1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-04-21 12:27:27 +03:00
Files
openwrt-xburst/target/linux/lantiq/files-3.3/arch/mips/lantiq/xway/sysctrl.c
blogic 1048c7b452 [lantiq] move files/ -> files-3.3/
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@34060 3c298f89-4303-0410-b956-a3cf2f4a3e73
2012-11-02 20:07:02 +00:00

284 lines
7.8 KiB
C

/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Copyright (C) 2011 John Crispin <blogic@openwrt.org>
*/
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
#include <lantiq_soc.h>
#include "../clk.h"
#include "../devices.h"
/* clock control register */
#define CGU_IFCCR 0x0018
/* system clock register */
#define CGU_SYS 0x0010
/* pci control register */
#define CGU_PCICR 0x0034
/* ephy configuration register */
#define CGU_EPHY 0x10
/* power control register */
#define PMU_PWDCR 0x1C
/* power status register */
#define PMU_PWDSR 0x20
/* power control register */
#define PMU_PWDCR1 0x24
/* power status register */
#define PMU_PWDSR1 0x28
/* power control register */
#define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
/* power status register */
#define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
/* PMU - power management unit */
#define PMU_USB0_P BIT(0)
#define PMU_PCI BIT(4)
#define PMU_DMA BIT(5)
#define PMU_USB0 BIT(6)
#define PMU_EPHY BIT(7) /* ase */
#define PMU_SPI BIT(8)
#define PMU_DFE BIT(9)
#define PMU_EBU BIT(10)
#define PMU_STP BIT(11)
#define PMU_GPT BIT(12)
#define PMU_PPE BIT(13)
#define PMU_AHBS BIT(13) /* vr9 */
#define PMU_FPI BIT(14)
#define PMU_AHBM BIT(15)
#define PMU_PPE_QSB BIT(18)
#define PMU_PPE_SLL01 BIT(19)
#define PMU_PPE_TC BIT(21)
#define PMU_PPE_EMA BIT(22)
#define PMU_PPE_DPLUM BIT(23)
#define PMU_PPE_DPLUS BIT(24)
#define PMU_USB1_P BIT(26)
#define PMU_USB1 BIT(27)
#define PMU_SWITCH BIT(28)
#define PMU_PPE_TOP BIT(29)
#define PMU_GPHY BIT(30)
#define PMU_PCIE_CLK BIT(31)
#define PMU1_PCIE_PHY BIT(0)
#define PMU1_PCIE_CTL BIT(1)
#define PMU1_PCIE_PDI BIT(4)
#define PMU1_PCIE_MSI BIT(5)
#define ltq_pmu_w32(x, y) ltq_w32((x), ltq_pmu_membase + (y))
#define ltq_pmu_r32(x) ltq_r32(ltq_pmu_membase + (x))
static struct resource ltq_cgu_resource =
MEM_RES("cgu", LTQ_CGU_BASE_ADDR, LTQ_CGU_SIZE);
static struct resource ltq_pmu_resource =
MEM_RES("pmu", LTQ_PMU_BASE_ADDR, LTQ_PMU_SIZE);
static struct resource ltq_ebu_resource =
MEM_RES("ebu", LTQ_EBU_BASE_ADDR, LTQ_EBU_SIZE);
void __iomem *ltq_cgu_membase;
void __iomem *ltq_ebu_membase;
static void __iomem *ltq_pmu_membase;
static int ltq_cgu_enable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | clk->bits, CGU_IFCCR);
return 0;
}
static void ltq_cgu_disable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~clk->bits, CGU_IFCCR);
}
static int ltq_pmu_enable(struct clk *clk)
{
int err = 1000000;
ltq_pmu_w32(ltq_pmu_r32(PWDCR(clk->module)) & ~clk->bits,
PWDCR(clk->module));
do {} while (--err && (ltq_pmu_r32(PWDSR(clk->module)) & clk->bits));
if (!err)
panic("activating PMU module failed!\n");
return 0;
}
static void ltq_pmu_disable(struct clk *clk)
{
ltq_pmu_w32(ltq_pmu_r32(PWDCR(clk->module)) | clk->bits,
PWDCR(clk->module));
}
static int ltq_pci_enable(struct clk *clk)
{
unsigned int ifccr = ltq_cgu_r32(CGU_IFCCR);
/* set clock bus speed */
if (ltq_is_ar9()) {
ifccr &= ~0x1f00000;
if (clk->rate == CLOCK_33M)
ifccr |= 0xe00000;
else
ifccr |= 0x700000; /* 62.5M */
} else {
ifccr &= ~0xf00000;
if (clk->rate == CLOCK_33M)
ifccr |= 0x800000;
else
ifccr |= 0x400000; /* 62.5M */
}
ltq_cgu_w32(ifccr, CGU_IFCCR);
return 0;
}
static int ltq_pci_ext_enable(struct clk *clk)
{
/* enable external pci clock */
ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~(1 << 16),
CGU_IFCCR);
ltq_cgu_w32((1 << 30), CGU_PCICR);
return 0;
}
static void ltq_pci_ext_disable(struct clk *clk)
