1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-01 12:46:14 +02:00
openwrt-xburst/target/linux/ubicom32/files/sound/ubicom32/ubi32-pcm.c
kaloz 1a29ef8e97 [ubicom32]: move new files out from platform support patch
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-02-22 13:54:47 +00:00

712 lines
20 KiB
C

/*
* sound/ubicom32/ubi32-pcm.c
* Interface to ubicom32 virtual audio peripheral
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/interrupt.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <asm/ip5000.h>
#include <asm/ubi32-pcm.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include "ubi32.h"
struct ubi32_snd_runtime_data {
dma_addr_t dma_buffer; /* Physical address of DMA buffer */
dma_addr_t dma_buffer_end; /* First address beyond end of DMA buffer */
size_t period_size;
dma_addr_t period_ptr; /* Physical address of next period */
unsigned int flags;
};
static void snd_ubi32_vp_int_set(struct snd_pcm *pcm)
{
struct ubi32_snd_priv *ubi32_priv = pcm->private_data;
ubi32_priv->ar->int_req |= (1 << ubi32_priv->irq_idx);
ubicom32_set_interrupt(ubi32_priv->tx_irq);
}
static snd_pcm_uframes_t snd_ubi32_pcm_pointer(struct snd_pcm_substream *substream)
{
struct ubi32_snd_priv *ubi32_priv = snd_pcm_substream_chip(substream);
struct audio_dev_regs *adr = ubi32_priv->adr;
struct snd_pcm_runtime *runtime = substream->runtime;
struct ubi32_snd_runtime_data *ubi32_rd = substream->runtime->private_data;
dma_addr_t read_pos;
snd_pcm_uframes_t frames;
if (!adr->primary_os_buffer_ptr) {
/*
* If primary_os_buffer_ptr is NULL (e.g. right after the HW is started or
* when the HW is stopped), then handle this case separately.
*/
return 0;
}
read_pos = (dma_addr_t)adr->primary_os_buffer_ptr;
frames = bytes_to_frames(runtime, read_pos - ubi32_rd->dma_buffer);
if (frames == runtime->buffer_size) {
frames = 0;
}
return frames;
}
/*
* Audio trigger
*/
static int snd_ubi32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct ubi32_snd_priv *ubi32_priv = substream->pcm->private_data;
struct audio_dev_regs *adr = ubi32_priv->adr;
struct ubi32_snd_runtime_data *ubi32_rd = substream->runtime->private_data;
int ret = 0;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_trigger cmd=%d=", cmd);
#endif
if (adr->command != AUDIO_CMD_NONE) {
snd_printk(KERN_WARNING "Can't send command to audio device at this time\n");
// Set a timer to call this function back later. How to do this?
return 0;
}
/*
* Set interrupt flag to indicate that we interrupted audio device
* to send a command
*/
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "START\n");
#endif
/*
* Ready the DMA transfer
*/
ubi32_rd->period_ptr = ubi32_rd->dma_buffer;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "trigger period_ptr=%lx\n", (unsigned long)ubi32_rd->period_ptr);
#endif
adr->dma_xfer_requests[0].ptr = (void *)ubi32_rd->period_ptr;
adr->dma_xfer_requests[0].ctr = ubi32_rd->period_size;
adr->dma_xfer_requests[0].active = 1;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "xfer_request 0 ptr=0x%x ctr=%u\n", ubi32_rd->period_ptr, ubi32_rd->period_size);
#endif
ubi32_rd->period_ptr += ubi32_rd->period_size;
adr->dma_xfer_requests[1].ptr = (void *)ubi32_rd->period_ptr;
adr->dma_xfer_requests[1].ctr = ubi32_rd->period_size;
adr->dma_xfer_requests[1].active = 1;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "xfer_request 1 ptr=0x%x ctr=%u\n", ubi32_rd->period_ptr, ubi32_rd->period_size);
#endif
/*
* Tell the VP that we want to begin playback by filling in the
* command field and then interrupting the audio VP
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_START;
snd_ubi32_vp_int_set(substream->pcm);
break;
case SNDRV_PCM_TRIGGER_STOP:
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "STOP\n");
#endif
/*
* Tell the VP that we want to stop playback by filling in the
* command field and then interrupting the audio VP
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_STOP;
snd_ubi32_vp_int_set(substream->pcm);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "PAUSE_PUSH\n");
#endif
/*
* Tell the VP that we want to pause playback by filling in the
* command field and then interrupting the audio VP
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_PAUSE;
snd_ubi32_vp_int_set(substream->pcm);
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "PAUSE_RELEASE\n");
#endif
/*
* Tell the VP that we want to resume paused playback by filling
* in the command field and then interrupting the audio VP
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_RESUME;
snd_ubi32_vp_int_set(substream->pcm);
break;
default:
snd_printk(KERN_WARNING "Unhandled trigger\n");
ret = -EINVAL;
break;
}
return ret;
}
/*
* Prepare to transfer an audio stream to the codec
*/
static int snd_ubi32_pcm_prepare(struct snd_pcm_substream *substream)
{
/*
* Configure registers and setup the runtime instance for DMA transfers
*/
struct ubi32_snd_priv *ubi32_priv = substream->pcm->private_data;
struct audio_dev_regs *adr = ubi32_priv->adr;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_prepare: sending STOP command to audio device\n");
#endif
/*
* Make sure the audio device is stopped
*/
/*
* Set interrupt flag to indicate that we interrupted audio device
* to send a command
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_STOP;
snd_ubi32_vp_int_set(substream->pcm);
return 0;
}
/*
* Allocate DMA buffers from preallocated memory.
