1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-30 22:49:43 +02:00
openwrt-xburst/package/uboot-xburst/files/nand_spl/nand_boot_jz4740.c
Xiangfu Liu 65057cd69b uboot-xburst: update to 2010.06
uboot-xburst: don't install empty dir
2012-03-07 06:23:24 -08:00

400 lines
9.4 KiB
C

/*
* Copyright (C) 2007 Ingenic Semiconductor Inc.
* Author: Peter <jlwei@ingenic.cn>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm/jz4740.h>
#include "nanonote_gpm940b0.h"
#define KEY_U_OUT (32 * 2 + 16)
#define KEY_U_IN (32 * 3 + 19)
/*
* NAND flash definitions
*/
#define NAND_DATAPORT 0xb8000000
#define NAND_ADDRPORT 0xb8010000
#define NAND_COMMPORT 0xb8008000
#define __nand_enable() (REG_EMC_NFCSR |= EMC_NFCSR_NFE1 | EMC_NFCSR_NFCE1)
#define __nand_disable() (REG_EMC_NFCSR &= ~(EMC_NFCSR_NFCE1))
#define __nand_ecc_rs_encoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_ENCODING)
#define __nand_ecc_rs_decoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_DECODING)
#define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE)
#define __nand_ecc_encode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_ENCF))
#define __nand_ecc_decode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_DECF))
#define __nand_cmd(n) (REG8(NAND_COMMPORT) = (n))
#define __nand_addr(n) (REG8(NAND_ADDRPORT) = (n))
#define __nand_data8() REG8(NAND_DATAPORT)
#define __nand_data16() REG16(NAND_DATAPORT)
#if (JZ4740_NANDBOOT_CFG == JZ4740_NANDBOOT_B8R3)
#define NAND_BUS_WIDTH 8
#define NAND_ROW_CYCLE 3
#elif (JZ4740_NANDBOOT_CFG == JZ4740_NANDBOOT_B8R2)
#define NAND_BUS_WIDTH 8
#define NAND_ROW_CYCLE 2
#elif (JZ4740_NANDBOOT_CFG == JZ4740_NANDBOOT_B16R3)
#define NAND_BUS_WIDTH 16
#define NAND_ROW_CYCLE 3
#elif (JZ4740_NANDBOOT_CFG == JZ4740_NANDBOOT_B16R2)
#define NAND_BUS_WIDTH 16
#define NAND_ROW_CYCLE 2
#endif
static inline void __nand_dev_ready(void)
{
unsigned int timeout = 10000;
while ((REG_GPIO_PXPIN(2) & 0x40000000) && timeout--);
while (!(REG_GPIO_PXPIN(2) & 0x40000000));
}
/*
* NAND flash parameters
*/
static int page_size = 2048;
static int oob_size = 64;
static int ecc_count = 4;
static int page_per_block = 64;
static int bad_block_pos = 0;
static int block_size = 131072;
static unsigned char oob_buf[128] = {0};
/*
* External routines
*/
extern void flush_cache_all(void);
extern int serial_init(void);
extern void serial_puts(const char *s);
extern void sdram_init(void);
extern void pll_init(void);
extern void usb_boot();
/*
* NAND flash routines
*/
#if NAND_BUS_WIDTH == 16
static inline void nand_read_buf16(void *buf, int count)
{
int i;
u16 *p = (u16 *)buf;
for (i = 0; i < count; i += 2)
*p++ = __nand_data16();
}
#define nand_read_buf nand_read_buf16
#elif NAND_BUS_WIDTH == 8
static inline void nand_read_buf8(void *buf, int count)
{
int i;
u8 *p = (u8 *)buf;
for (i = 0; i < count; i++)
*p++ = __nand_data8();
}
#define nand_read_buf nand_read_buf8
#endif
/* Correct 1~9-bit errors in 512-bytes data */
static void rs_correct(unsigned char *dat, int idx, int mask)
{
int i;
idx--;
i = idx + (idx >> 3);
if (i >= 512)
return;
mask <<= (idx & 0x7);
dat[i] ^= mask & 0xff;
if (i < 511)
dat[i+1] ^= (mask >> 8) & 0xff;
}
static int nand_read_oob(int page_addr, uchar *buf, int size)
{
int col_addr;
if (page_size != 512)
col_addr = page_size;
else {
col_addr = 0;
__nand_dev_ready();
}
if (page_size != 512)
/* Send READ0 command */
__nand_cmd(NAND_CMD_READ0);
else
/* Send READOOB command */
__nand_cmd(NAND_CMD_READOOB);
/* Send column address */
__nand_addr(col_addr & 0xff);
if (page_size != 512)
__nand_addr((col_addr >> 8) & 0xff);
/* Send page address */
__nand_addr(page_addr & 0xff);
__nand_addr((page_addr >> 8) & 0xff);
#if defined NAND_ROW_CYCLE && NAND_ROW_CYCLE == 3
__nand_addr((page_addr >> 16) & 0xff);
#endif
/* Send READSTART command for 2048 or 4096 ps NAND */
if (page_size != 512)
__nand_cmd(NAND_CMD_READSTART);
/* Wait for device ready */
__nand_dev_ready();
/* Read oob data */
nand_read_buf(buf, size);
if (page_size == 512)
__nand_dev_ready();
return 0;
}
static int nand_read_page(int page_addr, uchar *dst, uchar *oobbuf)
{
uchar *databuf = dst, *tmpbuf;
int i, j;
/*
* Read oob data
*/
