/* * linux/drivers/net/jz_eth.c * * Jz4730/Jz5730 On-Chip ethernet driver. * * Copyright (C) 2005 - 2007 Ingenic Semiconductor Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "jz_eth.h" #define P2ADDR(a) (((unsigned long)(a) & 0x1fffffff) | 0xa0000000) #define P1ADDR(a) (((unsigned long)(a) & 0x1fffffff) | 0x80000000) //#define DEBUG #ifdef DEBUG # define DBPRINTK(fmt,args...) printk(KERN_DEBUG fmt,##args) #else # define DBPRINTK(fmt,args...) do {} while(0) #endif #define errprintk(fmt,args...) printk(KERN_ERR fmt,##args); #define infoprintk(fmt,args...) printk(KERN_INFO fmt,##args); #define DRV_NAME "jz_eth" #define DRV_VERSION "1.2" #define DRV_AUTHOR "Peter Wei " #define DRV_DESC "JzSOC On-chip Ethernet driver" MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC); MODULE_LICENSE("GPL"); /* * Local variables */ static struct net_device *netdev; static char * hwaddr = NULL; static int debug = -1; static struct mii_if_info mii_info; MODULE_PARM_DESC(debug, "i"); MODULE_PARM_DESC(hwaddr,"s"); /* * Local routines */ static irqreturn_t jz_eth_interrupt(int irq, void *dev_id); static int link_check_thread (void *data); /* * Get MAC address */ #define I2C_DEVICE 0x57 #define MAC_OFFSET 64 extern void i2c_open(void); extern void i2c_close(void); extern int i2c_read(unsigned char device, unsigned char *buf, unsigned char address, int count); static inline unsigned char str2hexnum(unsigned char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return 0; /* foo */ } static inline void str2eaddr(unsigned char *ea, unsigned char *str) { int i; for (i = 0; i < 6; i++) { unsigned char num; if((*str == '.') || (*str == ':')) str++; num = str2hexnum(*str++) << 4; num |= (str2hexnum(*str++)); ea[i] = num; } } static int ethaddr_cmd = 0; static unsigned char ethaddr_hex[6]; static int __init ethernet_addr_setup(char *str) { if (!str) { printk("ethaddr not set in command line\n"); return -1; } ethaddr_cmd = 1; str2eaddr(ethaddr_hex, str); return 0; } __setup("ethaddr=", ethernet_addr_setup); static int get_mac_address(struct net_device *dev) { int i; unsigned char flag0=0; unsigned char flag1=0xff; dev->dev_addr[0] = 0xff; if (hwaddr != NULL) { /* insmod jz-ethc.o hwaddr=00:ef:a3:c1:00:10 */ str2eaddr(dev->dev_addr, hwaddr); } else if (ethaddr_cmd) { /* linux command line: ethaddr=00:ef:a3:c1:00:10 */ for (i=0; i<6; i++) dev->dev_addr[i] = ethaddr_hex[i]; } else { #if 0 /* mac address in eeprom: byte 0x40-0x45 */ i2c_open(); i2c_read(I2C_DEVICE, dev->dev_addr, MAC_OFFSET, 6); i2c_close(); #endif } /* check whether valid MAC address */ for (i=0; i<6; i++) { flag0 |= dev->dev_addr[i]; flag1 &= dev->dev_addr[i]; } if ((dev->dev_addr[0] & 0xC0) || (flag0 == 0) || (flag1 == 0xff)) { printk("WARNING: There is not MAC address, use default ..\n"); dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0xef; dev->dev_addr[2] = 0xa3; dev->dev_addr[3] = 0xc1; dev->dev_addr[4] = 0x00; dev->dev_addr[5] = 0x10; dev->dev_addr[5] = 0x03; } return 0; } /*---------------------------------------------------------------------*/ static u32 jz_eth_curr_mode(struct net_device *dev); /* * Ethernet START/STOP routines */ #define START_ETH { \ s32 val; \ val = readl(DMA_OMR); \ val |= OMR_ST | OMR_SR; \ writel(val, DMA_OMR); \ } #define STOP_ETH { \ s32 val; \ val = readl(DMA_OMR); \ val &= ~(OMR_ST|OMR_SR); \ writel(val, DMA_OMR); \ } /* * Link check routines */ static void start_check(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; struct task_struct *t; np->thread_die = 0; init_waitqueue_head(&np->thr_wait); init_completion (&np->thr_exited); t = kthread_create(link_check_thread,(void *)dev, dev->name); if (IS_ERR(t)) errprintk("%s: unable to start kernel thread\n",dev->name); np->thread = t; } static int close_check(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int ret = 0; if (np->thread != NULL) { np->thread_die = 1; wmb(); send_sig(SIGTERM, np->thread, 1); if (ret) { errprintk("%s: unable to signal thread\n", dev->name); return 1; } wait_for_completion (&np->thr_exited); } return 0; } static int link_check_thread(void *data) { struct net_device *dev=(struct net_device *)data; struct jz_eth_private *np = (struct jz_eth_private *)netdev->priv; unsigned char current_link; unsigned long timeout; daemonize("%s", dev->name); spin_lock_irq(¤t->sighand->siglock); sigemptyset(¤t->blocked); recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); strncpy (current->comm, dev->name, sizeof(current->comm) - 1); current->comm[sizeof(current->comm) - 1] = '\0'; while (1) { timeout = 3*HZ; do { timeout = interruptible_sleep_on_timeout (&np->thr_wait, timeout); /* make swsusp happy with our thread */ // if (current->flags & PF_FREEZE) // refrigerator(PF_FREEZE); } while (!signal_pending (current) && (timeout > 0)); if (signal_pending (current)) { spin_lock_irq(¤t->sighand->siglock); flush_signals(current); spin_unlock_irq(¤t->sighand->siglock); } if (np->thread_die) break; current_link=mii_link_ok(&mii_info); if (np->link_state!=current_link) { if (current_link) { infoprintk("%s: Ethernet Link OK!\n",dev->name); jz_eth_curr_mode(dev); netif_carrier_on(dev); } else { errprintk("%s: Ethernet Link offline!\n",dev->name); netif_carrier_off(dev); } } np->link_state=current_link; } complete_and_exit (&np->thr_exited, 0); } #ifdef DEBUG /* * Display ethernet packet header * This routine is used for test function */ static void eth_dbg_rx(struct sk_buff *skb, int len) { int i, j; printk("R: %02x:%02x:%02x:%02x:%02x:%02x <- %02x:%02x:%02x:%02x:%02x:%02x len/SAP:%02x%02x [%d]\n", (u8)skb->data[0], (u8)skb->data[1], (u8)skb->data[2], (u8)skb->data[3], (u8)skb->data[4], (u8)skb->data[5], (u8)skb->data[6], (u8)skb->data[7], (u8)skb->data[8], (u8)skb->data[9], (u8)skb->data[10], (u8)skb->data[11], (u8)skb->data[12], (u8)skb->data[13], len); for (j=0; len>0; j+=16, len-=16) { printk(" %03x: ",j); for (i=0; i<16 && idata[i+j]); } printk("\n"); } return; } #endif /* * Reset ethernet device */ static inline void jz_eth_reset(void) { u32 i; i = readl(DMA_BMR); writel(i | BMR_SWR, DMA_BMR); for(i = 0; i < 1000; i++) { if(!(readl(DMA_BMR) & BMR_SWR)) break; mdelay(1); } } /* * MII operation routines */ static inline void mii_wait(void) { int i; for(i = 0; i < 10000; i++) { if(!(readl(MAC_MIIA) & 0x1)) break; mdelay(1); } if (i >= 10000) printk("MII wait timeout : %d.