mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2025-02-07 17:51:56 +02:00
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
635 lines
14 KiB
C
635 lines
14 KiB
C
/*
|
|
* arch/ubicom32/kernel/process.c
|
|
* Ubicom32 architecture-dependent process handling.
|
|
*
|
|
* (C) Copyright 2009, Ubicom, Inc.
|
|
* Copyright (C) 1995 Hamish Macdonald
|
|
*
|
|
* 68060 fixes by Jesper Skov
|
|
*
|
|
* uClinux changes
|
|
* Copyright (C) 2000-2002, David McCullough <davidm@snapgear.com>
|
|
*
|
|
* This file is part of the Ubicom32 Linux Kernel Port.
|
|
*
|
|
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
|
|
* it and/or modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with the Ubicom32 Linux Kernel Port. If not,
|
|
* see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Ubicom32 implementation derived from (with many thanks):
|
|
* arch/m68knommu
|
|
* arch/blackfin
|
|
* arch/parisc
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pm.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/ip5000.h>
|
|
#include <asm/range-protect.h>
|
|
|
|
#define DUMP_RANGE_REGISTER(REG, IDX) asm volatile ( \
|
|
" move.4 %0, "REG"_RANGE"IDX"_EN \n\t" \
|
|
" move.4 %1, "REG"_RANGE"IDX"_LO \n\t" \
|
|
" move.4 %2, "REG"_RANGE"IDX"_HI \n\t" \
|
|
: "=d"(en), "=d"(lo), "=d"(hi) \
|
|
); \
|
|
printk(KERN_NOTICE REG"Range"IDX": en:%08x, range: %08x-%08x\n", \
|
|
(unsigned int)en, \
|
|
(unsigned int)lo, \
|
|
(unsigned int)hi)
|
|
|
|
asmlinkage void ret_from_fork(void);
|
|
|
|
void (*pm_power_off)(void) = machine_power_off;
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
/* machine-dependent / hardware-specific power functions */
|
|
void (*mach_reset)(void);
|
|
void (*mach_halt)(void);
|
|
void (*mach_power_off)(void);
|
|
|
|
/*
|
|
* cpu_idle()
|
|
* The idle thread.
|
|
*
|
|
* Our idle loop suspends and is woken up by a timer interrupt.
|
|
*/
|
|
void cpu_idle(void)
|
|
{
|
|
while (1) {
|
|
local_irq_disable();
|
|
while (!need_resched()) {
|
|
local_irq_enable();
|
|
thread_suspend();
|
|
local_irq_disable();
|
|
}
|
|
local_irq_enable();
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dump_fpu()
|
|
*
|
|
* Fill in the fpu structure for a core dump. (just a stub as we don't have
|
|
* an fpu)
|
|
*/
|
|
int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* machine_restart()
|
|
* Resets the system.
|
|
*/
|
|
void machine_restart(char *__unused)
|
|
{
|
|
/*
|
|
* Disable all threads except myself. We can do this
|
|
* directly without needing to call smp_send_stop
|
|
* because we have a unique architecture where
|
|
* one thread can disable one or more other threads.
|
|
*/
|
|
thread_disable_others();
|
|
|
|
/*
|
|
* Call the hardware-specific machine reset function.
|
|
*/
|
|
if (mach_reset) {
|
|
mach_reset();
|
|
}
|
|
|
|
printk(KERN_EMERG "System Restarting\n");
|
|
|
|
/*
|
|
* Set watchdog to trigger (after 1ms delay) (12 Mhz is the fixed OSC)
|
|
*/
|
|
UBICOM32_IO_TIMER->tkey = TIMER_TKEYVAL;
|
|
UBICOM32_IO_TIMER->wdcom = UBICOM32_IO_TIMER->mptval +
|
|
(12000000 / 1000);
|
|
UBICOM32_IO_TIMER->wdcfg = 0;
|
|
UBICOM32_IO_TIMER->tkey = 0;
|
|
|
|
/*
|
|
* Wait for watchdog
|
|
*/
|
|
asm volatile (
|
|
" move.4 MT_EN, #0 \n\t"
|
|
" pipe_flush 0 \n\t"
|
|
);
|
|
|
|
local_irq_disable();
|
|
for (;;) {
|
|
thread_suspend();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* machine_halt()
|
|
* Halt the machine.
|
|
*
|
|
* Similar to machine_power_off, but don't shut off power. Add code
|
|
* here to freeze the system for e.g. post-mortem debug purpose when
|
|
* possible. This halt has nothing to do with the idle halt.
|
|
*/
|
|
void machine_halt(void)
|
|
{
|
|
/*
|
|
* Disable all threads except myself. We can do this
|
|
* directly without needing to call smp_send_stop
|
|
* because we have a unique architecture where
|
|
* one thread can disable one or more other threads.
