1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-25 00:51:33 +02:00
openwrt-xburst/target/linux/ifxmips/files/drivers/net/ifxmips_mii0.c
blogic 20abafaaf5 more danube 2 ifxmips transitions
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@9826 3c298f89-4303-0410-b956-a3cf2f4a3e73
2007-12-22 14:00:25 +00:00

434 lines
9.6 KiB
C

/*
* drivers/net/ifxmips_mii0.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2005 Infineon
*
* Rewrite of Infineon IFXMips code, thanks to infineon for the support,
* software and hardware
*
* Copyright (C) 2007 John Crispin <blogic@openwrt.org>
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/ethtool.h>
#include <asm/checksum.h>
#include <linux/init.h>
#include <asm/delay.h>
#include <asm/ifxmips/ifxmips.h>
#include <asm/ifxmips/ifxmips_mii0.h>
#include <asm/ifxmips/ifxmips_dma.h>
#include <asm/ifxmips/ifxmips_pmu.h>
static struct net_device ifxmips_mii0_dev;
static unsigned char u_boot_ethaddr[MAX_ADDR_LEN];
void
ifxmips_write_mdio (u32 phy_addr, u32 phy_reg, u16 phy_data)
{
u32 val = MDIO_ACC_REQUEST |
((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET) |
phy_data;
while (readl(IFXMIPS_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST);
writel(val, IFXMIPS_PPE32_MDIO_ACC);
}
unsigned short
ifxmips_read_mdio (u32 phy_addr, u32 phy_reg)
{
u32 val = MDIO_ACC_REQUEST | MDIO_ACC_READ |
((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET);
writel(val, IFXMIPS_PPE32_MDIO_ACC);
while (readl(IFXMIPS_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST){};
val = readl(IFXMIPS_PPE32_MDIO_ACC) & MDIO_ACC_VAL_MASK;
return val;
}
int
ifxmips_switch_open (struct net_device *dev)
{
struct switch_priv* priv = (struct switch_priv*)dev->priv;
struct dma_device_info* dma_dev = priv->dma_device;
int i;
for (i = 0; i < dma_dev->max_rx_chan_num; i++)
{
if ((dma_dev->rx_chan[i])->control == IFXMIPS_DMA_CH_ON)
(dma_dev->rx_chan[i])->open(dma_dev->rx_chan[i]);
}
netif_start_queue(dev);
return 0;
}
int
switch_release (struct net_device *dev){
struct switch_priv* priv = (struct switch_priv*)dev->priv;
struct dma_device_info* dma_dev = priv->dma_device;
int i;
for (i = 0; i < dma_dev->max_rx_chan_num; i++)
dma_dev->rx_chan[i]->close(dma_dev->rx_chan[i]);
netif_stop_queue(dev);
return 0;
}
int
switch_hw_receive (struct net_device* dev,struct dma_device_info* dma_dev)
{
struct switch_priv *priv = (struct switch_priv*)dev->priv;
unsigned char* buf = NULL;
struct sk_buff *skb = NULL;
int len = 0;
len = dma_device_read(dma_dev, &buf, (void**)&skb);
if (len >= ETHERNET_PACKET_DMA_BUFFER_SIZE)
{
printk("packet too large %d\n",len);
goto switch_hw_receive_err_exit;
}
/* remove CRC */
len -= 4;
if (skb == NULL )
{
printk("cannot restore pointer\n");
goto switch_hw_receive_err_exit;
}
if (len > (skb->end - skb->tail))
{
printk("BUG, len:%d end:%p tail:%p\n", (len+4), skb->end, skb->tail);
goto switch_hw_receive_err_exit;
}
skb_put(skb, len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
priv->stats.rx_packets++;
priv->stats.rx_bytes += len;
return 0;
switch_hw_receive_err_exit:
if (len == 0)
{
if(skb)
dev_kfree_skb_any(skb);
