/* ==========================================================================
 * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
 * $Revision: #75 $
 * $Date: 2008/07/15 $
 * $Change: 1064940 $
 *
 * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
 * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
 * otherwise expressly agreed to in writing between Synopsys and you.
 *
 * The Software IS NOT an item of Licensed Software or Licensed Product under
 * any End User Software License Agreement or Agreement for Licensed Product
 * with Synopsys or any supplement thereto. You are permitted to use and
 * redistribute this Software in source and binary forms, with or without
 * modification, provided that redistributions of source code must retain this
 * notice. You may not view, use, disclose, copy or distribute this file or
 * any information contained herein except pursuant to this license grant from
 * Synopsys. If you do not agree with this notice, including the disclaimer
 * below, then you are not authorized to use the Software.
 *
 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 * ========================================================================== */
#ifndef DWC_DEVICE_ONLY

/**
 * @file
 *
 * This file contains the implementation of the HCD. In Linux, the HCD
 * implements the hc_driver API.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/version.h>

#include <mach/irqs.h>

#include "otg_driver.h"
#include "otg_hcd.h"
#include "otg_regs.h"

static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";

static const struct hc_driver dwc_otg_hc_driver = {

	.description =		dwc_otg_hcd_name,
	.product_desc = 	"DWC OTG Controller",
	.hcd_priv_size = 	sizeof(dwc_otg_hcd_t),
	.irq =			dwc_otg_hcd_irq,
	.flags =		HCD_MEMORY | HCD_USB2,
	.start =		dwc_otg_hcd_start,
	.stop =			dwc_otg_hcd_stop,
	.urb_enqueue =		dwc_otg_hcd_urb_enqueue,
	.urb_dequeue =		dwc_otg_hcd_urb_dequeue,
	.endpoint_disable =	dwc_otg_hcd_endpoint_disable,
	.get_frame_number =	dwc_otg_hcd_get_frame_number,
	.hub_status_data =	dwc_otg_hcd_hub_status_data,
	.hub_control =		dwc_otg_hcd_hub_control,
};

/**
 * Work queue function for starting the HCD when A-Cable is connected.
 * The dwc_otg_hcd_start() must be called in a process context.
 */
static void hcd_start_func(struct work_struct *_work)
{
	struct delayed_work *dw = container_of(_work, struct delayed_work, work);
	struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
	struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
	DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
	if (usb_hcd) {
		dwc_otg_hcd_start(usb_hcd);
	}
}

/**
 * HCD Callback function for starting the HCD when A-Cable is
 * connected.
 *
 * @param p void pointer to the <code>struct usb_hcd</code>
 */
static int32_t dwc_otg_hcd_start_cb(void *p)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
	hprt0_data_t hprt0;

	if (core_if->op_state == B_HOST) {
		/*
		 * Reset the port.  During a HNP mode switch the reset
		 * needs to occur within 1ms and have a duration of at
		 * least 50ms.
		 */
		hprt0.d32 = dwc_otg_read_hprt0(core_if);
		hprt0.b.prtrst = 1;
		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
		((struct usb_hcd *)p)->self.is_b_host = 1;
	} else {
		((struct usb_hcd *)p)->self.is_b_host = 0;
	}

	/* Need to start the HCD in a non-interrupt context. */
//	INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
	INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
//	schedule_work(&dwc_otg_hcd->start_work);
	queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);

	return 1;
}

/**
 * HCD Callback function for stopping the HCD.
 *
 * @param p void pointer to the <code>struct usb_hcd</code>
 */
static int32_t dwc_otg_hcd_stop_cb(void *p)
{
	struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
	dwc_otg_hcd_stop(usb_hcd);
	return 1;
}

static void del_xfer_timers(dwc_otg_hcd_t *hcd)
{
#ifdef DEBUG
	int i;
	int num_channels = hcd->core_if->core_params->host_channels;
	for (i = 0; i < num_channels; i++) {
		del_timer(&hcd->core_if->hc_xfer_timer[i]);
	}
#endif
}

static void del_timers(dwc_otg_hcd_t *hcd)
{
	del_xfer_timers(hcd);
	del_timer(&hcd->conn_timer);
}

/**
 * Processes all the URBs in a single list of QHs. Completes them with
 * -ETIMEDOUT and frees the QTD.
 */
static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
{
	struct list_head	*qh_item;
	dwc_otg_qh_t		*qh;
	struct list_head	*qtd_item;
	dwc_otg_qtd_t		*qtd;
	unsigned long		flags;

	SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
	list_for_each(qh_item, qh_list) {
		qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
		for (qtd_item = qh->qtd_list.next;
		     qtd_item != &qh->qtd_list;
		     qtd_item = qh->qtd_list.next) {
			qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
			if (qtd->urb != NULL) {
				dwc_otg_hcd_complete_urb(hcd, qtd->urb,
							 -ETIMEDOUT);
			}
			dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
		}
	}
	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
}

/**
 * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
 * and periodic schedules. The QTD associated with each URB is removed from
 * the schedule and freed. This function may be called when a disconnect is
 * detected or when the HCD is being stopped.
 */
static void kill_all_urbs(dwc_otg_hcd_t *hcd)
{
	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
}

/**
 * HCD Callback function for disconnect of the HCD.
 *
 * @param p void pointer to the <code>struct usb_hcd</code>
 */
static int32_t dwc_otg_hcd_disconnect_cb(void *p)
{
	gintsts_data_t 	intr;
	dwc_otg_hcd_t 	*dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);

	//DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);

	/*
	 * Set status flags for the hub driver.
	 */
	dwc_otg_hcd->flags.b.port_connect_status_change = 1;
	dwc_otg_hcd->flags.b.port_connect_status = 0;

	/*
	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
	 * interrupt mask and status bits and disabling subsequent host
	 * channel interrupts.
	 */
	intr.d32 = 0;
	intr.b.nptxfempty = 1;
	intr.b.ptxfempty = 1;
	intr.b.hcintr = 1;
	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);

	del_timers(dwc_otg_hcd);

	/*
	 * Turn off the vbus power only if the core has transitioned to device
	 * mode. If still in host mode, need to keep power on to detect a
	 * reconnection.
	 */
	if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
		if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
			hprt0_data_t hprt0 = { .d32=0 };
			DWC_PRINT("Disconnect: PortPower off\n");
			hprt0.b.prtpwr = 0;
			dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
		}

		dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
	}

	/* Respond with an error status to all URBs in the schedule. */
	kill_all_urbs(dwc_otg_hcd);

	if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
		/* Clean up any host channels that were in use. */
		int			num_channels;
		int			i;
		dwc_hc_t		*channel;
		dwc_otg_hc_regs_t	*hc_regs;
		hcchar_data_t		hcchar;

		num_channels = dwc_otg_hcd->core_if->core_params->host_channels;

		if (!dwc_otg_hcd->core_if->dma_enable) {
			/* Flush out any channel requests in slave mode. */
			for (i = 0; i < num_channels; i++) {
				channel = dwc_otg_hcd->hc_ptr_array[i];
				if (list_empty(&channel->hc_list_entry)) {
					hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
					hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
					if (hcchar.b.chen) {
						hcchar.b.chen = 0;
						hcchar.b.chdis = 1;
						hcchar.b.epdir = 0;
						dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
					}
				}
			}
		}

		for (i = 0; i < num_channels; i++) {
			channel = dwc_otg_hcd->hc_ptr_array[i];
			if (list_empty(&channel->hc_list_entry)) {
				hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
				if (hcchar.b.chen) {
					/* Halt the channel. */
					hcchar.b.chdis = 1;
					dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
				}

				dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
				list_add_tail(&channel->hc_list_entry,
					      &dwc_otg_hcd->free_hc_list);
			}
		}
	}

	/* A disconnect will end the session so the B-Device is no
	 * longer a B-host. */
	((struct usb_hcd *)p)->self.is_b_host = 0;
	return 1;
}

/**
 * Connection timeout function.  An OTG host is required to display a
 * message if the device does not connect within 10 seconds.
 */
void dwc_otg_hcd_connect_timeout(unsigned long ptr)
{
	DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
	DWC_PRINT("Connect Timeout\n");
	DWC_ERROR("Device Not Connected/Responding\n");
}

/**
 * Start the connection timer.  An OTG host is required to display a
 * message if the device does not connect within 10 seconds.  The
 * timer is deleted if a port connect interrupt occurs before the
 * timer expires.
 */
static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
{
	init_timer(&hcd->conn_timer);
	hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
	hcd->conn_timer.data = 0;
	hcd->conn_timer.expires = jiffies + (HZ * 10);
	add_timer(&hcd->conn_timer);
}