\n", i); } static int mdio_read(struct net_device *dev,int phy_id, int location) { u32 mii_cmd = (phy_id << 11) | (location << 6) | 1; int retval = 0; writel(mii_cmd, MAC_MIIA); mii_wait(); retval = readl(MAC_MIID) & 0x0000ffff; return retval; } static void mdio_write(struct net_device *dev,int phy_id, int location, int data) { u32 mii_cmd = (phy_id << 11) | (location << 6) | 0x2 | 1; writel(mii_cmd, MAC_MIIA); writel(data & 0x0000ffff, MAC_MIID); mii_wait(); } /* * Search MII phy */ static int jz_search_mii_phy(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int phy, phy_idx = 0; np->valid_phy = 0xff; for (phy = 0; phy < 32; phy++) { int mii_status = mdio_read(dev,phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx] = phy; np->ecmds[phy_idx].speed=SPEED_100; np->ecmds[phy_idx].duplex=DUPLEX_FULL; np->ecmds[phy_idx].port=PORT_MII; np->ecmds[phy_idx].transceiver=XCVR_INTERNAL; np->ecmds[phy_idx].phy_address=np->phys[phy_idx]; np->ecmds[phy_idx].autoneg=AUTONEG_ENABLE; np->ecmds[phy_idx].advertising=(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full); phy_idx++; } } if (phy_idx == 1) { np->valid_phy = np->phys[0]; np->phy_type = 0; } if (phy_idx != 0) { phy = np->valid_phy; np->advertising = mdio_read(dev,phy, 4); } return phy_idx; } /* * CRC calc for Destination Address for gets hashtable index */ #define POLYNOMIAL 0x04c11db7UL static u16 jz_hashtable_index(u8 *addr) { #if 1 u32 crc = 0xffffffff, msb; int i, j; u32 byte; for (i = 0; i < 6; i++) { byte = *addr++; for (j = 0; j < 8; j++) { msb = crc >> 31; crc <<= 1; if (msb ^ (byte & 1)) crc ^= POLYNOMIAL; byte >>= 1; } } return ((int)(crc >> 26)); #endif #if 0 int crc = -1; int length=6; int bit; unsigned char current_octet; while (--length >= 0) { current_octet = *addr++; for (bit = 0; bit < 8; bit++, current_octet >>= 1) crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? POLYNOMIAL : 0); } return ((int)(crc >> 26)); #endif } /* * Multicast filter and config multicast hash table */ #define MULTICAST_FILTER_LIMIT 64 static void jz_set_multicast_list(struct net_device *dev) { int i, hash_index; u32 mcr, hash_h, hash_l, hash_bit; mcr = readl(MAC_MCR); mcr &= ~(MCR_PR | MCR_PM | MCR_HP); if (dev->flags & IFF_PROMISC) { /* Accept any kinds of packets */ mcr |= MCR_PR; hash_h = 0xffffffff; hash_l = 0xffffffff; DBPRINTK("%s: enter promisc mode!\n",dev->name); } else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > MULTICAST_FILTER_LIMIT)){ /* Accept all multicast packets */ mcr |= MCR_PM; hash_h = 0xffffffff; hash_l = 0xffffffff; DBPRINTK("%s: enter allmulticast mode! %d \n",dev->name,dev->mc_count); } else if (dev->flags & IFF_MULTICAST) { /* Update multicast hash table */ struct dev_mc_list *mclist; hash_h = readl(MAC_HTH); hash_l = readl(MAC_HTL); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { hash_index = jz_hashtable_index(mclist->dmi_addr); hash_bit=0x00000001; hash_bit <<= (hash_index & 0x1f); if (hash_index > 0x1f) hash_h |= hash_bit; else hash_l |= hash_bit; DBPRINTK("----------------------------\n"); #ifdef DEBUG int j; for (j=0;jdmi_addrlen;j++) printk("%2.2x:",mclist->dmi_addr[j]); printk("\n"); #endif DBPRINTK("dmi.addrlen => %d\n",mclist->dmi_addrlen); DBPRINTK("dmi.users => %d\n",mclist->dmi_users); DBPRINTK("dmi.gusers => %d\n",mclist->dmi_users); } writel(hash_h,MAC_HTH); writel(hash_l,MAC_HTL); mcr |= MCR_HP; DBPRINTK("This is multicast hash table high bits [%4.4x]\n",readl(MAC_HTH)); DBPRINTK("This is multicast hash table low bits [%4.4x]\n",readl(MAC_HTL)); DBPRINTK("%s: enter multicast mode!\n",dev->name); } writel(mcr,MAC_MCR); } static inline int jz_phy_reset(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; unsigned int mii_reg0; unsigned int count; mii_reg0 = mdio_read(dev,np->valid_phy,MII_BMCR); mii_reg0 |=MII_CR_RST; mdio_write(dev,np->valid_phy,MII_BMCR,mii_reg0); //reset phy for ( count = 0; count < 1000; count++) { mdelay(1); mii_reg0 = mdio_read(dev,np->valid_phy,MII_BMCR); if (!