1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-06 09:45:00 +02:00
openwrt-xburst/target/linux/brcm-2.4/files/arch/mips/bcm947xx/sbutils.c
nbd 7ed9009bbd convert brcm-2.4 to the new target structure
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@7092 3c298f89-4303-0410-b956-a3cf2f4a3e73
2007-05-04 22:13:42 +00:00

3104 lines
72 KiB
C

/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright 2006, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
* $Id: sbutils.c,v 1.10 2006/04/08 07:12:42 honor Exp $
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbpci.h>
#include <sbpcie.h>
#include <pcicfg.h>
#include <sbpcmcia.h>
#include <sbextif.h>
#include <sbsocram.h>
#include <bcmsrom.h>
#ifdef __mips__
#include <mipsinc.h>
#endif /* __mips__ */
/* debug/trace */
#define SB_ERROR(args)
typedef uint32 (*sb_intrsoff_t)(void *intr_arg);
typedef void (*sb_intrsrestore_t)(void *intr_arg, uint32 arg);
typedef bool (*sb_intrsenabled_t)(void *intr_arg);
/* misc sb info needed by some of the routines */
typedef struct sb_info {
struct sb_pub sb; /* back plane public state (must be first field) */
void *osh; /* osl os handle */
void *sdh; /* bcmsdh handle */
void *curmap; /* current regs va */
void *regs[SB_MAXCORES]; /* other regs va */
uint curidx; /* current core index */
uint dev_coreid; /* the core provides driver functions */
bool memseg; /* flag to toggle MEM_SEG register */
uint gpioidx; /* gpio control core index */
uint gpioid; /* gpio control coretype */
uint numcores; /* # discovered cores */
uint coreid[SB_MAXCORES]; /* id of each core */
void *intr_arg; /* interrupt callback function arg */
sb_intrsoff_t intrsoff_fn; /* turns chip interrupts off */
sb_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */
sb_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */
} sb_info_t;
/* local prototypes */
static sb_info_t * sb_doattach(sb_info_t *si, uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz);
static void sb_scan(sb_info_t *si);
static uint sb_corereg(sb_info_t *si, uint coreidx, uint regoff, uint mask, uint val);
static uint _sb_coreidx(sb_info_t *si);
static uint sb_findcoreidx(sb_info_t *si, uint coreid, uint coreunit);
static uint sb_pcidev2chip(uint pcidev);
static uint sb_chip2numcores(uint chip);
static bool sb_ispcie(sb_info_t *si);
static bool sb_find_pci_capability(sb_info_t *si, uint8 req_cap_id, uchar *buf, uint32 *buflen);
static int sb_pci_fixcfg(sb_info_t *si);
/* routines to access mdio slave device registers */
static int sb_pcie_mdiowrite(sb_info_t *si, uint physmedia, uint readdr, uint val);
static void sb_war30841(sb_info_t *si);
/* delay needed between the mdio control/ mdiodata register data access */
#define PR28829_DELAY() OSL_DELAY(10)
/* size that can take bitfielddump */
#define BITFIELD_DUMP_SIZE 32
/* global variable to indicate reservation/release of gpio's */
static uint32 sb_gpioreservation = 0;
#define SB_INFO(sbh) (sb_info_t*)sbh
#define SET_SBREG(si, r, mask, val) \
W_SBREG((si), (r), ((R_SBREG((si), (r)) & ~(mask)) | (val)))
#define GOODCOREADDR(x) (((x) >= SB_ENUM_BASE) && ((x) <= SB_ENUM_LIM) && \
ISALIGNED((x), SB_CORE_SIZE))
#define GOODREGS(regs) ((regs) && ISALIGNED((uintptr)(regs), SB_CORE_SIZE))
#define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)
#define GOODIDX(idx) (((uint)idx) < SB_MAXCORES)
#define BADIDX (SB_MAXCORES+1)
#define NOREV -1 /* Invalid rev */
#define PCI(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCI))
#define PCIE(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCIE))
/* sonicsrev */
#define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
#define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)
#define R_SBREG(si, sbr) sb_read_sbreg((si), (sbr))
#define W_SBREG(si, sbr, v) sb_write_sbreg((si), (sbr), (v))
#define AND_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) & (v)))
#define OR_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) | (v)))
/*
* Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts before/
* after core switching to avoid invalid register accesss inside ISR.
*/
#define INTR_OFF(si, intr_val) \
if ((si)->intrsoff_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
intr_val = (*(si)->intrsoff_fn)((si)->intr_arg); }
#define INTR_RESTORE(si, intr_val) \
if ((si)->intrsrestore_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
(*(si)->intrsrestore_fn)((si)->intr_arg, intr_val); }
/* dynamic clock control defines */
#define LPOMINFREQ 25000 /* low power oscillator min */
#define LPOMAXFREQ 43000 /* low power oscillator max */
#define XTALMINFREQ 19800000 /* 20 MHz - 1% */
#define XTALMAXFREQ 20200000 /* 20 MHz + 1% */
#define PCIMINFREQ 25000000 /* 25 MHz */
#define PCIMAXFREQ 34000000 /* 33 MHz + fudge */
#define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */
#define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */
/* different register spaces to access thr'u pcie indirect access */
#define PCIE_CONFIGREGS 1 /* Access to config space */
#define PCIE_PCIEREGS 2 /* Access to pcie registers */
/* force HT war check */
#define FORCEHT_WAR32414(si) \
((PCIE(si)) && (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 1)) || \
((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev <= 3))))
/* GPIO Based LED powersave defines */
#define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
#define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
#define DEFAULT_GPIOTIMERVAL ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
static uint32
sb_read_sbreg(sb_info_t *si, volatile uint32 *sbr)
{
uint8 tmp;
uint32 val, intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (si->memseg) {
INTR_OFF(si, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
}
val = R_REG(si->osh, sbr);
if (si->memseg) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(si, intr_val);
}
return (val);
}
static void
sb_write_sbreg(sb_info_t *si, volatile uint32 *sbr, uint32 v)
{
uint8 tmp;
volatile uint32 dummy;
uint32 intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (si->memseg) {
INTR_OFF(si, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
}
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
#ifdef IL_BIGENDIAN
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
#else
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
#endif /* IL_BIGENDIAN */
} else
W_REG(si->osh, sbr, v);
if (si->memseg) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(si, intr_val);
}
}
/*
* Allocate a sb handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
* bustype - pci/pcmcia/sb/sdio/etc
* vars - pointer to a pointer area for "environment" variables
* varsz - pointer to int to return the size of the vars
*/
sb_t *
BCMINITFN(sb_attach)(uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz)
{
sb_info_t *si;
/* alloc sb_info_t */
if ((si = MALLOC(osh, sizeof (sb_info_t))) == NULL) {
SB_ERROR(("sb_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
return (NULL);
}
if (sb_doattach(si, devid, osh, regs, bustype, sdh, vars, (uint*)varsz) == NULL) {
MFREE(osh, si, sizeof(sb_info_t));
return (NULL);
}
return (sb_t *)si;
}
/* Using sb_kattach depends on SB_BUS support, either implicit */
/* no limiting BCMBUSTYPE value) or explicit (value is SB_BUS). */
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