/**
 * HCD Callback function for disconnect of the HCD.
 *
 * @param p void pointer to the <code>struct usb_hcd</code>
 */
static int32_t dwc_otg_hcd_session_start_cb(void *p)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
	dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
	return 1;
}

/**
 * HCD Callback structure for handling mode switching.
 */
static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
	.start = dwc_otg_hcd_start_cb,
	.stop = dwc_otg_hcd_stop_cb,
	.disconnect = dwc_otg_hcd_disconnect_cb,
	.session_start = dwc_otg_hcd_session_start_cb,
	.p = 0,
};

/**
 * Reset tasklet function
 */
static void reset_tasklet_func(unsigned long data)
{
	dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
	hprt0_data_t hprt0;

	DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");

	hprt0.d32 = dwc_otg_read_hprt0(core_if);
	hprt0.b.prtrst = 1;
	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
	mdelay(60);

	hprt0.b.prtrst = 0;
	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
	dwc_otg_hcd->flags.b.port_reset_change = 1;
}

static struct tasklet_struct reset_tasklet = {
	.next = NULL,
	.state = 0,
	.count = ATOMIC_INIT(0),
	.func = reset_tasklet_func,
	.data = 0,
};

/**
 * Initializes the HCD. This function allocates memory for and initializes the
 * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
 * USB bus with the core and calls the hc_driver->start() function. It returns
 * a negative error on failure.
 */
int dwc_otg_hcd_init(struct platform_device *pdev)
{
	struct usb_hcd *hcd = NULL;
	dwc_otg_hcd_t *dwc_otg_hcd = NULL;
	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);

	int 		num_channels;
	int 		i;
	dwc_hc_t	*channel;

	int retval = 0;

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");

	/* Set device flags indicating whether the HCD supports DMA. */
	if (otg_dev->core_if->dma_enable) {
		DWC_PRINT("Using DMA mode\n");

		if (otg_dev->core_if->dma_desc_enable) {
			DWC_PRINT("Device using Descriptor DMA mode\n");
		} else {
			DWC_PRINT("Device using Buffer DMA mode\n");
		}
	}
	/*
	 * Allocate memory for the base HCD plus the DWC OTG HCD.
	 * Initialize the base HCD.
	 */

	hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
	if (!hcd) {
		retval = -ENOMEM;
		goto error1;
	}

	hcd->regs = otg_dev->base;
	hcd->self.otg_port = 1;

	/* Integrate TT in root hub, by default this is disbled. */
	hcd->has_tt = 1;

	/* Initialize the DWC OTG HCD. */
	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	dwc_otg_hcd->core_if = otg_dev->core_if;
	otg_dev->hcd = dwc_otg_hcd;
	init_hcd_usecs(dwc_otg_hcd);

	/* */
	spin_lock_init(&dwc_otg_hcd->lock);

	/* Register the HCD CIL Callbacks */
	dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
					   &hcd_cil_callbacks, hcd);

	/* Initialize the non-periodic schedule. */
	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);

	/* Initialize the periodic schedule. */
	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);

	/*
	 * Create a host channel descriptor for each host channel implemented
	 * in the controller. Initialize the channel descriptor array.
	 */
	INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
	num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
	memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
	for (i = 0; i < num_channels; i++) {
		channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
		if (channel == NULL) {
			retval = -ENOMEM;
			DWC_ERROR("%s: host channel allocation failed\n", __func__);
			goto error2;
		}
		memset(channel, 0, sizeof(dwc_hc_t));
		channel->hc_num = i;
		dwc_otg_hcd->hc_ptr_array[i] = channel;
#ifdef DEBUG
		init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
#endif
		DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
	}

	/* Initialize the Connection timeout timer. */
	init_timer(&dwc_otg_hcd->conn_timer);

	/* Initialize reset tasklet. */
	reset_tasklet.data = (unsigned long) dwc_otg_hcd;
	dwc_otg_hcd->reset_tasklet = &reset_tasklet;

	/*
	 * Finish generic HCD initialization and start the HCD. This function
	 * allocates the DMA buffer pool, registers the USB bus, requests the
	 * IRQ line, and calls dwc_otg_hcd_start method.
	 */
	retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
	if (retval < 0) {
		goto error2;
	}

	/*
	 * Allocate space for storing data on status transactions. Normally no
	 * data is sent, but this space acts as a bit bucket. This must be
	 * done after usb_add_hcd since that function allocates the DMA buffer
	 * pool.
	 */
	if (otg_dev->core_if->dma_enable) {
		dwc_otg_hcd->status_buf =
			dma_alloc_coherent(&pdev->dev,
					   DWC_OTG_HCD_STATUS_BUF_SIZE,
					   &dwc_otg_hcd->status_buf_dma,
					   GFP_KERNEL | GFP_DMA);
	} else {
		dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
						  GFP_KERNEL);
	}
	if (!dwc_otg_hcd->status_buf) {
		retval = -ENOMEM;
		DWC_ERROR("%s: status_buf allocation failed\n", __func__);
		goto error3;
	}

	dwc_otg_hcd->otg_dev = otg_dev;

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
		    hcd->self.busnum);
	return 0;

	/* Error conditions */
 error3:
	usb_remove_hcd(hcd);
 error2:
	dwc_otg_hcd_free(hcd);
	usb_put_hcd(hcd);
 error1:
	return retval;
}

/**
 * Removes the HCD.
 * Frees memory and resources associated with the HCD and deregisters the bus.
 */
void dwc_otg_hcd_remove(struct platform_device *pdev)
{
	dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
	dwc_otg_hcd_t *dwc_otg_hcd;
	struct usb_hcd *hcd;

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");

	if (!otg_dev) {
		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
		return;
	}

	dwc_otg_hcd = otg_dev->hcd;

	if (!dwc_otg_hcd) {
		DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
		return;
	}

	hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);

	if (!hcd) {
		DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
		return;
	}

	/* Turn off all interrupts */
	dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);

	usb_remove_hcd(hcd);
	dwc_otg_hcd_free(hcd);
	usb_put_hcd(hcd);
}

/* =========================================================================
 *  Linux HC Driver Functions
 * ========================================================================= */

/**
 * Initializes dynamic portions of the DWC_otg HCD state.
 */
static void hcd_reinit(dwc_otg_hcd_t *hcd)
{
	struct list_head 	*item;
	int			num_channels;
	int			i;
	dwc_hc_t		*channel;

	hcd->flags.d32 = 0;

	hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
	hcd->non_periodic_channels = 0;
	hcd->periodic_channels = 0;

	/*
	 * Put all channels in the free channel list and clean up channel
	 * states.
	 */
	item = hcd->free_hc_list.next;
	while (item != &hcd->free_hc_list) {
		list_del(item);
		item = hcd->free_hc_list.next;
	}
	num_channels = hcd->core_if->core_params->host_channels;
	for (i = 0; i < num_channels; i++) {
		channel = hcd->hc_ptr_array[i];
		list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
		dwc_otg_hc_cleanup(hcd->core_if, channel);
	}

	/* Initialize the DWC core for host mode operation. */
	dwc_otg_core_host_init(hcd->core_if);
}

/** Initializes the DWC_otg controller and its root hub and prepares it for host
 * mode operation. Activates the root port. Returns 0 on success and a negative
 * error code on failure. */
int dwc_otg_hcd_start(struct usb_hcd *hcd)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
  	struct usb_bus *bus;


	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");

	bus = hcd_to_bus(hcd);

	/* Initialize the bus state.  If the core is in Device Mode
	 * HALT the USB bus and return. */
	if (dwc_otg_is_device_mode(core_if)) {
		hcd->state = HC_STATE_RUNNING;
		return 0;
	}
	hcd->state = HC_STATE_RUNNING;

	/* Initialize and connect root hub if one is not already attached */
	if (bus->root_hub) {
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
		/* Inform the HUB driver to resume. */
		usb_hcd_resume_root_hub(hcd);
	}
	else {
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
	}

	hcd_reinit(dwc_otg_hcd);

	return 0;
}

static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
{
	struct list_head 	*item;
	dwc_otg_qh_t		*qh;
	unsigned long flags;

	if (!qh_list->next) {
		/* The list hasn't been initialized yet. */
		return;
	}

	/* Ensure there are no QTDs or URBs left. */
	kill_urbs_in_qh_list(hcd, qh_list);

	SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
	for (item = qh_list->next; item != qh_list; item = qh_list->next) {
		qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
		dwc_otg_hcd_qh_remove_and_free(hcd, qh);
	}
	SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
}

/**
 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
 * stopped.
 */
void dwc_otg_hcd_stop(struct usb_hcd *hcd)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	hprt0_data_t hprt0 = { .d32=0 };

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");

	/* Turn off all host-specific interrupts. */
	dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);

	/*
	 * The root hub should be disconnected before this function is called.
	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
	 * and the QH lists (via ..._hcd_endpoint_disable).
	 */