(mii_reg0 & MII_CR_RST)) break; //reset completed } if (count>=100) return 1; //phy error else return 0; } /* * Show all mii registers - this routine is used for test */ #ifdef DEBUG static void mii_db_out(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; unsigned int mii_test; mii_test = mdio_read(dev,np->valid_phy,MII_BMCR); DBPRINTK("BMCR ====> 0x%4.4x \n",mii_test); mii_test = mdio_read(dev,np->valid_phy,MII_BMSR); DBPRINTK("BMSR ====> 0x%4.4x \n",mii_test); mii_test = mdio_read(dev,np->valid_phy,MII_ANAR); DBPRINTK("ANAR ====> 0x%4.4x \n",mii_test); mii_test = mdio_read(dev,np->valid_phy,MII_ANLPAR); DBPRINTK("ANLPAR ====> 0x%4.4x \n",mii_test); mii_test = mdio_read(dev,np->valid_phy,16); DBPRINTK("REG16 ====> 0x%4.4x \n",mii_test); mii_test = mdio_read(dev,np->valid_phy,17); DBPRINTK("REG17 ====> 0x%4.4x \n",mii_test); } #endif /* * Start Auto-Negotiation function for PHY */ static int jz_autonet_complete(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int count; u32 mii_reg1, timeout = 3000; for (count = 0; count < timeout; count++) { mdelay(1); mii_reg1 = mdio_read(dev,np->valid_phy,MII_BMSR); if (mii_reg1 & 0x0020) break; } //mii_db_out(dev); //for debug to display all register of MII if (count >= timeout) return 1; //auto negotiation error else return 0; } /* * Get current mode of eth phy */ static u32 jz_eth_curr_mode(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; unsigned int mii_reg17; u32 flag = 0; mii_reg17 = mdio_read(dev,np->valid_phy,MII_DSCSR); np->media = mii_reg17>>12; if (np->media==8) { infoprintk("%s: Current Operation Mode is [100M Full Duplex]",dev->name); flag = 0; np->full_duplex=1; } if (np->media==4) { infoprintk("%s: Current Operation Mode is [100M Half Duplex]",dev->name); flag = 0; np->full_duplex=0; } if (np->media==2) { infoprintk("%s: Current Operation Mode is [10M Full Duplex]",dev->name); flag = OMR_TTM; np->full_duplex=1; } if (np->media==1) { infoprintk("%s: Current Operation Mode is [10M Half Duplex]",dev->name); flag = OMR_TTM; np->full_duplex=0; } printk("\n"); return flag; } /* * Ethernet device hardware init * This routine initializes the ethernet device hardware and PHY */ static int jz_init_hw(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; struct ethtool_cmd ecmd; u32 mcr, omr; u32 sts, flag = 0; int i; jz_eth_reset(); STOP_ETH; #if 0 /* mii operation */ if (jz_phy_reset(dev)) { errprintk("PHY device do not reset!\n"); return -EPERM; // return operation not permitted } #endif /* Set MAC address */ writel(le32_to_cpu(*(unsigned long *)&dev->dev_addr[0]), MAC_MAL); writel(le32_to_cpu(*(unsigned long *)&dev->dev_addr[4]), MAC_MAH); printk("%s: JZ On-Chip ethernet (MAC ", dev->name); for (i = 0; i < 5; i++) { printk("%2.2x:", dev->dev_addr[i]); } printk("%2.2x, IRQ %d)\n", dev->dev_addr[i], dev->irq); np->mii_phy_cnt = jz_search_mii_phy(dev); printk("%s: Found %d PHY on JZ MAC\n", dev->name, np->mii_phy_cnt); mii_info.phy_id = np->valid_phy; mii_info.dev = dev; mii_info.mdio_read = &mdio_read; mii_info.mdio_write = &mdio_write; ecmd.speed = SPEED_100; ecmd.duplex = DUPLEX_FULL; ecmd.port = PORT_MII; ecmd.transceiver = XCVR_INTERNAL; ecmd.phy_address = np->valid_phy; ecmd.autoneg = AUTONEG_ENABLE; mii_ethtool_sset(&mii_info,&ecmd); if (jz_autonet_complete(dev)) errprintk("%s: Ethernet Module AutoNegotiation failed\n",dev->name); mii_ethtool_gset(&mii_info,&ecmd); infoprintk("%s: Provide Modes: ",dev->name); for (i = 0; i < 5;i++) if (ecmd.advertising & (1<full_duplex) mcr |= MCR_FDX; mcr |= MCR_BFD | MCR_TE | MCR_RE | MCR_OWD|MCR_HBD; writel(mcr, MAC_MCR); // mcr &= (readl(MAC_MCR) & ~(MCR_PM | MCR_PR | MCR_IF | MCR_HO | MCR_HP)); // mcr &= 0xffdf; // mcr |= 0x0020; // writel(mcr, MAC_MCR); /* Set base address of TX and RX descriptors */ writel(np->dma_rx_ring, DMA_RRBA); writel(np->dma_tx_ring, DMA_TRBA); START_ETH; /* set interrupt mask */ writel(IMR_DEFAULT | IMR_ENABLE, DMA_IMR); /* Reset any pending (stale) interrupts */ sts = readl(DMA_STS); writel(sts, DMA_STS); return 0; } static int jz_eth_open(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int retval, i; retval = request_irq(dev->irq, jz_eth_interrupt, 0, dev->name, dev); if (retval) { errprintk("%s: unable to get IRQ %d .\n", dev->name, dev->irq); return -EAGAIN; } for (i = 0; i < NUM_RX_DESCS; i++) { np->rx_ring[i].status = cpu_to_le32(R_OWN); np->rx_ring[i].desc1 = cpu_to_le32(RX_BUF_SIZE | RD_RCH); np->rx_ring[i].buf1_addr = cpu_to_le32(np->dma_rx_buf + i*RX_BUF_SIZE); np->rx_ring[i].next_addr = cpu_to_le32(np->dma_rx_ring + (i+1) * sizeof (jz_desc_t)); } np->rx_ring[NUM_RX_DESCS - 1].next_addr = cpu_to_le32(np->dma_rx_ring); for (i = 0; i < NUM_TX_DESCS; i++) { np->tx_ring[i].status = cpu_to_le32(0); np->tx_ring[i].desc1 = cpu_to_le32(TD_TCH); np->tx_ring[i].buf1_addr = 0; np->tx_ring[i].next_addr = cpu_to_le32(np->dma_tx_ring + (i+1) * sizeof (jz_desc_t)); } np->tx_ring[NUM_TX_DESCS - 1].next_addr = cpu_to_le32(np->dma_tx_ring); np->rx_head = 0; np->tx_head = np->tx_tail = 0; jz_init_hw(dev); dev->trans_start = jiffies; netif_start_queue(dev); start_check(dev); return 0; } static int jz_eth_close(struct net_device *dev) { netif_stop_queue(dev); close_check(dev); STOP_ETH; free_irq(dev->irq, dev); return 0; } /* * Get the current statistics. * This may be called with the device open or closed. */ static struct net_device_stats * jz_eth_get_stats(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int tmp; tmp = readl(DMA_MFC); // After read clear to zero np->stats.rx_missed_errors += (tmp & MFC_CNT2) + ((tmp & MFC_CNT1) >> 16); return &np->stats; } /* * ethtool routines */ static int jz_ethtool_ioctl(struct net_device *dev, void *useraddr) { struct jz_eth_private *np = dev->priv; u32 ethcmd; /* dev_ioctl() in ../../net/core/dev.c has already checked capable(CAP_NET_ADMIN), so don't bother with that here. */ if (get_user(ethcmd, (u32 *)useraddr)) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy (info.driver, DRV_NAME); strcpy (info.version, DRV_VERSION); strcpy (info.bus_info, "OCS"); if (copy_to_user (useraddr, &info, sizeof (info))) return -EFAULT; return 0; } /* get settings */ case ETHTOOL_GSET: { struct ethtool_cmd ecmd = { ETHTOOL_GSET }; spin_lock_irq(&np->lock); mii_ethtool_gset(&mii_info, &ecmd); spin_unlock_irq(&np->lock); if (copy_to_user(useraddr, &ecmd, sizeof(ecmd))) return -EFAULT; return 0; } /* set settings */ case ETHTOOL_SSET: { int r; struct ethtool_cmd ecmd; if (copy_from_user(&ecmd, useraddr, sizeof(ecmd))) return -EFAULT; spin_lock_irq(&np->lock); r = mii_ethtool_sset(&mii_info, &ecmd); spin_unlock_irq(&np->lock); return r; } /* restart