1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-19 17:41:05 +02:00
lars fb189822fc [s3c24xx] bump to 2.6.30-rc6
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@15918 3c298f89-4303-0410-b956-a3cf2f4a3e73
2009-05-18 17:55:41 +00:00

468 lines
14 KiB
C

/*
*
* Copyright (c) 2004-2007 Atheros Communications Inc.
* All rights reserved.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
*
*
*/
#include "a_config.h"
#include "athdefs.h"
#include "a_types.h"
#include "AR6Khwreg.h"
#include "targaddrs.h"
#include "a_osapi.h"
#include "hif.h"
#include "htc_api.h"
#include "bmi.h"
#include "bmi_msg.h"
#include "common_drv.h"
#include "a_debug.h"
#include "targaddrs.h"
#define HOST_INTEREST_ITEM_ADDRESS(target, item) \
(((TargetType) == TARGET_TYPE_AR6001) ? \
AR6001_HOST_INTEREST_ITEM_ADDRESS(item) : \
AR6002_HOST_INTEREST_ITEM_ADDRESS(item))
/* Compile the 4BYTE version of the window register setup routine,
* This mitigates host interconnect issues with non-4byte aligned bus requests, some
* interconnects use bus adapters that impose strict limitations.
* Since diag window access is not intended for performance critical operations, the 4byte mode should
* be satisfactory even though it generates 4X the bus activity. */
#ifdef USE_4BYTE_REGISTER_ACCESS
/* set the window address register (using 4-byte register access ). */
A_STATUS ar6000_SetAddressWindowRegister(HIF_DEVICE *hifDevice, A_UINT32 RegisterAddr, A_UINT32 Address)
{
A_STATUS status;
A_UINT8 addrValue[4];
int i;
/* write bytes 1,2,3 of the register to set the upper address bytes, the LSB is written
* last to initiate the access cycle */
for (i = 1; i <= 3; i++) {
/* fill the buffer with the address byte value we want to hit 4 times*/
addrValue[0] = ((A_UINT8 *)&Address)[i];
addrValue[1] = addrValue[0];
addrValue[2] = addrValue[0];
addrValue[3] = addrValue[0];
/* hit each byte of the register address with a 4-byte write operation to the same address,
* this is a harmless operation */
status = HIFReadWrite(hifDevice,
RegisterAddr+i,
addrValue,
4,
HIF_WR_SYNC_BYTE_FIX,
NULL);
if (status != A_OK) {
break;
}
}
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write initial bytes of 0x%x to window reg: 0x%X \n",
RegisterAddr, Address));
return status;
}
/* write the address register again, this time write the whole 4-byte value.
* The effect here is that the LSB write causes the cycle to start, the extra
* 3 byte write to bytes 1,2,3 has no effect since we are writing the same values again */
status = HIFReadWrite(hifDevice,
RegisterAddr,
(A_UCHAR *)(&Address),
4,
HIF_WR_SYNC_BYTE_INC,
NULL);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to window reg: 0x%X \n",
RegisterAddr, Address));
return status;
}
return A_OK;
}
#else
/* set the window address register */
A_STATUS ar6000_SetAddressWindowRegister(HIF_DEVICE *hifDevice, A_UINT32 RegisterAddr, A_UINT32 Address)
{
A_STATUS status;
/* write bytes 1,2,3 of the register to set the upper address bytes, the LSB is written
* last to initiate the access cycle */
status = HIFReadWrite(hifDevice,
RegisterAddr+1, /* write upper 3 bytes */
((A_UCHAR *)(&Address))+1,
sizeof(A_UINT32)-1,
HIF_WR_SYNC_BYTE_INC,
NULL);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write initial bytes of 0x%x to window reg: 0x%X \n",
RegisterAddr, Address));
return status;
}
/* write the LSB of the register, this initiates the operation */
status = HIFReadWrite(hifDevice,
RegisterAddr,
(A_UCHAR *)(&Address),
sizeof(A_UINT8),
HIF_WR_SYNC_BYTE_INC,
NULL);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to window reg: 0x%X \n",
RegisterAddr, Address));
return status;
}
return A_OK;
}
#endif
/*
* Read from the AR6000 through its diagnostic window.
* No cooperation from the Target is required for this.