	/* Turn off the vbus power */
	DWC_PRINT("PortPower off\n");
	hprt0.b.prtpwr = 0;
	dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
}

/** Returns the current frame number. */
int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	hfnum_data_t hfnum;

	hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
				   host_if->host_global_regs->hfnum);

#ifdef DEBUG_SOF
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
#endif
	return hfnum.b.frnum;
}

/**
 * Frees secondary storage associated with the dwc_otg_hcd structure contained
 * in the struct usb_hcd field.
 */
void dwc_otg_hcd_free(struct usb_hcd *hcd)
{
	dwc_otg_hcd_t 	*dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	int		i;

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");

	del_timers(dwc_otg_hcd);

	/* Free memory for QH/QTD lists */
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);

	/* Free memory for the host channels. */
	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
		dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
		if (hc != NULL) {
			DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
			kfree(hc);
		}
	}

	if (dwc_otg_hcd->core_if->dma_enable) {
		if (dwc_otg_hcd->status_buf_dma) {
			dma_free_coherent(hcd->self.controller,
					  DWC_OTG_HCD_STATUS_BUF_SIZE,
					  dwc_otg_hcd->status_buf,
					  dwc_otg_hcd->status_buf_dma);
		}
	} else if (dwc_otg_hcd->status_buf != NULL) {
		kfree(dwc_otg_hcd->status_buf);
	}
}

#ifdef DEBUG
static void dump_urb_info(struct urb *urb, char* fn_name)
{
	DWC_PRINT("%s, urb %p\n", fn_name, urb);
	DWC_PRINT("  Device address: %d\n", usb_pipedevice(urb->pipe));
	DWC_PRINT("  Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
		  (usb_pipein(urb->pipe) ? "IN" : "OUT"));
	DWC_PRINT("  Endpoint type: %s\n",
		  ({char *pipetype;
		    switch (usb_pipetype(urb->pipe)) {
		    case PIPE_CONTROL: pipetype = "CONTROL"; break;
		    case PIPE_BULK: pipetype = "BULK"; break;
		    case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
		    case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
		    default: pipetype = "UNKNOWN"; break;
		   }; pipetype;}));
	DWC_PRINT("  Speed: %s\n",
		  ({char *speed;
		    switch (urb->dev->speed) {
		    case USB_SPEED_HIGH: speed = "HIGH"; break;
		    case USB_SPEED_FULL: speed = "FULL"; break;
		    case USB_SPEED_LOW: speed = "LOW"; break;
		    default: speed = "UNKNOWN"; break;
		   }; speed;}));
	DWC_PRINT("  Max packet size: %d\n",
		  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
	DWC_PRINT("  Data buffer length: %d\n", urb->transfer_buffer_length);
	DWC_PRINT("  Transfer buffer: %p, Transfer DMA: %p\n",
		  urb->transfer_buffer, (void *)urb->transfer_dma);
	DWC_PRINT("  Setup buffer: %p, Setup DMA: %p\n",
		  urb->setup_packet, (void *)urb->setup_dma);
	DWC_PRINT("  Interval: %d\n", urb->interval);
	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
		int i;
		for (i = 0; i < urb->number_of_packets;  i++) {
			DWC_PRINT("  ISO Desc %d:\n", i);
			DWC_PRINT("    offset: %d, length %d\n",
				  urb->iso_frame_desc[i].offset,
				  urb->iso_frame_desc[i].length);
		}
	}
}

static void dump_channel_info(dwc_otg_hcd_t *hcd,
			      dwc_otg_qh_t *qh)
{
	if (qh->channel != NULL) {
		dwc_hc_t *hc = qh->channel;
		struct list_head *item;
		dwc_otg_qh_t *qh_item;
		int num_channels = hcd->core_if->core_params->host_channels;
		int i;

		dwc_otg_hc_regs_t *hc_regs;
		hcchar_data_t 	hcchar;
		hcsplt_data_t	hcsplt;
		hctsiz_data_t 	hctsiz;
		uint32_t	hcdma;

		hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
		hcdma = dwc_read_reg32(&hc_regs->hcdma);

		DWC_PRINT("  Assigned to channel %p:\n", hc);
		DWC_PRINT("    hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
		DWC_PRINT("    hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
		DWC_PRINT("    qh: %p\n", hc->qh);
		DWC_PRINT("  NP inactive sched:\n");
		list_for_each(item, &hcd->non_periodic_sched_inactive) {
			qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
			DWC_PRINT("    %p\n", qh_item);
		}
		DWC_PRINT("  NP active sched:\n");
		list_for_each(item, &hcd->non_periodic_sched_active) {
			qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
			DWC_PRINT("    %p\n", qh_item);
		}
		DWC_PRINT("  Channels: \n");
		for (i = 0; i < num_channels; i++) {
			dwc_hc_t *hc = hcd->hc_ptr_array[i];
			DWC_PRINT("    %2d: %p\n", i, hc);
		}
	}
}
#endif


//OTG host require the DMA addr is DWORD-aligned,
//patch it if the buffer is not DWORD-aligned
inline
void hcd_check_and_patch_dma_addr(struct urb *urb){

	if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
		return;

	if(((u32)urb->transfer_buffer)& 0x3){
		/*
		printk("%s: "
			"urb(%.8x) "
			"transfer_buffer=%.8x, "
			"transfer_dma=%.8x, "
			"transfer_buffer_length=%d, "
			"actual_length=%d(%x), "
			"\n",
			((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
			urb,
			urb->transfer_buffer,
			urb->transfer_dma,
			urb->transfer_buffer_length,
			urb->actual_length,urb->actual_length
		);
		*/
		if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
			urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
			if(urb->aligned_transfer_buffer) {
				kfree(urb->aligned_transfer_buffer);
			}
			urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
			urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
			if(!urb->aligned_transfer_buffer){
				DWC_ERROR("Cannot alloc required buffer!!\n");
				BUG();
			}
			//printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
		}
		urb->transfer_dma=urb->aligned_transfer_dma;
		if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
			memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
			dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
		}
	}
}



/** Starts processing a USB transfer request specified by a USB Request Block
 * (URB). mem_flags indicates the type of memory allocation to use while
 * processing this URB. */
int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
//			    struct usb_host_endpoint *ep,
			    struct urb *urb,
			    gfp_t mem_flags
			  )
{
	int retval = 0;
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	dwc_otg_qtd_t *qtd;

#ifdef DEBUG
	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
		dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
	}
#endif
	if (!dwc_otg_hcd->flags.b.port_connect_status) {
		/* No longer connected. */
		return -ENODEV;
	}

	hcd_check_and_patch_dma_addr(urb);
	qtd = dwc_otg_hcd_qtd_create(urb);
	if (qtd == NULL) {
		DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
		return -ENOMEM;
	}

	retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
	if (retval < 0) {
		DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
			  "Error status %d\n", retval);
		dwc_otg_hcd_qtd_free(qtd);
	}

	return retval;
}

/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
 * success.  */
int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
			    struct urb *urb, int status)
{
	unsigned long flags;
	dwc_otg_hcd_t *dwc_otg_hcd;
	dwc_otg_qtd_t *urb_qtd;
	dwc_otg_qh_t *qh;
	struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");

	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);

	SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);

	urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
	qh = (dwc_otg_qh_t *)ep->hcpriv;

	if (urb_qtd == NULL) {
		SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
		return 0;
	}
#ifdef DEBUG
	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
		dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
		if (urb_qtd == qh->qtd_in_process) {
			dump_channel_info(dwc_otg_hcd, qh);
		}
	}
#endif

	if (urb_qtd == qh->qtd_in_process) {
		/* The QTD is in process (it has been assigned to a channel). */

		if (dwc_otg_hcd->flags.b.port_connect_status) {
			/*
			 * If still connected (i.e. in host mode), halt the
			 * channel so it can be used for other transfers. If
			 * no longer connected, the host registers can't be
			 * written to halt the channel since the core is in
			 * device mode.
			 */
			dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
					DWC_OTG_HC_XFER_URB_DEQUEUE);
		}
	}

	/*
	 * Free the QTD and clean up the associated QH. Leave the QH in the
	 * schedule if it has any remaining QTDs.
	 */
	dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
	if (urb_qtd == qh->qtd_in_process) {
		/* Note that dwc_otg_hcd_qh_deactivate() locks the spin_lock again */
		SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
		dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
		qh->channel = NULL;
		qh->qtd_in_process = NULL;
	} else {
		if (list_empty(&qh->qtd_list))
			dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
		SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
	}

	urb->hcpriv = NULL;

