/*
 * Copyright 2007-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 * Author: Kurt Mahan, kmahan@freescale.com
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/phy.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>

#include <asm/coldfire.h>
#include <asm/mcfsim.h>

#include <asm/dma.h>
#include <asm/MCD_dma.h>
#include <asm/m5485sram.h>
#include <asm/virtconvert.h>
#include <asm/irq.h>

#include "fec_m547x.h"

#ifdef	CONFIG_FEC_548x_ENABLE_FEC2
#define	FEC_MAX_PORTS	2
#define	FEC_2
#else
#define	FEC_MAX_PORTS	1
#undef	FEC_2
#endif

#define VERSION "0.20"
MODULE_DESCRIPTION("DMA Fast Ethernet Controller driver ver " VERSION);

/* fec private */
struct fec_priv {
	struct net_device *netdev;		/* owning net device */
	void *fecpriv_txbuf[FEC_TX_BUF_NUMBER];	/* tx buffer ptrs */
	MCD_bufDescFec *fecpriv_txdesc;		/* tx descriptor ptrs */
	volatile unsigned int fecpriv_current_tx; /* current tx desc index */
	volatile unsigned int fecpriv_next_tx;	/* next tx desc index */
	unsigned int fecpriv_current_rx;	/* current rx desc index */
	MCD_bufDescFec *fecpriv_rxdesc;		/* rx descriptor ptrs */
	struct sk_buff *askb_rx[FEC_RX_BUF_NUMBER]; /* rx SKB ptrs */
	unsigned int fecpriv_initiator_rx;	/* rx dma initiator */
	unsigned int fecpriv_initiator_tx;	/* tx dma initiator */
	int fecpriv_fec_rx_channel;		/* rx dma channel */
	int fecpriv_fec_tx_channel;		/* tx dma channel */
	int fecpriv_rx_requestor;		/* rx dma requestor */
	int fecpriv_tx_requestor;		/* tx dma requestor */
	void *fecpriv_interrupt_fec_rx_handler;	/* dma rx handler */
	void *fecpriv_interrupt_fec_tx_handler;	/* dma tx handler */
	unsigned char *fecpriv_mac_addr;	/* private fec mac addr */
	struct net_device_stats fecpriv_stat;	/* stats ptr */
	spinlock_t fecpriv_lock;
	int fecpriv_rxflag;
	struct tasklet_struct fecpriv_tasklet_reinit;
	int index;				/* fec hw number */
	struct phy_device *phydev;
	struct mii_bus *mdio_bus;
	int  duplex;
	int  link;
	int  speed;
};

struct net_device *fec_dev[FEC_MAX_PORTS];

/* FEC functions */
static int __init fec_init(void);
static struct net_device_stats *fec_get_stat(struct net_device *dev);
static int fec_open(struct net_device *dev);
static int fec_close(struct net_device *nd);
static int fec_tx(struct sk_buff *skb, struct net_device *dev);
static void fec_set_multicast_list(struct net_device *nd);
static int fec_set_mac_address(struct net_device *dev, void *p);
static void fec_tx_timeout(struct net_device *dev);
static void fec_interrupt_fec_tx_handler(struct net_device *dev);
static void fec_interrupt_fec_rx_handler(struct net_device *dev);
static irqreturn_t fec_interrupt_handler(int irq, void *dev_id);
static void fec_interrupt_fec_tx_handler_fec0(void);
static void fec_interrupt_fec_rx_handler_fec0(void);
static void fec_interrupt_fec_reinit(unsigned long data);

/* default fec0 address */
unsigned char fec_mac_addr_fec0[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x50 };

#ifdef FEC_2
/* default fec1 address */
unsigned char fec_mac_addr_fec1[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x51 };
#endif

extern unsigned char uboot_enet0[];
extern unsigned char uboot_enet1[];

#ifndef MODULE
int fec_str_to_mac(char *str_mac, unsigned char* addr);
int __init fec_mac_setup0(char *s);
#endif


#ifdef FEC_2
void fec_interrupt_fec_tx_handler_fec1(void);
void fec_interrupt_fec_rx_handler_fec1(void);
#endif

#ifndef MODULE
int __init fec_mac_setup1(char *s);
#endif

module_init(fec_init);
/* module_exit(fec_cleanup); */

__setup("mac0=", fec_mac_setup0);

#ifdef FEC_2
__setup("mac1=", fec_mac_setup1);
#endif

#define mk_mii_read(REG)        (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)  (0x50020000 | ((REG & 0x1f) << 18) | \
		(VAL & 0xffff))
/* ----------------------------------------------------------- */
static int coldfire_fec_mdio_read(struct mii_bus *bus,
	int phy_id, int reg)
{
	int ret;
	struct net_device *dev = bus->priv;
#ifdef CONFIG_FEC_548x_SHARED_PHY
	unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0;
#else
	unsigned long base_addr = (unsigned long) dev->base_addr;
#endif
	int tries = 100;

	/* Clear the MII interrupt bit */
	FEC_EIR(base_addr) = FEC_EIR_MII;

	/* Write to the MII management frame register */
	FEC_MMFR(base_addr) = mk_mii_read(reg) | (phy_id << 23);

	/* Wait for the reading */
	while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) {
		udelay(10);

		if (!tries) {
			printk(KERN_ERR "%s timeout\n", __func__);
			return -ETIMEDOUT;
		}
		tries--;
	}

	/* Clear the MII interrupt bit */
	FEC_EIR(base_addr) = FEC_EIR_MII;
	ret = FEC_MMFR(base_addr) & 0x0000FFFF;
	return ret;
}

static int coldfire_fec_mdio_write(struct mii_bus *bus,
	int phy_id, int reg, u16 data)
{
	int ret;
	struct net_device *dev = bus->priv;
#ifdef CONFIG_FEC_548x_SHARED_PHY
	unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0;
#else
	unsigned long base_addr = (unsigned long) dev->base_addr;
#endif
	int tries = 100;

	printk(KERN_ERR "%s base_addr %x, phy_id %x, reg %x, data %x\n",
		__func__, base_addr, phy_id, reg, data);
	/* Clear the MII interrupt bit */
	FEC_EIR(base_addr) = FEC_EIR_MII;

	/*  Write to the MII management frame register */
	FEC_MMFR(base_addr) = mk_mii_write(reg, data) | (phy_id << 23);