*/
A_STATUS
ar6000_ReadRegDiag(HIF_DEVICE *hifDevice, A_UINT32 *address, A_UINT32 *data)
{
A_STATUS status;
/* set window register to start read cycle */
status = ar6000_SetAddressWindowRegister(hifDevice,
WINDOW_READ_ADDR_ADDRESS,
*address);
if (status != A_OK) {
return status;
}
/* read the data */
status = HIFReadWrite(hifDevice,
WINDOW_DATA_ADDRESS,
(A_UCHAR *)data,
sizeof(A_UINT32),
HIF_RD_SYNC_BYTE_INC,
NULL);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot read from WINDOW_DATA_ADDRESS\n"));
return status;
}
return status;
}
/*
* Write to the AR6000 through its diagnostic window.
* No cooperation from the Target is required for this.
*/
A_STATUS
ar6000_WriteRegDiag(HIF_DEVICE *hifDevice, A_UINT32 *address, A_UINT32 *data)
{
A_STATUS status;
/* set write data */
status = HIFReadWrite(hifDevice,
WINDOW_DATA_ADDRESS,
(A_UCHAR *)data,
sizeof(A_UINT32),
HIF_WR_SYNC_BYTE_INC,
NULL);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot write 0x%x to WINDOW_DATA_ADDRESS\n", *data));
return status;
}
/* set window register, which starts the write cycle */
return ar6000_SetAddressWindowRegister(hifDevice,
WINDOW_WRITE_ADDR_ADDRESS,
*address);
}
A_STATUS
ar6000_ReadDataDiag(HIF_DEVICE *hifDevice, A_UINT32 address,
A_UCHAR *data, A_UINT32 length)
{
A_UINT32 count;
A_STATUS status = A_OK;
for (count = 0; count < length; count += 4, address += 4) {
if ((status = ar6000_ReadRegDiag(hifDevice, &address,
(A_UINT32 *)&data[count])) != A_OK)
{
break;
}
}
return status;
}
A_STATUS
ar6000_WriteDataDiag(HIF_DEVICE *hifDevice, A_UINT32 address,
A_UCHAR *data, A_UINT32 length)
{
A_UINT32 count;
A_STATUS status = A_OK;
for (count = 0; count < length; count += 4, address += 4) {
if ((status = ar6000_WriteRegDiag(hifDevice, &address,
(A_UINT32 *)&data[count])) != A_OK)
{
break;
}
}
return status;
}
A_STATUS
ar6000_reset_device_skipflash(HIF_DEVICE *hifDevice)
{
int i;
struct forceROM_s {
A_UINT32 addr;
A_UINT32 data;
};
struct forceROM_s *ForceROM;
int szForceROM;
A_UINT32 instruction;
static struct forceROM_s ForceROM_REV2[] = {
/* NB: This works for old REV2 ROM (old). */
{0x00001ff0, 0x175b0027}, /* jump instruction at 0xa0001ff0 */
{0x00001ff4, 0x00000000}, /* nop instruction at 0xa0001ff4 */
{MC_REMAP_TARGET_ADDRESS, 0x00001ff0}, /* remap to 0xa0001ff0 */
{MC_REMAP_COMPARE_ADDRESS, 0x01000040},/* ...from 0xbfc00040 */
{MC_REMAP_SIZE_ADDRESS, 0x00000000}, /* ...1 cache line */
{MC_REMAP_VALID_ADDRESS, 0x00000001}, /* ...remap is valid */
{LOCAL_COUNT_ADDRESS+0x10, 0}, /* clear BMI credit counter */
{RESET_CONTROL_ADDRESS, RESET_CONTROL_WARM_RST_MASK},
};
static struct forceROM_s ForceROM_NEW[] = {
/* NB: This works for AR6000 ROM REV3 and beyond. */
{LOCAL_SCRATCH_ADDRESS, AR6K_OPTION_IGNORE_FLASH},
{LOCAL_COUNT_ADDRESS+0x10, 0}, /* clear BMI credit counter */
{RESET_CONTROL_ADDRESS, RESET_CONTROL_WARM_RST_MASK},
};
/*
* Examine a semi-arbitrary instruction that's different
* in REV2 and other revisions.
* NB: If a Host port does not require simultaneous support
* for multiple revisions of Target ROM, this code can be elided.