|
|
*/
|
|
thread_disable_others();
|
|
|
|
/*
|
|
* Call the hardware-specific machine halt function.
|
|
*/
|
|
if (mach_halt) {
|
|
mach_halt();
|
|
}
|
|
|
|
printk(KERN_EMERG "System Halted, OK to turn off power\n");
|
|
local_irq_disable();
|
|
for (;;) {
|
|
thread_suspend();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* machine_power_off()
|
|
* Turn the power off, if a power off handler is defined, otherwise, spin
|
|
* endlessly.
|
|
*/
|
|
void machine_power_off(void)
|
|
{
|
|
/*
|
|
* Disable all threads except myself. We can do this
|
|
* directly without needing to call smp_send_stop
|
|
* because we have a unique architecture where
|
|
* one thread can disable one or more other threads.
|
|
*/
|
|
thread_disable_others();
|
|
|
|
/*
|
|
* Call the hardware-specific machine power off function.
|
|
*/
|
|
if (mach_power_off) {
|
|
mach_power_off();
|
|
}
|
|
|
|
printk(KERN_EMERG "System Halted, OK to turn off power\n");
|
|
local_irq_disable();
|
|
for (;;) {
|
|
thread_suspend();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* address_is_valid()
|
|
* check if an address is valid -- (for read access)
|
|
*/
|
|
static bool address_is_valid(const void *address)
|
|
{
|
|
int addr = (int)address;
|
|
unsigned long socm, eocm, sdram, edram;
|
|
|
|
if (addr & 3)
|
|
return false;
|
|
|
|
processor_ocm(&socm, &eocm);
|
|
processor_dram(&sdram, &edram);
|
|
if (addr >= socm && addr < eocm)
|
|
return true;
|
|
|
|
if (addr >= sdram && addr < edram)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* vma_path_name_is_valid()
|
|
* check if path_name of a vma is a valid string
|
|
*/
|
|
static bool vma_path_name_is_valid(const char *str)
|
|
{
|
|
#define MAX_NAME_LEN 256
|
|
int i = 0;
|
|
if (!address_is_valid(str))
|
|
return false;
|
|
|
|
for (; i < MAX_NAME_LEN; i++, str++) {
|
|
if (*str == '\0')
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* show_vmas()
|
|
* show vma info of a process
|
|
*/
|
|
void show_vmas(struct task_struct *task)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VERBOSE
|
|
#define UBICOM32_MAX_VMA_COUNT 1024
|
|
|
|
struct vm_area_struct *vma;
|
|
struct file *file;
|
|
char *name = "";
|
|
int flags, loop = 0;
|
|
|
|
printk(KERN_NOTICE "Start of vma list\n");
|
|
|
|
if (!address_is_valid(task) || !address_is_valid(task->mm))
|
|
goto error;
|
|
|
|
vma = task->mm->mmap;
|
|
while (vma) {
|
|
if (!address_is_valid(vma))
|
|
goto error;
|
|
|
|
flags = vma->vm_flags;
|
|
file = vma->vm_file;
|
|
|
|
if (file) {
|
|
/* seems better to use dentry op here, but sanity check is easier this way */
|
|
if (!address_is_valid(file) || !address_is_valid(file->f_path.dentry) || !vma_path_name_is_valid(file->f_path.dentry->d_name.name))
|
|
goto error;
|
|
|
|
name = (char *)file->f_path.dentry->d_name.name;
|
|
}
|
|
|
|
/* Similar to /proc/pid/maps format */
|
|
printk(KERN_NOTICE "%08lx-%08lx %c%c%c%c %08lx %s\n",
|
|
vma->vm_start,
|
|
vma->vm_end,
|
|
flags & VM_READ ? 'r' : '-',
|
|
flags & VM_WRITE ? 'w' : '-',
|
|
flags & VM_EXEC ? 'x' : '-',
|
|
flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
|
|
vma->vm_pgoff << PAGE_SHIFT,
|
|
name);
|
|
|
|
vma = vma->vm_next;
|
|
|
|
if (loop++ > UBICOM32_MAX_VMA_COUNT)
|
|
goto error;
|
|
}
|
|
|
|
printk(KERN_NOTICE "End of vma list\n");
|
|
return;
|
|
|
|
error:
|
|
printk(KERN_NOTICE "\nCorrupted vma list, abort!\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* show_regs()
|
|
* Print out all of the registers.