	/* Wait for the writing */
	while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) {
		udelay(10);
		if (!tries) {
			printk(KERN_ERR "%s timeout\n", __func__);
			return -ETIMEDOUT;
		}
		tries--;
	}
	/* Clear the MII interrupt bit */
	FEC_EIR(base_addr) = FEC_EIR_MII;
	ret = FEC_MMFR(base_addr) & 0x0000FFFF;

	return ret;
}

static void fec_adjust_link(struct net_device *dev)
{
	struct fec_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	int new_state = 0;

	if (phydev->link != PHY_DOWN) {
		if (phydev->duplex != priv->duplex) {
			new_state = 1;
			priv->duplex = phydev->duplex;
		}

		if (phydev->speed != priv->speed) {
			new_state = 1;
			priv->speed = phydev->speed;
		}

		if (priv->link == PHY_DOWN) {
			new_state = 1;
			priv->link = phydev->link;
		}
	} else if (priv->link) {
		new_state = 1;
		priv->link = PHY_DOWN;
		priv->speed = 0;
		priv->duplex = -1;
	}

	if (new_state)
		phy_print_status(phydev);
}

static int coldfire_fec_init_phy(struct net_device *dev)
{
	struct fec_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = NULL;
	int i;
	int startnode;

#ifdef CONFIG_FEC_548x_SHARED_PHY
	if (priv->index == 0)
		startnode = 0;
	else if (priv->index == 1) {
		struct fec_priv *priv0 = netdev_priv(fec_dev[0]);
		startnode = priv0->phydev->addr + 1;
	} else
		startnode = 0;
#else
	startnode = 0;
#endif
#ifdef FEC_DEBUG
	printk(KERN_ERR "%s priv->index %x, startnode %x\n",
		__func__, priv->index, startnode);
#endif
	/* search for connect PHY device */
	for (i = startnode; i < PHY_MAX_ADDR; i++) {
		struct phy_device *const tmp_phydev =
			priv->mdio_bus->phy_map[i];

		if (!tmp_phydev) {
#ifdef FEC_DEBUG
			printk(KERN_INFO "%s no PHY here at"
				"mii_bus->phy_map[%d]\n",
				__func__, i);
#endif
			continue; /* no PHY here... */
		}
		phydev = tmp_phydev;
#ifdef FEC_DEBUG
		printk(KERN_INFO "%s find PHY here at"
				"mii_bus->phy_map[%d]\n",
				__func__, i);
#endif
		break; /* found it */
	}

	/* now we are supposed to have a proper phydev, to attach to... */
	if (!phydev) {
		printk(KERN_INFO "%s: Don't found any phy device at all\n",
			dev->name);
		return -ENODEV;
	}

	priv->link = 0;
	priv->speed = 0;
	priv->duplex = 0;
#ifdef FEC_DEBUG
	printk(KERN_INFO "%s phydev_busid %s\n", __func__, dev_name(&phydev->dev));
#endif
	phydev = phy_connect(dev, dev_name(&phydev->dev),
			&fec_adjust_link, 0, PHY_INTERFACE_MODE_MII);
	if (IS_ERR(phydev)) {
		printk(KERN_ERR " %s phy_connect failed\n", __func__);
		return PTR_ERR(phydev);
	}

	printk(KERN_INFO "attached phy %i to driver %s\n",
	phydev->addr, phydev->drv->name);
	priv->phydev = phydev;
	return 0;
}

static int fec_mdio_register(struct net_device *dev,
	int slot)
{
	int err = 0;
	struct fec_priv *fp = netdev_priv(dev);

	fp->mdio_bus = mdiobus_alloc();
	if (!fp->mdio_bus) {
		printk(KERN_ERR "ethernet mdiobus_alloc fail\n");
		return -ENOMEM;
	}

	if (slot == 0) {
		fp->mdio_bus->name = "Coldfire FEC MII 0 Bus";
		strcpy(fp->mdio_bus->id, "0");
	} else if (slot == 1) {
		fp->mdio_bus->name = "Coldfire FEC MII 1 Bus";
		strcpy(fp->mdio_bus->id, "1");
	} else {
		printk(KERN_ERR "Now coldfire can not"
			"support more than 2 mii bus\n");
	}

	fp->mdio_bus->read = &coldfire_fec_mdio_read;
	fp->mdio_bus->write = &coldfire_fec_mdio_write;
	fp->mdio_bus->priv = dev;
	err = mdiobus_register(fp->mdio_bus);
	if (err) {
		mdiobus_free(fp->mdio_bus);
		printk(KERN_ERR "%s: ethernet mdiobus_register fail %d\n",
			dev->name, err);
		return -EIO;
	}

	printk(KERN_INFO "mdiobus_register %s ok\n",
		fp->mdio_bus->name);
	return err;
}

static const struct net_device_ops fec_netdev_ops = {
        .ndo_open		= fec_open,
        .ndo_stop		= fec_close,
        .ndo_start_xmit		= fec_tx,
        .ndo_set_multicast_list	= fec_set_multicast_list,
        .ndo_tx_timeout		= fec_tx_timeout,
        .ndo_get_stats		= fec_get_stat,
        .ndo_validate_addr	= eth_validate_addr,
        .ndo_set_mac_address	= fec_set_mac_address,
};

/*
 * Initialize a FEC device
 */
int fec_enet_init(struct net_device *dev, int slot)
{
	struct fec_priv *fp = netdev_priv(dev);
	int i;

	fp->index = slot;
	fp->netdev = dev;
	fec_dev[slot] = dev;

	if (slot == 0) {
		/* disable fec0 */
		FEC_ECR(FEC_BASE_ADDR_FEC0) = FEC_ECR_DISABLE;

		/* setup the interrupt handler */
		dev->irq = 64 + ISC_FEC0;

		if (request_irq(dev->irq, fec_interrupt_handler,
			IRQF_DISABLED, "ColdFire FEC 0", dev)) {
			dev->irq = 0;
			printk(KERN_ERR "Cannot allocate FEC0 IRQ\n");
		} else {
			/* interrupt priority and level */
			MCF_ICR(ISC_FEC0) = ILP_FEC0;
		}

		/* fec base address */
		dev->base_addr = FEC_BASE_ADDR_FEC0;

		/* requestor numbers */
		fp->fecpriv_rx_requestor = DMA_FEC0_RX;
		fp->fecpriv_tx_requestor = DMA_FEC0_TX;

