/* * NAND flash driver for the MikroTik RouterBoard 4xx series * * Copyright (C) 2008 Gabor Juhos <juhosg@openwrt.org> * Copyright (C) 2008 Imre Kaloz <kaloz@openwrt.org> * * This file was based on the driver for Linux 2.6.22 published by * MikroTik for their RouterBoard 4xx series devices. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include <linux/init.h> #include <linux/mtd/nand.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/gpio.h> #include <asm/mach-ar71xx/ar71xx.h> #define DRV_NAME "rb4xx-nand" #define DRV_VERSION "0.1.10" #define DRV_DESC "NAND flash driver for RouterBoard 4xx series" #define USE_FAST_READ 1 #define USE_FAST_WRITE 1 #undef RB4XX_NAND_DEBUG #ifdef RB4XX_NAND_DEBUG #define DBG(fmt, arg...) printk(KERN_DEBUG DRV_NAME ": " fmt, ## arg) #else #define DBG(fmt, arg...) do {} while (0) #endif #define RB4XX_NAND_GPIO_RDY 5 #define RB4XX_FLASH_HZ 33333334 #define RB4XX_NAND_HZ 33333334 #define SPI_CTRL_FASTEST 0x40 #define SPI_CTRL_SAFE 0x43 /* 25 MHz for AHB 200 MHz */ #define SBIT_IOC_BASE SPI_IOC_CS1 #define SBIT_IOC_DO_SHIFT 0 #define SBIT_IOC_DO (1u << SBIT_IOC_DO_SHIFT) #define SBIT_IOC_DO2_SHIFT 18 #define SBIT_IOC_DO2 (1u << SBIT_IOC_DO2_SHIFT) #define CPLD_CMD_WRITE_MULT 0x08 /* send cmd, n x send data, read data */ #define CPLD_CMD_WRITE_CFG 0x09 /* send cmd, n x send cfg */ #define CPLD_CMD_READ_MULT 0x0a /* send cmd, send idle, n x read data */ #define CPLD_CMD_READ_FAST 0x0b /* send cmd, 4 x idle, n x read data */ #define CFG_BIT_nCE 0x80 #define CFG_BIT_CLE 0x40 #define CFG_BIT_ALE 0x20 #define CFG_BIT_FAN 0x10 #define CFG_BIT_nLED4 0x08 #define CFG_BIT_nLED3 0x04 #define CFG_BIT_nLED2 0x02 #define CFG_BIT_nLED1 0x01 #define CFG_BIT_nLEDS \ (CFG_BIT_nLED1 | CFG_BIT_nLED2 | CFG_BIT_nLED3 | CFG_BIT_nLED4) struct rb4xx_nand_info { struct nand_chip chip; struct mtd_info mtd; }; /* * We need to use the OLD Yaffs-1 OOB layout, otherwise the RB bootloader * will not be able to find the kernel that we load. */ static struct nand_ecclayout rb4xx_nand_ecclayout = { .eccbytes = 6, .eccpos = { 8, 9, 10, 13, 14, 15 }, .oobavail = 9, .oobfree = { { 0, 4 }, { 6, 2 }, { 11, 2 }, { 4, 1 } } }; static struct mtd_partition rb4xx_nand_partitions[] = { { .name = "booter", .offset = 0, .size = (256 * 1024), .mask_flags = MTD_WRITEABLE, }, { .name = "kernel", .offset = (256 * 1024), .size = (4 * 1024 * 1024) - (256 * 1024), }, { .name = "rootfs", .offset = MTDPART_OFS_NXTBLK, .size = MTDPART_SIZ_FULL, }, }; #if USE_FAST_READ #define SPI_NDATA_BASE 0x00800000 static unsigned spi_ctrl_fread = SPI_CTRL_SAFE; static unsigned spi_ctrl_flash = SPI_CTRL_SAFE; extern unsigned mips_hpt_frequency; #endif static inline unsigned rb4xx_spi_rreg(unsigned r) { return __raw_readl((void * __iomem)(KSEG1ADDR(AR71XX_SPI_BASE) + r)); } static