|
|
*/
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
unsigned int i;
|
|
unsigned int en, lo, hi;
|
|
|
|
printk(KERN_NOTICE "regs: %p, tid: %d\n",
|
|
(void *)regs,
|
|
thread_get_self());
|
|
|
|
printk(KERN_NOTICE "pc: %08x, previous_pc: %08x\n\n",
|
|
(unsigned int)regs->pc,
|
|
(unsigned int)regs->previous_pc);
|
|
|
|
printk(KERN_NOTICE "Data registers\n");
|
|
for (i = 0; i < 16; i++) {
|
|
printk("D%02d: %08x, ", i, (unsigned int)regs->dn[i]);
|
|
if ((i % 4) == 3) {
|
|
printk("\n");
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
printk(KERN_NOTICE "Address registers\n");
|
|
for (i = 0; i < 8; i++) {
|
|
printk("A%02d: %08x, ", i, (unsigned int)regs->an[i]);
|
|
if ((i % 4) == 3) {
|
|
printk("\n");
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
printk(KERN_NOTICE "acc0: %08x-%08x, acc1: %08x-%08x\n",
|
|
(unsigned int)regs->acc0[1],
|
|
(unsigned int)regs->acc0[0],
|
|
(unsigned int)regs->acc1[1],
|
|
(unsigned int)regs->acc1[0]);
|
|
|
|
printk(KERN_NOTICE "mac_rc16: %08x, source3: %08x\n",
|
|
(unsigned int)regs->mac_rc16,
|
|
(unsigned int)regs->source3);
|
|
|
|
printk(KERN_NOTICE "inst_cnt: %08x, csr: %08x\n",
|
|
(unsigned int)regs->inst_cnt,
|
|
(unsigned int)regs->csr);
|
|
|
|
printk(KERN_NOTICE "int_mask0: %08x, int_mask1: %08x\n",
|
|
(unsigned int)regs->int_mask0,
|
|
(unsigned int)regs->int_mask1);
|
|
|
|
/*
|
|
* Dump range registers
|
|
*/
|
|
DUMP_RANGE_REGISTER("I", "0");
|
|
DUMP_RANGE_REGISTER("I", "1");
|
|
DUMP_RANGE_REGISTER("I", "2");
|
|
DUMP_RANGE_REGISTER("I", "3");
|
|
DUMP_RANGE_REGISTER("D", "0");
|
|
DUMP_RANGE_REGISTER("D", "1");
|
|
DUMP_RANGE_REGISTER("D", "2");
|
|
DUMP_RANGE_REGISTER("D", "3");
|
|
DUMP_RANGE_REGISTER("D", "4");
|
|
|
|
printk(KERN_NOTICE "frame_type: %d, nesting_level: %d, thread_type %d\n\n",
|
|
(int)regs->frame_type,
|
|
(int)regs->nesting_level,
|
|
(int)regs->thread_type);
|
|
}
|
|
|
|
/*
|
|
* kernel_thread_helper()
|
|
* On execution d0 will be 0, d1 will be the argument to be passed to the
|
|
* kernel function. d2 contains the kernel function that needs to get
|
|
* called. d3 will contain address to do_exit which need to get moved
|
|
* into a5. On return from fork the child thread d0 will be 0. We call
|
|
* this dummy function which in turn loads the argument
|
|
*/
|
|
asmlinkage void kernel_thread_helper(void);
|
|
|
|
/*
|
|
* kernel_thread()
|
|
* Create a kernel thread
|
|
*/
|
|
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
regs.dn[1] = (unsigned long)arg;
|
|
regs.dn[2] = (unsigned long)fn;
|
|
regs.dn[3] = (unsigned long)do_exit;
|
|
regs.an[5] = (unsigned long)kernel_thread_helper;
|
|
regs.pc = (unsigned long)kernel_thread_helper;
|
|
regs.nesting_level = 0;
|
|
regs.thread_type = KERNEL_THREAD;
|
|
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
|
|
0, ®s, 0, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL(kernel_thread);
|
|
|
|
/*
|
|
* flush_thread()
|
|
* XXX todo
|
|
*/
|
|
void flush_thread(void)
|
|
{
|
|
/* XXX todo */
|
|
}
|
|
|
|
/*
|
|
* sys_fork()
|
|
* Not implemented on no-mmu.
|
|
*/
|
|
asmlinkage int sys_fork(struct pt_regs *regs)
|
|
{
|
|
/* fork almost works, enough to trick you into looking elsewhere :-( */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* sys_vfork()
|
|
* By the time we get here, the non-volatile registers have also been saved
|
|
* on the stack. We do some ugly pointer stuff here.. (see also copy_thread
|
|
* which does context copy).
|
|
*/
|
|
asmlinkage int sys_vfork(struct pt_regs *regs)
|
|
{
|
|
unsigned long old_sp = regs->an[7];
|
|
unsigned long old_a5 = regs->an[5];
|
|
unsigned long old_return_address;
|
|
long do_fork_return;
|
|
|
|
/*
|
|
* Read the old retrun address from the stack.