		/* fec0 handlers */
		fp->fecpriv_interrupt_fec_rx_handler =
			fec_interrupt_fec_rx_handler_fec0;
		fp->fecpriv_interrupt_fec_tx_handler =
			fec_interrupt_fec_tx_handler_fec0;

		/* tx descriptors */
		fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC0;

		/* rx descriptors */
		fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC0;

		/* mac addr
		if (uboot_enet0[0] || uboot_enet0[1] || uboot_enet0[2] ||
		    uboot_enet0[3] || uboot_enet0[4] || uboot_enet0[5]) {
			 use uboot enet 0 addr
			memcpy(fec_mac_addr_fec0, uboot_enet0, 6);
		}*/
		fec_mac_addr_fec0[0] =
			(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF;
		fec_mac_addr_fec0[1] =
			(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF;
		fec_mac_addr_fec0[2] =
			(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 8) & 0xFF;
		fec_mac_addr_fec0[3] =
			(FEC_PALR(FEC_BASE_ADDR_FEC0)) & 0xFF;
		fec_mac_addr_fec0[4] =
			(FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF;
		fec_mac_addr_fec0[5] =
			(FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF;

		fp->fecpriv_mac_addr = fec_mac_addr_fec0;
	} else {
		/* disable fec1 */
		FEC_ECR(FEC_BASE_ADDR_FEC1) = FEC_ECR_DISABLE;
#ifdef FEC_2
		/* setup the interrupt handler */
		dev->irq = 64 + ISC_FEC1;

		if (request_irq(dev->irq, fec_interrupt_handler,
			IRQF_DISABLED, "ColdFire FEC 1", dev)) {
			dev->irq = 0;
			printk(KERN_ERR "Cannot allocate FEC1 IRQ\n");
		} else {
			/* interrupt priority and level */
			MCF_ICR(ISC_FEC1) = ILP_FEC1;
		}

		/* fec base address */
		dev->base_addr = FEC_BASE_ADDR_FEC1;

		/* requestor numbers */
		fp->fecpriv_rx_requestor = DMA_FEC1_RX;
		fp->fecpriv_tx_requestor = DMA_FEC1_TX;

		/* fec1 handlers */
		fp->fecpriv_interrupt_fec_rx_handler =
			fec_interrupt_fec_rx_handler_fec1;
		fp->fecpriv_interrupt_fec_tx_handler =
			fec_interrupt_fec_tx_handler_fec1;

		/* tx descriptors */
		fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC1;

		/* rx descriptors */
		fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC1;

		/* mac addr
		if (uboot_enet1[0] || uboot_enet1[1] || uboot_enet1[2] ||
		    uboot_enet1[3] || uboot_enet1[4] || uboot_enet1[5]) {
			use uboot enet 1 addr
			memcpy(fec_mac_addr_fec1, uboot_enet1, 6);
		}*/
		fec_mac_addr_fec1[0] =
			(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF;
		fec_mac_addr_fec1[1] =
			(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF;
		fec_mac_addr_fec1[2] =
			(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 8) & 0xFF;
		fec_mac_addr_fec1[3] =
			(FEC_PALR(FEC_BASE_ADDR_FEC1)) & 0xFF;
		fec_mac_addr_fec1[4] =
			(FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF;
		fec_mac_addr_fec1[5] =
			(FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF;

		fp->fecpriv_mac_addr = fec_mac_addr_fec1;
#endif
	}

	/* clear MIB */
	memset((void *) (dev->base_addr + 0x200), 0, FEC_MIB_LEN);

	/* clear the statistics structure */
	memset((void *) &(fp->fecpriv_stat), 0,
	       sizeof(struct net_device_stats));

	/* grab the FEC initiators */
	dma_set_initiator(fp->fecpriv_tx_requestor);
	fp->fecpriv_initiator_tx = dma_get_initiator(fp->fecpriv_tx_requestor);
	dma_set_initiator(fp->fecpriv_rx_requestor);
	fp->fecpriv_initiator_rx = dma_get_initiator(fp->fecpriv_rx_requestor);

	/* reset the DMA channels */
	fp->fecpriv_fec_rx_channel = -1;
	fp->fecpriv_fec_tx_channel = -1;

	for (i = 0; i < FEC_RX_BUF_NUMBER; i++)
		fp->askb_rx[i] = NULL;

	/* initialize the pointers to the socket buffers */
	for (i = 0; i < FEC_TX_BUF_NUMBER; i++)
		fp->fecpriv_txbuf[i] = NULL;

	ether_setup(dev);

	dev->netdev_ops = &fec_netdev_ops;
	dev->watchdog_timeo = FEC_TX_TIMEOUT * HZ;

	memcpy(dev->dev_addr, fp->fecpriv_mac_addr, ETH_ALEN);

	spin_lock_init(&fp->fecpriv_lock);

	/* Initialize FEC/I2C/IRQ Pin Assignment Register*/
	FEC_GPIO_PAR_FECI2CIRQ &= 0xF;
	FEC_GPIO_PAR_FECI2CIRQ |= FEC_FECI2CIRQ;

	return 0;
}

/*
 * Module Initialization
 */
int __init fec_init(void)
{
	struct net_device *dev;
	int i;
	int err;
	struct fec_priv *fep;
	DECLARE_MAC_BUF(mac);

	printk(KERN_INFO "FEC ENET (DMA) Version %s\n", VERSION);

	for (i = 0; i < FEC_MAX_PORTS; i++) {
		dev = alloc_etherdev(sizeof(struct fec_priv));
		if (!dev)
			return -ENOMEM;
		err = fec_enet_init(dev, i);
		if (err) {
			free_netdev(dev);
			continue;
		}

		fep = netdev_priv(dev);
		FEC_MSCR(dev->base_addr) = FEC_MII_SPEED;
#ifdef CONFIG_FEC_548x_SHARED_PHY
		if (i == 0)
			err = fec_mdio_register(dev, i);
		else {
			struct fec_priv *priv0 = netdev_priv(fec_dev[0]);
			fep->mdio_bus = priv0->mdio_bus;
			printk(KERN_INFO "FEC%d SHARED the %s ok\n",
				i, fep->mdio_bus->name);
		}
#else
		err = fec_mdio_register(dev, i);
#endif
		if (err) {
			printk(KERN_ERR "%s: ethernet fec_mdio_register\n",
				dev->name);
			free_netdev(dev);
			return -ENOMEM;
		}

		if (register_netdev(dev) != 0) {
			free_netdev(dev);
			return -EIO;
		}

		printk(KERN_INFO "%s: ethernet %s\n",
		       dev->name, print_mac(mac, dev->dev_addr));
	}
	return 0;
}