/* global kernel resource */
static sb_info_t ksi;
static bool ksi_attached = FALSE;
/* generic kernel variant of sb_attach() */
sb_t *
BCMINITFN(sb_kattach)(void)
{
osl_t *osh = NULL;
uint32 *regs;
if (!ksi_attached) {
uint32 cid;
regs = (uint32 *)REG_MAP(SB_ENUM_BASE, SB_CORE_SIZE);
cid = R_REG(osh, (uint32 *)regs);
if (((cid & CID_ID_MASK) == BCM4712_CHIP_ID) &&
((cid & CID_PKG_MASK) != BCM4712LARGE_PKG_ID) &&
((cid & CID_REV_MASK) <= (3 << CID_REV_SHIFT))) {
uint32 *scc, val;
scc = (uint32 *)((uchar*)regs + OFFSETOF(chipcregs_t, slow_clk_ctl));
val = R_REG(osh, scc);
SB_ERROR((" initial scc = 0x%x\n", val));
val |= SCC_SS_XTAL;
W_REG(osh, scc, val);
}
if (sb_doattach(&ksi, BCM4710_DEVICE_ID, osh, (void*)regs,
SB_BUS, NULL, NULL, NULL) == NULL) {
return NULL;
}
else
ksi_attached = TRUE;
}
return (sb_t *)&ksi;
}
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
void
BCMINITFN(sb_war32414_forceHT)(sb_t *sbh, bool forceHT)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (FORCEHT_WAR32414(si)) {
uint32 val = 0;
if (forceHT)
val = SYCC_HR;
sb_corereg((void*)si, SB_CC_IDX, OFFSETOF(chipcregs_t, system_clk_ctl),
SYCC_HR, val);
}
}
static sb_info_t *
BCMINITFN(sb_doattach)(sb_info_t *si, uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz)
{
uint origidx;
chipcregs_t *cc;
sbconfig_t *sb;
uint32 w;
ASSERT(GOODREGS(regs));
bzero((uchar*)si, sizeof(sb_info_t));
si->sb.buscoreidx = si->gpioidx = BADIDX;
si->curmap = regs;
si->sdh = sdh;
si->osh = osh;
/* check to see if we are a sb core mimic'ing a pci core */
if (bustype == PCI_BUS) {
if (OSL_PCI_READ_CONFIG(si->osh, PCI_SPROM_CONTROL, sizeof(uint32)) == 0xffffffff) {
SB_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SB "
"devid:0x%x\n", __FUNCTION__, devid));
bustype = SB_BUS;
}
}
si->sb.bustype = bustype;
if (si->sb.bustype != BUSTYPE(si->sb.bustype)) {
SB_ERROR(("sb_doattach: bus type %d does not match configured bus type %d\n",
si->sb.bustype, BUSTYPE(si->sb.bustype)));
return NULL;
}
/* need to set memseg flag for CF card first before any sb registers access */
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS)
si->memseg = TRUE;
/* kludge to enable the clock on the 4306 which lacks a slowclock */
if (BUSTYPE(si->sb.bustype) == PCI_BUS)
sb_clkctl_xtal(&si->sb, XTAL|PLL, ON);
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
w = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
if (!GOODCOREADDR(w))
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32), SB_ENUM_BASE);
}
/* initialize current core index value */
si->curidx = _sb_coreidx(si);
if (si->curidx == BADIDX) {
SB_ERROR(("sb_doattach: bad core index\n"));
return NULL;
}
/* get sonics backplane revision */
sb = REGS2SB(si->curmap);
si->sb.sonicsrev = (R_SBREG(si, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT;
/* keep and reuse the initial register mapping */
origidx = si->curidx;
if (BUSTYPE(si->sb.bustype) == SB_BUS)
si->regs[origidx] = regs;
/* is core-0 a chipcommon core? */
si->numcores = 1;
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, 0);
if (sb_coreid(&si->sb) != SB_CC)
cc = NULL;
/* determine chip id and rev */
if (cc) {
/* chip common core found! */
si->sb.chip = R_REG(si->osh, &cc->chipid) & CID_ID_MASK;
si->sb.chiprev = (R_REG(si->osh, &cc->chipid) & CID_REV_MASK) >> CID_REV_SHIFT;
si->sb.chippkg = (R_REG(si->osh, &cc->chipid) & CID_PKG_MASK) >> CID_PKG_SHIFT;
} else {
/* no chip common core -- must convert device id to chip id */
if ((si->sb.chip = sb_pcidev2chip(devid)) == 0) {
SB_ERROR(("sb_doattach: unrecognized device id 0x%04x\n", devid));
sb_setcoreidx(&si->sb, origidx);
return NULL;
}
}
/* get chipcommon rev */
si->sb.ccrev = cc ? (int)sb_corerev(&si->sb) : NOREV;
/* determine numcores */
if (cc && ((si->sb.ccrev == 4) || (si->sb.ccrev >= 6)))
si->numcores = (R_REG(si->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT;
else
si->numcores = sb_chip2numcores(si->sb.chip);
/* return to original core */
sb_setcoreidx(&si->sb, origidx);
/* sanity checks */
ASSERT(si->sb.chip);
/* scan for cores */
sb_scan(si);
/* fixup necessary chip/core configurations */
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
if (sb_pci_fixcfg(si)) {
SB_ERROR(("sb_doattach: sb_pci_fixcfg failed\n"));
return NULL;
}
}
/* srom_var_init() depends on sb_scan() info */
if (srom_var_init(si, si->sb.bustype, si->curmap, si->osh, vars, varsz)) {
SB_ERROR(("sb_doattach: srom_var_init failed: bad srom\n"));
return (NULL);
}
if (cc == NULL) {
/*
* The chip revision number is hardwired into all
* of the pci function config rev fields and is
* independent from the individual core revision numbers.
* For example, the "A0" silicon of each chip is chip rev 0.
* For PCMCIA we get it from the CIS instead.
*/
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
ASSERT(vars);
si->sb.chiprev = getintvar(*vars, "chiprev");
} else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_REV, sizeof(uint32));
si->sb.chiprev = w & 0xff;
} else
si->sb.chiprev = 0;
}
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
w = getintvar(*vars, "regwindowsz");
si->memseg = (w <= CFTABLE_REGWIN_2K) ? TRUE : FALSE;
}
/* gpio control core is required */
if (!GOODIDX(si->gpioidx)) {
SB_ERROR(("sb_doattach: gpio control core not found\n"));
return NULL;
}
/* get boardtype and boardrev */
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
/* do a pci config read to get subsystem id and subvendor id */
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_SVID, sizeof(uint32));
si->sb.boardvendor = w & 0xffff;
si->sb.boardtype = (w >> 16) & 0xffff;
break;
case PCMCIA_BUS:
case SDIO_BUS:
si->sb.boardvendor = getintvar(*vars, "manfid");
si->sb.boardtype = getintvar(*vars, "prodid");
break;
case SB_BUS:
case JTAG_BUS:
si->sb.boardvendor = VENDOR_BROADCOM;
if ((si->sb.boardtype = getintvar(NULL, "boardtype")) == 0)
si->sb.boardtype = 0xffff;
break;
}
if (si->sb.boardtype == 0) {
SB_ERROR(("sb_doattach: unknown board type\n"));
ASSERT(si->sb.boardtype);
}
/* setup the GPIO based LED powersave register */
if (si->sb.ccrev >= 16) {
if ((vars == NULL) || ((w = getintvar(*vars, "leddc")) == 0))
w = DEFAULT_GPIOTIMERVAL;
sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
}
if (FORCEHT_WAR32414(si)) {
/* set proper clk setup delays before forcing HT */
sb_clkctl_init((void *)si);
sb_war32414_forceHT((void *)si, 1);
}
return (si);
}
uint
sb_coreid(sb_t *sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
}
uint
sb_coreidx(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->curidx);
}
/* return current index of core */
static uint
_sb_coreidx(sb_info_t *si)
{
sbconfig_t *sb;
uint32 sbaddr = 0;
ASSERT(si);
switch (BUSTYPE(si->sb.bustype)) {
case SB_BUS:
sb = REGS2SB(si->curmap);
sbaddr = sb_base(R_SBREG(si, &sb->sbadmatch0));
break;
case PCI_BUS:
sbaddr = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
break;
case PCMCIA_BUS: {
uint8 tmp = 0;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
sbaddr = (uint)tmp << 12;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
sbaddr |= (uint)tmp << 16;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
sbaddr |= (uint)tmp << 24;
break;
}
#ifdef BCMJTAG
case JTAG_BUS:
sbaddr = (uint32)si->curmap;
break;
#endif /* BCMJTAG */
default:
ASSERT(0);
}
if (!GOODCOREADDR(sbaddr))