autonegotiation */ case ETHTOOL_NWAY_RST: { return mii_nway_restart(&mii_info); } /* get link status */ case ETHTOOL_GLINK: { struct ethtool_value edata = {ETHTOOL_GLINK}; edata.data = mii_link_ok(&mii_info); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } /* get message-level */ case ETHTOOL_GMSGLVL: { struct ethtool_value edata = {ETHTOOL_GMSGLVL}; edata.data = debug; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } /* set message-level */ case ETHTOOL_SMSGLVL: { struct ethtool_value edata; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; debug = edata.data; return 0; } default: break; } return -EOPNOTSUPP; } /* * Config device */ static int jz_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct jz_eth_private *np =(struct jz_eth_private *)dev->priv; struct mii_ioctl_data *data, rdata; switch (cmd) { case SIOCETHTOOL: return jz_ethtool_ioctl(dev, (void *) rq->ifr_data); case SIOCGMIIPHY: case SIOCDEVPRIVATE: data = (struct mii_ioctl_data *)&rq->ifr_data; data->phy_id = np->valid_phy; case SIOCGMIIREG: case SIOCDEVPRIVATE+1: data = (struct mii_ioctl_data *)&rq->ifr_data; data->val_out = mdio_read(dev,np->valid_phy, data->reg_num & 0x1f); return 0; case SIOCSMIIREG: case SIOCDEVPRIVATE+2: data = (struct mii_ioctl_data *)&rq->ifr_data; if (!capable(CAP_NET_ADMIN)) return -EPERM; mdio_write(dev,np->valid_phy, data->reg_num & 0x1f, data->val_in); return 0; case READ_COMMAND: data = (struct mii_ioctl_data *)rq->ifr_data; if (copy_from_user(&rdata,data,sizeof(rdata))) return -EFAULT; rdata.val_out = mdio_read(dev,rdata.phy_id, rdata.reg_num & 0x1f); if (copy_to_user(data,&rdata,sizeof(rdata))) return -EFAULT; return 0; case WRITE_COMMAND: if (np->phy_type==1) { data = (struct mii_ioctl_data *)rq->ifr_data; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&rdata,data,sizeof(rdata))) return -EFAULT; mdio_write(dev,rdata.phy_id, rdata.reg_num & 0x1f, rdata.val_in); } return 0; case GETDRIVERINFO: if (np->phy_type==1) { data = (struct mii_ioctl_data *)rq->ifr_data; if (copy_from_user(&rdata,data,sizeof(rdata))) return -EFAULT; rdata.val_in = 0x1; rdata.val_out = 0x00d0; if (copy_to_user(data,&rdata,sizeof(rdata))) return -EFAULT; } return 0; default: return -EOPNOTSUPP; } return 0; } /* * Received one packet */ static void eth_rxready(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private*)dev->priv; struct sk_buff *skb; unsigned char *pkt_ptr; u32 pkt_len; u32 status; status = le32_to_cpu(np->rx_ring[np->rx_head].status); while (!(status & R_OWN)) { /* owner bit = 0 */ if (status & RD_ES) { /* error summary */ np->stats.rx_errors++; /* Update the error stats. */ if (status & (RD_RF | RD_TL)) np->stats.rx_frame_errors++; if (status & RD_CE) np->stats.rx_crc_errors++; if (status & RD_TL) np->stats.rx_length_errors++; } else { pkt_ptr = bus_to_virt(le32_to_cpu(np->rx_ring[np->rx_head].buf1_addr)); pkt_len = ((status & RD_FL) >> 16) - 4; skb = dev_alloc_skb(pkt_len + 2); if (skb == NULL) { printk("%s: Memory squeeze, dropping.