nand_read_oob(page_addr, oobbuf, oob_size);
/*
* Read page data
*/
/* Send READ0 command */
__nand_cmd(NAND_CMD_READ0);
/* Send column address */
__nand_addr(0);
if (page_size != 512)
__nand_addr(0);
/* Send page address */
__nand_addr(page_addr & 0xff);
__nand_addr((page_addr >> 8) & 0xff);
#if defined NAND_ROW_CYCLE && NAND_ROW_CYCLE == 3
__nand_addr((page_addr >> 16) & 0xff);
#endif
/* Send READSTART command for 2048 or 4096 ps NAND */
if (page_size != 512)
__nand_cmd(NAND_CMD_READSTART);
/* Wait for device ready */
__nand_dev_ready();
/* Read page data */
tmpbuf = databuf;
for (i = 0; i < ecc_count; i++) {
volatile unsigned char *paraddr = (volatile unsigned char *)EMC_NFPAR0;
unsigned int stat;
/* Enable RS decoding */
REG_EMC_NFINTS = 0x0;
__nand_ecc_rs_decoding();
/* Read data */
nand_read_buf((void *)tmpbuf, CONFIG_SYS_NAND_ECCSIZE);
/* Set PAR values */
for (j = 0; j < CONFIG_SYS_NAND_ECCBYTES; j++)
*paraddr++ = oobbuf[CONFIG_SYS_NAND_ECC_POS + i*CONFIG_SYS_NAND_ECCBYTES + j];
/* Set PRDY */
REG_EMC_NFECR |= EMC_NFECR_PRDY;
/* Wait for completion */
__nand_ecc_decode_sync();
/* Disable decoding */
__nand_ecc_disable();
/* Check result of decoding */
stat = REG_EMC_NFINTS;
if (stat & EMC_NFINTS_ERR) {
/* Error occurred */
/* serial_puts("Error occurred\n"); */
if (stat & EMC_NFINTS_UNCOR) {
/* Uncorrectable error occurred */
/* serial_puts("Uncorrectable error occurred\n"); */
} else {
unsigned int errcnt, index, mask;
errcnt = (stat & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
switch (errcnt) {
case 4:
index = (REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
rs_correct(tmpbuf, index, mask);
/* FALL-THROUGH */
case 3:
index = (REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
rs_correct(tmpbuf, index, mask);
/* FALL-THROUGH */
case 2:
index = (REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
rs_correct(tmpbuf, index, mask);
/* FALL-THROUGH */
case 1:
index = (REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
rs_correct(tmpbuf, index, mask);
break;
default:
break;
}
}
}
tmpbuf += CONFIG_SYS_NAND_ECCSIZE;
}
return 0;
}
#ifndef CONFIG_SYS_NAND_BADBLOCK_PAGE
#define CONFIG_SYS_NAND_BADBLOCK_PAGE 0 /* NAND bad block was marked at this page in a block, starting from 0 */
#endif
static void nand_load(int offs, int uboot_size, uchar *dst)
{
int page;
int pagecopy_count;
__nand_enable();
page = offs / page_size;
pagecopy_count = 0;
while (pagecopy_count < (uboot_size / page_size)) {
if (page % page_per_block == 0) {
nand_read_oob(page + CONFIG_SYS_NAND_BADBLOCK_PAGE, oob_buf, oob_size);
if (oob_buf[bad_block_pos] != 0xff) {
page += page_per_block;
/* Skip bad block */
continue;
}
}
/* Load this page to dst, do the ECC */
nand_read_page(page, dst, oob_buf);
dst += page_size;
page++;
pagecopy_count++;
}
__nand_disable();
}
static void jz_nand_init(void) {
/* Optimize the timing of nand */
REG_EMC_SMCR1 = 0x094c4400;
}
static void gpio_init(void)
{
/*
* Initialize SDRAM pins
*/
__gpio_as_sdram_16bit_4720();
/*
* Initialize UART0 pins
*/
__gpio_as_uart0();
__gpio_jtag_to_uart0();
}
static int is_usb_boot()
{
__gpio_as_input(KEY_U_IN);
__gpio_enable_pull(KEY_U_IN);
__gpio_as_output(KEY_U_OUT);
__gpio_clear_pin(KEY_U_OUT);
if (__gpio_get_pin(KEY_U_IN) == 0)
return 1;
return 0;
}
void nand_boot(void)
{
void (*uboot)(void);
/*
* Init hardware
*/
gpio_init();
pll_init();
__lcd_display_pin_init();
__lcd_display_on() ;
serial_init();
sdram_init();
jz_nand_init();
serial_puts("\nNAND Boot\n");
#if defined(CONFIG_NANONOTE)
if(is_usb_boot()) {
serial_puts("[U] pressed, goto USBBOOT mode\n");
usb_boot();
}
#endif
page_size = CONFIG_SYS_NAND_PAGE_SIZE;
block_size = CONFIG_SYS_NAND_BLOCK_SIZE;
page_per_block = CONFIG_SYS_NAND_BLOCK_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
bad_block_pos = (page_size == 512) ? 5 : 0;
oob_size = page_size / 32;
ecc_count = page_size / CONFIG_SYS_NAND_ECCSIZE;
/*
* Load U-Boot image from NAND into RAM
*/
nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
uboot = (void (*)(void))CONFIG_SYS_NAND_U_BOOT_START;
serial_puts("Starting U-Boot ...\n");
/* Flush caches */
flush_cache_all();
/* Jump to U-Boot image */
(*uboot)();
}