	/* Higher layer software sets URB status. */
	usb_hcd_giveback_urb(hcd, urb, status);
	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
		DWC_PRINT("Called usb_hcd_giveback_urb()\n");
		DWC_PRINT("  urb->status = %d\n", urb->status);
	}

	return 0;
}

/** Frees resources in the DWC_otg controller related to a given endpoint. Also
 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
 * must already be dequeued. */
void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
				  struct usb_host_endpoint *ep)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	dwc_otg_qh_t *qh;

	unsigned long flags;
	int retry = 0;

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
		    "endpoint=%d\n", ep->desc.bEndpointAddress,
		    dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));

rescan:
	SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
	qh = (dwc_otg_qh_t *)(ep->hcpriv);
	if (!qh)
		goto done;

	/** Check that the QTD list is really empty */
	if (!list_empty(&qh->qtd_list)) {
		if (retry++ < 250) {
			SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
			schedule_timeout_uninterruptible(1);
			goto rescan;
		}

		DWC_WARN("DWC OTG HCD EP DISABLE:"
			 " QTD List for this endpoint is not empty\n");
	}

	dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
	ep->hcpriv = NULL;
done:
	SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
}

/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
 * interrupt.
 *
 * This function is called by the USB core when an interrupt occurs */
irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
{
        int retVal = 0;
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
        if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
        	usb_hcd_poll_rh_status(hcd);
	return IRQ_RETVAL(retVal);
}

/** Creates Status Change bitmap for the root hub and root port. The bitmap is
 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
 * is the status change indicator for the single root port. Returns 1 if either
 * change indicator is 1, otherwise returns 0. */
int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);

	buf[0] = 0;
	buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
		    dwc_otg_hcd->flags.b.port_reset_change ||
		    dwc_otg_hcd->flags.b.port_enable_change ||
		    dwc_otg_hcd->flags.b.port_suspend_change ||
		    dwc_otg_hcd->flags.b.port_over_current_change) << 1;

#ifdef DEBUG
	if (buf[0]) {
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
			    " Root port status changed\n");
		DWC_DEBUGPL(DBG_HCDV, "  port_connect_status_change: %d\n",
			    dwc_otg_hcd->flags.b.port_connect_status_change);
		DWC_DEBUGPL(DBG_HCDV, "  port_reset_change: %d\n",
			    dwc_otg_hcd->flags.b.port_reset_change);
		DWC_DEBUGPL(DBG_HCDV, "  port_enable_change: %d\n",
			    dwc_otg_hcd->flags.b.port_enable_change);
		DWC_DEBUGPL(DBG_HCDV, "  port_suspend_change: %d\n",
			    dwc_otg_hcd->flags.b.port_suspend_change);
		DWC_DEBUGPL(DBG_HCDV, "  port_over_current_change: %d\n",
			    dwc_otg_hcd->flags.b.port_over_current_change);
	}
#endif
	return (buf[0] != 0);
}

#ifdef DWC_HS_ELECT_TST
/*
 * Quick and dirty hack to implement the HS Electrical Test
 * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
 *
 * This code was copied from our userspace app "hset". It sends a
 * Get Device Descriptor control sequence in two parts, first the
 * Setup packet by itself, followed some time later by the In and
 * Ack packets. Rather than trying to figure out how to add this
 * functionality to the normal driver code, we just hijack the
 * hardware, using these two function to drive the hardware
 * directly.
 */

dwc_otg_core_global_regs_t *global_regs;
dwc_otg_host_global_regs_t *hc_global_regs;
dwc_otg_hc_regs_t *hc_regs;
uint32_t *data_fifo;

static void do_setup(void)
{
	gintsts_data_t gintsts;
	hctsiz_data_t hctsiz;
	hcchar_data_t hcchar;
	haint_data_t haint;
	hcint_data_t hcint;

	/* Enable HAINTs */
	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);

	/* Enable HCINTs */
	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

	/*
	 * Send Setup packet (Get Device Descriptor)
	 */

	/* Make sure channel is disabled */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	if (hcchar.b.chen) {
		//fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
		hcchar.b.chdis = 1;
//		hcchar.b.chen = 1;
		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
		//sleep(1);
		mdelay(1000);

		/* Read GINTSTS */
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

		/* Read HAINT */
		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
		//fprintf(stderr, "HAINT: %08x\n", haint.d32);

		/* Read HCINT */
		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

		/* Read HCCHAR */
		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

		/* Clear HCINT */
		dwc_write_reg32(&hc_regs->hcint, hcint.d32);

		/* Clear HAINT */
		dwc_write_reg32(&hc_global_regs->haint, haint.d32);

		/* Clear GINTSTS */
		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//if (hcchar.b.chen) {
		//	fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
		//}
	}

	/* Set HCTSIZ */
	hctsiz.d32 = 0;
	hctsiz.b.xfersize = 8;
	hctsiz.b.pktcnt = 1;
	hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);

	/* Set HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
	hcchar.b.epdir = 0;
	hcchar.b.epnum = 0;
	hcchar.b.mps = 8;
	hcchar.b.chen = 1;
	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);

	/* Fill FIFO with Setup data for Get Device Descriptor */
	data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
	dwc_write_reg32(data_fifo++, 0x01000680);
	dwc_write_reg32(data_fifo++, 0x00080000);

	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);

	/* Wait for host channel interrupt */
	do {
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	} while (gintsts.b.hcintr == 0);

	//fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);

	/* Disable HCINTs */
	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);

	/* Disable HAINTs */
	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
}

static void do_in_ack(void)
{
	gintsts_data_t gintsts;
	hctsiz_data_t hctsiz;
	hcchar_data_t hcchar;
	haint_data_t haint;
	hcint_data_t hcint;
	host_grxsts_data_t grxsts;

	/* Enable HAINTs */
	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);

	/* Enable HCINTs */
	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

	/*
	 * Receive Control In packet
	 */

	/* Make sure channel is disabled */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	if (hcchar.b.chen) {
		//fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
		hcchar.b.chdis = 1;
		hcchar.b.chen = 1;
		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
		//sleep(1);
		mdelay(1000);

		/* Read GINTSTS */
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

		/* Read HAINT */
		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
		//fprintf(stderr, "HAINT: %08x\n", haint.d32);

		/* Read HCINT */
		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

		/* Read HCCHAR */
		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

		/* Clear HCINT */
		dwc_write_reg32(&hc_regs->hcint, hcint.d32);

		/* Clear HAINT */
		dwc_write_reg32(&hc_global_regs->haint, haint.d32);

		/* Clear GINTSTS */
		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//if (hcchar.b.chen) {
		//	fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
		//}
	}

	/* Set HCTSIZ */
	hctsiz.d32 = 0;
	hctsiz.b.xfersize = 8;
	hctsiz.b.pktcnt = 1;
	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);

	/* Set HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
	hcchar.b.epdir = 1;
	hcchar.b.epnum = 0;
	hcchar.b.mps = 8;
	hcchar.b.chen = 1;
	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);

	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);

	/* Wait for receive status queue interrupt */
	do {
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	} while (gintsts.b.rxstsqlvl == 0);

	//fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);

	/* Read RXSTS */
	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
	//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);

	/* Clear RXSTSQLVL in GINTSTS */
	gintsts.d32 = 0;
	gintsts.b.rxstsqlvl = 1;
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	switch (grxsts.b.pktsts) {
	case DWC_GRXSTS_PKTSTS_IN:
		/* Read the data into the host buffer */
		if (grxsts.b.bcnt > 0) {
			int i;
			int word_count = (grxsts.b.bcnt + 3) / 4;

			data_fifo = (uint32_t *)((char *)global_regs + 0x1000);

			for (i = 0; i < word_count; i++) {
				(void)dwc_read_reg32(data_fifo++);
			}
		}

		//fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
	break;

	default:
		//fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
	break;
	}

	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);

	/* Wait for receive status queue interrupt */
	do {
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	} while (gintsts.b.rxstsqlvl == 0);

	//fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);

	/* Read RXSTS */
	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
	//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);

	/* Clear RXSTSQLVL in GINTSTS */
	gintsts.d32 = 0;
	gintsts.b.rxstsqlvl = 1;
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	switch (grxsts.b.pktsts) {
	case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
	break;

	default:
		//fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
	break;
	}

	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);

	/* Wait for host channel interrupt */
	do {
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	} while (gintsts.b.hcintr == 0);

	//fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

//	usleep(100000);
//	mdelay(100);
	mdelay(1);

	/*
	 * Send handshake packet
	 */

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

	/* Make sure channel is disabled */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	if (hcchar.b.chen) {
		//fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
		hcchar.b.chdis = 1;
		hcchar.b.chen = 1;
		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
		//sleep(1);
		mdelay(1000);

		/* Read GINTSTS */
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
		//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);

		/* Read HAINT */
		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
		//fprintf(stderr, "HAINT: %08x\n", haint.d32);

		/* Read HCINT */
		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
		//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