\n", dev->name); np->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align */ //pkt_ptr = P1ADDR(pkt_ptr); //dma_cache_inv(pkt_ptr, pkt_len); memcpy(skb->data, pkt_ptr, pkt_len); skb_put(skb, pkt_len); //eth_dbg_rx(skb, pkt_len); skb->protocol = eth_type_trans(skb,dev); netif_rx(skb); /* pass the packet to upper layers */ dev->last_rx = jiffies; np->stats.rx_packets++; np->stats.rx_bytes += pkt_len; } np->rx_ring[np->rx_head].status = cpu_to_le32(R_OWN); np->rx_head ++; if (np->rx_head >= NUM_RX_DESCS) np->rx_head = 0; status = le32_to_cpu(np->rx_ring[np->rx_head].status); } } /* * Tx timeout routine */ static void jz_eth_tx_timeout(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; jz_init_hw(dev); np->stats.tx_errors ++; netif_wake_queue(dev); } /* * One packet was transmitted */ static void eth_txdone(struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private*)dev->priv; int tx_tail = np->tx_tail; while (tx_tail != np->tx_head) { int entry = tx_tail % NUM_TX_DESCS; s32 status = le32_to_cpu(np->tx_ring[entry].status); if(status < 0) break; if (status & TD_ES ) { /* Error summary */ np->stats.tx_errors++; if (status & TD_NC) np->stats.tx_carrier_errors++; if (status & TD_LC) np->stats.tx_window_errors++; if (status & TD_UF) np->stats.tx_fifo_errors++; if (status & TD_DE) np->stats.tx_aborted_errors++; if (np->tx_head != np->tx_tail) writel(1, DMA_TPD); /* Restart a stalled TX */ } else np->stats.tx_packets++; /* Update the collision counter */ np->stats.collisions += ((status & TD_EC) ? 16 : ((status & TD_CC) >> 3)); /* Free the original skb */ if (np->tx_skb[entry]) { dev_kfree_skb_irq(np->tx_skb[entry]); np->tx_skb[entry] = 0; } tx_tail++; } if (np->tx_full && (tx_tail + NUM_TX_DESCS > np->tx_head + 1)) { /* The ring is no longer full */ np->tx_full = 0; netif_start_queue(dev); } np->tx_tail = tx_tail; } /* * Update the tx descriptor */ static void load_tx_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; int entry = np->tx_head % NUM_TX_DESCS; np->tx_ring[entry].buf1_addr = cpu_to_le32(virt_to_bus(buf)); np->tx_ring[entry].desc1 &= cpu_to_le32((TD_TER | TD_TCH)); np->tx_ring[entry].desc1 |= cpu_to_le32(flags); np->tx_ring[entry].status = cpu_to_le32(T_OWN); np->tx_skb[entry] = skb; } /* * Transmit one packet */ static int jz_eth_send_packet(struct sk_buff *skb, struct net_device *dev) { struct jz_eth_private *np = (struct jz_eth_private *)dev->priv; u32 length; if (np->tx_full) { return 0; } udelay(500); /* FIXME: can we remove this delay ? */ length = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; dma_cache_wback((unsigned long)skb->data, length); load_tx_packet(dev, (char *)skb->data, TD_IC | TD_LS | TD_FS | length, skb); spin_lock_irq(&np->lock); np->tx_head ++; np->stats.tx_bytes += length; writel(1, DMA_TPD); /* Start the TX */ dev->trans_start = jiffies; /* for timeout */ if (np->tx_tail + NUM_TX_DESCS > np->tx_head + 1) { np->tx_full = 0; } else { np->tx_full = 1; netif_stop_queue(dev); } spin_unlock_irq(&np->lock); return 0; } /* * Interrupt service routine */ static irqreturn_t jz_eth_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct jz_eth_private *np = dev->priv; u32 sts; int i; spin_lock(&np->lock); writel((readl(DMA_IMR) & ~IMR_ENABLE), DMA_IMR); /* Disable interrupt */ for (i = 0; i < 100; i++) { sts = readl(DMA_STS); writel(sts, DMA_STS); /* clear status */ if (!(sts & IMR_DEFAULT)) break; if (sts & (DMA_INT_RI | DMA_INT_RU)) /* Rx IRQ */ eth_rxready(dev); if (sts & (DMA_INT_TI | DMA_INT_TU)) /* Tx IRQ */ eth_txdone(dev); /* check error conditions */ if (sts & DMA_INT_FB){ /* fatal bus error */ STOP_ETH; errprintk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",dev->name, sts); break; } if (sts & DMA_INT_UN) { /* Transmit underrun */ u32 omr; omr = readl(DMA_OMR); if (!