* Preallocation was done in snd_ubi32_pcm_new()
*/
static int snd_ubi32_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct ubi32_snd_priv *ubi32_priv = substream->pcm->private_data;
struct audio_dev_regs *adr = ubi32_priv->adr;
struct ubi32_snd_runtime_data *ubi32_rd = substream->runtime->private_data;
/*
* Use pre-allocated memory from ubi32_snd_pcm_new() to satisfy
* this memory request.
*/
int ret = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
if (ret < 0) {
return ret;
}
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_hw_params\n");
#endif
if (!(adr->channel_mask & (1 << params_channels(hw_params)))) {
snd_printk(KERN_INFO "snd_ubi32_pcm_hw_params unsupported number of channels %d mask %08x\n", params_channels(hw_params), adr->channel_mask);
return -EINVAL;
}
if (ubi32_priv->set_channels) {
int ret = ubi32_priv->set_channels(ubi32_priv, params_channels(hw_params));
if (ret) {
snd_printk(KERN_WARNING "Unable to set channels to %d, ret=%d\n", params_channels(hw_params), ret);
return ret;
}
}
if (ubi32_priv->set_rate) {
int ret = ubi32_priv->set_rate(ubi32_priv, params_rate(hw_params));
if (ret) {
snd_printk(KERN_WARNING "Unable to set rate to %d, ret=%d\n", params_rate(hw_params), ret);
return ret;
}
}
if (ubi32_priv->pdata->set_rate) {
int ret = ubi32_priv->pdata->set_rate(ubi32_priv->pdata->appdata, params_rate(hw_params));
if (ret) {
snd_printk(KERN_WARNING "Unable to set rate to %d, ret=%d\n", params_rate(hw_params), ret);
return ret;
}
}
if (adr->command != AUDIO_CMD_NONE) {
snd_printk(KERN_WARNING "snd_ubi32_pcm_hw_params: tio busy\n");
return -EAGAIN;
}
if (params_format(hw_params) == SNDRV_PCM_FORMAT_S16_LE) {
adr->flags |= CMD_START_FLAG_LE;
} else {
adr->flags &= ~CMD_START_FLAG_LE;
}
adr->channels = params_channels(hw_params);
adr->sample_rate = params_rate(hw_params);
adr->command = AUDIO_CMD_SETUP;
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
snd_ubi32_vp_int_set(substream->pcm);
/*
* Wait for the command to complete
*/
while (adr->command != AUDIO_CMD_NONE) {
udelay(1);
}
/*
* Put the DMA info into the DMA descriptor that we will
* use to do transfers to our audio VP "hardware"
*/
/*
* Mark both DMA transfers as not ready/inactive
*/
adr->dma_xfer_requests[0].active = 0;
adr->dma_xfer_requests[1].active = 0;
/*
* Put the location of the buffer into the runtime data instance
*/
ubi32_rd->dma_buffer = (dma_addr_t)runtime->dma_area;
ubi32_rd->dma_buffer_end = (dma_addr_t)(runtime->dma_area + runtime->dma_bytes);
/*
* Get the period size
*/
ubi32_rd->period_size = params_period_bytes(hw_params);
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "DMA for ubi32 audio initialized dma_area=0x%x dma_bytes=%d, period_size=%d\n", (unsigned int)runtime->dma_area, (unsigned int)runtime->dma_bytes, ubi32_rd->period_size);
snd_printk(KERN_INFO "Private buffer ubi32_rd: dma_buffer=0x%x dma_buffer_end=0x%x ret=%d\n", ubi32_rd->dma_buffer, ubi32_rd->dma_buffer_end, ret);
#endif
return ret;
}
/*
* This is the reverse of snd_ubi32_pcm_hw_params
*/
static int snd_ubi32_pcm_hw_free(struct snd_pcm_substream *substream)
{
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_hw_free\n");
#endif