		/* Read HCCHAR */
		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

		/* Clear HCINT */
		dwc_write_reg32(&hc_regs->hcint, hcint.d32);

		/* Clear HAINT */
		dwc_write_reg32(&hc_global_regs->haint, haint.d32);

		/* Clear GINTSTS */
		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
		//if (hcchar.b.chen) {
		//	fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
		//}
	}

	/* Set HCTSIZ */
	hctsiz.d32 = 0;
	hctsiz.b.xfersize = 0;
	hctsiz.b.pktcnt = 1;
	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);

	/* Set HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
	hcchar.b.epdir = 0;
	hcchar.b.epnum = 0;
	hcchar.b.mps = 8;
	hcchar.b.chen = 1;
	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);

	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);

	/* Wait for host channel interrupt */
	do {
		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	} while (gintsts.b.hcintr == 0);

	//fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);

	/* Disable HCINTs */
	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);

	/* Disable HAINTs */
	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);

	/* Read HAINT */
	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
	//fprintf(stderr, "HAINT: %08x\n", haint.d32);

	/* Read HCINT */
	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
	//fprintf(stderr, "HCINT: %08x\n", hcint.d32);

	/* Read HCCHAR */
	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
	//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);

	/* Clear HCINT */
	dwc_write_reg32(&hc_regs->hcint, hcint.d32);

	/* Clear HAINT */
	dwc_write_reg32(&hc_global_regs->haint, haint.d32);

	/* Clear GINTSTS */
	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);

	/* Read GINTSTS */
	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
	//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
}
#endif /* DWC_HS_ELECT_TST */

/** Handles hub class-specific requests. */
int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
			    u16 typeReq,
			    u16 wValue,
			    u16 wIndex,
			    char *buf,
			    u16 wLength)
{
	int retval = 0;

	dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
	dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
	struct usb_hub_descriptor *desc;
	hprt0_data_t hprt0 = {.d32 = 0};

	uint32_t port_status;

	switch (typeReq) {
	case ClearHubFeature:
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
			    "ClearHubFeature 0x%x\n", wValue);
		switch (wValue) {
		case C_HUB_LOCAL_POWER:
		case C_HUB_OVER_CURRENT:
			/* Nothing required here */
			break;
		default:
			retval = -EINVAL;
			DWC_ERROR("DWC OTG HCD - "
				  "ClearHubFeature request %xh unknown\n", wValue);
		}
		break;
	case ClearPortFeature:
		if (!wIndex || wIndex > 1)
			goto error;

		switch (wValue) {
		case USB_PORT_FEAT_ENABLE:
			DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			hprt0.b.prtena = 1;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			break;
		case USB_PORT_FEAT_SUSPEND:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			hprt0.b.prtres = 1;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			/* Clear Resume bit */
			mdelay(100);
			hprt0.b.prtres = 0;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			break;
		case USB_PORT_FEAT_POWER:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_POWER\n");
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			hprt0.b.prtpwr = 0;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			break;
		case USB_PORT_FEAT_INDICATOR:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
			/* Port inidicator not supported */
			break;
		case USB_PORT_FEAT_C_CONNECTION:
			/* Clears drivers internal connect status change
			 * flag */
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
			dwc_otg_hcd->flags.b.port_connect_status_change = 0;
			break;
		case USB_PORT_FEAT_C_RESET:
			/* Clears the driver's internal Port Reset Change
			 * flag */
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
			dwc_otg_hcd->flags.b.port_reset_change = 0;
			break;
		case USB_PORT_FEAT_C_ENABLE:
			/* Clears the driver's internal Port
			 * Enable/Disable Change flag */
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
			dwc_otg_hcd->flags.b.port_enable_change = 0;
			break;
		case USB_PORT_FEAT_C_SUSPEND:
			/* Clears the driver's internal Port Suspend
			 * Change flag, which is set when resume signaling on
			 * the host port is complete */
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
			dwc_otg_hcd->flags.b.port_suspend_change = 0;
			break;
		case USB_PORT_FEAT_C_OVER_CURRENT:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
			dwc_otg_hcd->flags.b.port_over_current_change = 0;
			break;
		default:
			retval = -EINVAL;
			DWC_ERROR("DWC OTG HCD - "
				  "ClearPortFeature request %xh "
				  "unknown or unsupported\n", wValue);
		}
		break;
	case GetHubDescriptor:
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
			    "GetHubDescriptor\n");
		desc = (struct usb_hub_descriptor *)buf;
		desc->bDescLength = 9;
		desc->bDescriptorType = 0x29;
		desc->bNbrPorts = 1;
		desc->wHubCharacteristics = 0x08;
		desc->bPwrOn2PwrGood = 1;
		desc->bHubContrCurrent = 0;
		desc->u.hs.DeviceRemovable[0] = 0;
		desc->u.hs.DeviceRemovable[1] = 0xff;
		break;
	case GetHubStatus:
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
			    "GetHubStatus\n");
		memset(buf, 0, 4);
		break;
	case GetPortStatus:
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
			    "GetPortStatus\n");

		if (!wIndex || wIndex > 1)
			goto error;

		port_status = 0;

		if (dwc_otg_hcd->flags.b.port_connect_status_change)
			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);

		if (dwc_otg_hcd->flags.b.port_enable_change)
			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);

		if (dwc_otg_hcd->flags.b.port_suspend_change)
			port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);

		if (dwc_otg_hcd->flags.b.port_reset_change)
			port_status |= (1 << USB_PORT_FEAT_C_RESET);

		if (dwc_otg_hcd->flags.b.port_over_current_change) {
			DWC_ERROR("Device Not Supported\n");
			port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
		}

		if (!dwc_otg_hcd->flags.b.port_connect_status) {
			/*
			 * The port is disconnected, which means the core is
			 * either in device mode or it soon will be. Just
			 * return 0's for the remainder of the port status
			 * since the port register can't be read if the core
			 * is in device mode.
			 */
			*((__le32 *) buf) = cpu_to_le32(port_status);
			break;
		}

		hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
		DWC_DEBUGPL(DBG_HCDV, "  HPRT0: 0x%08x\n", hprt0.d32);

		if (hprt0.b.prtconnsts)
			port_status |= (1 << USB_PORT_FEAT_CONNECTION);

		if (hprt0.b.prtena)
			port_status |= (1 << USB_PORT_FEAT_ENABLE);

		if (hprt0.b.prtsusp)
			port_status |= (1 << USB_PORT_FEAT_SUSPEND);

		if (hprt0.b.prtovrcurract)
			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);

		if (hprt0.b.prtrst)
			port_status |= (1 << USB_PORT_FEAT_RESET);

		if (hprt0.b.prtpwr)
			port_status |= (1 << USB_PORT_FEAT_POWER);

		if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
			port_status |= (USB_PORT_STAT_HIGH_SPEED);
		else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
			port_status |= (USB_PORT_STAT_LOW_SPEED);

		if (hprt0.b.prttstctl)
			port_status |= (1 << USB_PORT_FEAT_TEST);

		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */

		*((__le32 *) buf) = cpu_to_le32(port_status);

		break;
	case SetHubFeature:
		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
			    "SetHubFeature\n");
		/* No HUB features supported */
		break;
	case SetPortFeature:
		if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
			goto error;

		if (!dwc_otg_hcd->flags.b.port_connect_status) {
			/*
			 * The port is disconnected, which means the core is
			 * either in device mode or it soon will be. Just
			 * return without doing anything since the port
			 * register can't be written if the core is in device
			 * mode.
			 */
			break;
		}

		switch (wValue) {
		case USB_PORT_FEAT_SUSPEND:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
			if (hcd->self.otg_port == wIndex &&
			    hcd->self.b_hnp_enable) {
				gotgctl_data_t  gotgctl = {.d32=0};
				gotgctl.b.hstsethnpen = 1;
				dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
						  0, gotgctl.d32);
				core_if->op_state = A_SUSPEND;
			}
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			hprt0.b.prtsusp = 1;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			//DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
			/* Suspend the Phy Clock */
			{
				pcgcctl_data_t pcgcctl = {.d32=0};
				pcgcctl.b.stoppclk = 1;
				dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
			}

			/* For HNP the bus must be suspended for at least 200ms. */
			if (hcd->self.b_hnp_enable) {
				mdelay(200);
				//DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
			}
			break;
		case USB_PORT_FEAT_POWER:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "SetPortFeature - USB_PORT_FEAT_POWER\n");
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			hprt0.b.prtpwr = 1;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			break;
		case USB_PORT_FEAT_RESET:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "SetPortFeature - USB_PORT_FEAT_RESET\n");
			hprt0.d32 = dwc_otg_read_hprt0(core_if);
			/* When B-Host the Port reset bit is set in
			 * the Start HCD Callback function, so that
			 * the reset is started within 1ms of the HNP
			 * success interrupt. */
			if (!hcd->self.is_b_host) {
				hprt0.b.prtrst = 1;
				dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			}
			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
			MDELAY(60);
			hprt0.b.prtrst = 0;
			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			break;