{
/* disable external pci clock (internal) */
ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | (1 << 16),
CGU_IFCCR);
ltq_cgu_w32((1 << 31) | (1 << 30), CGU_PCICR);
}
/* manage the clock gates via PMU */
static inline void clkdev_add_pmu(const char *dev, const char *con,
unsigned int module, unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = ltq_pmu_enable;
clk->disable = ltq_pmu_disable;
clk->module = module;
clk->bits = bits;
clkdev_add(&clk->cl);
}
/* manage the clock generator */
static inline void clkdev_add_cgu(const char *dev, const char *con,
unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = ltq_cgu_enable;
clk->disable = ltq_cgu_disable;
clk->bits = bits;
clkdev_add(&clk->cl);
}
/* pci needs its own enable function */
static inline void clkdev_add_pci(void)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
/* main pci clock */
clk->cl.dev_id = "ltq_pci";
clk->cl.con_id = NULL;
clk->cl.clk = clk;
clk->rate = CLOCK_33M;
clk->enable = ltq_pci_enable;
clk->disable = ltq_pmu_disable;
clk->module = 0;
clk->bits = PMU_PCI;
clkdev_add(&clk->cl);
/* use internal/external bus clock */
clk_ext->cl.dev_id = "ltq_pci";
clk_ext->cl.con_id = "external";
clk_ext->cl.clk = clk_ext;
clk_ext->enable = ltq_pci_ext_enable;
clk_ext->disable = ltq_pci_ext_disable;
clkdev_add(&clk_ext->cl);
}
void __init ltq_soc_init(void)
{
ltq_pmu_membase = ltq_remap_resource(&ltq_pmu_resource);
if (!ltq_pmu_membase)
panic("Failed to remap pmu memory\n");
ltq_cgu_membase = ltq_remap_resource(&ltq_cgu_resource);
if (!ltq_cgu_membase)
panic("Failed to remap cgu memory\n");
ltq_ebu_membase = ltq_remap_resource(&ltq_ebu_resource);
if (!ltq_ebu_membase)
panic("Failed to remap ebu memory\n");
/* make sure to unprotect the memory region where flash is located */
ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
/* add our clocks */
clkdev_add_pmu("ltq_fpi", NULL, 0, PMU_FPI);
clkdev_add_pmu("ltq_dma", NULL, 0, PMU_DMA);
clkdev_add_pmu("ltq_stp", NULL, 0, PMU_STP);
clkdev_add_pmu("ltq_spi.0", NULL, 0, PMU_SPI);
clkdev_add_pmu("ltq_gptu", NULL, 0, PMU_GPT);
clkdev_add_pmu("ltq_ebu", NULL, 0, PMU_EBU);
if (!ltq_is_vr9())
clkdev_add_pmu("ltq_etop", NULL, 0, PMU_PPE);
if (!ltq_is_ase())
clkdev_add_pci();
if (ltq_is_ase()) {
if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M);
else
clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M);
clkdev_add_cgu("ltq_etop", "ephycgu", CGU_EPHY),
clkdev_add_pmu("ltq_etop", "ephy", 0, PMU_EPHY);
clkdev_add_pmu("ltq_dsl", NULL, 0,
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_AHBS | PMU_DFE);
} else if (ltq_is_vr9()) {
clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
ltq_vr9_fpi_hz());
clkdev_add_pmu("ltq_pcie", "phy", 1, PMU1_PCIE_PHY);
clkdev_add_pmu("ltq_pcie", "bus", 0, PMU_PCIE_CLK);
clkdev_add_pmu("ltq_pcie", "msi", 1, PMU1_PCIE_MSI);
clkdev_add_pmu("ltq_pcie", "pdi", 1, PMU1_PCIE_PDI);
clkdev_add_pmu("ltq_pcie", "ctl", 1, PMU1_PCIE_CTL);
clkdev_add_pmu("ltq_pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
clkdev_add_pmu("usb0", NULL, 0, PMU_USB0 | PMU_USB0_P);
clkdev_add_pmu("usb1", NULL, 0, PMU_USB1 | PMU_USB1_P);
clkdev_add_pmu("ltq_vrx200", NULL, 0,
PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_PPE_QSB);
clkdev_add_pmu("ltq_dsl", NULL, 0, PMU_DFE | PMU_AHBS);
} else if (ltq_is_ar9()) {
clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
ltq_ar9_fpi_hz());
clkdev_add_pmu("ltq_etop", "switch", 0, PMU_SWITCH);
clkdev_add_pmu("ltq_dsl", NULL, 0,
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_PPE_QSB | PMU_AHBS | PMU_DFE);
} else {
clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
ltq_danube_io_region_clock());
clkdev_add_pmu("ltq_dsl", NULL, 0,
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_PPE_QSB | PMU_AHBS | PMU_DFE);
}
}