inline void rb4xx_spi_wreg(unsigned r, unsigned v) { __raw_writel(v, (void * __iomem)(KSEG1ADDR(AR71XX_SPI_BASE) + r)); } static inline void do_spi_clk(int bit) { unsigned bval = SBIT_IOC_BASE | (bit & 1); rb4xx_spi_wreg(SPI_REG_IOC, bval); rb4xx_spi_wreg(SPI_REG_IOC, bval | SPI_IOC_CLK); } static void do_spi_byte(uint8_t byte) { do_spi_clk(byte >> 7); do_spi_clk(byte >> 6); do_spi_clk(byte >> 5); do_spi_clk(byte >> 4); do_spi_clk(byte >> 3); do_spi_clk(byte >> 2); do_spi_clk(byte >> 1); do_spi_clk(byte); DBG("spi_byte sent 0x%02x got 0x%x\n", byte, rb4xx_spi_rreg(SPI_REG_RDS)); } #if USE_FAST_WRITE static inline void do_spi_clk_fast(int bit1, int bit2) { unsigned bval = (SBIT_IOC_BASE | ((bit1 << SBIT_IOC_DO_SHIFT) & SBIT_IOC_DO) | ((bit2 << SBIT_IOC_DO2_SHIFT) & SBIT_IOC_DO2)); rb4xx_spi_wreg(SPI_REG_IOC, bval); rb4xx_spi_wreg(SPI_REG_IOC, bval | SPI_IOC_CLK); } static inline void do_spi_byte_fast(uint8_t byte) { do_spi_clk_fast(byte >> 7, byte >> 6); do_spi_clk_fast(byte >> 5, byte >> 4); do_spi_clk_fast(byte >> 3, byte >> 2); do_spi_clk_fast(byte >> 1, byte >> 0); DBG("spi_byte_fast sent 0x%02x got 0x%x\n", byte, rb4xx_spi_rreg(SPI_REG_RDS)); } #else static inline void do_spi_byte_fast(uint8_t byte) { do_spi_byte(byte); } #endif /* USE_FAST_WRITE */ static int do_spi_cmd(unsigned cmd, unsigned sendCnt, const uint8_t *sendData, unsigned recvCnt, uint8_t *recvData, const uint8_t *verifyData, int fastWrite) { unsigned i; DBG("SPI cmd 0x%x send %u recv %u\n", cmd, sendCnt, recvCnt); rb4xx_spi_wreg(SPI_REG_FS, SPI_FS_GPIO); rb4xx_spi_wreg(SPI_REG_CTRL, SPI_CTRL_FASTEST); do_spi_byte(cmd); #if 0 if (cmd == CPLD_CMD_READ_FAST) { do_spi_byte(0x80); do_spi_byte(0); do_spi_byte(0); } #endif for (i = 0; i < sendCnt; ++i) { if (fastWrite) do_spi_byte_fast(sendData[i]); else do_spi_byte(sendData[i]); } for (i = 0; i < recvCnt; ++i) { if (fastWrite) do_spi_byte_fast(0); else do_spi_byte(0); if (recvData) { recvData[i] = rb4xx_spi_rreg(SPI_REG_RDS) & 0xff; } else if (verifyData) { if (verifyData[i] != (rb4xx_spi_rreg(SPI_REG_RDS) & 0xff)) break; } } rb4xx_spi_wreg(SPI_REG_IOC, SBIT_IOC_BASE | SPI_IOC_CS0); rb4xx_spi_wreg(SPI_REG_CTRL, spi_ctrl_flash); rb4xx_spi_wreg(SPI_REG_FS, 0); return i == recvCnt; } static int got_write = 1; static void rb4xx_nand_write_data(const uint8_t *byte, unsigned cnt) { do_spi_cmd(CPLD_CMD_WRITE_MULT, cnt, byte, 1, NULL, NULL, 1); got_write = 1; } static void rb4xx_nand_write_byte(uint8_t byte) { rb4xx_nand_write_data(&byte, 1); } #if USE_FAST_READ static uint8_t *rb4xx_nand_read_getaddr(unsigned cnt) { static unsigned nboffset = 0x100000; unsigned addr; if (got_write) { nboffset = (nboffset + 31) & ~31; if (nboffset >= 0x100000) /* 1MB */ nboffset = 0; got_write = 