/*
 * Stop a device
 */
void fec_stop(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);

	dma_remove_initiator(fp->fecpriv_initiator_tx);
	dma_remove_initiator(fp->fecpriv_initiator_rx);

	if (dev->irq)
		free_irq(dev->irq, dev);
}

/************************************************************************
* NAME: fec_open
*
* DESCRIPTION: This function performs the initialization of
*				of FEC and corresponding KS8721 transiver
*
* RETURNS: If no error occurs, this function returns zero.
*************************************************************************/
int fec_open(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;
	int fduplex;
	int i;
	int channel;
	int error_code = -EBUSY;

	fp->link = 0;
	fp->duplex = 0;
	fp->speed = 0;
	coldfire_fec_init_phy(dev);
	phy_start(fp->phydev);

	/* Receive the DMA channels */
	channel = dma_set_channel_fec(fp->fecpriv_rx_requestor);

	if (channel == -1) {
		printk(KERN_ERR "Dma channel cannot be reserved\n");
		goto ERRORS;
	}

	fp->fecpriv_fec_rx_channel = channel;

	dma_connect(channel, (int) fp->fecpriv_interrupt_fec_rx_handler);

	channel = dma_set_channel_fec(fp->fecpriv_tx_requestor);

	if (channel == -1) {
		printk(KERN_ERR "Dma channel cannot be reserved\n");
		goto ERRORS;
	}

	fp->fecpriv_fec_tx_channel = channel;

	dma_connect(channel, (int) fp->fecpriv_interrupt_fec_tx_handler);

	/* init tasklet for controller reinitialization */
	tasklet_init(&fp->fecpriv_tasklet_reinit,
		fec_interrupt_fec_reinit, (unsigned long) dev);

	/* Reset FIFOs */
	FEC_FECFRST(base_addr) |= FEC_SW_RST | FEC_RST_CTL;
	FEC_FECFRST(base_addr) &= ~FEC_SW_RST;

	/* Reset and disable FEC */
	FEC_ECR(base_addr) = FEC_ECR_RESET;

	udelay(10);

	/* Clear all events */
	FEC_EIR(base_addr) = FEC_EIR_CLEAR;

	/* Reset FIFO status */
	FEC_FECTFSR(base_addr) = FEC_FECTFSR_MSK;
	FEC_FECRFSR(base_addr) = FEC_FECRFSR_MSK;

	/* Set the default address */
	FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) |
			      (fp->fecpriv_mac_addr[1] << 16) |
			      (fp->fecpriv_mac_addr[2] << 8) |
			      fp->fecpriv_mac_addr[3];
	FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) |
			      (fp->fecpriv_mac_addr[5] << 16) | 0x8808;

	/* Reset the group address descriptor */
	FEC_GALR(base_addr) = 0x00000000;
	FEC_GAUR(base_addr) = 0x00000000;

	/* Reset the individual address descriptor */
	FEC_IALR(base_addr) = 0x00000000;
	FEC_IAUR(base_addr) = 0x00000000;

	/* Set the receive control register */
	FEC_RCR(base_addr) = FEC_RCR_MAX_FRM_SIZE | FEC_RCR_MII;

	/* Set the receive FIFO control register */
	/*FEC_FECRFCR(base_addr) =
	* FEC_FECRFCR_FRM | FEC_FECRFCR_GR | FEC_FECRFCR_MSK;*/
	FEC_FECRFCR(base_addr) = FEC_FECRFCR_FRM | FEC_FECRFCR_GR
			| (FEC_FECRFCR_MSK
			/* disable all but ...*/
			& ~FEC_FECRFCR_FAE
			/* enable frame accept error*/
			& ~FEC_FECRFCR_RXW
			/* enable receive wait condition*/
			/*& ~FEC_FECRFCR_UF*/
			/* enable FIFO underflow*/
				);

	/* Set the receive FIFO alarm register */
	FEC_FECRFAR(base_addr) = FEC_FECRFAR_ALARM;

	/* Set the transmit FIFO control register */
	/*FEC_FECTFCR(base_addr) =
	FEC_FECTFCR_FRM | FEC_FECTFCR_GR | FEC_FECTFCR_MSK;*/
	FEC_FECTFCR(base_addr) = FEC_FECTFCR_FRM | FEC_FECTFCR_GR
			| (FEC_FECTFCR_MSK
			/* disable all but ... */
			& ~FEC_FECTFCR_FAE
			/* enable frame accept error */
			/* & ~FEC_FECTFCR_TXW */
			/*enable transmit wait condition*/
			/*& ~FEC_FECTFCR_UF*/
			/*enable FIFO underflow*/
			& ~FEC_FECTFCR_OF);
			/* enable FIFO overflow */

	/* Set the transmit FIFO alarm register */
	FEC_FECTFAR(base_addr) = FEC_FECTFAR_ALARM;

	/* Set the Tx FIFO watermark */
	FEC_FECTFWR(base_addr) = FEC_FECTFWR_XWMRK;

	/* Enable the transmitter to append the CRC */
	FEC_CTCWR(base_addr) = FEC_CTCWR_TFCW_CRC;

	/* Enable the ethernet interrupts */
	/*FEC_EIMR(base_addr) = FEC_EIMR_MASK;*/
	FEC_EIMR(base_addr) = FEC_EIMR_DISABLE
			| FEC_EIR_LC
			| FEC_EIR_RL
			| FEC_EIR_HBERR
			| FEC_EIR_XFUN
			| FEC_EIR_XFERR
			| FEC_EIR_RFERR;

#if 0
	error_code = init_transceiver(base_addr, &fduplex);
	if (error_code != 0) {
		printk(KERN_ERR "Initialization of the "
			"transceiver is failed\n");
		goto ERRORS;
	}
#else
	fduplex = 1;
#endif
	if (fduplex)
		/* Enable the full duplex mode */
		FEC_TCR(base_addr) = FEC_TCR_FDEN | FEC_TCR_HBC;
	else
		/* Disable reception of frames while transmitting */
		FEC_RCR(base_addr) |= FEC_RCR_DRT;