*/
(void)ar6000_ReadDataDiag(hifDevice, 0x01000040,
(A_UCHAR *)&instruction, 4);
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("instruction=0x%x\n", instruction));
if (instruction == 0x3c1aa200) {
/* It's an old ROM */
ForceROM = ForceROM_REV2;
szForceROM = sizeof(ForceROM_REV2)/sizeof(*ForceROM);
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Using OLD method\n"));
} else {
ForceROM = ForceROM_NEW;
szForceROM = sizeof(ForceROM_NEW)/sizeof(*ForceROM);
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Using NEW method\n"));
}
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Force Target to execute from ROM....\n"));
for (i = 0; i < szForceROM; i++)
{
if (ar6000_WriteRegDiag(hifDevice,
&ForceROM[i].addr,
&ForceROM[i].data) != A_OK)
{
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Cannot force Target to execute ROM!\n"));
return A_ERROR;
}
}
msleep(50); /* delay to allow dragon to come to BMI phase */
return A_OK;
}
/* reset device */
A_STATUS ar6000_reset_device(HIF_DEVICE *hifDevice, A_UINT32 TargetType)
{
#if !defined(DWSIM)
A_STATUS status = A_OK;
A_UINT32 address;
A_UINT32 data;
do {
// address = RESET_CONTROL_ADDRESS;
data = RESET_CONTROL_COLD_RST_MASK;
/* Hardcode the address of RESET_CONTROL_ADDRESS based on the target type */
if (TargetType == TARGET_TYPE_AR6001) {
address = 0x0C000000;
} else {
if (TargetType == TARGET_TYPE_AR6002) {
address = 0x00004000;
} else {
A_ASSERT(0);
}
}
status = ar6000_WriteRegDiag(hifDevice, &address, &data);
if (A_FAILED(status)) {
break;
}
/*
* Read back the RESET CAUSE register to ensure that the cold reset
* went through.
*/
msleep(2000); /* 2 second delay to allow things to settle down */
// address = RESET_CAUSE_ADDRESS;
/* Hardcode the address of RESET_CAUSE_ADDRESS based on the target type */
if (TargetType == TARGET_TYPE_AR6001) {
address = 0x0C0000CC;
} else {
if (TargetType == TARGET_TYPE_AR6002) {
address = 0x000040C0;
} else {
A_ASSERT(0);
}
}
data = 0;
status = ar6000_ReadRegDiag(hifDevice, &address, &data);
if (A_FAILED(status)) {
break;
}
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Reset Cause readback: 0x%X \n",data));
data &= RESET_CAUSE_LAST_MASK;
if (data != 2) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Unable to cold reset the target \n"));
}
} while (FALSE);
if (A_FAILED(status)) {
AR_DEBUG_PRINTF(ATH_LOG_ERR, ("Failed to reset target \n"));
}
#endif
return A_OK;
}
#define REG_DUMP_COUNT_AR6001 38 /* WORDs, derived from AR6001_regdump.h */
#define REG_DUMP_COUNT_AR6002 32 /* WORDs, derived from AR6002_regdump.h */
#if REG_DUMP_COUNT_AR6001 <= REG_DUMP_COUNT_AR6002
#define REGISTER_DUMP_LEN_MAX REG_DUMP_COUNT_AR6002
#else
#define REGISTER_DUMP_LEN_MAX REG_DUMP_COUNT_AR6001
#endif
void ar6000_dump_target_assert_info(HIF_DEVICE *hifDevice, A_UINT32 TargetType)
{
A_UINT32 address;
A_UINT32 regDumpArea = 0;
A_STATUS status;
A_UINT32 regDumpValues[REGISTER_DUMP_LEN_MAX];
A_UINT32 regDumpCount = 0;
A_UINT32 i;
do {
/* the reg dump pointer is copied to the host interest area */
address = HOST_INTEREST_ITEM_ADDRESS(TargetType, hi_failure_state);
if (TargetType == TARGET_TYPE_AR6001) {
/* for AR6001, this is a fixed location because the ptr is actually stuck in cache,
* this may be fixed in later firmware versions */
address = 0x18a0;
regDumpCount = REG_DUMP_COUNT_AR6001;
} else if (TargetType == TARGET_TYPE_AR6002) {
regDumpCount = REG_DUMP_COUNT_AR6002;
} else {
A_ASSERT(0);
}
/* read RAM location through diagnostic window */
status = ar6000_ReadRegDiag(hifDevice, &address, &regDumpArea);
if (A_FAILED(status)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Failed to get ptr to register dump area \n"));
break;
}
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Location of register dump data: 0x%X \n",regDumpArea));
if (regDumpArea == 0) {
/* no reg dump */
break;
}
if (TargetType == TARGET_TYPE_AR6001) {
regDumpArea &= 0x0FFFFFFF; /* convert to physical address in target memory */
}
/* fetch register dump data */
status = ar6000_ReadDataDiag(hifDevice,
regDumpArea,
(A_UCHAR *)&regDumpValues[0],
regDumpCount * (sizeof(A_UINT32)));
if (A_FAILED(status)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Failed to get register dump \n"));
break;
}
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: Register Dump: \n"));
for (i = 0; i < regDumpCount; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" %d : 0x%8.8X \n",i, regDumpValues[i]));
}
} while (FALSE);
}