1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-21 04:49:52 +02:00
openwrt-xburst/package/uboot-lantiq/files/board/infineon/easy50712/danube.c
ralph ced0222eb7 [uboot-lantiq] httpd failsafe - add image check and flash access
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@20610 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-03-30 16:17:38 +00:00

395 lines
9.2 KiB
C

/*
* (C) Copyright 2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2010
* Thomas Langer, Ralph Hempel
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <netdev.h>
#include <miiphy.h>
#include <asm/addrspace.h>
#include <asm/danube.h>
#include <asm/reboot.h>
#include <asm/io.h>
#if defined(CONFIG_CMD_HTTPD)
#include <httpd.h>
#endif
extern ulong ifx_get_ddr_hz(void);
extern ulong ifx_get_cpuclk(void);
/* definitions for external PHYs / Switches */
/* Split values into phy address and register address */
#define PHYADDR(_reg) ((_reg >> 5) & 0xff), (_reg & 0x1f)
/* IDs and registers of known external switches */
#define ID_SAMURAI_0 0x1020
#define ID_SAMURAI_1 0x0007
#define SAMURAI_ID_REG0 0xA0
#define SAMURAI_ID_REG1 0xA1
#define ID_TANTOS 0x2599
void _machine_restart(void)
{
*DANUBE_RCU_RST_REQ |=1<<30;
}
#ifdef CONFIG_SYS_RAMBOOT
phys_size_t initdram(int board_type)
{
return get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_MAX_RAM);
}
#elif defined(CONFIG_USE_DDR_RAM)
phys_size_t initdram(int board_type)
{
return (CONFIG_SYS_MAX_RAM);
}
#else
static ulong max_sdram_size(void) /* per Chip Select */
{
/* The only supported SDRAM data width is 16bit.
*/
#define CFG_DW 4
/* The only supported number of SDRAM banks is 4.
*/
#define CFG_NB 4
ulong cfgpb0 = *DANUBE_SDRAM_MC_CFGPB0;
int cols = cfgpb0 & 0xF;
int rows = (cfgpb0 & 0xF0) >> 4;
ulong size = (1 << (rows + cols)) * CFG_DW * CFG_NB;
return size;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'.
*/
static long int dram_size(long int *base, long int maxsize)
{
volatile long int *addr;
ulong cnt, val;
ulong save[32]; /* to make test non-destructive */
unsigned char i = 0;
for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) {
addr = base + cnt; /* pointer arith! */
save[i++] = *addr;
*addr = ~cnt;
}
/* write 0 to base address */
addr = base;
save[i] = *addr;
*addr = 0;
/* check at base address */
if ((val = *addr) != 0) {
*addr = save[i];
return (0);
}
for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
val = *addr;
*addr = save[--i];
if (val != (~cnt)) {
return (cnt * sizeof (long));
}
}
return (maxsize);
}
phys_size_t initdram(int board_type)
{
int rows, cols, best_val = *DANUBE_SDRAM_MC_CFGPB0;
ulong size, max_size = 0;
ulong our_address;
/* load t9 into our_address */
asm volatile ("move %0, $25" : "=r" (our_address) :);
/* Can't probe for RAM size unless we are running from Flash.
* find out whether running from DRAM or Flash.
*/
if (CPHYSADDR(our_address) < CPHYSADDR(PHYS_FLASH_1))
{
return max_sdram_size();
}
for (cols = 0x8; cols <= 0xC; cols++)
{
for (rows = 0xB; rows <= 0xD; rows++)
{
*DANUBE_SDRAM_MC_CFGPB0 = (0x14 << 8) |
(rows << 4) | cols;
size = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
max_sdram_size());
if (size > max_size)
{
best_val = *DANUBE_SDRAM_MC_CFGPB0;
max_size = size;
}
}
}
*DANUBE_SDRAM_MC_CFGPB0 = best_val;
return max_size;
}
#endif
int checkboard (void)
{
unsigned long chipid = *DANUBE_MPS_CHIPID;
int part_num;
puts ("Board: ");
part_num = DANUBE_MPS_CHIPID_PARTNUM_GET(chipid);
switch (part_num)
{
case 0x129:
case 0x12D:
puts("Danube/Twinpass/Vinax-VE ");
break;
default:
printf ("unknown, chip part number 0x%03X ", part_num);
break;
}
printf ("V1.%ld, ", DANUBE_MPS_CHIPID_VERSION_GET(chipid));
printf("DDR Speed %ld MHz, ", ifx_get_ddr_hz()/1000000);
printf("CPU Speed %ld MHz\n", ifx_get_cpuclk()/1000000);
return 0;
}
#ifdef CONFIG_SKIP_LOWLEVEL_INIT
int board_early_init_f(void)
{
#ifdef CONFIG_EBU_ADDSEL0
(*DANUBE_EBU_ADDSEL0) = CONFIG_EBU_ADDSEL0;
#endif
#ifdef CONFIG_EBU_ADDSEL1
(*DANUBE_EBU_ADDSEL1) = CONFIG_EBU_ADDSEL1;
#endif
#ifdef CONFIG_EBU_ADDSEL2
(*DANUBE_EBU_ADDSEL2) = CONFIG_EBU_ADDSEL2;
#endif
#ifdef CONFIG_EBU_ADDSEL3
(*DANUBE_EBU_ADDSEL3) = CONFIG_EBU_ADDSEL3;