	/* Enable MIB */
	FEC_MIBC(base_addr) = FEC_MIBC_ENABLE;

	/* Enable FEC */
	FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;
	FEC_MSCR(dev->base_addr) = FEC_MII_SPEED;
	/* Initialize tx descriptors and start DMA for the transmission */
	for (i = 0; i < FEC_TX_BUF_NUMBER; i++)
		fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;

	fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;

	fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;

	MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
		     (unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
		     FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
		     FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
		     MCD_NO_CSUM | MCD_NO_BYTE_SWAP);

	/* Initialize rx descriptors and start DMA for the reception */
	for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
		fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16, GFP_DMA);
		if (!fp->askb_rx[i]) {
			fp->fecpriv_rxdesc[i].dataPointer = 0;
			fp->fecpriv_rxdesc[i].statCtrl = 0;
			fp->fecpriv_rxdesc[i].length = 0;
		} else {
			skb_reserve(fp->askb_rx[i], 16);
			fp->askb_rx[i]->dev = dev;
			fp->fecpriv_rxdesc[i].dataPointer =
			(unsigned int)virt_to_phys(fp->askb_rx[i]->tail);
			fp->fecpriv_rxdesc[i].statCtrl =
				MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT;
			fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE;
		}
	}

	fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
	fp->fecpriv_current_rx = 0;

	MCD_startDma(fp->fecpriv_fec_rx_channel, (char *) fp->fecpriv_rxdesc, 0,
		     (unsigned char *) &(FEC_FECRFDR(base_addr)), 0,
		     FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx,
		     FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT,
		     MCD_NO_CSUM | MCD_NO_BYTE_SWAP);

	netif_start_queue(dev);
	return 0;

ERRORS:

	/* Remove the channels and return with the error code */
	if (fp->fecpriv_fec_rx_channel != -1) {
		dma_disconnect(fp->fecpriv_fec_rx_channel);
		dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel);
		fp->fecpriv_fec_rx_channel = -1;
	}

	if (fp->fecpriv_fec_tx_channel != -1) {
		dma_disconnect(fp->fecpriv_fec_tx_channel);
		dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel);
		fp->fecpriv_fec_tx_channel = -1;
	}

	return error_code;
}

/************************************************************************
* NAME: fec_close
*
* DESCRIPTION: This function performs the graceful stop of the
*				transmission and disables FEC
*
* RETURNS: This function always returns zero.
*************************************************************************/
int fec_close(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;
	unsigned long time;
	int i;

	netif_stop_queue(dev);
	phy_disconnect(fp->phydev);
	phy_stop(fp->phydev);
	/* Perform the graceful stop */
	FEC_TCR(base_addr) |= FEC_TCR_GTS;

	time = jiffies;

	/* Wait for the graceful stop */
	while (!(FEC_EIR(base_addr) & FEC_EIR_GRA) && jiffies - time <
			(FEC_GR_TIMEOUT * HZ))
		schedule();

	/* Disable FEC */
	FEC_ECR(base_addr) = FEC_ECR_DISABLE;

	/* Reset the DMA channels */
	spin_lock_irq(&fp->fecpriv_lock);
	MCD_killDma(fp->fecpriv_fec_tx_channel);
	spin_unlock_irq(&fp->fecpriv_lock);
	dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel);
	dma_disconnect(fp->fecpriv_fec_tx_channel);
	fp->fecpriv_fec_tx_channel = -1;

	for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
		if (fp->fecpriv_txbuf[i]) {
			kfree(fp->fecpriv_txbuf[i]);
			fp->fecpriv_txbuf[i] = NULL;
		}
	}

	spin_lock_irq(&fp->fecpriv_lock);
	MCD_killDma(fp->fecpriv_fec_rx_channel);
	spin_unlock_irq(&fp->fecpriv_lock);

	dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel);
	dma_disconnect(fp->fecpriv_fec_rx_channel);
	fp->fecpriv_fec_rx_channel = -1;

	for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
		if (fp->askb_rx[i]) {
			kfree_skb(fp->askb_rx[i]);
			fp->askb_rx[i] = NULL;
		}
	}

	return 0;
}

/************************************************************************
* +NAME: fec_get_stat
*
* RETURNS: This function returns the statistical information.
*************************************************************************/
struct net_device_stats *fec_get_stat(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = dev->base_addr;

	/* Receive the statistical information */
	fp->fecpriv_stat.rx_packets = FECSTAT_RMON_R_PACKETS(base_addr);
	fp->fecpriv_stat.tx_packets = FECSTAT_RMON_T_PACKETS(base_addr);
	fp->fecpriv_stat.rx_bytes = FECSTAT_RMON_R_OCTETS(base_addr);
	fp->fecpriv_stat.tx_bytes = FECSTAT_RMON_T_OCTETS(base_addr);

	fp->fecpriv_stat.multicast = FECSTAT_RMON_R_MC_PKT(base_addr);
	fp->fecpriv_stat.collisions = FECSTAT_RMON_T_COL(base_addr);

	fp->fecpriv_stat.rx_length_errors =
		FECSTAT_RMON_R_UNDERSIZE(base_addr) +
		FECSTAT_RMON_R_OVERSIZE(base_addr) +
		FECSTAT_RMON_R_FRAG(base_addr) +
		FECSTAT_RMON_R_JAB(base_addr);
	fp->fecpriv_stat.rx_crc_errors = FECSTAT_IEEE_R_CRC(base_addr);
	fp->fecpriv_stat.rx_frame_errors = FECSTAT_IEEE_R_ALIGN(base_addr);
	fp->fecpriv_stat.rx_over_errors = FECSTAT_IEEE_R_MACERR(base_addr);

	fp->fecpriv_stat.tx_carrier_errors = FECSTAT_IEEE_T_CSERR(base_addr);
	fp->fecpriv_stat.tx_fifo_errors = FECSTAT_IEEE_T_MACERR(base_addr);
	fp->fecpriv_stat.tx_window_errors = FECSTAT_IEEE_T_LCOL(base_addr);

