1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-22 17:31:06 +02:00
2008-01-06 19:28:07 +00:00

341 lines
7.9 KiB
C

/*
* BCM47XX support code for some chipcommon facilities (uart, jtagm)
*
* Copyright 2007, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id$
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <bcmnvram.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbextif.h>
#include <hndchipc.h>
#include <hndcpu.h>
/* debug/trace */
#define CC_ERROR(args)
#ifdef BCMDBG
#define CC_MSG(args) printf args
#else
#define CC_MSG(args)
#endif /* BCMDBG */
/* interested chipcommon interrupt source
* - GPIO
* - EXTIF
* - ECI
* - PMU
* - UART
*/
#define MAX_CC_INT_SOURCE 5
/* chipc secondary isr info */
typedef struct {
uint intmask; /* int mask */
cc_isr_fn isr; /* secondary isr handler */
void *cbdata; /* pointer to private data */
} cc_isr_info_t;
static cc_isr_info_t cc_isr_desc[MAX_CC_INT_SOURCE];
/* chip common intmask */
static uint32 cc_intmask = 0;
static bool BCMINITFN(serial_exists) (osl_t * osh, uint8 * regs) {
uint8 save_mcr, status1;
save_mcr = R_REG(osh, &regs[UART_MCR]);
W_REG(osh, &regs[UART_MCR], UART_MCR_LOOP | 0x0a);
status1 = R_REG(osh, &regs[UART_MSR]) & 0xf0;
W_REG(osh, &regs[UART_MCR], save_mcr);
return (status1 == 0x90);
}
static void __init sb_extif_serial_init(sb_t * sbh, void *regs,
sb_serial_init_fn add)
{
osl_t *osh = sb_osh(sbh);
extifregs_t *eir = (extifregs_t *) regs;
sbconfig_t *sb;
ulong base;
uint irq;
int i, n;
/* Determine external UART register base */
sb = (sbconfig_t *) ((ulong) eir + SBCONFIGOFF);
base = EXTIF_CFGIF_BASE(sb_base(R_REG(osh, &sb->sbadmatch1)));
/* Determine IRQ */
irq = sb_irq(sbh);
/* Disable GPIO interrupt initially */
W_REG(osh, &eir->gpiointpolarity, 0);
W_REG(osh, &eir->gpiointmask, 0);
/* Search for external UARTs */
n = 2;
for (i = 0; i < 2; i++) {
regs = (void *)REG_MAP(base + (i * 8), 8);
if (serial_exists(osh, regs)) {
/* Set GPIO 1 to be the external UART IRQ */
W_REG(osh, &eir->gpiointmask, 2);
/* XXXDetermine external UART clock */
if (add)
add(regs, irq, 13500000, 0);
}
}
/* Add internal UART if enabled */
if (R_REG(osh, &eir->corecontrol) & CC_UE)
if (add)
add((void *)&eir->uartdata, irq, sb_clock(sbh), 2);
}
/*
* Initializes UART access. The callback function will be called once
* per found UART.
*/
void BCMINITFN(sb_serial_init) (sb_t * sbh, sb_serial_init_fn add) {
osl_t *osh;
void *regs;
chipcregs_t *cc;
uint32 rev, cap, pll, baud_base, div;
uint irq;
int i, n;
osh = sb_osh(sbh);
regs = sb_setcore(sbh, SB_EXTIF, 0);
if (regs) {
sb_extif_serial_init(sbh, regs, add);
return;
}
cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
ASSERT(cc);
/* Determine core revision and capabilities */
rev = sbh->ccrev;
cap = sbh->cccaps;
pll = cap & CC_CAP_PLL_MASK;
/* Determine IRQ */
irq = sb_irq(sbh);
if (pll == PLL_TYPE1) {
/* PLL clock */
baud_base = sb_clock_rate(pll,
R_REG(osh, &cc->clockcontrol_n),
R_REG(osh, &cc->clockcontrol_m2));
div = 1;
} else {
/* 5354 chip common uart uses a constant clock
* frequency of 25MHz */
if (sb_corerev(sbh) == 20) {
/* Set the override bit so we don't divide it */
W_REG(osh, &cc->corecontrol, CC_UARTCLKO);
baud_base = 25000000;
} else if (rev >= 11 && rev != 15) {
/* Fixed ALP clock */
baud_base = sb_alp_clock(sbh);
div = 1;
/* Turn off UART clock before switching clock source */
if (rev >= 21)
AND_REG(osh, &cc->corecontrol, ~CC_UARTCLKEN);
/* Set the override bit so we don't divide it */
OR_REG(osh, &cc->corecontrol, CC_UARTCLKO);
if (rev >= 21)
OR_REG(osh, &cc->corecontrol, CC_UARTCLKEN);
} else if (rev >= 3) {
/* Internal backplane clock */
baud_base = sb_clock(sbh);
div = 2; /* Minimum divisor */
W_REG(osh, &cc->clkdiv,
((R_REG(osh, &cc->clkdiv) & ~CLKD_UART) | div));
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((rev > 0)
&& ((R_REG(osh, &cc->corecontrol) & CC_UARTCLKO) == 0)) {
if ((cap & CC_CAP_UCLKSEL) == CC_CAP_UINTCLK) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Add internal UARTs */
n = cap & CC_CAP_UARTS_MASK;
for (i = 0; i < n; i++) {
/* Register offset changed after revision 0 */
if (rev)
regs = (void *)((ulong) & cc->uart0data + (i * 256));
else
regs = (void *)((ulong) & cc->uart0data + (i * 8));
if (add)
add(regs, irq, baud_base, 0);
}
}
#if 0
/*
* Initialize jtag master and return handle for
* jtag_rwreg. Returns NULL on failure.