return BADIDX;
return ((sbaddr - SB_ENUM_BASE) / SB_CORE_SIZE);
}
uint
sb_corevendor(sb_t *sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
}
uint
sb_corerev(sb_t *sbh)
{
sb_info_t *si;
sbconfig_t *sb;
uint sbidh;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
sbidh = R_SBREG(si, &sb->sbidhigh);
return (SBCOREREV(sbidh));
}
void *
sb_osh(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return si->osh;
}
void
sb_setosh(sb_t *sbh, osl_t *osh)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->osh != NULL) {
SB_ERROR(("osh is already set....\n"));
ASSERT(!si->osh);
}
si->osh = osh;
}
/* set/clear sbtmstatelow core-specific flags */
uint32
sb_coreflags(sb_t *sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
sbconfig_t *sb;
uint32 w;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
ASSERT((val & ~mask) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
W_SBREG(si, &sb->sbtmstatelow, w);
}
/* return the new value */
return (R_SBREG(si, &sb->sbtmstatelow));
}
/* set/clear sbtmstatehigh core-specific flags */
uint32
sb_coreflagshi(sb_t *sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
sbconfig_t *sb;
uint32 w;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SBTMH_FL_MASK) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(si, &sb->sbtmstatehigh) & ~mask) | val;
W_SBREG(si, &sb->sbtmstatehigh, w);
}
/* return the new value */
return (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_FL_MASK);
}
/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
int
sb_corebist(sb_t *sbh)
{
uint32 sblo;
sb_info_t *si;
sbconfig_t *sb;
int result = 0;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
sblo = R_SBREG(si, &sb->sbtmstatelow);
W_SBREG(si, &sb->sbtmstatelow, (sblo | SBTML_FGC | SBTML_BE));
SPINWAIT(((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTD) == 0), 100000);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTF)
result = BCME_ERROR;
W_SBREG(si, &sb->sbtmstatelow, sblo);
return result;
}
bool
sb_iscoreup(sb_t *sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbtmstatelow) &
(SBTML_RESET | SBTML_REJ_MASK | SBTML_CLK)) == SBTML_CLK);
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fidleing with interrupts or core switches are needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
static uint
sb_corereg(sb_info_t *si, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
uint32 *r = NULL;
uint w;
uint intr_val = 0;
bool fast = FALSE;
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SB_CORE_SIZE);
ASSERT((val & ~mask) == 0);
#ifdef notyet
if (si->sb.bustype == SB_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
r = (uint32 *)((uchar *)si->regs[coreidx] + regoff);
} else if (si->sb.bustype == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((si->coreid[coreidx] == SB_CC) &&
((si->sb.buscoretype == SB_PCIE) ||
(si->sb.buscorerev >= 13))) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *)((char *)si->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (si->sb.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if ((si->sb.buscoretype == SB_PCIE) ||
(si->sb.buscorerev >= 13))
r = (uint32 *)((char *)si->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (uint32 *)((char *)si->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
#endif /* notyet */
if (!fast) {
INTR_OFF(si, intr_val);
/* save current core index */
origidx = sb_coreidx(&si->sb);
/* switch core */
r = (uint32*) ((uchar*) sb_setcoreidx(&si->sb, coreidx) + regoff);
}
ASSERT(r);
/* mask and set */
if (mask || val) {
if (regoff >= SBCONFIGOFF) {
w = (R_SBREG(si, r) & ~mask) | val;
W_SBREG(si, r, w);
} else {
w = (R_REG(si->osh, r) & ~mask) | val;
W_REG(si->osh, r, w);
}
}
/* readback */
if (regoff >= SBCONFIGOFF)
w = R_SBREG(si, r);
else
w = R_REG(si->osh, r);
if (!fast) {
/* restore core index */
if (origidx != coreidx)
sb_setcoreidx(&si->sb, origidx);
INTR_RESTORE(si, intr_val);
}
return (w);
}
#define DWORD_ALIGN(x) (x & ~(0x03))
#define BYTE_POS(x) (x & 0x3)
#define WORD_POS(x) (x & 0x1)
#define BYTE_SHIFT(x) (8 * BYTE_POS(x))
#define WORD_SHIFT(x) (16 * WORD_POS(x))
#define BYTE_VAL(a, x) ((a >> BYTE_SHIFT(x)) & 0xFF)
#define WORD_VAL(a, x) ((a >> WORD_SHIFT(x)) & 0xFFFF)
#define read_pci_cfg_byte(a) \
(BYTE_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xff)
#define read_pci_cfg_word(a) \
(WORD_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xffff)
/* return TRUE if requested capability exists in the PCI config space */
static bool
sb_find_pci_capability(sb_info_t *si, uint8 req_cap_id, uchar *buf, uint32 *buflen)
{
uint8 cap_id;
uint8 cap_ptr;
uint32 bufsize;
uint8 byte_val;
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
return FALSE;
/* check for Header type 0 */
byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
if ((byte_val & 0x7f) != PCI_HEADER_NORMAL)
return FALSE;
/* check if the capability pointer field exists */
byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
if (!(byte_val & PCI_CAPPTR_PRESENT))
return FALSE;
cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
/* check if the capability pointer is 0x00 */
if (cap_ptr == 0x00)
return FALSE;
/* loop thr'u the capability list and see if the pcie capabilty exists */
cap_id = read_pci_cfg_byte(cap_ptr);
while (cap_id != req_cap_id) {
cap_ptr = read_pci_cfg_byte((cap_ptr+1));
if (cap_ptr == 0x00) break;
cap_id = read_pci_cfg_byte(cap_ptr);
}
if (cap_id != req_cap_id) {
return FALSE;
}
/* found the caller requested capability */
if ((buf != NULL) && (buflen != NULL)) {
bufsize = *buflen;
if (!bufsize) goto end;
*buflen = 0;
/* copy the cpability data excluding cap ID and next ptr */
cap_ptr += 2;
if ((bufsize + cap_ptr) > SZPCR)
bufsize = SZPCR - cap_ptr;
*buflen = bufsize;
while (bufsize--) {
*buf = read_pci_cfg_byte(cap_ptr);
cap_ptr++;
buf++;
}
}
end:
return TRUE;
}
/* return TRUE if PCIE capability exists the pci config space */
static inline bool
sb_ispcie(sb_info_t *si)
{
return (sb_find_pci_capability(si, PCI_CAP_PCIECAP_ID, NULL, NULL));
}
/* scan the sb enumerated space to identify all cores */
static void
BCMINITFN(sb_scan)(sb_info_t *si)
{
uint origidx;
uint i;
bool pci;
bool pcie;
uint pciidx;
uint pcieidx;
uint pcirev;
uint pcierev;
/* numcores should already be set */
ASSERT((si->numcores > 0) && (si->numcores <= SB_MAXCORES));
/* save current core index */
origidx = sb_coreidx(&si->sb);
si->sb.buscorerev = NOREV;
si->sb.buscoreidx = BADIDX;
si->gpioidx = BADIDX;
pci = pcie = FALSE;
pcirev = pcierev = NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < si->numcores; i++) {
sb_setcoreidx(&si->sb, i);
si->coreid[i] = sb_coreid(&si->sb);
if (si->coreid[i] == SB_PCI) {
pciidx = i;
pcirev = sb_corerev(&si->sb);
pci = TRUE;
} else if (si->coreid[i] == SB_PCIE) {
pcieidx = i;
pcierev = sb_corerev(&si->sb);
pcie = TRUE;
} else if (si->coreid[i] == SB_PCMCIA) {
si->sb.buscorerev = sb_corerev(&si->sb);
si->sb.buscoretype = si->coreid[i];
si->sb.buscoreidx = i;
}
}
if (pci && pcie) {
if (sb_ispcie(si))
pci = FALSE;
else
pcie = FALSE;
}
if (pci) {
si->sb.buscoretype = SB_PCI;
si->sb.buscorerev = pcirev;
si->sb.buscoreidx = pciidx;
} else if (pcie) {
si->sb.buscoretype = SB_PCIE;
si->sb.buscorerev = pcierev;
si->sb.buscoreidx = pcieidx;
}
/*
* Find the gpio "controlling core" type and index.