#ifdef DWC_HS_ELECT_TST
		case USB_PORT_FEAT_TEST:
		{
			uint32_t t;
			gintmsk_data_t gintmsk;

			t = (wIndex >> 8); /* MSB wIndex USB */
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
			warn("USB_PORT_FEAT_TEST %d\n", t);
			if (t < 6) {
				hprt0.d32 = dwc_otg_read_hprt0(core_if);
				hprt0.b.prttstctl = t;
				dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
			} else {
				/* Setup global vars with reg addresses (quick and
				 * dirty hack, should be cleaned up)
				 */
				global_regs = core_if->core_global_regs;
				hc_global_regs = core_if->host_if->host_global_regs;
				hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
				data_fifo = (uint32_t *)((char *)global_regs + 0x1000);

				if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
					/* Save current interrupt mask */
					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);

					/* Disable all interrupts while we muck with
					 * the hardware directly
					 */
					dwc_write_reg32(&global_regs->gintmsk, 0);

					/* 15 second delay per the test spec */
					mdelay(15000);

					/* Drive suspend on the root port */
					hprt0.d32 = dwc_otg_read_hprt0(core_if);
					hprt0.b.prtsusp = 1;
					hprt0.b.prtres = 0;
					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);

					/* 15 second delay per the test spec */
					mdelay(15000);

					/* Drive resume on the root port */
					hprt0.d32 = dwc_otg_read_hprt0(core_if);
					hprt0.b.prtsusp = 0;
					hprt0.b.prtres = 1;
					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
					mdelay(100);

					/* Clear the resume bit */
					hprt0.b.prtres = 0;
					dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);

					/* Restore interrupts */
					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
				} else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
					/* Save current interrupt mask */
					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);

					/* Disable all interrupts while we muck with
					 * the hardware directly
					 */
					dwc_write_reg32(&global_regs->gintmsk, 0);

					/* 15 second delay per the test spec */
					mdelay(15000);

					/* Send the Setup packet */
					do_setup();

					/* 15 second delay so nothing else happens for awhile */
					mdelay(15000);

					/* Restore interrupts */
					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
				} else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
					/* Save current interrupt mask */
					gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);

					/* Disable all interrupts while we muck with
					 * the hardware directly
					 */
					dwc_write_reg32(&global_regs->gintmsk, 0);

					/* Send the Setup packet */
					do_setup();

					/* 15 second delay so nothing else happens for awhile */
					mdelay(15000);

					/* Send the In and Ack packets */
					do_in_ack();

					/* 15 second delay so nothing else happens for awhile */
					mdelay(15000);

					/* Restore interrupts */
					dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
				}
			}
			break;
		}
#endif /* DWC_HS_ELECT_TST */

		case USB_PORT_FEAT_INDICATOR:
			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
				    "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
			/* Not supported */
			break;
		default:
			retval = -EINVAL;
			DWC_ERROR("DWC OTG HCD - "
				  "SetPortFeature request %xh "
				  "unknown or unsupported\n", wValue);
			break;
		}
		break;
	default:
	error:
		retval = -EINVAL;
		DWC_WARN("DWC OTG HCD - "
			 "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
			 typeReq, wIndex, wValue);
		break;
	}

	return retval;
}

/**
 * Assigns transactions from a QTD to a free host channel and initializes the
 * host channel to perform the transactions. The host channel is removed from
 * the free list.
 *
 * @param hcd The HCD state structure.
 * @param qh Transactions from the first QTD for this QH are selected and
 * assigned to a free host channel.
 */
static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
	dwc_hc_t	*hc;
	dwc_otg_qtd_t	*qtd;
	struct urb	*urb;

	DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);

	hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);

	/* Remove the host channel from the free list. */
	list_del_init(&hc->hc_list_entry);

	qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
	urb = qtd->urb;
	qh->channel = hc;
	qh->qtd_in_process = qtd;

	/*
	 * Use usb_pipedevice to determine device address. This address is
	 * 0 before the SET_ADDRESS command and the correct address afterward.
	 */
	hc->dev_addr = usb_pipedevice(urb->pipe);
	hc->ep_num = usb_pipeendpoint(urb->pipe);

	if (urb->dev->speed == USB_SPEED_LOW) {
		hc->speed = DWC_OTG_EP_SPEED_LOW;
	} else if (urb->dev->speed == USB_SPEED_FULL) {
		hc->speed = DWC_OTG_EP_SPEED_FULL;
	} else {
		hc->speed = DWC_OTG_EP_SPEED_HIGH;
	}

	hc->max_packet = dwc_max_packet(qh->maxp);

	hc->xfer_started = 0;
	hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
	hc->error_state = (qtd->error_count > 0);
	hc->halt_on_queue = 0;
	hc->halt_pending = 0;
	hc->requests = 0;

	/*
	 * The following values may be modified in the transfer type section
	 * below. The xfer_len value may be reduced when the transfer is
	 * started to accommodate the max widths of the XferSize and PktCnt
	 * fields in the HCTSIZn register.
	 */
	hc->do_ping = qh->ping_state;
	hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
	hc->data_pid_start = qh->data_toggle;
	hc->multi_count = 1;

	if (hcd->core_if->dma_enable) {
		hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
	} else {
		hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
	}
	hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
	hc->xfer_count = 0;

	/*
	 * Set the split attributes
	 */
	hc->do_split = 0;
	if (qh->do_split) {
		hc->do_split = 1;
		hc->xact_pos = qtd->isoc_split_pos;
		hc->complete_split = qtd->complete_split;
		hc->hub_addr = urb->dev->tt->hub->devnum;
		hc->port_addr = urb->dev->ttport;
	}

	switch (usb_pipetype(urb->pipe)) {
	case PIPE_CONTROL:
		hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
		switch (qtd->control_phase) {
		case DWC_OTG_CONTROL_SETUP:
			DWC_DEBUGPL(DBG_HCDV, "  Control setup transaction\n");
			hc->do_ping = 0;
			hc->ep_is_in = 0;
			hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
			if (hcd->core_if->dma_enable) {
				hc->xfer_buff = (uint8_t *)urb->setup_dma;
			} else {
				hc->xfer_buff = (uint8_t *)urb->setup_packet;
			}
			hc->xfer_len = 8;
			break;
		case DWC_OTG_CONTROL_DATA:
			DWC_DEBUGPL(DBG_HCDV, "  Control data transaction\n");
			hc->data_pid_start = qtd->data_toggle;
			break;
		case DWC_OTG_CONTROL_STATUS:
			/*
			 * Direction is opposite of data direction or IN if no
			 * data.
			 */
			DWC_DEBUGPL(DBG_HCDV, "  Control status transaction\n");
			if (urb->transfer_buffer_length == 0) {
				hc->ep_is_in = 1;
			} else {
				hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
			}
			if (hc->ep_is_in) {
				hc->do_ping = 0;
			}
			hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
			hc->xfer_len = 0;
			if (hcd->core_if->dma_enable) {
				hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
			} else {
				hc->xfer_buff = (uint8_t *)hcd->status_buf;
			}
			break;
		}
		break;
	case PIPE_BULK:
		hc->ep_type = DWC_OTG_EP_TYPE_BULK;
		break;
	case PIPE_INTERRUPT:
		hc->ep_type = DWC_OTG_EP_TYPE_INTR;
		break;
	case PIPE_ISOCHRONOUS:
		{
			struct usb_iso_packet_descriptor *frame_desc;
			frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
			hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
			if (hcd->core_if->dma_enable) {
				hc->xfer_buff = (uint8_t *)urb->transfer_dma;
			} else {
				hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
			}
			hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
			hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;

			if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
				if (hc->xfer_len <= 188) {
					hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
				}
				else {
					hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
				}
			}
		}
		break;
	}

	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
	    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
		/*
		 * This value may be modified when the transfer is started to
		 * reflect the actual transfer length.
		 */
		hc->multi_count = dwc_hb_mult(qh->maxp);
	}

	dwc_otg_hc_init(hcd->core_if, hc);
	hc->qh = qh;
}

/**
 * This function selects transactions from the HCD transfer schedule and
 * assigns them to available host channels. It is called from HCD interrupt
 * handler functions.
 *
 * @param hcd The HCD state structure.
 *
 * @return The types of new transactions that were assigned to host channels.
 */
dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
{
	struct list_head 		*qh_ptr;
	dwc_otg_qh_t 			*qh;
	int				num_channels;
	dwc_otg_transaction_type_e	ret_val = DWC_OTG_TRANSACTION_NONE;