*/
void *sb_jtagm_init(sb_t * sbh, uint clkd, bool exttap)
{
void *regs;
if ((regs = sb_setcore(sbh, SB_CC, 0)) != NULL) {
chipcregs_t *cc = (chipcregs_t *) regs;
uint32 tmp;
/*
* Determine jtagm availability from
* core revision and capabilities.
*/
/*
* Corerev 10 has jtagm, but the only chip
* with it does not have a mips, and
* the layout of the jtagcmd register is
* different. We'll only accept >= 11.
*/
if (sbh->ccrev < 11)
return (NULL);
if ((sbh->cccaps & CC_CAP_JTAGP) == 0)
return (NULL);
/* Set clock divider if requested */
if (clkd != 0) {
tmp = R_REG(osh, &cc->clkdiv);
tmp =
(tmp & ~CLKD_JTAG) | ((clkd << CLKD_JTAG_SHIFT) &
CLKD_JTAG);
W_REG(osh, &cc->clkdiv, tmp);
}
/* Enable jtagm */
tmp = JCTRL_EN | (exttap ? JCTRL_EXT_EN : 0);
W_REG(osh, &cc->jtagctrl, tmp);
}
return (regs);
}
void sb_jtagm_disable(osl_t * osh, void *h)
{
chipcregs_t *cc = (chipcregs_t *) h;
W_REG(osh, &cc->jtagctrl, R_REG(osh, &cc->jtagctrl) & ~JCTRL_EN);
}
/*
* Read/write a jtag register. Assumes a target with
* 8 bit IR and 32 bit DR.
*/
#define IRWIDTH 8 /* Default Instruction Register width */
#define DRWIDTH 32 /* Default Data Register width */
uint32 jtag_rwreg(osl_t * osh, void *h, uint32 ir, uint32 dr)
{
chipcregs_t *cc = (chipcregs_t *) h;
uint32 tmp;
W_REG(osh, &cc->jtagir, ir);
W_REG(osh, &cc->jtagdr, dr);
tmp = JCMD_START | JCMD_ACC_IRDR |
((IRWIDTH - 1) << JCMD_IRW_SHIFT) | (DRWIDTH - 1);
W_REG(osh, &cc->jtagcmd, tmp);
while (((tmp = R_REG(osh, &cc->jtagcmd)) & JCMD_BUSY) == JCMD_BUSY) {
/* OSL_DELAY(1); */
}
tmp = R_REG(osh, &cc->jtagdr);
return (tmp);
}
#endif
/*
* Interface to register chipc secondary isr
*/
bool
BCMINITFN(sb_cc_register_isr) (sb_t * sbh, cc_isr_fn isr, uint32 ccintmask,
void *cbdata) {
bool done = FALSE;
chipcregs_t *regs;
uint origidx;
uint i;
/* Save the current core index */
origidx = sb_coreidx(sbh);
regs = sb_setcore(sbh, SB_CC, 0);
ASSERT(regs);
for (i = 0; i < MAX_CC_INT_SOURCE; i++) {
if (cc_isr_desc[i].isr == NULL) {
cc_isr_desc[i].isr = isr;
cc_isr_desc[i].cbdata = cbdata;
cc_isr_desc[i].intmask = ccintmask;
done = TRUE;
break;
}
}
if (done) {
cc_intmask = R_REG(sb_osh(sbh), &regs->intmask);
cc_intmask |= ccintmask;
W_REG(sb_osh(sbh), &regs->intmask, cc_intmask);
}
/* restore original coreidx */
sb_setcoreidx(sbh, origidx);
return done;
}
/*
* chipc primary interrupt handler
*/
void sb_cc_isr(sb_t * sbh, chipcregs_t * regs)
{
uint32 ccintstatus;
uint32 intstatus;
uint32 i;
/* prior to rev 21 chipc interrupt means uart and gpio */
if (sbh->ccrev >= 21)
ccintstatus = R_REG(sb_osh(sbh), &regs->intstatus) & cc_intmask;
else
ccintstatus = (CI_UART | CI_GPIO);
for (i = 0; i < MAX_CC_INT_SOURCE; i++) {
if ((cc_isr_desc[i].isr != NULL) &&
(intstatus = (cc_isr_desc[i].intmask & ccintstatus))) {
(cc_isr_desc[i].isr) (cc_isr_desc[i].cbdata, intstatus);
}
}
}