* Precedence:
* - if there's a chip common core - use that
* - else if there's a pci core (rev >= 2) - use that
* - else there had better be an extif core (4710 only)
*/
if (GOODIDX(sb_findcoreidx(si, SB_CC, 0))) {
si->gpioidx = sb_findcoreidx(si, SB_CC, 0);
si->gpioid = SB_CC;
} else if (PCI(si) && (si->sb.buscorerev >= 2)) {
si->gpioidx = si->sb.buscoreidx;
si->gpioid = SB_PCI;
} else if (sb_findcoreidx(si, SB_EXTIF, 0)) {
si->gpioidx = sb_findcoreidx(si, SB_EXTIF, 0);
si->gpioid = SB_EXTIF;
} else
ASSERT(si->gpioidx != BADIDX);
/* return to original core index */
sb_setcoreidx(&si->sb, origidx);
}
/* may be called with core in reset */
void
sb_detach(sb_t *sbh)
{
sb_info_t *si;
uint idx;
si = SB_INFO(sbh);
if (si == NULL)
return;
if (BUSTYPE(si->sb.bustype) == SB_BUS)
for (idx = 0; idx < SB_MAXCORES; idx++)
if (si->regs[idx]) {
REG_UNMAP(si->regs[idx]);
si->regs[idx] = NULL;
}
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
if (si != &ksi)
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
MFREE(si->osh, si, sizeof(sb_info_t));
}
/* use pci dev id to determine chip id for chips not having a chipcommon core */
static uint
BCMINITFN(sb_pcidev2chip)(uint pcidev)
{
if ((pcidev >= BCM4710_DEVICE_ID) && (pcidev <= BCM47XX_USB_ID))
return (BCM4710_CHIP_ID);
if ((pcidev >= BCM4402_ENET_ID) && (pcidev <= BCM4402_V90_ID))
return (BCM4402_CHIP_ID);
if (pcidev == BCM4401_ENET_ID)
return (BCM4402_CHIP_ID);
return (0);
}
/* convert chip number to number of i/o cores */
static uint
BCMINITFN(sb_chip2numcores)(uint chip)
{
if (chip == BCM4710_CHIP_ID)
return (9);
if (chip == BCM4402_CHIP_ID)
return (3);
if (chip == BCM4306_CHIP_ID) /* < 4306c0 */
return (6);
if (chip == BCM4704_CHIP_ID)
return (9);
if (chip == BCM5365_CHIP_ID)
return (7);
SB_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip));
ASSERT(0);
return (1);
}
/* return index of coreid or BADIDX if not found */
static uint
sb_findcoreidx(sb_info_t *si, uint coreid, uint coreunit)
{
uint found;
uint i;
found = 0;
for (i = 0; i < si->numcores; i++)
if (si->coreid[i] == coreid) {
if (found == coreunit)
return (i);
found++;
}
return (BADIDX);
}
/*
* this function changes logical "focus" to the indiciated core,
* must be called with interrupt off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void*
sb_setcoreidx(sb_t *sbh, uint coreidx)
{
sb_info_t *si;
uint32 sbaddr;
uint8 tmp;
si = SB_INFO(sbh);
if (coreidx >= si->numcores)
return (NULL);
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((si->intrsenabled_fn == NULL) || !(*(si)->intrsenabled_fn)((si)->intr_arg));
sbaddr = SB_ENUM_BASE + (coreidx * SB_CORE_SIZE);
switch (BUSTYPE(si->sb.bustype)) {
case SB_BUS:
/* map new one */
if (!si->regs[coreidx]) {
si->regs[coreidx] = (void*)REG_MAP(sbaddr, SB_CORE_SIZE);
ASSERT(GOODREGS(si->regs[coreidx]));
}
si->curmap = si->regs[coreidx];
break;
case PCI_BUS:
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, 4, sbaddr);
break;
case PCMCIA_BUS:
tmp = (sbaddr >> 12) & 0x0f;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
tmp = (sbaddr >> 16) & 0xff;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
tmp = (sbaddr >> 24) & 0xff;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
break;
#ifdef BCMJTAG
case JTAG_BUS:
/* map new one */
if (!si->regs[coreidx]) {
si->regs[coreidx] = (void *)sbaddr;
ASSERT(GOODREGS(si->regs[coreidx]));
}
si->curmap = si->regs[coreidx];
break;
#endif /* BCMJTAG */
}
si->curidx = coreidx;
return (si->curmap);
}
/*
* this function changes logical "focus" to the indiciated core,
* must be called with interrupt off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void*
sb_setcore(sb_t *sbh, uint coreid, uint coreunit)
{
sb_info_t *si;
uint idx;
si = SB_INFO(sbh);
idx = sb_findcoreidx(si, coreid, coreunit);
if (!GOODIDX(idx))
return (NULL);
return (sb_setcoreidx(sbh, idx));
}
/* return chip number */
uint
sb_chip(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chip);
}
/* return chip revision number */
uint
sb_chiprev(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chiprev);
}
/* return chip common revision number */
uint
sb_chipcrev(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.ccrev);
}
/* return chip package option */
uint
sb_chippkg(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chippkg);
}
/* return PCI core rev. */
uint
sb_pcirev(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
bool
BCMINITFN(sb_war16165)(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (PCI(si) && (si->sb.buscorerev <= 10));
}
static void
BCMINITFN(sb_war30841)(sb_info_t *si)
{
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128);
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100);
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466);
}
/* return PCMCIA core rev. */
uint
BCMINITFN(sb_pcmciarev)(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
/* return board vendor id */
uint
sb_boardvendor(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.boardvendor);
}
/* return boardtype */
uint
sb_boardtype(sb_t *sbh)
{
sb_info_t *si;
char *var;
si = SB_INFO(sbh);
if (BUSTYPE(si->sb.bustype) == SB_BUS && si->sb.boardtype == 0xffff) {
/* boardtype format is a hex string */
si->sb.boardtype = getintvar(NULL, "boardtype");
/* backward compatibility for older boardtype string format */
if ((si->sb.boardtype == 0) && (var = getvar(NULL, "boardtype"))) {
if (!strcmp(var, "bcm94710dev"))
si->sb.boardtype = BCM94710D_BOARD;
else if (!strcmp(var, "bcm94710ap"))
si->sb.boardtype = BCM94710AP_BOARD;
else if (!strcmp(var, "bu4710"))
si->sb.boardtype = BU4710_BOARD;
else if (!strcmp(var, "bcm94702mn"))
si->sb.boardtype = BCM94702MN_BOARD;
else if (!strcmp(var, "bcm94710r1"))
si->sb.boardtype = BCM94710R1_BOARD;
else if (!strcmp(var, "bcm94710r4"))
si->sb.boardtype = BCM94710R4_BOARD;
else if (!strcmp(var, "bcm94702cpci"))
si->sb.boardtype = BCM94702CPCI_BOARD;
else if (!strcmp(var, "bcm95380_rr"))
si->sb.boardtype = BCM95380RR_BOARD;
}
}
return (si->sb.boardtype);
}
/* return bus type of sbh device */
uint
sb_bus(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.bustype);
}
/* return bus core type */
uint
sb_buscoretype(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscoretype);
}
/* return bus core revision */
uint
sb_buscorerev(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
/* return list of found cores */
uint
sb_corelist(sb_t *sbh, uint coreid[])
{
sb_info_t *si;
si = SB_INFO(sbh);
bcopy((uchar*)si->coreid, (uchar*)coreid, (si->numcores * sizeof(uint)));
return (si->numcores);
}
/* return current register mapping */
void *
sb_coreregs(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
return (si->curmap);
}
/* do buffered registers update */
void
sb_commit(sb_t *sbh)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
si = SB_INFO(sbh);
origidx = si->curidx;
ASSERT(GOODIDX(origidx));
INTR_OFF(si, intr_val);
/* switch over to chipcommon core if there is one, else use pci */
if (si->sb.ccrev != NOREV) {
chipcregs_t *ccregs = (chipcregs_t *)sb_setcore(sbh, SB_CC, 0);
/* do the buffer registers update */
W_REG(si->osh, &ccregs->broadcastaddress, SB_COMMIT);
W_REG(si->osh, &ccregs->broadcastdata, 0x0);
} else if (PCI(si)) {
sbpciregs_t *pciregs = (sbpciregs_t *)sb_setcore(sbh, SB_PCI, 0);
/* do the buffer registers update */
W_REG(si->osh, &pciregs->bcastaddr, SB_COMMIT);
W_REG(si->osh, &pciregs->bcastdata, 0x0);
} else
ASSERT(0);
/* restore core index */
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
void
sb_core_reset(sb_t *sbh, uint32 bits, uint32 resetbits)
{
sb_info_t *si;
sbconfig_t *sb;
volatile uint32 dummy;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
/*
* Must do the disable sequence first to work for arbitrary current core state.
*/
sb_core_disable(sbh, (bits | resetbits));
/*
* Now do the initialization sequence.
*/
/* set reset while enabling the clock and forcing them on throughout the core */
W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | SBTML_RESET | bits | resetbits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_SERR) {
W_SBREG(si, &sb->sbtmstatehigh, 0);
}
if ((dummy = R_SBREG(si, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
AND_SBREG(si, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
}
/* clear reset and allow it to propagate throughout the core */
W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | bits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
/* leave clock enabled */
W_SBREG(si, &sb->sbtmstatelow, (SBTML_CLK | bits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
}
void
sb_core_tofixup(sb_t *sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
if ((BUSTYPE(si->sb.bustype) != PCI_BUS) || PCIE(si) ||
(PCI(si) && (si->sb.buscorerev >= 5)))
return;
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
if (BUSTYPE(si->sb.bustype) == SB_BUS) {
SET_SBREG(si, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x5 << SBIMCL_RTO_SHIFT) | 0x3);
} else {
if (sb_coreid(sbh) == SB_PCI) {
SET_SBREG(si, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
} else {
SET_SBREG(si, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0);
}
}
sb_commit(sbh);
}
/*
* Set the initiator timeout for the "master core".
* The master core is defined to be the core in control
* of the chip and so it issues accesses to non-memory
* locations (Because of dma *any* core can access memeory).
*
* The routine uses the bus to decide who is the master:
* SB_BUS => mips
* JTAG_BUS => chipc
* PCI_BUS => pci or pcie
* PCMCIA_BUS => pcmcia
* SDIO_BUS => pcmcia
*
* This routine exists so callers can disable initiator
* timeouts so accesses to very slow devices like otp
* won't cause an abort. The routine allows arbitrary
* settings of the service and request timeouts, though.
*
* Returns the timeout state before changing it or -1
* on error.