(omr & OMR_SF)) { omr &= ~(OMR_ST | OMR_SR); writel(omr, DMA_OMR); while (readl(DMA_STS) & STS_TS); /* wait for stop */ if ((omr & OMR_TR) < OMR_TR) { /* ? */ omr += TR_24; } else { omr |= OMR_SF; } writel(omr | OMR_ST | OMR_SR, DMA_OMR); } } } writel(readl(DMA_IMR) | IMR_ENABLE, DMA_IMR); /* enable interrupt */ spin_unlock(&np->lock); return IRQ_HANDLED; } #if 0 //def CONFIG_PM /* * Suspend the ETH interface. */ static int jz_eth_suspend(struct net_device *dev, int state) { struct jz_eth_private *jep = (struct jz_eth_private *)dev->priv; unsigned long flags, tmp; printk("ETH suspend.\n"); if (!netif_running(dev)) { return 0; } netif_device_detach(dev); spin_lock_irqsave(&jep->lock, flags); /* Disable interrupts, stop Tx and Rx. */ REG32(DMA_IMR) = 0; STOP_ETH; /* Update the error counts. */ tmp = REG32(DMA_MFC); jep->stats.rx_missed_errors += (tmp & 0x1ffff); jep->stats.rx_fifo_errors += ((tmp >> 17) & 0x7ff); spin_unlock_irqrestore(&jep->lock, flags); return 0; } /* * Resume the ETH interface. */ static int jz_eth_resume(struct net_device *dev) { printk("ETH resume.\n"); if (!netif_running(dev)) return 0; jz_init_hw(dev); netif_device_attach(dev); jz_eth_tx_timeout(dev); netif_wake_queue(dev); return 0; } static int jz_eth_pm_callback(struct pm_dev *dev, pm_request_t rqst, void *data) { int ret; if (!dev->data) return -EINVAL; switch (rqst) { case PM_SUSPEND: ret = jz_eth_suspend((struct net_device *)dev->data, (int)data); break; case PM_RESUME: ret = jz_eth_resume((struct net_device *)dev->data); break; default: ret = -EINVAL; break; } return ret; } #endif /* CONFIG_PM */ static int __init jz_eth_init(void) { struct net_device *dev; struct jz_eth_private *np; int err; dev = alloc_etherdev(sizeof(struct jz_eth_private)); if (!dev) { printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); return -ENOMEM; } netdev = dev; np = (struct jz_eth_private *)P2ADDR(dev->priv); dev->priv = np; memset(np, 0, sizeof(struct jz_eth_private)); np->vaddr_rx_buf = (u32)dma_alloc_noncoherent(NULL, NUM_RX_DESCS*RX_BUF_SIZE, &np->dma_rx_buf, 0); if (!np->vaddr_rx_buf) { printk(KERN_ERR "%s: Cannot alloc dma buffers\n", DRV_NAME); unregister_netdev(dev); free_netdev(dev); return -ENOMEM; } np->dma_rx_ring = virt_to_bus(np->rx_ring); np->dma_tx_ring = virt_to_bus(np->tx_ring); np->full_duplex = 1; np->link_state = 1; spin_lock_init(&np->lock); ether_setup(dev); dev->irq = IRQ_ETH; dev->open = jz_eth_open; dev->stop = jz_eth_close; dev->hard_start_xmit = jz_eth_send_packet; dev->get_stats = jz_eth_get_stats; dev->set_multicast_list = jz_set_multicast_list; dev->do_ioctl = jz_eth_ioctl; dev->tx_timeout = jz_eth_tx_timeout; dev->watchdog_timeo = ETH_TX_TIMEOUT; /* configure MAC address */ get_mac_address(dev); if ((err = register_netdev(dev)) != 0) { printk(KERN_ERR "%s: Cannot register net device, error %d\n", DRV_NAME, err); free_netdev(dev); return -ENOMEM; } //#ifdef 0 //CONFIG_PM // np->pmdev = pm_register(PM_SYS_DEV, PM_SYS_UNKNOWN, jz_eth_pm_callback); // if (np->pmdev) // np->pmdev->data = dev; //#endif return 0; } static void __exit jz_eth_exit(void) { struct net_device *dev = netdev; struct jz_eth_private *np = dev->priv; unregister_netdev(dev); dma_free_noncoherent(NULL, NUM_RX_DESCS * RX_BUF_SIZE, (void *)np->vaddr_rx_buf, np->dma_rx_buf); free_netdev(dev); } module_init(jz_eth_init); module_exit(jz_eth_exit);