1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-02-07 17:51:56 +02:00
kaloz 1a29ef8e97 [ubicom32]: move new files out from platform support patch
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-02-22 13:54:47 +00:00

635 lines
14 KiB
C

/*
* arch/ubicom32/kernel/process.c
* Ubicom32 architecture-dependent process handling.
*
* (C) Copyright 2009, Ubicom, Inc.
* Copyright (C) 1995 Hamish Macdonald
*
* 68060 fixes by Jesper Skov
*
* uClinux changes
* Copyright (C) 2000-2002, David McCullough <davidm@snapgear.com>
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/fs.h>
#include <linux/pm.h>
#include <linux/uaccess.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/machdep.h>
#include <asm/setup.h>
#include <asm/pgtable.h>
#include <asm/ip5000.h>
#include <asm/range-protect.h>
#define DUMP_RANGE_REGISTER(REG, IDX) asm volatile ( \
" move.4 %0, "REG"_RANGE"IDX"_EN \n\t" \
" move.4 %1, "REG"_RANGE"IDX"_LO \n\t" \
" move.4 %2, "REG"_RANGE"IDX"_HI \n\t" \
: "=d"(en), "=d"(lo), "=d"(hi) \
); \
printk(KERN_NOTICE REG"Range"IDX": en:%08x, range: %08x-%08x\n", \
(unsigned int)en, \
(unsigned int)lo, \
(unsigned int)hi)
asmlinkage void ret_from_fork(void);
void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL(pm_power_off);
/* machine-dependent / hardware-specific power functions */
void (*mach_reset)(void);
void (*mach_halt)(void);
void (*mach_power_off)(void);
/*
* cpu_idle()
* The idle thread.
*
* Our idle loop suspends and is woken up by a timer interrupt.
*/
void cpu_idle(void)
{
while (1) {
local_irq_disable();
while (!need_resched()) {
local_irq_enable();
thread_suspend();
local_irq_disable();
}
local_irq_enable();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
/*
* dump_fpu()
*
* Fill in the fpu structure for a core dump. (just a stub as we don't have
* an fpu)
*/
int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
{
return 1;
}
/*
* machine_restart()
* Resets the system.
*/
void machine_restart(char *__unused)
{
/*
* Disable all threads except myself. We can do this
* directly without needing to call smp_send_stop
* because we have a unique architecture where
* one thread can disable one or more other threads.
*/
thread_disable_others();
/*
* Call the hardware-specific machine reset function.
*/
if (mach_reset) {
mach_reset();
}
printk(KERN_EMERG "System Restarting\n");
/*
* Set watchdog to trigger (after 1ms delay) (12 Mhz is the fixed OSC)
*/
UBICOM32_IO_TIMER->tkey = TIMER_TKEYVAL;
UBICOM32_IO_TIMER->wdcom = UBICOM32_IO_TIMER->mptval +
(12000000 / 1000);
UBICOM32_IO_TIMER->wdcfg = 0;
UBICOM32_IO_TIMER->tkey = 0;
/*
* Wait for watchdog
*/
asm volatile (
" move.4 MT_EN, #0 \n\t"
" pipe_flush 0 \n\t"
);
local_irq_disable();
for (;;) {
thread_suspend();
}
}
/*
* machine_halt()
* Halt the machine.
*
* Similar to machine_power_off, but don't shut off power. Add code
* here to freeze the system for e.g. post-mortem debug purpose when
* possible. This halt has nothing to do with the idle halt.
*/
void machine_halt(void)
{
/*
* Disable all threads except myself. We can do this
* directly without needing to call smp_send_stop
* because we have a unique architecture where
* one thread can disable one or more other threads.
*/
thread_disable_others();
/*
* Call the hardware-specific machine halt function.
*/
if (mach_halt) {
mach_halt();
}
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
for (;;) {
thread_suspend();
}
}
/*
* machine_power_off()
* Turn the power off, if a power off handler is defined, otherwise, spin
* endlessly.
*/
void machine_power_off(void)
{
/*
* Disable all threads except myself. We can do this
* directly without needing to call smp_send_stop
* because we have a unique architecture where
* one thread can disable one or more other threads.
*/
thread_disable_others();
/*
* Call the hardware-specific machine power off function.