*/
#define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK)
uint32
sb_set_initiator_to(sb_t *sbh, uint32 to)
{
sb_info_t *si;
uint origidx, idx;
uint intr_val = 0;
uint32 tmp, ret = 0xffffffff;
sbconfig_t *sb;
si = SB_INFO(sbh);
if ((to & ~TO_MASK) != 0)
return ret;
/* Figure out the master core */
idx = BADIDX;
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
idx = si->sb.buscoreidx;
break;
case JTAG_BUS:
idx = SB_CC_IDX;
break;
case PCMCIA_BUS:
case SDIO_BUS:
idx = sb_findcoreidx(si, SB_PCMCIA, 0);
break;
case SB_BUS:
if ((idx = sb_findcoreidx(si, SB_MIPS33, 0)) == BADIDX)
idx = sb_findcoreidx(si, SB_MIPS, 0);
break;
default:
ASSERT(0);
}
if (idx == BADIDX)
return ret;
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
sb = REGS2SB(sb_setcoreidx(sbh, idx));
tmp = R_SBREG(si, &sb->sbimconfiglow);
ret = tmp & TO_MASK;
W_SBREG(si, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);
sb_commit(sbh);
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return ret;
}
void
sb_core_disable(sb_t *sbh, uint32 bits)
{
sb_info_t *si;
volatile uint32 dummy;
uint32 rej;
sbconfig_t *sb;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
/* if core is already in reset, just return */
if (R_SBREG(si, &sb->sbtmstatelow) & SBTML_RESET)
return;
/* reject value changed between sonics 2.2 and 2.3 */
if (si->sb.sonicsrev == SONICS_2_2)
rej = (1 << SBTML_REJ_SHIFT);
else
rej = (2 << SBTML_REJ_SHIFT);
/* if clocks are not enabled, put into reset and return */
if ((R_SBREG(si, &sb->sbtmstatelow) & SBTML_CLK) == 0)
goto disable;
/* set target reject and spin until busy is clear (preserve core-specific bits) */
OR_SBREG(si, &sb->sbtmstatelow, rej);
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
SPINWAIT((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY)
SB_ERROR(("%s: target state still busy\n", __FUNCTION__));
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) {
OR_SBREG(si, &sb->sbimstate, SBIM_RJ);
dummy = R_SBREG(si, &sb->sbimstate);
OSL_DELAY(1);
SPINWAIT((R_SBREG(si, &sb->sbimstate) & SBIM_BY), 100000);
}
/* set reset and reject while enabling the clocks */
W_SBREG(si, &sb->sbtmstatelow, (bits | SBTML_FGC | SBTML_CLK | rej | SBTML_RESET));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(10);
/* don't forget to clear the initiator reject bit */
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT)
AND_SBREG(si, &sb->sbimstate, ~SBIM_RJ);
disable:
/* leave reset and reject asserted */
W_SBREG(si, &sb->sbtmstatelow, (bits | rej | SBTML_RESET));
OSL_DELAY(1);
}
/* set chip watchdog reset timer to fire in 'ticks' backplane cycles */
void
sb_watchdog(sb_t *sbh, uint ticks)
{
sb_info_t *si = SB_INFO(sbh);
/* make sure we come up in fast clock mode */
sb_clkctl_clk(sbh, CLK_FAST);
/* instant NMI */
switch (si->gpioid) {
case SB_CC:
#ifdef __mips__
if (sb_chip(sbh) == BCM4785_CHIP_ID && ticks <= 1)
MTC0(C0_BROADCOM, 4, (1 << 22));
#endif /* __mips__ */
sb_corereg(si, 0, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
#ifdef __mips__
if (sb_chip(sbh) == BCM4785_CHIP_ID && ticks <= 1) {
__asm__ __volatile__ (
".set\tmips3\n\t"
"sync\n\t"
"wait\n\t"
".set\tmips0"
);
while (1);
}
#endif /* __mips__ */
break;
case SB_EXTIF:
sb_corereg(si, si->gpioidx, OFFSETOF(extifregs_t, watchdog), ~0, ticks);
break;
}
}
/* initialize the pcmcia core */
void
sb_pcmcia_init(sb_t *sbh)
{
sb_info_t *si;
uint8 cor = 0;
si = SB_INFO(sbh);
/* enable d11 mac interrupts */
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
cor |= COR_IRQEN | COR_FUNEN;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
}
/*
* Configure the pci core for pci client (NIC) action
* coremask is the bitvec of cores by index to be enabled.
*/
void
BCMINITFN(sb_pci_setup)(sb_t *sbh, uint coremask)
{
sb_info_t *si;
sbconfig_t *sb;
sbpciregs_t *pciregs;
uint32 sbflag;
uint32 w;
uint idx;
int reg_val;
si = SB_INFO(sbh);
/* if not pci bus, we're done */
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
return;
ASSERT(PCI(si) || PCIE(si));
ASSERT(si->sb.buscoreidx != BADIDX);
/* get current core index */
idx = si->curidx;
/* we interrupt on this backplane flag number */
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
sbflag = R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
/* switch over to pci core */
pciregs = (sbpciregs_t*) sb_setcoreidx(sbh, si->sb.buscoreidx);
sb = REGS2SB(pciregs);
/*
* Enable sb->pci interrupts. Assume
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
*/
if (PCIE(si) || (PCI(si) && ((si->sb.buscorerev) >= 6))) {
/* pci config write to set this core bit in PCIIntMask */
w = OSL_PCI_READ_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32));
w |= (coremask << PCI_SBIM_SHIFT);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32), w);
} else {
/* set sbintvec bit for our flag number */
OR_SBREG(si, &sb->sbintvec, (1 << sbflag));
}
if (PCI(si)) {
OR_REG(si->osh, &pciregs->sbtopci2, (SBTOPCI_PREF|SBTOPCI_BURST));
if (si->sb.buscorerev >= 11)
OR_REG(si->osh, &pciregs->sbtopci2, SBTOPCI_RC_READMULTI);
if (si->sb.buscorerev < 5) {
SET_SBREG(si, &sb->sbimconfiglow, SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
sb_commit(sbh);
}
}
#ifdef PCIE_SUPPOER
/* PCIE workarounds */
if (PCIE(si)) {
if ((si->sb.buscorerev == 0) || (si->sb.buscorerev == 1)) {
reg_val = sb_pcie_readreg((void *)sbh, (void *)PCIE_PCIEREGS,
PCIE_TLP_WORKAROUNDSREG);
reg_val |= 0x8;
sb_pcie_writereg((void *)sbh, (void *)PCIE_PCIEREGS,
PCIE_TLP_WORKAROUNDSREG, reg_val);
}
if (si->sb.buscorerev == 1) {
reg_val = sb_pcie_readreg((void *)sbh, (void *)PCIE_PCIEREGS,
PCIE_DLLP_LCREG);
reg_val |= (0x40);
sb_pcie_writereg(sbh, (void *)PCIE_PCIEREGS, PCIE_DLLP_LCREG, reg_val);
}
if (si->sb.buscorerev == 0)
sb_war30841(si);
}
#endif
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
}
uint32
sb_base(uint32 admatch)
{
uint32 base;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
base = 0;
if (type == 0) {
base = admatch & SBAM_BASE0_MASK;
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE1_MASK;
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE2_MASK;
}
return (base);
}
uint32
sb_size(uint32 admatch)
{
uint32 size;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
size = 0;
if (type == 0) {
size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1);
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1);
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1);
}
return (size);
}
/* return the core-type instantiation # of the current core */
uint
sb_coreunit(sb_t *sbh)
{
sb_info_t *si;
uint idx;
uint coreid;
uint coreunit;
uint i;
si = SB_INFO(sbh);
coreunit = 0;
idx = si->curidx;
ASSERT(GOODREGS(si->curmap));
coreid = sb_coreid(sbh);
/* count the cores of our type */
for (i = 0; i < idx; i++)
if (si->coreid[i] == coreid)
coreunit++;
return (coreunit);
}
static INLINE uint32
factor6(uint32 x)
{
switch (x) {
case CC_F6_2: return 2;
case CC_F6_3: return 3;
case CC_F6_4: return 4;
case CC_F6_5: return 5;
case CC_F6_6: return 6;
case CC_F6_7: return 7;
default: return 0;
}
}
/* calculate the speed the SB would run at given a set of clockcontrol values */
uint32
sb_clock_rate(uint32 pll_type, uint32 n, uint32 m)
{
uint32 n1, n2, clock, m1, m2, m3, mc;
n1 = n & CN_N1_MASK;
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
if (pll_type == PLL_TYPE6) {
if (m & CC_T6_MMASK)
return CC_T6_M1;
else
return CC_T6_M0;
} else if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE7)) {
n1 = factor6(n1);
n2 += CC_F5_BIAS;
} else if (pll_type == PLL_TYPE2) {
n1 += CC_T2_BIAS;
n2 += CC_T2_BIAS;
ASSERT((n1 >= 2) && (n1 <= 7));
ASSERT((n2 >= 5) && (n2 <= 23));
} else if (pll_type == PLL_TYPE5) {
return (100000000);
} else
ASSERT(0);
/* PLL types 3 and 7 use BASE2 (25Mhz) */