#ifdef DEBUG_SOF
	DWC_DEBUGPL(DBG_HCD, "  Select Transactions\n");
#endif

	spin_lock(&hcd->lock);
	/* Process entries in the periodic ready list. */
	qh_ptr = hcd->periodic_sched_ready.next;
	while (qh_ptr != &hcd->periodic_sched_ready &&
	       !list_empty(&hcd->free_hc_list)) {

		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
		assign_and_init_hc(hcd, qh);

		/*
		 * Move the QH from the periodic ready schedule to the
		 * periodic assigned schedule.
		 */
		qh_ptr = qh_ptr->next;
		list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);

		ret_val = DWC_OTG_TRANSACTION_PERIODIC;
	}

	/*
	 * Process entries in the inactive portion of the non-periodic
	 * schedule. Some free host channels may not be used if they are
	 * reserved for periodic transfers.
	 */
	qh_ptr = hcd->non_periodic_sched_inactive.next;
	num_channels = hcd->core_if->core_params->host_channels;
	while (qh_ptr != &hcd->non_periodic_sched_inactive &&
	       (hcd->non_periodic_channels <
		num_channels - hcd->periodic_channels) &&
	       !list_empty(&hcd->free_hc_list)) {

		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
		assign_and_init_hc(hcd, qh);

		/*
		 * Move the QH from the non-periodic inactive schedule to the
		 * non-periodic active schedule.
		 */
		qh_ptr = qh_ptr->next;
		list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);

		if (ret_val == DWC_OTG_TRANSACTION_NONE) {
			ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
		} else {
			ret_val = DWC_OTG_TRANSACTION_ALL;
		}

		hcd->non_periodic_channels++;
	}
	spin_unlock(&hcd->lock);

	return ret_val;
}

/**
 * Attempts to queue a single transaction request for a host channel
 * associated with either a periodic or non-periodic transfer. This function
 * assumes that there is space available in the appropriate request queue. For
 * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
 * is available in the appropriate Tx FIFO.
 *
 * @param hcd The HCD state structure.
 * @param hc Host channel descriptor associated with either a periodic or
 * non-periodic transfer.
 * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
 * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
 * transfers.
 *
 * @return 1 if a request is queued and more requests may be needed to
 * complete the transfer, 0 if no more requests are required for this
 * transfer, -1 if there is insufficient space in the Tx FIFO.
 */
static int queue_transaction(dwc_otg_hcd_t *hcd,
			     dwc_hc_t *hc,
			     uint16_t fifo_dwords_avail)
{
	int retval;

	if (hcd->core_if->dma_enable) {
		if (!hc->xfer_started) {
			dwc_otg_hc_start_transfer(hcd->core_if, hc);
			hc->qh->ping_state = 0;
		}
		retval = 0;
	} else if (hc->halt_pending) {
		/* Don't queue a request if the channel has been halted. */
		retval = 0;
	} else if (hc->halt_on_queue) {
		dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
		retval = 0;
	} else if (hc->do_ping) {
		if (!hc->xfer_started) {
			dwc_otg_hc_start_transfer(hcd->core_if, hc);
		}
		retval = 0;
	} else if (!hc->ep_is_in ||
		   hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
		if ((fifo_dwords_avail * 4) >= hc->max_packet) {
			if (!hc->xfer_started) {
				dwc_otg_hc_start_transfer(hcd->core_if, hc);
				retval = 1;
			} else {
				retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
			}
		} else {
			retval = -1;
		}
	} else {
		if (!hc->xfer_started) {
			dwc_otg_hc_start_transfer(hcd->core_if, hc);
			retval = 1;
		} else {
			retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
		}
	}

	return retval;
}

/**
 * Processes active non-periodic channels and queues transactions for these
 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
 * FIFO Empty interrupt is enabled if there are more transactions to queue as
 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
 * FIFO Empty interrupt is disabled.
 */
static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
{
	gnptxsts_data_t		tx_status;
	struct list_head	*orig_qh_ptr;
	dwc_otg_qh_t		*qh;
	int			status;
	int			no_queue_space = 0;
	int			no_fifo_space = 0;
	int			more_to_do = 0;

	dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;

	DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
#ifdef DEBUG
	tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
	DWC_DEBUGPL(DBG_HCDV, "  NP Tx Req Queue Space Avail (before queue): %d\n",
		    tx_status.b.nptxqspcavail);
	DWC_DEBUGPL(DBG_HCDV, "  NP Tx FIFO Space Avail (before queue): %d\n",
		    tx_status.b.nptxfspcavail);
#endif
	/*
	 * Keep track of the starting point. Skip over the start-of-list
	 * entry.
	 */
	if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
	}
	orig_qh_ptr = hcd->non_periodic_qh_ptr;

	/*
	 * Process once through the active list or until no more space is
	 * available in the request queue or the Tx FIFO.
	 */
	do {
		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
		if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
			no_queue_space = 1;
			break;
		}

		qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
		status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);

		if (status > 0) {
			more_to_do = 1;
		} else if (status < 0) {
			no_fifo_space = 1;
			break;
		}

		/* Advance to next QH, skipping start-of-list entry. */
		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
		if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
			hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
		}

	} while (hcd->non_periodic_qh_ptr != orig_qh_ptr);

	if (!hcd->core_if->dma_enable) {
		gintmsk_data_t intr_mask = {.d32 = 0};
		intr_mask.b.nptxfempty = 1;

#ifdef DEBUG
		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
		DWC_DEBUGPL(DBG_HCDV, "  NP Tx Req Queue Space Avail (after queue): %d\n",
			    tx_status.b.nptxqspcavail);
		DWC_DEBUGPL(DBG_HCDV, "  NP Tx FIFO Space Avail (after queue): %d\n",
			    tx_status.b.nptxfspcavail);
#endif
		if (more_to_do || no_queue_space || no_fifo_space) {
			/*
			 * May need to queue more transactions as the request
			 * queue or Tx FIFO empties. Enable the non-periodic
			 * Tx FIFO empty interrupt. (Always use the half-empty
			 * level to ensure that new requests are loaded as
			 * soon as possible.)
			 */
			dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
		} else {
			/*
			 * Disable the Tx FIFO empty interrupt since there are
			 * no more transactions that need to be queued right
			 * now. This function is called from interrupt
			 * handlers to queue more transactions as transfer
			 * states change.
			 */
			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
		}
	}
}

/**
 * Processes periodic channels for the next frame and queues transactions for
 * these channels to the DWC_otg controller. After queueing transactions, the
 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
 * to queue as Periodic Tx FIFO or request queue space becomes available.
 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
 */
static void process_periodic_channels(dwc_otg_hcd_t *hcd)
{
	hptxsts_data_t		tx_status;
	struct list_head	*qh_ptr;
	dwc_otg_qh_t		*qh;
	int			status;
	int 			no_queue_space = 0;
	int			no_fifo_space = 0;

	dwc_otg_host_global_regs_t *host_regs;
	host_regs = hcd->core_if->host_if->host_global_regs;

	DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
#ifdef DEBUG
	tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
	DWC_DEBUGPL(DBG_HCDV, "  P Tx Req Queue Space Avail (before queue): %d\n",
		    tx_status.b.ptxqspcavail);
	DWC_DEBUGPL(DBG_HCDV, "  P Tx FIFO Space Avail (before queue): %d\n",
		    tx_status.b.ptxfspcavail);
#endif

	qh_ptr = hcd->periodic_sched_assigned.next;
	while (qh_ptr != &hcd->periodic_sched_assigned) {
		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
		if (tx_status.b.ptxqspcavail == 0) {
			no_queue_space = 1;
			break;
		}

		qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);

		/*
		 * Set a flag if we're queuing high-bandwidth in slave mode.
		 * The flag prevents any halts to get into the request queue in
		 * the middle of multiple high-bandwidth packets getting queued.
		 */
		if (!hcd->core_if->dma_enable &&
		    qh->channel->multi_count > 1)
		{
			hcd->core_if->queuing_high_bandwidth = 1;
		}

		status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
		if (status < 0) {
			no_fifo_space = 1;
			break;
		}

		/*
		 * In Slave mode, stay on the current transfer until there is
		 * nothing more to do or the high-bandwidth request count is
		 * reached. In DMA mode, only need to queue one request. The
		 * controller automatically handles multiple packets for
		 * high-bandwidth transfers.
		 */
		if (hcd->core_if->dma_enable || status == 0 ||
		    qh->channel->requests == qh->channel->multi_count) {
			qh_ptr = qh_ptr->next;
			/*
			 * Move the QH from the periodic assigned schedule to
			 * the periodic queued schedule.
			 */
			list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);