return snd_pcm_lib_free_pages(substream);
}
/*
* Audio virtual peripheral capabilities (capture and playback are identical)
*/
static struct snd_pcm_hardware snd_ubi32_pcm_hw =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME),
.buffer_bytes_max = (64*1024),
.period_bytes_min = 64,
.period_bytes_max = 8184,//8184,//8176,
.periods_min = 2,
.periods_max = 255,
.fifo_size = 0, // THIS IS IGNORED BY ALSA
};
/*
* We fill this in later
*/
static struct snd_pcm_hw_constraint_list ubi32_pcm_rates;
/*
* snd_ubi32_pcm_close
*/
static int snd_ubi32_pcm_close(struct snd_pcm_substream *substream)
{
/* Disable codec, stop DMA, free private data structures */
//struct ubi32_snd_priv *ubi32_priv = snd_pcm_substream_chip(substream);
struct ubi32_snd_runtime_data *ubi32_rd = substream->runtime->private_data;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_close\n");
#endif
substream->runtime->private_data = NULL;
kfree(ubi32_rd);
return 0;
}
/*
* snd_ubi32_pcm_open
*/
static int snd_ubi32_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct ubi32_snd_runtime_data *ubi32_rd;
int ret = 0;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "ubi32 pcm open\n");
#endif
/* Associate capabilities with component */
runtime->hw = snd_ubi32_pcm_hw;
/*
* Inform ALSA about constraints of the audio device
*/
ret = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &ubi32_pcm_rates);
if (ret < 0) {
snd_printk(KERN_INFO "invalid rate\n");
goto out;
}
/* Force the buffer size to be an integer multiple of period size */
ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0) {
snd_printk(KERN_INFO "invalid period\n");
goto out;
}
/* Initialize structures/registers */
ubi32_rd = kzalloc(sizeof(struct ubi32_snd_runtime_data), GFP_KERNEL);
if (ubi32_rd == NULL) {
ret = -ENOMEM;
goto out;
}
runtime->private_data = ubi32_rd;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_open returned 0\n");
#endif
return 0;
out:
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "snd_ubi32_pcm_open returned %d\n", ret);
#endif
return ret;
}
static struct snd_pcm_ops snd_ubi32_pcm_ops = {
.open = snd_ubi32_pcm_open, /* Open */
.close = snd_ubi32_pcm_close, /* Close */
.ioctl = snd_pcm_lib_ioctl, /* Generic IOCTL handler */
.hw_params = snd_ubi32_pcm_hw_params, /* Hardware parameters/capabilities */
.hw_free = snd_ubi32_pcm_hw_free, /* Free function for hw_params */
.prepare = snd_ubi32_pcm_prepare,
.trigger = snd_ubi32_pcm_trigger,
.pointer = snd_ubi32_pcm_pointer,
};
/*
* Interrupt handler that gets called when the audio device
* interrupts Linux
*/
static irqreturn_t snd_ubi32_pcm_interrupt(int irq, void *appdata)
{
struct snd_pcm *pcm = (struct snd_pcm *)appdata;
struct ubi32_snd_priv *ubi32_priv = pcm->private_data;
struct audio_dev_regs *adr = ubi32_priv->adr;
struct snd_pcm_substream *substream;
struct ubi32_snd_runtime_data *ubi32_rd;
int dma_to_fill = 0;
/*
* Check to see if the interrupt is for us
*/
if (!(ubi32_priv->ar->int_status & (1 << ubi32_priv->irq_idx))) {
return IRQ_NONE;
}
/*
* Clear the interrupt
*/
ubi32_priv->ar->int_status &= ~(1 << ubi32_priv->irq_idx);
/*
* We only have one stream since we don't mix. Therefore
* we don't need to search through substreams.