	/* I hope that one frame doesn't have more than one error */
	fp->fecpriv_stat.rx_errors = fp->fecpriv_stat.rx_length_errors +
		fp->fecpriv_stat.rx_crc_errors +
		fp->fecpriv_stat.rx_frame_errors +
		fp->fecpriv_stat.rx_over_errors +
		fp->fecpriv_stat.rx_dropped;
	fp->fecpriv_stat.tx_errors = fp->fecpriv_stat.tx_carrier_errors +
		fp->fecpriv_stat.tx_fifo_errors +
		fp->fecpriv_stat.tx_window_errors +
		fp->fecpriv_stat.tx_aborted_errors +
		fp->fecpriv_stat.tx_heartbeat_errors +
		fp->fecpriv_stat.tx_dropped;

	return &fp->fecpriv_stat;
}

/************************************************************************
* NAME: fec_set_multicast_list
*
* DESCRIPTION: This function sets the frame filtering parameters
*************************************************************************/
void fec_set_multicast_list(struct net_device *dev)
{
	struct dev_mc_list *dmi;
	unsigned int crc, data;
	int i, j, k;
	unsigned long base_addr = (unsigned long) dev->base_addr;

	if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI) {
		/* Allow all incoming frames */
		FEC_GALR(base_addr) = 0xFFFFFFFF;
		FEC_GAUR(base_addr) = 0xFFFFFFFF;
		return;
	}

	/* Reset the group address register */
	FEC_GALR(base_addr) = 0x00000000;
	FEC_GAUR(base_addr) = 0x00000000;

	/* Process all addresses */
	for (i = 0, dmi = dev->mc_list; i < dev->mc_count;
			i++, dmi = dmi->next) {
		/* Processing must be only for the group addresses */
		if (!(dmi->dmi_addr[0] & 1))
			continue;

		/* Calculate crc value for the current address */
		crc = 0xFFFFFFFF;
		for (j = 0; j < dmi->dmi_addrlen; j++) {
			for (k = 0, data = dmi->dmi_addr[j];
					k < 8;  k++, data >>= 1) {
				if ((crc ^ data) & 1)
					crc = (crc >> 1) ^ FEC_CRCPOL;
				else
					crc >>= 1;
			}
		}

		/* Add this value */
		crc >>= 26;
		crc &= 0x3F;
		if (crc > 31)
			FEC_GAUR(base_addr) |= 0x1 << (crc - 32);
		else
			FEC_GALR(base_addr) |= 0x1 << crc;
	}
}

/************************************************************************
* NAME: fec_set_mac_address
*
* DESCRIPTION: This function sets the MAC address
*************************************************************************/
int fec_set_mac_address(struct net_device *dev, void *p)
{
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;
	struct sockaddr *addr = p;

	if (netif_running(dev))
		return -EBUSY;

	/* Copy a new address to the device structure */
	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

	/* Copy a new address to the private structure */
	memcpy(fp->fecpriv_mac_addr, addr->sa_data, 6);

	/* Set the address to the registers */
	FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) |
		(fp->fecpriv_mac_addr[1] << 16) |
		(fp->fecpriv_mac_addr[2] << 8) |
		fp->fecpriv_mac_addr[3];
	FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) |
		(fp->fecpriv_mac_addr[5] << 16) |
		0x8808;

	return 0;
}

/************************************************************************
* NAME: fec_tx
*
* DESCRIPTION: This function starts transmission of the frame using DMA
*
* RETURNS: This function always returns zero.
*************************************************************************/
int fec_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);
	void *data, *data_aligned;
	int offset;

	data = kmalloc(skb->len + 15, GFP_DMA | GFP_ATOMIC);

	if (!data) {
		fp->fecpriv_stat.tx_dropped++;
		dev_kfree_skb(skb);
		return 0;
	}

	offset = (((unsigned long)virt_to_phys(data) + 15) & 0xFFFFFFF0) -
		(unsigned long)virt_to_phys(data);
	data_aligned = (void *)((unsigned long)data + offset);
	memcpy(data_aligned, skb->data, skb->len);

	/* flush data cache before initializing
	 * the descriptor and starting DMA */

	spin_lock_irq(&fp->fecpriv_lock);

	/* Initialize the descriptor */
	fp->fecpriv_txbuf[fp->fecpriv_next_tx] = data;
	fp->fecpriv_txdesc[fp->fecpriv_next_tx].dataPointer
		= (unsigned int) virt_to_phys(data_aligned);
	fp->fecpriv_txdesc[fp->fecpriv_next_tx].length = skb->len;
	fp->fecpriv_txdesc[fp->fecpriv_next_tx].statCtrl
		|= (MCD_FEC_END_FRAME | MCD_FEC_BUF_READY);
	fp->fecpriv_next_tx = (fp->fecpriv_next_tx + 1) & FEC_TX_INDEX_MASK;

	if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]
		&& fp->fecpriv_current_tx == fp->fecpriv_next_tx)
		netif_stop_queue(dev);

	spin_unlock_irq(&fp->fecpriv_lock);

	/* Tell the DMA to continue the transmission */
	MCD_continDma(fp->fecpriv_fec_tx_channel);

	dev_kfree_skb(skb);

	dev->trans_start = jiffies;

	return 0;
}

/************************************************************************
* NAME: fec_tx_timeout
*
* DESCRIPTION: If the interrupt processing of received frames was lost
*              and DMA stopped the reception, this function clears
*              the transmission descriptors and starts DMA
*
*************************************************************************/
void fec_tx_timeout(struct net_device *dev)
{
	int i;
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;

	spin_lock_irq(&fp->fecpriv_lock);
	MCD_killDma(fp->fecpriv_fec_tx_channel);
	for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
		if (fp->fecpriv_txbuf[i]) {
			kfree(fp->fecpriv_txbuf[i]);
			fp->fecpriv_txbuf[i] = NULL;
		}
		fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;
	}
	fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;

	fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;

    /* Reset FIFOs */
    FEC_FECFRST(base_addr) |= FEC_SW_RST;
    FEC_FECFRST(base_addr) &= ~FEC_SW_RST;

	/* Reset and disable FEC */
	/* FEC_ECR(base_addr) = FEC_ECR_RESET; */

	/* Enable FEC */
	FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;

	MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
		     (unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
		     FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
		     FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
		     MCD_NO_CSUM | MCD_NO_BYTE_SWAP);

	spin_unlock_irq(&fp->fecpriv_lock);

	netif_wake_queue(dev);

}

/************************************************************************
* NAME: fec_interrupt_tx_handler
*
* DESCRIPTION: This function is called when the data
*              transmission from the buffer to the FEC is completed.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);