*/
if (mach_power_off) {
mach_power_off();
}
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
for (;;) {
thread_suspend();
}
}
/*
* address_is_valid()
* check if an address is valid -- (for read access)
*/
static bool address_is_valid(const void *address)
{
int addr = (int)address;
unsigned long socm, eocm, sdram, edram;
if (addr & 3)
return false;
processor_ocm(&socm, &eocm);
processor_dram(&sdram, &edram);
if (addr >= socm && addr < eocm)
return true;
if (addr >= sdram && addr < edram)
return true;
return false;
}
/*
* vma_path_name_is_valid()
* check if path_name of a vma is a valid string
*/
static bool vma_path_name_is_valid(const char *str)
{
#define MAX_NAME_LEN 256
int i = 0;
if (!address_is_valid(str))
return false;
for (; i < MAX_NAME_LEN; i++, str++) {
if (*str == '\0')
return true;
}
return false;
}
/*
* show_vmas()
* show vma info of a process
*/
void show_vmas(struct task_struct *task)
{
#ifdef CONFIG_DEBUG_VERBOSE
#define UBICOM32_MAX_VMA_COUNT 1024
struct vm_area_struct *vma;
struct file *file;
char *name = "";
int flags, loop = 0;
printk(KERN_NOTICE "Start of vma list\n");
if (!address_is_valid(task) || !address_is_valid(task->mm))
goto error;
vma = task->mm->mmap;
while (vma) {
if (!address_is_valid(vma))
goto error;
flags = vma->vm_flags;
file = vma->vm_file;
if (file) {
/* seems better to use dentry op here, but sanity check is easier this way */
if (!address_is_valid(file) || !address_is_valid(file->f_path.dentry) || !vma_path_name_is_valid(file->f_path.dentry->d_name.name))
goto error;
name = (char *)file->f_path.dentry->d_name.name;
}
/* Similar to /proc/pid/maps format */
printk(KERN_NOTICE "%08lx-%08lx %c%c%c%c %08lx %s\n",
vma->vm_start,
vma->vm_end,
flags & VM_READ ? 'r' : '-',
flags & VM_WRITE ? 'w' : '-',
flags & VM_EXEC ? 'x' : '-',
flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
vma->vm_pgoff << PAGE_SHIFT,
name);
vma = vma->vm_next;
if (loop++ > UBICOM32_MAX_VMA_COUNT)
goto error;
}
printk(KERN_NOTICE "End of vma list\n");
return;
error:
printk(KERN_NOTICE "\nCorrupted vma list, abort!\n");
#endif
}
/*
* show_regs()
* Print out all of the registers.
*/
void show_regs(struct pt_regs *regs)
{
unsigned int i;
unsigned int en, lo, hi;
printk(KERN_NOTICE "regs: %p, tid: %d\n",
(void *)regs,
thread_get_self());
printk(KERN_NOTICE "pc: %08x, previous_pc: %08x\n\n",
(unsigned int)regs->pc,
(unsigned int)regs->previous_pc);
printk(KERN_NOTICE "Data registers\n");
for (i = 0; i < 16; i++) {
printk("D%02d: %08x, ", i, (unsigned int)regs->dn[i]);
if ((i % 4) == 3) {
printk("\n");
}
}
printk("\n");
printk(KERN_NOTICE "Address registers\n");
for (i = 0; i < 8; i++) {
printk("A%02d: %08x, ", i, (unsigned int)regs->an[i]);
if ((i % 4) == 3) {
printk("\n");
}
}
printk("\n");
printk(KERN_NOTICE "acc0: %08x-%08x, acc1: %08x-%08x\n",
(unsigned int)regs->acc0[1],
(unsigned int)regs->acc0[0],
(unsigned int)regs->acc1[1],
(unsigned int)regs->acc1[0]);
printk(KERN_NOTICE "mac_rc16: %08x, source3: %08x\n",
(unsigned int)regs->mac_rc16,
(unsigned int)regs->source3);
printk(KERN_NOTICE "inst_cnt: %08x, csr: %08x\n",
(unsigned int)regs->inst_cnt,
(unsigned int)regs->csr);
printk(KERN_NOTICE "int_mask0: %08x, int_mask1: %08x\n",
(unsigned int)regs->int_mask0,
(unsigned int)regs->int_mask1);
/*
* Dump range registers
*/
DUMP_RANGE_REGISTER("I", "0");
DUMP_RANGE_REGISTER("I", "1");
DUMP_RANGE_REGISTER("I", "2");
DUMP_RANGE_REGISTER("I", "3");
DUMP_RANGE_REGISTER("D", "0");
DUMP_RANGE_REGISTER("D", "1");
DUMP_RANGE_REGISTER("D", "2");
DUMP_RANGE_REGISTER("D", "3");
DUMP_RANGE_REGISTER("D", "4");
printk(KERN_NOTICE "frame_type: %d, nesting_level: %d, thread_type %d\n\n",
(int)regs->frame_type,
(int)regs->nesting_level,
(int)regs->thread_type);
}
/*
* kernel_thread_helper()
* On execution d0 will be 0, d1 will be the argument to be passed to the
* kernel function. d2 contains the kernel function that needs to get
* called. d3 will contain address to do_exit which need to get moved
* into a5. On return from fork the child thread d0 will be 0. We call
* this dummy function which in turn loads the argument
*/
asmlinkage void kernel_thread_helper(void);
/*
* kernel_thread()
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.dn[1] = (unsigned long)arg;
regs.dn[2] = (unsigned long)fn;
regs.dn[3] = (unsigned long)do_exit;
regs.an[5] = (unsigned long)kernel_thread_helper;
regs.pc = (unsigned long)kernel_thread_helper;
regs.nesting_level = 0;
regs.thread_type = KERNEL_THREAD;
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
0, &regs, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);
/*
* flush_thread()
* XXX todo
*/
void flush_thread(void)
{
/* XXX todo */
}
/*
* sys_fork()
* Not implemented on no-mmu.