if ((pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE7)) {
clock = CC_CLOCK_BASE2 * n1 * n2;
} else
clock = CC_CLOCK_BASE1 * n1 * n2;
if (clock == 0)
return 0;
m1 = m & CC_M1_MASK;
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE7)) {
m1 = factor6(m1);
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
m2 += CC_F5_BIAS;
else
m2 = factor6(m2);
m3 = factor6(m3);
switch (mc) {
case CC_MC_BYPASS: return (clock);
case CC_MC_M1: return (clock / m1);
case CC_MC_M1M2: return (clock / (m1 * m2));
case CC_MC_M1M2M3: return (clock / (m1 * m2 * m3));
case CC_MC_M1M3: return (clock / (m1 * m3));
default: return (0);
}
} else {
ASSERT(pll_type == PLL_TYPE2);
m1 += CC_T2_BIAS;
m2 += CC_T2M2_BIAS;
m3 += CC_T2_BIAS;
ASSERT((m1 >= 2) && (m1 <= 7));
ASSERT((m2 >= 3) && (m2 <= 10));
ASSERT((m3 >= 2) && (m3 <= 7));
if ((mc & CC_T2MC_M1BYP) == 0)
clock /= m1;
if ((mc & CC_T2MC_M2BYP) == 0)
clock /= m2;
if ((mc & CC_T2MC_M3BYP) == 0)
clock /= m3;
return (clock);
}
}
/* returns the current speed the SB is running at */
uint32
sb_clock(sb_t *sbh)
{
sb_info_t *si;
extifregs_t *eir;
chipcregs_t *cc;
uint32 n, m;
uint idx;
uint32 pll_type, rate;
uint intr_val = 0;
si = SB_INFO(sbh);
idx = si->curidx;
pll_type = PLL_TYPE1;
INTR_OFF(si, intr_val);
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
n = R_REG(si->osh, &eir->clockcontrol_n);
m = R_REG(si->osh, &eir->clockcontrol_sb);
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
pll_type = R_REG(si->osh, &cc->capabilities) & CAP_PLL_MASK;
if (pll_type == PLL_NONE) {
INTR_RESTORE(si, intr_val);
return 80000000;
}
n = R_REG(si->osh, &cc->clockcontrol_n);
if (pll_type == PLL_TYPE6)
m = R_REG(si->osh, &cc->clockcontrol_m3);
else if ((pll_type == PLL_TYPE3) && !(BCMINIT(sb_chip)(sbh) == 0x5365))
m = R_REG(si->osh, &cc->clockcontrol_m2);
else
m = R_REG(si->osh, &cc->clockcontrol_sb);
} else {
INTR_RESTORE(si, intr_val);
return 0;
}
/* calculate rate */
if (BCMINIT(sb_chip)(sbh) == 0x5365)
rate = 100000000;
else {
rate = sb_clock_rate(pll_type, n, m);
if (pll_type == PLL_TYPE3)
rate = rate / 2;
}
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
INTR_RESTORE(si, intr_val);
return rate;
}
/* change logical "focus" to the gpio core for optimized access */
void*
sb_gpiosetcore(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (sb_setcoreidx(sbh, si->gpioidx));
}
/* mask&set gpiocontrol bits */
uint32
sb_gpiocontrol(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpiocontrol);
break;
case SB_EXTIF:
return (0);
}
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio output enable bits */
uint32
sb_gpioouten(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioouten);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioouten);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpio[0].outen);
break;
}
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio output bits */
uint32
sb_gpioout(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioout);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioout);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpio[0].out);
break;
}
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
}
/* reserve one gpio */
uint32
sb_gpioreserve(sb_t *sbh, uint32 gpio_bitmask, uint8 priority)
{
sb_info_t *si;
si = SB_INFO(sbh);
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* only cores on SB_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
return -1;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
return -1;
}
/* already reserved */
if (sb_gpioreservation & gpio_bitmask)
return -1;
/* set reservation */
sb_gpioreservation |= gpio_bitmask;
return sb_gpioreservation;
}
/* release one gpio */
/*
* releasing the gpio doesn't change the current value on the GPIO last write value
* persists till some one overwrites it
*/
uint32
sb_gpiorelease(sb_t *sbh, uint32 gpio_bitmask, uint8 priority)
{
sb_info_t *si;
si = SB_INFO(sbh);
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* only cores on SB_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
return -1;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
return -1;
}
/* already released */
if (!(sb_gpioreservation & gpio_bitmask))
return -1;
/* clear reservation */
sb_gpioreservation &= ~gpio_bitmask;
return sb_gpioreservation;
}
/* return the current gpioin register value */
uint32
sb_gpioin(sb_t *sbh)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioin);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioin);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpioin);
break;
}
return (sb_corereg(si, si->gpioidx, regoff, 0, 0));
}
/* mask&set gpio interrupt polarity bits */
uint32
sb_gpiointpolarity(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
break;
case SB_PCI:
/* pci gpio implementation does not support interrupt polarity */
ASSERT(0);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpiointpolarity);
break;
}
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio interrupt mask bits */
uint32
sb_gpiointmask(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiointmask);
break;
case SB_PCI:
/* pci gpio implementation does not support interrupt mask */
ASSERT(0);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpiointmask);
break;
}
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
}
/* assign the gpio to an led */
uint32
sb_gpioled(sb_t *sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->sb.ccrev < 16)
return -1;
/* gpio led powersave reg */
return (sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
}
/* mask & set gpio timer val */
uint32
sb_gpiotimerval(sb_t *sbh, uint32 mask, uint32 gpiotimerval)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->sb.ccrev < 16)
return -1;
return (sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
}
/* return the slow clock source - LPO, XTAL, or PCI */
static uint
sb_slowclk_src(sb_info_t *si)
{
chipcregs_t *cc;
ASSERT(sb_coreid(&si->sb) == SB_CC);
if (si->sb.ccrev < 6) {
if ((BUSTYPE(si->sb.bustype) == PCI_BUS) &&
(OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32)) &
PCI_CFG_GPIO_SCS))
return (SCC_SS_PCI);
else
return (SCC_SS_XTAL);
} else if (si->sb.ccrev < 10) {
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, si->curidx);
return (R_REG(si->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
} else /* Insta-clock */
return (SCC_SS_XTAL);
}
/* return the ILP (slowclock) min or max frequency */
static uint
sb_slowclk_freq(sb_info_t *si, bool max)
{
chipcregs_t *cc;
uint32 slowclk;
uint div;
ASSERT(sb_coreid(&si->sb) == SB_CC);
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, si->curidx);
/* shouldn't be here unless we've established the chip has dynamic clk control */
ASSERT(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL);
slowclk = sb_slowclk_src(si);
if (si->sb.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return (max? (PCIMAXFREQ/64) : (PCIMINFREQ/64));
else
return (max? (XTALMAXFREQ/32) : (XTALMINFREQ/32));
} else if (si->sb.ccrev < 10) {
div = 4 * (((R_REG(si->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1);
if (slowclk == SCC_SS_LPO)
return (max? LPOMAXFREQ : LPOMINFREQ);
else if (slowclk == SCC_SS_XTAL)
return (max? (XTALMAXFREQ/div) : (XTALMINFREQ/div));
else if (slowclk == SCC_SS_PCI)
return (max? (PCIMAXFREQ/div) : (PCIMINFREQ/div));
else
ASSERT(0);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(si->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return (max ? XTALMAXFREQ : (XTALMINFREQ/div));
}
return (0);
}
static void
BCMINITFN(sb_clkctl_setdelay)(sb_info_t *si, void *chipcregs)
{
chipcregs_t * cc;
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
* since the xtal will also be powered down by dynamic clk control logic.