*/
if (ubi32_priv->is_capture) {
substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
} else {
substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
}
if (!substream->runtime) {
snd_printk(KERN_WARNING "No runtime data\n");
return IRQ_NONE;
}
ubi32_rd = substream->runtime->private_data;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "Ubi32 ALSA interrupt\n");
#endif
if (ubi32_rd == NULL) {
snd_printk(KERN_WARNING "No private data\n");
return IRQ_NONE;
}
// Check interrupt cause
if (0) {
// Handle the underflow case
} else if ((adr->status & AUDIO_STATUS_PLAY_DMA0_REQUEST) ||
(adr->status & AUDIO_STATUS_PLAY_DMA1_REQUEST)) {
if (adr->status & AUDIO_STATUS_PLAY_DMA0_REQUEST) {
dma_to_fill = 0;
adr->status &= ~AUDIO_STATUS_PLAY_DMA0_REQUEST;
} else if (adr->status & AUDIO_STATUS_PLAY_DMA1_REQUEST) {
dma_to_fill = 1;
adr->status &= ~AUDIO_STATUS_PLAY_DMA1_REQUEST;
}
ubi32_rd->period_ptr += ubi32_rd->period_size;
if (ubi32_rd->period_ptr >= ubi32_rd->dma_buffer_end) {
ubi32_rd->period_ptr = ubi32_rd->dma_buffer;
}
adr->dma_xfer_requests[dma_to_fill].ptr = (void *)ubi32_rd->period_ptr;
adr->dma_xfer_requests[dma_to_fill].ctr = ubi32_rd->period_size;
adr->dma_xfer_requests[dma_to_fill].active = 1;
#ifdef CONFIG_SND_DEBUG
snd_printk(KERN_INFO "xfer_request %d ptr=0x%x ctr=%u\n", dma_to_fill, ubi32_rd->period_ptr, ubi32_rd->period_size);
#endif
adr->int_flags |= AUDIO_INT_FLAG_MORE_SAMPLES;
snd_ubi32_vp_int_set(substream->pcm);
}
// If we are interrupted by the VP, that means we completed
// processing one period of audio. We need to inform the upper
// layers of ALSA of this.
snd_pcm_period_elapsed(substream);
return IRQ_HANDLED;
}
void __devexit snd_ubi32_pcm_remove(struct ubi32_snd_priv *ubi32_priv)
{
struct snd_pcm *pcm = ubi32_priv->pcm;
free_irq(ubi32_priv->rx_irq, pcm);
}
#if SNDRV_PCM_RATE_5512 != 1 << 0 || SNDRV_PCM_RATE_192000 != 1 << 12
#error "Change this table to match pcm.h"
#endif
static unsigned int rates[] __initdata = {5512, 8000, 11025, 16000, 22050,
32000, 44100, 48000, 64000, 88200,
96000, 176400, 192000};
/*
* snd_ubi32_pcm_probe
*/
int __devinit snd_ubi32_pcm_probe(struct ubi32_snd_priv *ubi32_priv, struct platform_device *pdev)
{
struct snd_pcm *pcm;
int ret, err;
int i;
int j;
int nrates;
unsigned int rate_max = 0;
unsigned int rate_min = 0xFFFFFFFF;
unsigned int rate_mask = 0;
struct audio_dev_regs *adr;
struct resource *res_adr;
struct resource *res_irq_tx;
struct resource *res_irq_rx;
struct ubi32pcm_platform_data *pdata;
pdata = pdev->dev.platform_data;
if (!pdata) {
return -ENODEV;
}
/*
* Get our resources, adr is the hardware driver base address
* and the tx and rx irqs are used to communicate with the
* hardware driver.