#endif
#ifdef CONFIG_EBU_BUSCON0
(*DANUBE_EBU_BUSCON0) = CONFIG_EBU_BUSCON0;
#endif
#ifdef CONFIG_EBU_BUSCON1
(*DANUBE_EBU_BUSCON1) = CONFIG_EBU_BUSCON1;
#endif
#ifdef CONFIG_EBU_BUSCON2
(*DANUBE_EBU_BUSCON2) = CONFIG_EBU_BUSCON2;
#endif
#ifdef CONFIG_EBU_BUSCON3
(*DANUBE_EBU_BUSCON3) = CONFIG_EBU_BUSCON3;
#endif
return 0;
}
#endif /* CONFIG_SKIP_LOWLEVEL_INIT */
#ifdef CONFIG_EXTRA_SWITCH
static int external_switch_init(void)
{
unsigned short chipid0=0xdead, chipid1=0xbeef;
static char * const name = "lq_cpe_eth";
#ifdef CLK_OUT2_25MHZ
*DANUBE_GPIO_P0_DIR=0x0000ae78;
*DANUBE_GPIO_P0_ALTSEL0=0x00008078;
//joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
*DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
*DANUBE_CGU_IFCCR=0x00400010;
*DANUBE_GPIO_P0_OD=0x0000ae78;
#endif
/* earlier no valid response is available, at least on Twinpass & Tantos @ 111MHz, M4530 platform */
udelay(100000);
debug("\nsearching for Samurai switch ... ");
if ( (miiphy_read(name, PHYADDR(SAMURAI_ID_REG0), &chipid0)==0) &&
(miiphy_read(name, PHYADDR(SAMURAI_ID_REG1), &chipid1)==0) ) {
if (((chipid0 & 0xFFF0) == ID_SAMURAI_0) &&
((chipid1 & 0x000F) == ID_SAMURAI_1)) {
debug("found");
/* enable "Crossover Auto Detect" + defaults */
/* P0 */
miiphy_write(name, PHYADDR(0x01), 0x840F);
/* P1 */
miiphy_write(name, PHYADDR(0x03), 0x840F);
/* P2 */
miiphy_write(name, PHYADDR(0x05), 0x840F);
/* P3 */
miiphy_write(name, PHYADDR(0x07), 0x840F);
/* P4 */
miiphy_write(name, PHYADDR(0x08), 0x840F);
/* P5 */
miiphy_write(name, PHYADDR(0x09), 0x840F);
/* System Control 4: CPU on port 1 and other */
miiphy_write(name, PHYADDR(0x12), 0x3602);
#ifdef CLK_OUT2_25MHZ
/* Bandwidth Control Enable Register: enable */
miiphy_write(name, PHYADDR(0x33), 0x4000);
#endif
}
}
debug("\nsearching for TANTOS switch ... ");
if (miiphy_read(name, PHYADDR(0x101), &chipid0) == 0) {
if (chipid0 == ID_TANTOS) {
debug("found");
/* P5 Basic Control: Force Link Up */
miiphy_write(name, PHYADDR(0xA1), 0x0004);
/* P6 Basic Control: Force Link Up */
miiphy_write(name, PHYADDR(0xC1), 0x0004);
/* RGMII/MII Port Control (P4/5/6) */
miiphy_write(name, PHYADDR(0xF5), 0x0773);
/* Software workaround. */
/* PHY reset from P0 to P4. */
/* set data for indirect write */
miiphy_write(name, PHYADDR(0x121), 0x8000);
/* P0 */
miiphy_write(name, PHYADDR(0x120), 0x0400);
udelay(1000);
/* P1 */
miiphy_write(name, PHYADDR(0x120), 0x0420);
udelay(1000);
/* P2 */
miiphy_write(name, PHYADDR(0x120), 0x0440);
udelay(1000);
/* P3 */
miiphy_write(name, PHYADDR(0x120), 0x0460);
udelay(1000);
/* P4 */
miiphy_write(name, PHYADDR(0x120), 0x0480);
udelay(1000);
}
}
debug("\n");
return 0;
}
#endif /* CONFIG_EXTRA_SWITCH */
int board_eth_init(bd_t *bis)
{
#if defined(CONFIG_IFX_ETOP)
*DANUBE_PMU_PWDCR &= 0xFFFFEFDF;
*DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
if (lq_eth_initialize(bis)<0)
return -1;
*DANUBE_RCU_RST_REQ |=1;
udelay(200000);
*DANUBE_RCU_RST_REQ &=(unsigned long)~1;
udelay(1000);
#ifdef CONFIG_EXTRA_SWITCH
if (external_switch_init()<0)
return -1;
#endif /* CONFIG_EXTRA_SWITCH */
#endif /* CONFIG_IFX_ETOP */
return 0;
}
#if defined(CONFIG_CMD_HTTPD)
int do_http_upgrade(const unsigned char *data, const ulong size)
{
char buf[128];
if(getenv ("ram_addr") == NULL)
return -1;
if(getenv ("kernel_addr") == NULL)
return -1;
/* check the image */
if(run_command("imi ${ram_addr}", 0) < 0) {
return -1;
}
/* write the image to the flash */
puts("http ugrade ...\n");
sprintf(buf, "era ${kernel_addr} +0x%x; cp.b ${ram_addr} ${kernel_addr} 0x%x", size, size);
return run_command(buf, 0);
}
int do_http_progress(const int state)
{
/* toggle LED's here */
switch(state) {
case HTTP_PROGRESS_START:
puts("http start\n");
break;
case HTTP_PROGRESS_TIMEOUT:
puts(".");
break;
case HTTP_PROGRESS_UPLOAD_READY:
puts("http upload ready\n");
break;
case HTTP_PROGRESS_UGRADE_READY:
puts("http ugrade ready\n");
break;
case HTTP_PROGRESS_UGRADE_FAILED:
puts("http ugrade failed\n");
break;
}
return 0;
}
unsigned long do_http_tmp_address(void)
{
char *s = getenv ("ram_addr");
if (s) {
ulong tmp = simple_strtoul (s, NULL, 16);
return tmp;
}
return 0 /*0x80a00000*/;
}
#endif