0; rb4xx_spi_wreg(SPI_REG_FS, SPI_FS_GPIO); rb4xx_spi_wreg(SPI_REG_CTRL, spi_ctrl_fread); rb4xx_spi_wreg(SPI_REG_FS, 0); } addr = KSEG1ADDR(AR71XX_SPI_BASE + SPI_NDATA_BASE) + nboffset; DBG("rb4xx_nand_read_getaddr 0x%x cnt 0x%x\n", addr, cnt); nboffset += cnt; return (uint8_t *)addr; } static void rb4xx_nand_read_data(uint8_t *buf, unsigned cnt) { unsigned size32 = cnt & ~31; unsigned remain = cnt & 31; if (size32) { uint8_t *addr = rb4xx_nand_read_getaddr(size32); memcpy(buf, (void *)addr, size32); } if (remain) { do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, remain, buf + size32, NULL, 0); } } static int rb4xx_nand_verify_data(const uint8_t *buf, unsigned cnt) { unsigned size32 = cnt & ~31; unsigned remain = cnt & 31; if (size32) { uint8_t *addr = rb4xx_nand_read_getaddr(size32); if (memcmp(buf, (void *)addr, size32) != 0) return 0; } if (remain) { return do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, remain, NULL, buf + size32, 0); } return 1; } #else /* USE_FAST_READ */ static void rb4xx_nand_read_data(uint8_t *buf, unsigned cnt) { do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, cnt, buf, NULL, 0); } static int rb4xx_nand_verify_data(const uint8_t *buf, unsigned cnt) { return do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, cnt, NULL, buf, 0); } #endif /* USE_FAST_READ */ static void rb4xx_nand_write_cfg(uint8_t byte) { do_spi_cmd(CPLD_CMD_WRITE_CFG, 1, &byte, 0, NULL, NULL, 0); got_write = 1; } static int rb4xx_nand_dev_ready(struct mtd_info *mtd) { return gpio_get_value(RB4XX_NAND_GPIO_RDY); } static void rb4xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { if (ctrl & NAND_CTRL_CHANGE) { uint8_t cfg = CFG_BIT_nLEDS; cfg |= (ctrl & NAND_CLE) ? CFG_BIT_CLE : 0; cfg |= (ctrl & NAND_ALE) ? CFG_BIT_ALE : 0; cfg |= (ctrl & NAND_NCE) ? 0 : CFG_BIT_nCE; rb4xx_nand_write_cfg(cfg); } if (cmd != NAND_CMD_NONE) rb4xx_nand_write_byte(cmd); } static uint8_t rb4xx_nand_read_byte(struct mtd_info *mtd) { uint8_t byte = 0; rb4xx_nand_read_data(&byte, 1); return byte; } static void rb4xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { rb4xx_nand_write_data(buf, len); } static void rb4xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { rb4xx_nand_read_data(buf, len); } static int rb4xx_nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { if (!rb4xx_nand_verify_data(buf, len)) return -EFAULT; return 0; } static unsigned get_spi_ctrl(unsigned hz_max, const char *name) { unsigned div; div = (ar71xx_ahb_freq - 1) / (2 * hz_max); /* * CPU has a bug at (div == 0) - first bit read is random */ if (div == 0) ++div; if (name) { unsigned ahb_khz = (ar71xx_ahb_freq + 500) / 1000; unsigned div_real = 2 * (div + 1); printk(KERN_INFO "%s SPI clock %u kHz (AHB %u kHz / %u)\n", name, ahb_khz / div_real, ahb_khz, div_real); } return