|
|
*/
|
|
if (copy_from_user(&old_return_address,
|
|
(void *)old_sp, sizeof(unsigned long))) {
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pop the vfork call frame by setting a5 and pc to the old_return
|
|
* address and incrementing the stack pointer by 4.
|
|
*/
|
|
regs->an[5] = old_return_address;
|
|
regs->pc = old_return_address;
|
|
regs->an[7] += 4;
|
|
|
|
do_fork_return = do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
|
|
regs->an[7], regs, 0, NULL, NULL);
|
|
|
|
/*
|
|
* Now we have to test if the return code is an error. If it is an error
|
|
* then restore the frame and we will execute error processing in user
|
|
* space. Other wise the child and the parent will return to the correct
|
|
* places.
|
|
*/
|
|
if ((unsigned long)(do_fork_return) >= (unsigned long)(-125)) {
|
|
/*
|
|
* Error case. We need to restore the frame.
|
|
*/
|
|
regs->an[5] = old_a5;
|
|
regs->pc = old_a5;
|
|
regs->an[7] = old_sp;
|
|
}
|
|
|
|
return do_fork_return;
|
|
}
|
|
|
|
/*
|
|
* sys_clone()
|
|
* creates a child thread.
|
|
*/
|
|
asmlinkage int sys_clone(unsigned long clone_flags,
|
|
unsigned long newsp,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (!newsp)
|
|
newsp = regs->an[7];
|
|
return do_fork(clone_flags, newsp, regs, 0,
|
|
NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* copy_thread()
|
|
* low level thread copy, only used by do_fork in kernel/fork.c
|
|
*/
|
|
int copy_thread(unsigned long clone_flags,
|
|
unsigned long usp, unsigned long topstk,
|
|
struct task_struct *p, struct pt_regs *regs)
|
|
|
|
{
|
|
struct pt_regs *childregs;
|
|
|
|
childregs = (struct pt_regs *)
|
|
(task_stack_page(p) + THREAD_SIZE - 8) - 1;
|
|
|
|
*childregs = *regs;
|
|
|
|
/*
|
|
* Set return value for child to be 0.
|
|
*/
|
|
childregs->dn[0] = 0;
|
|
|
|
if (usp)
|
|
childregs->an[7] = usp;
|
|
else
|
|
childregs->an[7] = (unsigned long)task_stack_page(p) +
|
|
THREAD_SIZE - 8;
|
|
|
|
/*
|
|
* Set up the switch_to frame to return to "ret_from_fork"
|
|
*/
|
|
p->thread.a5 = (unsigned long)ret_from_fork;
|
|
p->thread.sp = (unsigned long)childregs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sys_execve()
|
|
* executes a new program.
|
|
*/
|
|
asmlinkage int sys_execve(char *name, char **argv,
|
|
char **envp, struct pt_regs *regs)
|
|
{
|
|
int error;
|
|
char *filename;
|
|
|
|
lock_kernel();
|
|
filename = getname(name);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = do_execve(filename, argv, envp, regs);
|
|
putname(filename);
|
|
asm (" .global sys_execve_complete\n"
|
|
" sys_execve_complete:");
|
|
out:
|
|
unlock_kernel();
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Return saved PC of a blocked thread.
|
|
*/
|
|
unsigned long thread_saved_pc(struct task_struct *tsk)
|
|
{
|
|
return tsk->thread.a5;
|
|
}
|
|
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long pc;
|
|
|
|
/*
|
|
* If we don't have a process, or it is not the current
|
|
* one or not RUNNING, it makes no sense to ask for a
|
|
* wchan.
|
|
*/
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
/*
|
|
* TODO: If the process is in the middle of schedule, we
|
|
* are supposed to do something different but for now we
|
|
* will return the same thing in both situations.
|
|
*/
|
|
pc = thread_saved_pc(p);
|
|
if (in_sched_functions(pc))
|
|
return pc;
|
|
return pc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Infrequently used interface to dump task registers to core files.
|
|
*/
|
|
int dump_task_regs(struct task_struct *task, elf_gregset_t *elfregs)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(task);
|
|
*(struct pt_regs *)elfregs = *regs;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* __switch_to is the function that implements the contex save and
|
|
* switch within the kernel. Since this is a function call very few
|
|
* registers have to be saved to pull this off. d0 holds prev and we
|
|
* want to preserve it. prev_switch is a pointer to task->thread
|
|
* structure. This is where we will save the register state. next_switch
|
|
* is pointer to the next task's thread structure that holds the
|
|
* registers.
|
|
*/
|
|
asmlinkage void *__switch_to(struct task_struct *prev,
|
|
struct thread_struct *prev_switch,
|
|
struct thread_struct *next_switch)
|
|
__attribute__((naked));
|