/* * net/dsa/mv88e6063.c - Driver for Marvell 88e6063 switch chips * Copyright (c) 2009 Gabor Juhos <juhosg@openwrt.org> * * This driver was base on: net/dsa/mv88e6060.c * net/dsa/mv88e6063.c - Driver for Marvell 88e6060 switch chips * Copyright (c) 2008-2009 Marvell Semiconductor * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/list.h> #include <linux/netdevice.h> #include <linux/phy.h> #include "dsa_priv.h" #define REG_BASE 0x10 #define REG_PHY(p) (REG_BASE + (p)) #define REG_PORT(p) (REG_BASE + 8 + (p)) #define REG_GLOBAL (REG_BASE + 0x0f) #define NUM_PORTS 7 static int reg_read(struct dsa_switch *ds, int addr, int reg) { return mdiobus_read(ds->master_mii_bus, addr, reg); } #define REG_READ(addr, reg) \ ({ \ int __ret; \ \ __ret = reg_read(ds, addr, reg); \ if (__ret < 0) \ return __ret; \ __ret; \ }) static int reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) { return mdiobus_write(ds->master_mii_bus, addr, reg, val); } #define REG_WRITE(addr, reg, val) \ ({ \ int __ret; \ \ __ret = reg_write(ds, addr, reg, val); \ if (__ret < 0) \ return __ret; \ }) static char *mv88e6063_probe(struct mii_bus *bus, int sw_addr) { int ret; ret = mdiobus_read(bus, REG_PORT(0), 0x03); if (ret >= 0) { ret &= 0xfff0; if (ret == 0x1530) return "Marvell 88E6063"; } return NULL; } static int mv88e6063_switch_reset(struct dsa_switch *ds) { int i; int ret; /* * Set all ports to the disabled state. */ for (i = 0; i < NUM_PORTS; i++) { ret = REG_READ(REG_PORT(i), 0x04); REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc); } /* * Wait for transmit queues to drain. */ msleep(2); /* * Reset the switch. */ REG_WRITE(REG_GLOBAL, 0x0a, 0xa130); /* * Wait up to one second for reset to complete. */ for (i = 0; i < 1000; i++) { ret = REG_READ(REG_GLOBAL, 0x00); if ((ret & 0x8000) == 0x0000) break; msleep(1); } if (i == 1000) return -ETIMEDOUT; return 0; } static int mv88e6063_setup_global(struct dsa_switch *ds) { /* * Disable discarding of frames with excessive collisions, * set the maximum frame size to 1536 bytes, and mask all * interrupt sources. */ REG_WRITE(REG_GLOBAL, 0x04, 0x0800); /* * Enable automatic address learning, set the address * database size to 1024 entries, and set the default aging * time to 5 minutes. */ REG_WRITE(REG_GLOBAL, 0x0a, 0x2130); return 0; } static int mv88e6063_setup_port(struct dsa_switch *ds, int p) { int addr = REG_PORT(p); /* * Do not force flow control, disable Ingress and Egress * Header tagging, disable VLAN tunneling, and set the port * state to Forwarding. Additionally, if this is the CPU * port, enable Ingress and Egress Trailer tagging mode. */ REG_WRITE(addr, 0x04, dsa_is_cpu_port(ds, p) ? 0x4103 : 0x0003); /* * Port based VLAN map: give each port its own address * database, allow the CPU port to talk to each of the 'real' * ports, and allow each of the 'real' ports to only talk to * the CPU port. */ REG_WRITE(addr, 0x06, ((p & 0xf) << 12) | (dsa_is_cpu_port(ds, p) ? ds->phys_port_mask : (1 << ds->dst->cpu_port))); /* * Port Association Vector: when learning source addresses * of packets, add the address to the address database using * a port bitmap that has only the bit for this port set and * the other bits clear. */ REG_WRITE(addr, 0x0b, 1 << p); return 0; } static int mv88e6063_setup(struct dsa_switch *ds) { int i; int ret; ret = mv88e6063_switch_reset(ds); if (ret < 0) return ret; /* @@@ initialise atu */ ret = mv88e6063_setup_global(ds); if (ret < 0) return ret; for (i = 0; i < NUM_PORTS; i++) { ret = mv88e6063_setup_port(ds, i); if (ret < 0) return ret; } return 0; } static int mv88e6063_set_addr(struct dsa_switch *ds, u8 *addr) { REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]); REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]); REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]); return 0; } static int mv88e6063_port_to_phy_addr(int port) { if (port >= 0 && port <= NUM_PORTS) return REG_PHY(port); return -1; } static int mv88e6063_phy_read(struct dsa_switch *ds, int port, int regnum) { int addr; addr = mv88e6063_port_to_phy_addr(port); if (addr == -1) return 0xffff; return reg_read(ds, addr, regnum); } static int mv88e6063_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) { int addr; addr = mv88e6063_port_to_phy_addr(port); if (addr == -1) return 0xffff; return reg_write(ds, addr, regnum, val); } static void mv88e6063_poll_link(struct dsa_switch *ds) { int i; for (i = 0; i < DSA_MAX_PORTS; i++) { struct net_device *dev; int uninitialized_var(port_status); int link; int speed; int duplex; int fc; dev = ds->ports[i]; if (dev == NULL) continue; link = 0; if (dev->flags & IFF_UP) { port_status = reg_read(ds, REG_PORT(i), 0x00); if (port_status < 0) continue; link = !!(port_status & 0x1000); } if (!link) { if (netif_carrier_ok(dev)) { printk(KERN_INFO "%s: link down\n", dev->name); netif_carrier_off(dev); } continue; } speed = (port_status & 0x0100) ? 100 : 10; duplex = (port_status & 0x0200) ? 1 : 0; fc = ((port_status & 0xc000) == 0xc000) ? 1 : 0; if (!netif_carrier_ok(dev)) { printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, " "flow control %sabled\n", dev->name, speed, duplex ? "full" : "half", fc ? "en" : "dis"); netif_carrier_on(dev); } } } static struct dsa_switch_driver mv88e6063_switch_driver = { .tag_protocol = htons(ETH_P_TRAILER), .probe = mv88e6063_probe, .setup = mv88e6063_setup, .set_addr = mv88e6063_set_addr, .phy_read = mv88e6063_phy_read, .phy_write = mv88e6063_phy_write, .poll_link = mv88e6063_poll_link, }; static int __init mv88e6063_init(void) { register_switch_driver(&mv88e6063_switch_driver); return 0; } module_init(mv88e6063_init); static void __exit mv88e6063_cleanup(void) { unregister_switch_driver(&mv88e6063_switch_driver); } module_exit(mv88e6063_cleanup);