOM32__");			\
+	builtin_define_std ("__ubicom32__");			\
+	builtin_define ("__gnu_linux__");			\
+	builtin_define_std ("linux");				\
+	builtin_define_std ("unix");				\
+	builtin_assert ("system=linux");			\
+	builtin_assert ("system=unix");				\
+	builtin_assert ("system=posix");			\
+    } while (0)
--- /dev/null
+++ b/gcc/config/ubicom32/xm-ubicom32.h
@@ -0,0 +1,36 @@
+/* Configuration for Ubicom's Ubicom32 architecture.
+   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
+   Foundation, Inc.
+   Contributed by Ubicom Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING.  If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA.  */
+
+/* #defines that need visibility everywhere.  */
+#define FALSE 0
+#define TRUE 1
+
+/* This describes the machine the compiler is hosted on.  */
+#define HOST_BITS_PER_CHAR 8
+#define HOST_BITS_PER_SHORT 16
+#define HOST_BITS_PER_INT 32
+#define HOST_BITS_PER_LONG 32
+#define HOST_BITS_PER_LONGLONG 64
+
+/* Arguments to use with `exit'.  */
+#define SUCCESS_EXIT_CODE 0
+#define FATAL_EXIT_CODE 33
--- a/gcc/config.gcc
+++ b/gcc/config.gcc
@@ -2314,6 +2314,34 @@ spu-*-elf*)
 	c_target_objs="${c_target_objs} spu-c.o"
 	cxx_target_objs="${cxx_target_objs} spu-c.o"
 	;;
+ubicom32-*-elf)
+	xm_file=ubicom32/xm-ubicom32.h
+	tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h
+	tmake_file=ubicom32/t-ubicom32
+	;;
+ubicom32-*-uclinux*)
+	xm_file=ubicom32/xm-ubicom32.h
+	tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h"  # still need dbxelf.h elfos.h linux.h
+	tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
+	extra_options="${extra_options} linux.opt"
+	tmake_file=ubicom32/t-ubicom32-uclinux
+	use_collect2=no
+	;;
+ubicom32-*-linux-uclibc)
+	xm_file=ubicom32/xm-ubicom32.h
+	tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h"  # still need dbxelf.h elfos.h
+	tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
+	extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+	use_collect2=no
+	;;
+ubicom32-*-linux*)
+	xm_file=ubicom32/xm-ubicom32.h
+	tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h"  # still need dbxelf.h elfos.h
+	tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
+	tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
+	extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+	use_collect2=no
+	;;
 v850e1-*-*)
 	target_cpu_default="TARGET_CPU_v850e1"
 	tm_file="dbxelf.h elfos.h svr4.h v850/v850.h"
--- a/libgcc/config.host
+++ b/libgcc/config.host
@@ -551,6 +551,15 @@ sparc64-*-netbsd*)
 	;;
 spu-*-elf*)
 	;;
+ubicom32*-*-elf*)
+	;;
+ubicom32*-*-uclinux*)
+        ;;
+ubicom32*-*-linux*)
+	# No need to build crtbeginT.o on uClibc systems.  Should probably
+	# be moved to the OS specific section above.
+	extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+        ;;
 v850e1-*-*)
 	;;
 v850e-*-*)