*/
res_adr = platform_get_resource(pdev, IORESOURCE_MEM, AUDIO_MEM_RESOURCE);
res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, AUDIO_TX_IRQ_RESOURCE);
res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, AUDIO_RX_IRQ_RESOURCE);
if (!res_adr || !res_irq_tx || !res_irq_rx) {
snd_printk(KERN_WARNING "Could not get resources");
return -ENODEV;
}
ubi32_priv->ar = (struct audio_regs *)res_adr->start;
ubi32_priv->tx_irq = res_irq_tx->start;
ubi32_priv->rx_irq = res_irq_rx->start;
ubi32_priv->irq_idx = pdata->inst_num;
ubi32_priv->adr = &(ubi32_priv->ar->adr[pdata->inst_num]);
/*
* Check the version
*/
adr = ubi32_priv->adr;
if (adr->version != AUDIO_DEV_REGS_VERSION) {
snd_printk(KERN_WARNING "This audio_dev_reg is not compatible with this driver\n");
return -ENODEV;
}
/*
* Find out the standard rates, also find max and min rates
*/
for (i = 0; i < ARRAY_SIZE(rates); i++) {
int found = 0;
for (j = 0; j < adr->n_sample_rates; j++) {
if (rates[i] == adr->sample_rates[j]) {
/*
* Check to see if it is supported by the dac
*/
if ((rates[i] >= ubi32_priv->min_sample_rate) &&
(!ubi32_priv->max_sample_rate ||
(ubi32_priv->max_sample_rate && (rates[i] <= ubi32_priv->max_sample_rate)))) {
found = 1;
rate_mask |= (1 << i);
nrates++;
if (rates[i] < rate_min) {
rate_min = rates[i];
}
if (rates[i] > rate_max) {
rate_max = rates[i];
}
break;
}
}
}
if (!found) {
rate_mask |= SNDRV_PCM_RATE_KNOT;
}
}
snd_ubi32_pcm_hw.rates = rate_mask;
snd_ubi32_pcm_hw.rate_min = rate_min;
snd_ubi32_pcm_hw.rate_max = rate_max;
ubi32_pcm_rates.count = adr->n_sample_rates;
ubi32_pcm_rates.list = (unsigned int *)adr->sample_rates;
ubi32_pcm_rates.mask = 0;
for (i = 0; i < 32; i++) {
if (adr->channel_mask & (1 << i)) {
if (!snd_ubi32_pcm_hw.channels_min) {
snd_ubi32_pcm_hw.channels_min = i;
}
snd_ubi32_pcm_hw.channels_max = i;
}
}
snd_printk(KERN_INFO "Ubi32PCM: channels_min:%u channels_max:%u\n",
snd_ubi32_pcm_hw.channels_min,
snd_ubi32_pcm_hw.channels_max);
if (adr->caps & AUDIONODE_CAP_BE) {
snd_ubi32_pcm_hw.formats |= SNDRV_PCM_FMTBIT_S16_BE;
}
if (adr->caps & AUDIONODE_CAP_LE) {
snd_ubi32_pcm_hw.formats |= SNDRV_PCM_FMTBIT_S16_LE;
}
snd_printk(KERN_INFO "Ubi32PCM: rates:%08x min:%u max:%u count:%d fmts:%016llx (%s)\n",
snd_ubi32_pcm_hw.rates,
snd_ubi32_pcm_hw.rate_min,
snd_ubi32_pcm_hw.rate_max,
ubi32_pcm_rates.count,
snd_ubi32_pcm_hw.formats,
ubi32_priv->is_capture ? "capture" : "playback");
if (ubi32_priv->is_capture) {
ret = snd_pcm_new(ubi32_priv->card, "Ubi32 PCM", 0, 0, 1, &pcm);
} else {
ret = snd_pcm_new(ubi32_priv->card, "Ubi32 PCM", 0, 1, 0, &pcm);
}
if (ret < 0) {
return ret;
}
pcm->private_data = ubi32_priv;
ubi32_priv->pcm = pcm;
ubi32_priv->pdata = pdata;
pcm->info_flags = 0;
strcpy(pcm->name, "Ubi32-PCM");
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
45*1024, 64*1024);
if (ubi32_priv->is_capture) {
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ubi32_pcm_ops);
} else {
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ubi32_pcm_ops);
}
/*
* Start up the audio device
*/
adr->int_flags |= AUDIO_INT_FLAG_COMMAND;
adr->command = AUDIO_CMD_ENABLE;
snd_ubi32_vp_int_set(pcm);
/*
* Request IRQ
*/
err = request_irq(ubi32_priv->rx_irq, snd_ubi32_pcm_interrupt, IRQF_SHARED | IRQF_DISABLED, pcm->name, pcm);
if (err) {
snd_printk(KERN_WARNING "request_irq failed: irq=%d err=%d\n", ubi32_priv->rx_irq, err);
return -ENODEV;
}
return ret;
}