SPI_CTRL_FASTEST + div; } static int __init rb4xx_nand_probe(struct platform_device *pdev) { struct rb4xx_nand_info *info; int ret; printk(KERN_INFO DRV_DESC " version " DRV_VERSION "\n"); ret = gpio_request(RB4XX_NAND_GPIO_RDY, "NAND RDY"); if (ret) { printk(KERN_ERR "rb4xx-nand: gpio request failed\n"); return ret; } ret = gpio_direction_input(RB4XX_NAND_GPIO_RDY); if (ret) { printk(KERN_ERR "rb4xx-nand: unable to set input mode " "on gpio%d\n", RB4XX_NAND_GPIO_RDY); goto err_free_gpio; } info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { printk(KERN_ERR "rb4xx-nand: no memory for private data\n"); ret = -ENOMEM; goto err_free_gpio; } #if USE_FAST_READ spi_ctrl_fread = get_spi_ctrl(RB4XX_NAND_HZ, "NAND"); #endif spi_ctrl_flash = get_spi_ctrl(RB4XX_FLASH_HZ, "FLASH"); rb4xx_nand_write_cfg(CFG_BIT_nLEDS | CFG_BIT_nCE); info->chip.priv = &info; info->mtd.priv = &info->chip; info->mtd.owner = THIS_MODULE; info->chip.cmd_ctrl = rb4xx_nand_cmd_ctrl; info->chip.dev_ready = rb4xx_nand_dev_ready; info->chip.read_byte = rb4xx_nand_read_byte; info->chip.write_buf = rb4xx_nand_write_buf; info->chip.read_buf = rb4xx_nand_read_buf; info->chip.verify_buf = rb4xx_nand_verify_buf; info->chip.chip_delay = 25; info->chip.ecc.mode = NAND_ECC_SOFT; info->chip.options |= NAND_NO_AUTOINCR; platform_set_drvdata(pdev, info); ret = nand_scan_ident(&info->mtd, 1); if (ret) { ret = -ENXIO; goto err_free_info; } if (info->mtd.writesize == 512) info->chip.ecc.layout = &rb4xx_nand_ecclayout; ret = nand_scan_tail(&info->mtd); if (ret) { return -ENXIO; goto err_set_drvdata; } #ifdef CONFIG_MTD_PARTITIONS ret = add_mtd_partitions(&info->mtd, rb4xx_nand_partitions, ARRAY_SIZE(rb4xx_nand_partitions)); #else ret = add_mtd_device(&info->mtd); #endif if (ret) goto err_release_nand; return 0; err_release_nand: nand_release(&info->mtd); err_set_drvdata: platform_set_drvdata(pdev, NULL); err_free_info: kfree(info); err_free_gpio: gpio_free(RB4XX_NAND_GPIO_RDY); return ret; } static int __devexit rb4xx_nand_remove(struct platform_device *pdev) { struct rb4xx_nand_info *info = platform_get_drvdata(pdev); nand_release(&info->mtd); platform_set_drvdata(pdev, NULL); kfree(info); return 0; } static struct platform_driver rb4xx_nand_driver = { .probe = rb4xx_nand_probe, .remove = __devexit_p(rb4xx_nand_remove), .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, }; static int __init rb4xx_nand_init(void) { return platform_driver_register(&rb4xx_nand_driver); } static void __exit rb4xx_nand_exit(void) { platform_driver_unregister(&rb4xx_nand_driver); } module_init(rb4xx_nand_init); module_exit(rb4xx_nand_exit); MODULE_DESCRIPTION(DRV_DESC); MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>"); MODULE_AUTHOR("Imre Kaloz <kaloz@openwrt.org>"); MODULE_LICENSE("GPL v2");