	/* Release the socket buffer */
	if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) {
		kfree(fp->fecpriv_txbuf[fp->fecpriv_current_tx]);
		fp->fecpriv_txbuf[fp->fecpriv_current_tx] = NULL;
	}
	fp->fecpriv_current_tx =
		(fp->fecpriv_current_tx + 1) & FEC_TX_INDEX_MASK;

	if (MCD_dmaStatus(fp->fecpriv_fec_tx_channel) == MCD_DONE) {
		for (; fp->fecpriv_current_tx != fp->fecpriv_next_tx;
			fp->fecpriv_current_tx =
			(fp->fecpriv_current_tx + 1)
			& FEC_TX_INDEX_MASK) {
			if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) {
				kfree(fp->fecpriv_txbuf[
					fp->fecpriv_current_tx]);
				fp->fecpriv_txbuf[fp->fecpriv_current_tx]
					= NULL;
			}
		}
	}

	if (netif_queue_stopped(dev))
		netif_wake_queue(dev);
}

/************************************************************************
* NAME: fec_interrupt_rx_handler
*
* DESCRIPTION: This function is called when the data
*              reception from the FEC to the reception buffer is completed.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler(struct net_device *dev)
{
	struct fec_priv *fp = netdev_priv(dev);
	struct sk_buff *skb;
	int i;

	fp->fecpriv_rxflag = 1;
	/* Some buffers can be missed */
	if (!(fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl
			& MCD_FEC_END_FRAME)) {
		/* Find a valid index */
		for (i = 0; ((i < FEC_RX_BUF_NUMBER) &&
			!(fp->fecpriv_rxdesc[
			fp->fecpriv_current_rx].statCtrl
			& MCD_FEC_END_FRAME)); i++,
			(fp->fecpriv_current_rx =
			(fp->fecpriv_current_rx + 1)
			& FEC_RX_INDEX_MASK))
			;

		if (i == FEC_RX_BUF_NUMBER) {
			/* There are no data to process */
			/* Tell the DMA to continue the reception */
			MCD_continDma(fp->fecpriv_fec_rx_channel);

			fp->fecpriv_rxflag = 0;

			return;
		}
	}

	for (; fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl
			& MCD_FEC_END_FRAME;
		fp->fecpriv_current_rx = (fp->fecpriv_current_rx + 1)
						& FEC_RX_INDEX_MASK) {
		if ((fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length
			<= FEC_MAXBUF_SIZE) &&
			(fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length
				> 4)) {
			/* --tym-- */
			skb = fp->askb_rx[fp->fecpriv_current_rx];
			if (!skb)
				fp->fecpriv_stat.rx_dropped++;
			else {
			/*
			* flush data cache before initializing
			* the descriptor and starting DMA
			*/
				skb_put(skb,
					(fp->fecpriv_rxdesc[
					 fp->fecpriv_current_rx].length - 4));
				skb->protocol = eth_type_trans(skb, dev);
				netif_rx(skb);
			}
			fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl &=
				~MCD_FEC_END_FRAME;
			/* allocate new skbuff */
			fp->askb_rx[fp->fecpriv_current_rx] =
				alloc_skb(FEC_MAXBUF_SIZE + 16,
					/*GFP_ATOMIC |*/ GFP_DMA);
			if (!fp->askb_rx[fp->fecpriv_current_rx]) {
				fp->fecpriv_rxdesc[
				fp->fecpriv_current_rx].dataPointer
					= 0;
				fp->fecpriv_rxdesc[
					fp->fecpriv_current_rx].length = 0;
				fp->fecpriv_stat.rx_dropped++;
			} else {
				skb_reserve(
				fp->askb_rx[fp->fecpriv_current_rx], 16);
				fp->askb_rx[fp->fecpriv_current_rx]->dev = dev;

				/*
				 * flush data cache before initializing
				 * the descriptor and starting DMA
				 */

				fp->fecpriv_rxdesc[
					fp->fecpriv_current_rx].dataPointer =
					(unsigned int) virt_to_phys(
					fp->askb_rx[
						fp->fecpriv_current_rx]->tail);
				fp->fecpriv_rxdesc[
					fp->fecpriv_current_rx].length =
					FEC_MAXBUF_SIZE;
				fp->fecpriv_rxdesc[
					fp->fecpriv_current_rx].statCtrl |=
					MCD_FEC_BUF_READY;

				/*
				 * flush data cache before initializing
				 * the descriptor and starting DMA
				 */
			}
		}

	}

	/* Tell the DMA to continue the reception */
	MCD_continDma(fp->fecpriv_fec_rx_channel);

	fp->fecpriv_rxflag = 0;
}

/************************************************************************
* NAME: fec_interrupt_handler
*
* DESCRIPTION: This function is called when some special errors occur
*
*************************************************************************/
irqreturn_t fec_interrupt_handler(int irq, void *dev_id)
{

	struct net_device *dev = (struct net_device *)dev_id;
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;
	unsigned long events;

	/* Read and clear the events */
	events = FEC_EIR(base_addr) & FEC_EIMR(base_addr);

	if (events & FEC_EIR_HBERR) {
		fp->fecpriv_stat.tx_heartbeat_errors++;
		FEC_EIR(base_addr) = FEC_EIR_HBERR;
	}

	/* receive/transmit FIFO error */
	if (((events & FEC_EIR_RFERR) != 0)
		|| ((events & FEC_EIR_XFERR) != 0)) {
		/* kill DMA receive channel */
		MCD_killDma(fp->fecpriv_fec_rx_channel);

		/* kill running transmission by DMA */
		MCD_killDma(fp->fecpriv_fec_tx_channel);

		/* Reset FIFOs */
		FEC_FECFRST(base_addr) |= FEC_SW_RST;
		FEC_FECFRST(base_addr) &= ~FEC_SW_RST;

		/* reset receive FIFO status register */
		FEC_FECRFSR(base_addr) = FEC_FECRFSR_FAE |
					 FEC_FECRFSR_RXW |
					 FEC_FECRFSR_UF;

		/* reset transmit FIFO status register */
		FEC_FECTFSR(base_addr) = FEC_FECTFSR_FAE |
					 FEC_FECTFSR_TXW |
					 FEC_FECTFSR_UF |
					 FEC_FECTFSR_OF;

		/* reset RFERR and XFERR event */
		FEC_EIR(base_addr) = FEC_EIR_RFERR | FEC_EIR_XFERR;

		/* stop queue */
		netif_stop_queue(dev);