*/
slowclk = sb_slowclk_src(si);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq = sb_slowclk_freq(si, (si->sb.ccrev >= 10) ? FALSE : TRUE);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
cc = (chipcregs_t *)chipcregs;
W_REG(si->osh, &cc->pll_on_delay, pll_on_delay);
W_REG(si->osh, &cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void
BCMINITFN(sb_clkctl_init)(sb_t *sbh)
{
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
si = SB_INFO(sbh);
origidx = si->curidx;
if ((cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0)) == NULL)
return;
if ((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev < 2))
W_REG(si->osh, &cc->chipcontrol,
(si->sb.chiprev == 0) ? CHIPCTRL_4321A0_DEFAULT : CHIPCTRL_4321A1_DEFAULT);
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
goto done;
/* set all Instaclk chip ILP to 1 MHz */
else if (si->sb.ccrev >= 10)
SET_REG(si->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
sb_clkctl_setdelay(si, (void *)cc);
done:
sb_setcoreidx(sbh, origidx);
}
/* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */
uint16
sb_clkctl_fast_pwrup_delay(sb_t *sbh)
{
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
uint slowminfreq;
uint16 fpdelay;
uint intr_val = 0;
si = SB_INFO(sbh);
fpdelay = 0;
origidx = si->curidx;
INTR_OFF(si, intr_val);
if ((cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0)) == NULL)
goto done;
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
goto done;
slowminfreq = sb_slowclk_freq(si, FALSE);
fpdelay = (((R_REG(si->osh, &cc->pll_on_delay) + 2) * 1000000) +
(slowminfreq - 1)) / slowminfreq;
done:
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return (fpdelay);
}
/* turn primary xtal and/or pll off/on */
int
sb_clkctl_xtal(sb_t *sbh, uint what, bool on)
{
sb_info_t *si;
uint32 in, out, outen;
si = SB_INFO(sbh);
switch (BUSTYPE(si->sb.bustype)) {
case PCMCIA_BUS:
return (0);
case PCI_BUS:
/* pcie core doesn't have any mapping to control the xtal pu */
if (PCIE(si))
return -1;
in = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_IN, sizeof(uint32));
out = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32));
outen = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN, sizeof(uint32));
/*
* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (on && (in & PCI_CFG_GPIO_XTAL))
return (0);
if (what & XTAL)
outen |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
outen |= PCI_CFG_GPIO_PLL;
if (on) {
/* turn primary xtal on */
if (what & XTAL) {
out |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
sizeof(uint32), outen);
OSL_DELAY(XTAL_ON_DELAY);
}
/* turn pll on */
if (what & PLL) {
out &= ~PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_DELAY(2000);
}
} else {
if (what & XTAL)
out &= ~PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN, sizeof(uint32),
outen);
}
default:
return (-1);
}
return (0);
}
/* set dynamic clk control mode (forceslow, forcefast, dynamic) */
/* returns true if we are forcing fast clock */
bool
sb_clkctl_clk(sb_t *sbh, uint mode)
{
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
uint32 scc;
uint intr_val = 0;
si = SB_INFO(sbh);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (si->sb.ccrev < 6)
return (FALSE);
/* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */
ASSERT(si->sb.ccrev != 10);
INTR_OFF(si, intr_val);
origidx = si->curidx;
if (sb_setcore(sbh, SB_MIPS33, 0) && (sb_corerev(&si->sb) <= 7) &&
(BUSTYPE(si->sb.bustype) == SB_BUS) && (si->sb.ccrev >= 10))
goto done;
/* PR32414WAR "Force HT clock on" all the time, no dynamic clk ctl */
if ((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev <= 1))
goto done;
cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0);
ASSERT(cc != NULL);
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
goto done;
switch (mode) {
case CLK_FAST: /* force fast (pll) clock */
if (si->sb.ccrev < 10) {
/* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */
sb_clkctl_xtal(&si->sb, XTAL, ON);
SET_REG(si->osh, &cc->slow_clk_ctl, (SCC_XC | SCC_FS | SCC_IP), SCC_IP);
} else
OR_REG(si->osh, &cc->system_clk_ctl, SYCC_HR);
/* wait for the PLL */
OSL_DELAY(PLL_DELAY);
break;
case CLK_DYNAMIC: /* enable dynamic clock control */
if (si->sb.ccrev < 10) {
scc = R_REG(si->osh, &cc->slow_clk_ctl);
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
scc |= SCC_XC;
W_REG(si->osh, &cc->slow_clk_ctl, scc);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (scc & SCC_XC)
sb_clkctl_xtal(&si->sb, XTAL, OFF);
} else {
/* Instaclock */
AND_REG(si->osh, &cc->system_clk_ctl, ~SYCC_HR);
}
break;
default:
ASSERT(0);
}
done:
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return (mode == CLK_FAST);
}
/* register driver interrupt disabling and restoring callback functions */
void
sb_register_intr_callback(sb_t *sbh, void *intrsoff_fn, void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg)
{
sb_info_t *si;
si = SB_INFO(sbh);
si->intr_arg = intr_arg;
si->intrsoff_fn = (sb_intrsoff_t)intrsoff_fn;
si->intrsrestore_fn = (sb_intrsrestore_t)intrsrestore_fn;
si->intrsenabled_fn = (sb_intrsenabled_t)intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
si->dev_coreid = si->coreid[si->curidx];
}
int
sb_corepciid(sb_t *sbh, uint func, uint16 *pcivendor, uint16 *pcidevice,
uint8 *pciclass, uint8 *pcisubclass, uint8 *pciprogif,
uint8 *pciheader)
{
uint16 vendor = 0xffff, device = 0xffff;
uint core, unit;
uint chip, chippkg;
uint nfunc;
char varname[SB_DEVPATH_BUFSZ + 8];
uint8 class, subclass, progif;
char devpath[SB_DEVPATH_BUFSZ];
uint8 header;
core = sb_coreid(sbh);
unit = sb_coreunit(sbh);
chip = sb_chip(sbh);
chippkg = sb_chippkg(sbh);
progif = 0;
header = PCI_HEADER_NORMAL;
/* Verify whether the function exists for the core */
nfunc = (core == SB_USB20H) ? 2 : 1;
if (func >= nfunc)
return BCME_ERROR;
/* Known vendor translations */
switch (sb_corevendor(sbh)) {
case SB_VEND_BCM:
vendor = VENDOR_BROADCOM;
break;
default:
return BCME_ERROR;
}
/* Determine class based on known core codes */
switch (core) {
case SB_ILINE20:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_ILINE_ID;
break;
case SB_ENET:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_ENET_ID;
break;
case SB_GIGETH:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_GIGETH_ID;
break;
case SB_SDRAM:
case SB_MEMC:
class = PCI_CLASS_MEMORY;
subclass = PCI_MEMORY_RAM;
device = (uint16)core;
break;
case SB_PCI:
case SB_PCIE:
class = PCI_CLASS_BRIDGE;
subclass = PCI_BRIDGE_PCI;
device = (uint16)core;
header = PCI_HEADER_BRIDGE;
break;
case SB_MIPS:
case SB_MIPS33:
class = PCI_CLASS_CPU;
subclass = PCI_CPU_MIPS;
device = (uint16)core;
break;
case SB_CODEC:
class = PCI_CLASS_COMM;
subclass = PCI_COMM_MODEM;
device = BCM47XX_V90_ID;
break;
case SB_USB:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = 0x10; /* OHCI */
device = BCM47XX_USB_ID;
break;
case SB_USB11H:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = 0x10; /* OHCI */
device = BCM47XX_USBH_ID;
break;
case SB_USB20H:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = func == 0 ? 0x10 : 0x20; /* OHCI/EHCI */
device = BCM47XX_USB20H_ID;
header = 0x80; /* multifunction */
break;
case SB_USB11D:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
device = BCM47XX_USBD_ID;
break;
case SB_USB20D:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
device = BCM47XX_USB20D_ID;
break;
case SB_IPSEC:
class = PCI_CLASS_CRYPT;
subclass = PCI_CRYPT_NETWORK;
device = BCM47XX_IPSEC_ID;
break;
case SB_ROBO:
class = PCI_CLASS_NET;
subclass = PCI_NET_OTHER;
device = BCM47XX_ROBO_ID;
break;
case SB_EXTIF:
case SB_CC:
class = PCI_CLASS_MEMORY;
subclass = PCI_MEMORY_FLASH;
device = (uint16)core;
break;
case SB_D11:
class = PCI_CLASS_NET;
subclass = PCI_NET_OTHER;
/* Let nvram variable override core ID */
sb_devpath(sbh, devpath, sizeof(devpath));
sprintf(varname, "%sdevid", devpath);
if ((device = (uint16)getintvar(NULL, varname)))
break;
/*
* no longer support wl%did, but keep the code
* here for backward compatibility.