*/
asmlinkage int sys_fork(struct pt_regs *regs)
{
/* fork almost works, enough to trick you into looking elsewhere :-( */
return -EINVAL;
}
/*
* sys_vfork()
* By the time we get here, the non-volatile registers have also been saved
* on the stack. We do some ugly pointer stuff here.. (see also copy_thread
* which does context copy).
*/
asmlinkage int sys_vfork(struct pt_regs *regs)
{
unsigned long old_sp = regs->an[7];
unsigned long old_a5 = regs->an[5];
unsigned long old_return_address;
long do_fork_return;
/*
* Read the old retrun address from the stack.
*/
if (copy_from_user(&old_return_address,
(void *)old_sp, sizeof(unsigned long))) {
force_sig(SIGSEGV, current);
return 0;
}
/*
* Pop the vfork call frame by setting a5 and pc to the old_return
* address and incrementing the stack pointer by 4.
*/
regs->an[5] = old_return_address;
regs->pc = old_return_address;
regs->an[7] += 4;
do_fork_return = do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
regs->an[7], regs, 0, NULL, NULL);
/*
* Now we have to test if the return code is an error. If it is an error
* then restore the frame and we will execute error processing in user
* space. Other wise the child and the parent will return to the correct
* places.
*/
if ((unsigned long)(do_fork_return) >= (unsigned long)(-125)) {
/*
* Error case. We need to restore the frame.
*/
regs->an[5] = old_a5;
regs->pc = old_a5;
regs->an[7] = old_sp;
}
return do_fork_return;
}
/*
* sys_clone()
* creates a child thread.
*/
asmlinkage int sys_clone(unsigned long clone_flags,
unsigned long newsp,
struct pt_regs *regs)
{
if (!newsp)
newsp = regs->an[7];
return do_fork(clone_flags, newsp, regs, 0,
NULL, NULL);
}
/*
* copy_thread()
* low level thread copy, only used by do_fork in kernel/fork.c
*/
int copy_thread(unsigned long clone_flags,
unsigned long usp, unsigned long topstk,
struct task_struct *p, struct pt_regs *regs)
{
struct pt_regs *childregs;
childregs = (struct pt_regs *)
(task_stack_page(p) + THREAD_SIZE - 8) - 1;
*childregs = *regs;
/*
* Set return value for child to be 0.
*/
childregs->dn[0] = 0;
if (usp)
childregs->an[7] = usp;
else
childregs->an[7] = (unsigned long)task_stack_page(p) +
THREAD_SIZE - 8;
/*
* Set up the switch_to frame to return to "ret_from_fork"
*/
p->thread.a5 = (unsigned long)ret_from_fork;
p->thread.sp = (unsigned long)childregs;
return 0;
}
/*
* sys_execve()
* executes a new program.
*/
asmlinkage int sys_execve(char *name, char **argv,
char **envp, struct pt_regs *regs)
{
int error;
char *filename;
lock_kernel();
filename = getname(name);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename, argv, envp, regs);
putname(filename);
asm (" .global sys_execve_complete\n"
" sys_execve_complete:");
out:
unlock_kernel();
return error;
}
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return tsk->thread.a5;
}
unsigned long get_wchan(struct task_struct *p)
{
unsigned long pc;
/*
* If we don't have a process, or it is not the current
* one or not RUNNING, it makes no sense to ask for a
* wchan.
*/
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
/*
* TODO: If the process is in the middle of schedule, we
* are supposed to do something different but for now we
* will return the same thing in both situations.
*/
pc = thread_saved_pc(p);
if (in_sched_functions(pc))
return pc;
return pc;
}
/*
* Infrequently used interface to dump task registers to core files.
*/
int dump_task_regs(struct task_struct *task, elf_gregset_t *elfregs)
{
struct pt_regs *regs = task_pt_regs(task);
*(struct pt_regs *)elfregs = *regs;
return 1;
}
/*
* __switch_to is the function that implements the contex save and
* switch within the kernel. Since this is a function call very few
* registers have to be saved to pull this off. d0 holds prev and we
* want to preserve it. prev_switch is a pointer to task->thread
* structure. This is where we will save the register state. next_switch
* is pointer to the next task's thread structure that holds the
* registers.
*/
asmlinkage void *__switch_to(struct task_struct *prev,
struct thread_struct *prev_switch,
struct thread_struct *next_switch)
__attribute__((naked));