			/* done queuing high bandwidth */
			hcd->core_if->queuing_high_bandwidth = 0;
		}
	}

	if (!hcd->core_if->dma_enable) {
		dwc_otg_core_global_regs_t *global_regs;
		gintmsk_data_t intr_mask = {.d32 = 0};

		global_regs = hcd->core_if->core_global_regs;
		intr_mask.b.ptxfempty = 1;
#ifdef DEBUG
		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
		DWC_DEBUGPL(DBG_HCDV, "  P Tx Req Queue Space Avail (after queue): %d\n",
			    tx_status.b.ptxqspcavail);
		DWC_DEBUGPL(DBG_HCDV, "  P Tx FIFO Space Avail (after queue): %d\n",
			    tx_status.b.ptxfspcavail);
#endif
		if (!list_empty(&hcd->periodic_sched_assigned) ||
		    no_queue_space || no_fifo_space) {
			/*
			 * May need to queue more transactions as the request
			 * queue or Tx FIFO empties. Enable the periodic Tx
			 * FIFO empty interrupt. (Always use the half-empty
			 * level to ensure that new requests are loaded as
			 * soon as possible.)
			 */
			dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
		} else {
			/*
			 * Disable the Tx FIFO empty interrupt since there are
			 * no more transactions that need to be queued right
			 * now. This function is called from interrupt
			 * handlers to queue more transactions as transfer
			 * states change.
			 */
			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
		}
	}
}

/**
 * This function processes the currently active host channels and queues
 * transactions for these channels to the DWC_otg controller. It is called
 * from HCD interrupt handler functions.
 *
 * @param hcd The HCD state structure.
 * @param tr_type The type(s) of transactions to queue (non-periodic,
 * periodic, or both).
 */
void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
				    dwc_otg_transaction_type_e tr_type)
{
#ifdef DEBUG_SOF
	DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
#endif
	/* Process host channels associated with periodic transfers. */
	if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
	     tr_type == DWC_OTG_TRANSACTION_ALL) &&
	    !list_empty(&hcd->periodic_sched_assigned)) {

		process_periodic_channels(hcd);
	}

	/* Process host channels associated with non-periodic transfers. */
	if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
	    tr_type == DWC_OTG_TRANSACTION_ALL) {
		if (!list_empty(&hcd->non_periodic_sched_active)) {
			process_non_periodic_channels(hcd);
		} else {
			/*
			 * Ensure NP Tx FIFO empty interrupt is disabled when
			 * there are no non-periodic transfers to process.
			 */
			gintmsk_data_t gintmsk = {.d32 = 0};
			gintmsk.b.nptxfempty = 1;
			dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
					 gintmsk.d32, 0);
		}
	}
}

/**
 * Sets the final status of an URB and returns it to the device driver. Any
 * required cleanup of the URB is performed.
 */
void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
{
#ifdef DEBUG
	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
		DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
			  __func__, urb, usb_pipedevice(urb->pipe),
			  usb_pipeendpoint(urb->pipe),
			  usb_pipein(urb->pipe) ? "IN" : "OUT", status);
		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
			int i;
			for (i = 0; i < urb->number_of_packets; i++) {
				DWC_PRINT("  ISO Desc %d status: %d\n",
					  i, urb->iso_frame_desc[i].status);
			}
		}
	}
#endif

	//if we use the aligned buffer instead of the original unaligned buffer,
	//for IN data, we have to move the data to the original buffer
	if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
		dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
		memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
	}


	urb->status = status;
	urb->hcpriv = NULL;
	usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
}

/*
 * Returns the Queue Head for an URB.
 */
dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
{
	struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
	return (dwc_otg_qh_t *)ep->hcpriv;
}

#ifdef DEBUG
void dwc_print_setup_data(uint8_t *setup)
{
	int i;
	if (CHK_DEBUG_LEVEL(DBG_HCD)){
		DWC_PRINT("Setup Data = MSB ");
		for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
		DWC_PRINT("\n");
		DWC_PRINT("  bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
		DWC_PRINT("  bmRequestType Type = ");
		switch ((setup[0] & 0x60) >> 5) {
		case 0: DWC_PRINT("Standard\n"); break;
		case 1:	DWC_PRINT("Class\n"); break;
		case 2:	DWC_PRINT("Vendor\n"); break;
		case 3: DWC_PRINT("Reserved\n"); break;
		}
		DWC_PRINT("  bmRequestType Recipient = ");
		switch (setup[0] & 0x1f) {
		case 0: DWC_PRINT("Device\n"); break;
		case 1: DWC_PRINT("Interface\n"); break;
		case 2: DWC_PRINT("Endpoint\n"); break;
		case 3: DWC_PRINT("Other\n"); break;
		default: DWC_PRINT("Reserved\n"); break;
		}
		DWC_PRINT("  bRequest = 0x%0x\n", setup[1]);
		DWC_PRINT("  wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
		DWC_PRINT("  wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
		DWC_PRINT("  wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
	}
}
#endif

void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
}

void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
{
#ifdef DEBUG
	int num_channels;
	int i;
	gnptxsts_data_t	np_tx_status;
	hptxsts_data_t p_tx_status;

	num_channels = hcd->core_if->core_params->host_channels;
	DWC_PRINT("\n");
	DWC_PRINT("************************************************************\n");
	DWC_PRINT("HCD State:\n");
	DWC_PRINT("  Num channels: %d\n", num_channels);
	for (i = 0; i < num_channels; i++) {
		dwc_hc_t *hc = hcd->hc_ptr_array[i];
		DWC_PRINT("  Channel %d:\n", i);
		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
		DWC_PRINT("    speed: %d\n", hc->speed);
		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
		DWC_PRINT("    multi_count: %d\n", hc->multi_count);
		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
		DWC_PRINT("    xfer_count: %d\n", hc->xfer_count);
		DWC_PRINT("    halt_on_queue: %d\n", hc->halt_on_queue);
		DWC_PRINT("    halt_pending: %d\n", hc->halt_pending);
		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
		DWC_PRINT("    do_split: %d\n", hc->do_split);
		DWC_PRINT("    complete_split: %d\n", hc->complete_split);
		DWC_PRINT("    hub_addr: %d\n", hc->hub_addr);
		DWC_PRINT("    port_addr: %d\n", hc->port_addr);
		DWC_PRINT("    xact_pos: %d\n", hc->xact_pos);
		DWC_PRINT("    requests: %d\n", hc->requests);
		DWC_PRINT("    qh: %p\n", hc->qh);
		if (hc->xfer_started) {
			hfnum_data_t hfnum;
			hcchar_data_t hcchar;
			hctsiz_data_t hctsiz;
			hcint_data_t hcint;
			hcintmsk_data_t hcintmsk;
			hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
			hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
			hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
			hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
			hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
			DWC_PRINT("    hfnum: 0x%08x\n", hfnum.d32);
			DWC_PRINT("    hcchar: 0x%08x\n", hcchar.d32);
			DWC_PRINT("    hctsiz: 0x%08x\n", hctsiz.d32);
			DWC_PRINT("    hcint: 0x%08x\n", hcint.d32);
			DWC_PRINT("    hcintmsk: 0x%08x\n", hcintmsk.d32);
		}
		if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
			dwc_otg_qtd_t *qtd;
			struct urb *urb;
			qtd = hc->qh->qtd_in_process;
			urb = qtd->urb;
			DWC_PRINT("    URB Info:\n");
			DWC_PRINT("      qtd: %p, urb: %p\n", qtd, urb);
			if (urb) {
				DWC_PRINT("      Dev: %d, EP: %d %s\n",
					  usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
					  usb_pipein(urb->pipe) ? "IN" : "OUT");
				DWC_PRINT("      Max packet size: %d\n",
					  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
				DWC_PRINT("      transfer_buffer: %p\n", urb->transfer_buffer);
				DWC_PRINT("      transfer_dma: %p\n", (void *)urb->transfer_dma);
				DWC_PRINT("      transfer_buffer_length: %d\n", urb->transfer_buffer_length);
				DWC_PRINT("      actual_length: %d\n", urb->actual_length);
			}
		}
	}
	DWC_PRINT("  non_periodic_channels: %d\n", hcd->non_periodic_channels);
	DWC_PRINT("  periodic_channels: %d\n", hcd->periodic_channels);
	DWC_PRINT("  periodic_usecs: %d\n", hcd->periodic_usecs);
	np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
	DWC_PRINT("  NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
	DWC_PRINT("  NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
	p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
	DWC_PRINT("  P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
	DWC_PRINT("  P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
	dwc_otg_hcd_dump_frrem(hcd);
	dwc_otg_dump_global_registers(hcd->core_if);
	dwc_otg_dump_host_registers(hcd->core_if);
	DWC_PRINT("************************************************************\n");
	DWC_PRINT("\n");
#endif
}
#endif /* DWC_DEVICE_ONLY */