*/
sprintf(varname, "wl%did", unit);
if ((device = (uint16)getintvar(NULL, varname)))
break;
/* Chip specific conversion */
if (chip == BCM4712_CHIP_ID) {
if (chippkg == BCM4712SMALL_PKG_ID)
device = BCM4306_D11G_ID;
else
device = BCM4306_D11DUAL_ID;
break;
}
/* ignore it */
device = 0xffff;
break;
case SB_SATAXOR:
class = PCI_CLASS_XOR;
subclass = PCI_XOR_QDMA;
device = BCM47XX_SATAXOR_ID;
break;
case SB_ATA100:
class = PCI_CLASS_DASDI;
subclass = PCI_DASDI_IDE;
device = BCM47XX_ATA100_ID;
break;
default:
class = subclass = progif = 0xff;
device = (uint16)core;
break;
}
*pcivendor = vendor;
*pcidevice = device;
*pciclass = class;
*pcisubclass = subclass;
*pciprogif = progif;
*pciheader = header;
return 0;
}
/* use the mdio interface to write to mdio slaves */
static int
sb_pcie_mdiowrite(sb_info_t *si, uint physmedia, uint regaddr, uint val)
{
uint mdiodata;
uint i = 0;
sbpcieregs_t *pcieregs;
pcieregs = (sbpcieregs_t*) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
ASSERT(pcieregs);
/* enable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
mdiodata = MDIODATA_START | MDIODATA_WRITE |
(physmedia << MDIODATA_DEVADDR_SHF) |
(regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA | val;
W_REG(si->osh, (&pcieregs->mdiodata), mdiodata);
PR28829_DELAY();
/* retry till the transaction is complete */
while (i < 10) {
if (R_REG(si->osh, &(pcieregs->mdiocontrol)) & MDIOCTL_ACCESS_DONE) {
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
return 0;
}
OSL_DELAY(1000);
i++;
}
SB_ERROR(("sb_pcie_mdiowrite: timed out\n"));
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
ASSERT(0);
return 1;
}
/* indirect way to read pcie config regs */
uint
sb_pcie_readreg(void *sb, void* arg1, uint offset)
{
sb_info_t *si;
sb_t *sbh;
uint retval = 0xFFFFFFFF;
sbpcieregs_t *pcieregs;
uint addrtype;
sbh = (sb_t *)sb;
si = SB_INFO(sbh);
ASSERT(PCIE(si));
pcieregs = (sbpcieregs_t *)sb_setcore(sbh, SB_PCIE, 0);
ASSERT(pcieregs);
addrtype = (uint)((uintptr)arg1);
switch (addrtype) {
case PCIE_CONFIGREGS:
W_REG(si->osh, (&pcieregs->configaddr), offset);
retval = R_REG(si->osh, &(pcieregs->configdata));
break;
case PCIE_PCIEREGS:
W_REG(si->osh, &(pcieregs->pcieaddr), offset);
retval = R_REG(si->osh, &(pcieregs->pciedata));
break;
default:
ASSERT(0);
break;
}
return retval;
}
/* indirect way to write pcie config/mdio/pciecore regs */
uint
sb_pcie_writereg(sb_t *sbh, void *arg1, uint offset, uint val)
{
sb_info_t *si;
sbpcieregs_t *pcieregs;
uint addrtype;
si = SB_INFO(sbh);
ASSERT(PCIE(si));
pcieregs = (sbpcieregs_t *)sb_setcore(sbh, SB_PCIE, 0);
ASSERT(pcieregs);
addrtype = (uint)((uintptr)arg1);
switch (addrtype) {
case PCIE_CONFIGREGS:
W_REG(si->osh, (&pcieregs->configaddr), offset);
W_REG(si->osh, (&pcieregs->configdata), val);
break;
case PCIE_PCIEREGS:
W_REG(si->osh, (&pcieregs->pcieaddr), offset);
W_REG(si->osh, (&pcieregs->pciedata), val);
break;
default:
ASSERT(0);
break;
}
return 0;
}
/* Build device path. Support SB, PCI, and JTAG for now. */
int
sb_devpath(sb_t *sbh, char *path, int size)
{
ASSERT(path);
ASSERT(size >= SB_DEVPATH_BUFSZ);
switch (BUSTYPE((SB_INFO(sbh))->sb.bustype)) {
case SB_BUS:
case JTAG_BUS:
sprintf(path, "sb/%u/", sb_coreidx(sbh));
break;
case PCI_BUS:
ASSERT((SB_INFO(sbh))->osh);
sprintf(path, "pci/%u/%u/", OSL_PCI_BUS((SB_INFO(sbh))->osh),
OSL_PCI_SLOT((SB_INFO(sbh))->osh));
break;
case PCMCIA_BUS:
SB_ERROR(("sb_devpath: OSL_PCMCIA_BUS() not implemented, bus 1 assumed\n"));
SB_ERROR(("sb_devpath: OSL_PCMCIA_SLOT() not implemented, slot 1 assumed\n"));
sprintf(path, "pc/%u/%u/", 1, 1);
break;
case SDIO_BUS:
SB_ERROR(("sb_devpath: device 0 assumed\n"));
sprintf(path, "sd/%u/", sb_coreidx(sbh));
break;
default:
ASSERT(0);
break;
}
return 0;
}
/*
* Fixup SROMless PCI device's configuration.
* The current core may be changed upon return.
*/
static int
sb_pci_fixcfg(sb_info_t *si)
{
uint origidx, pciidx;
sbpciregs_t *pciregs;
sbpcieregs_t *pcieregs;
uint16 val16, *reg16;
char name[SB_DEVPATH_BUFSZ+16], *value;
char devpath[SB_DEVPATH_BUFSZ];
ASSERT(BUSTYPE(si->sb.bustype) == PCI_BUS);
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
/* save the current index */
origidx = sb_coreidx(&si->sb);
/* check 'pi' is correct and fix it if not */
if (si->sb.buscoretype == SB_PCIE) {
pcieregs = (sbpcieregs_t *)sb_setcore(&si->sb, SB_PCIE, 0);
ASSERT(pcieregs);
reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
} else if (si->sb.buscoretype == SB_PCI) {
pciregs = (sbpciregs_t *)sb_setcore(&si->sb, SB_PCI, 0);
ASSERT(pciregs);
reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
} else {
ASSERT(0);
return -1;
}
pciidx = sb_coreidx(&si->sb);
val16 = R_REG(si->osh, reg16);
if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16)pciidx) {
val16 = (uint16)(pciidx << SRSH_PI_SHIFT) | (val16 & ~SRSH_PI_MASK);
W_REG(si->osh, reg16, val16);
}
/* restore the original index */
sb_setcoreidx(&si->sb, origidx);
/*
* Fixup bar0window in PCI config space to make the core indicated
* by the nvram variable the current core.
* !Do it last, it may change the current core!
*/
if (sb_devpath(&si->sb, devpath, sizeof(devpath)))
return -1;
sprintf(name, "%sb0w", devpath);
if ((value = getvar(NULL, name))) {
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32),
bcm_strtoul(value, NULL, 16));
/* update curidx since the current core is changed */
si->curidx = _sb_coreidx(si);
if (si->curidx == BADIDX) {
SB_ERROR(("sb_pci_fixcfg: bad core index\n"));
return -1;
}
}
return 0;
}
static uint
sb_chipc_capability(sb_t *sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
/* Make sure that there is ChipCommon core present */
if (si->coreid[SB_CC_IDX] == SB_CC)
return (sb_corereg(si, SB_CC_IDX, OFFSETOF(chipcregs_t, capabilities),
0, 0));
return 0;
}
/* Return ADDR64 capability of the backplane */
bool
sb_backplane64(sb_t *sbh)
{
return ((sb_chipc_capability(sbh) & CAP_BKPLN64) != 0);
}
void
sb_btcgpiowar(sb_t *sbh)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
chipcregs_t *cc;
si = SB_INFO(sbh);
/* Make sure that there is ChipCommon core present &&
* UART_TX is strapped to 1
*/
if (!(sb_chipc_capability(sbh) & CAP_UARTGPIO))
return;
/* sb_corereg cannot be used as we have to guarantee 8-bit read/writes */
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
cc = (chipcregs_t *)sb_setcore(sbh, SB_CC, 0);
if (cc == NULL)
goto end;
W_REG(si->osh, &cc->uart0mcr, R_REG(si->osh, &cc->uart0mcr) | 0x04);
end:
/* restore the original index */
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
/* check if the device is removed */
bool
sb_deviceremoved(sb_t *sbh)
{
uint32 w;
sb_info_t *si;
si = SB_INFO(sbh);
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
ASSERT(si->osh);
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_VID, sizeof(uint32));
if ((w & 0xFFFF) != VENDOR_BROADCOM)
return TRUE;
else
return FALSE;
default:
return FALSE;
}
return FALSE;
}
/* Return the RAM size of the SOCRAM core */
uint32
sb_socram_size(sb_t *sbh)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
uint32 coreinfo;
uint memsize = 0;
si = SB_INFO(sbh);
ASSERT(si);
/* Block ints and save current core */
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
/* Switch to SOCRAM core */
if (!(regs = sb_setcore(sbh, SB_SOCRAM, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = sb_iscoreup(sbh)))
sb_core_reset(sbh, 0, 0);
corerev = sb_corerev(sbh);
coreinfo = R_REG(si->osh, &regs->coreinfo);
/* Calculate size from coreinfo based on rev */
switch (corerev) {
case 0:
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
break;
default: /* rev >= 1 */
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
break;
}
/* Return to previous state and core */
if (!wasup)
sb_core_disable(sbh, 0);
sb_setcoreidx(sbh, origidx);
done:
INTR_RESTORE(si, intr_val);
return memsize;
}