		/* execute reinitialization as tasklet */
		tasklet_schedule(&fp->fecpriv_tasklet_reinit);

		fp->fecpriv_stat.rx_dropped++;
	}

	/* transmit FIFO underrun */
	if ((events & FEC_EIR_XFUN) != 0) {
		/* reset XFUN event */
		FEC_EIR(base_addr) = FEC_EIR_XFUN;
		fp->fecpriv_stat.tx_aborted_errors++;
	}

	/* late collision */
	if ((events & FEC_EIR_LC) != 0) {
		/* reset LC event */
		FEC_EIR(base_addr) = FEC_EIR_LC;
		fp->fecpriv_stat.tx_aborted_errors++;
	}

	/* collision retry limit */
	if ((events & FEC_EIR_RL) != 0) {
		/* reset RL event */
		FEC_EIR(base_addr) = FEC_EIR_RL;
		fp->fecpriv_stat.tx_aborted_errors++;
	}
	return 0;
}

/************************************************************************
* NAME: fec_interrupt_reinit
*
* DESCRIPTION: This function is called from interrupt handler
*              when controller must be reinitialized.
*
*************************************************************************/
void fec_interrupt_fec_reinit(unsigned long data)
{
	int i;
	struct net_device *dev = (struct net_device *)data;
	struct fec_priv *fp = netdev_priv(dev);
	unsigned long base_addr = (unsigned long) dev->base_addr;

	/* Initialize reception descriptors and start DMA for the reception */
	for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
		if (!fp->askb_rx[i]) {
			fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16,
					GFP_ATOMIC | GFP_DMA);
			if (!fp->askb_rx[i]) {
				fp->fecpriv_rxdesc[i].dataPointer = 0;
				fp->fecpriv_rxdesc[i].statCtrl = 0;
				fp->fecpriv_rxdesc[i].length = 0;
				continue;
			}
			fp->askb_rx[i]->dev = dev;
			skb_reserve(fp->askb_rx[i], 16);
		}
		fp->fecpriv_rxdesc[i].dataPointer =
			(unsigned int) virt_to_phys(fp->askb_rx[i]->tail);
		fp->fecpriv_rxdesc[i].statCtrl =
			MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT;
		fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE;
	}

	fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
	fp->fecpriv_current_rx = 0;

	/* restart frame transmission */
	for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
		if (fp->fecpriv_txbuf[i]) {
			kfree(fp->fecpriv_txbuf[i]);
			fp->fecpriv_txbuf[i] = NULL;
			fp->fecpriv_stat.tx_dropped++;
		}
		fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;
	}
	fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
	fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;

	/* flush entire data cache before restarting the DMA */

	/* restart DMA from beginning */
	MCD_startDma(fp->fecpriv_fec_rx_channel,
		     (char *) fp->fecpriv_rxdesc, 0,
		     (unsigned char *) &(FEC_FECRFDR(base_addr)), 0,
		     FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx,
		     FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT,
		     MCD_NO_CSUM | MCD_NO_BYTE_SWAP);

	MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
		     (unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
		     FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
		     FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
		     MCD_NO_CSUM | MCD_NO_BYTE_SWAP);

	/* Enable FEC */
	FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;

	netif_wake_queue(dev);
}

/************************************************************************
* NAME: fec_interrupt_tx_handler_fec0
*
* DESCRIPTION: This is the DMA interrupt handler using  for FEC0
*              transmission.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler_fec0(void)
{
	fec_interrupt_fec_tx_handler(fec_dev[0]);
}

#ifdef FEC_2
/************************************************************************
* NAME: fec_interrupt_tx_handler_fec1
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC1
*              transmission.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler_fec1(void)
{
	fec_interrupt_fec_tx_handler(fec_dev[1]);
}
#endif

/************************************************************************
* NAME: fec_interrupt_rx_handler_fec0
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC0
*              reception.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler_fec0(void)
{
	fec_interrupt_fec_rx_handler(fec_dev[0]);
}

#ifdef FEC_2
/************************************************************************
* NAME: fec_interrupt_rx_handler_fec1
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC1
*              reception.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler_fec1(void)
{
	fec_interrupt_fec_rx_handler(fec_dev[1]);
}

#endif

#ifndef MODULE
/************************************************************************
* NAME: fec_mac_setup0
*
* DESCRIPTION: This function sets the MAC address of FEC0 from command line
*
*************************************************************************/
int __init fec_mac_setup0(char *s)
{
	if (!s || !*s)
		return 1;

	if (fec_str_to_mac(s, fec_mac_addr_fec0))
		printk(KERN_ERR "The MAC address of FEC0 "
			"cannot be set from command line");
	return 1;
}

#ifdef FEC_2

/************************************************************************
* NAME: fec_mac_setup1
*
* DESCRIPTION: This function sets the MAC address of FEC1 from command line
*
*************************************************************************/
int __init fec_mac_setup1(char *s)
{
	if (!s || !*s)
		return 1;

	if (fec_str_to_mac(s, fec_mac_addr_fec1))
		printk(KERN_ERR "The MAC address of FEC1 "
			"cannot be set from command line\n");
	return 1;
}
#endif

/************************************************************************
* NAME: fec_str_to_mac
*
* DESCRIPTION: This function interprets the character string into MAC addr
*
*************************************************************************/
int fec_str_to_mac(char *str_mac, unsigned char* addr)
{
	unsigned long val;
	char c;
	unsigned long octet[6], *octetptr = octet;
	int i;

again:
	val = 0;
	while ((c = *str_mac) != '\0') {
		if ((c >= '0') && (c <= '9')) {
			val = (val * 16) + (c - '0');
			str_mac++;
			continue;
		} else if (((c >= 'a') && (c <= 'f'))
			|| ((c >= 'A') && (c <= 'F'))) {
			val = (val << 4) +
				(c + 10 -
				(((c >= 'a') && (c <= 'f')) ? 'a' : 'A'));
			str_mac++;
			continue;
		}
		break;
	}
	if (*str_mac == ':') {
		*octetptr++ = val, str_mac++;
		if (octetptr >= octet + 6)
			return 1;
		goto again;
	}

	/* Check for trailing characters */
	if (*str_mac && !(*str_mac == ' '))
		return 1;

	*octetptr++ = val;

	if ((octetptr - octet) == 6) {
		for (i = 0; i <= 6; i++)
			addr[i] = octet[i];
	} else
		return 1;

	return 0;
}
#endif