priv->stats.rx_errors++;
priv->stats.rx_dropped++;
return -EIO;
} else {
return len;
}
}
int
switch_hw_tx (char *buf, int len, struct net_device *dev)
{
int ret = 0;
struct switch_priv *priv = dev->priv;
struct dma_device_info* dma_dev = priv->dma_device;
ret = dma_device_write(dma_dev, buf, len, priv->skb);
return ret;
}
int
switch_tx (struct sk_buff *skb, struct net_device *dev)
{
int len;
char *data;
struct switch_priv *priv = dev->priv;
struct dma_device_info* dma_dev = priv->dma_device;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
data = skb->data;
priv->skb = skb;
dev->trans_start = jiffies;
// TODO we got more than 1 dma channel, so we should do something intelligent
// here to select one
dma_dev->current_tx_chan = 0;
wmb();
if (switch_hw_tx(data, len, dev) != len)
{
dev_kfree_skb_any(skb);
priv->stats.tx_errors++;
priv->stats.tx_dropped++;
} else {
priv->stats.tx_packets++;
priv->stats.tx_bytes+=len;
}
return 0;
}
void
switch_tx_timeout (struct net_device *dev)
{
int i;
struct switch_priv* priv = (struct switch_priv*)dev->priv;
priv->stats.tx_errors++;
for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
{
priv->dma_device->tx_chan[i]->disable_irq(priv->dma_device->tx_chan[i]);
}
netif_wake_queue(dev);
return;
}
int
dma_intr_handler (struct dma_device_info* dma_dev, int status)
{
int i;
switch (status)
{
case RCV_INT:
switch_hw_receive(&ifxmips_mii0_dev, dma_dev);
break;
case TX_BUF_FULL_INT:
printk("tx buffer full\n");
netif_stop_queue(&ifxmips_mii0_dev);
for (i = 0; i < dma_dev->max_tx_chan_num; i++)
{
if ((dma_dev->tx_chan[i])->control==IFXMIPS_DMA_CH_ON)
dma_dev->tx_chan[i]->enable_irq(dma_dev->tx_chan[i]);
}
break;
case TRANSMIT_CPT_INT:
for (i = 0; i < dma_dev->max_tx_chan_num; i++)
dma_dev->tx_chan[i]->disable_irq(dma_dev->tx_chan[i]);
netif_wake_queue(&ifxmips_mii0_dev);
break;
}
return 0;
}
unsigned char*
ifxmips_etop_dma_buffer_alloc (int len, int *byte_offset, void **opt)
{
unsigned char *buffer = NULL;
struct sk_buff *skb = NULL;
skb = dev_alloc_skb(ETHERNET_PACKET_DMA_BUFFER_SIZE);
if (skb == NULL)
return NULL;
buffer = (unsigned char*)(skb->data);
skb_reserve(skb, 2);
*(int*)opt = (int)skb;
*byte_offset = 2;
return buffer;
}
void
ifxmips_etop_dma_buffer_free (unsigned char *dataptr, void *opt)
{
struct sk_buff *skb = NULL;
if(opt == NULL)
{
kfree(dataptr);
} else {
skb = (struct sk_buff*)opt;
dev_kfree_skb_any(skb);
}
}
static struct net_device_stats*
ifxmips_get_stats (struct net_device *dev)
{
return (struct net_device_stats *)dev->priv;
}
static int
switch_init (struct net_device *dev)
{
u64 retval = 0;
int i;
struct switch_priv *priv;
ether_setup(dev);
printk("%s up\n", dev->name);
dev->open = ifxmips_switch_open;
dev->stop = switch_release;
dev->hard_start_xmit = switch_tx;
dev->get_stats = ifxmips_get_stats;
dev->tx_timeout = switch_tx_timeout;
dev->watchdog_timeo = 10 * HZ;
dev->priv = kmalloc(sizeof(struct switch_priv), GFP_KERNEL);
if (dev->priv == NULL)
return -ENOMEM;
memset(dev->priv, 0, sizeof(struct switch_priv));
priv = dev->priv;
priv->dma_device = dma_device_reserve("PPE");
if (!priv->dma_device){
BUG();
return -ENODEV;
}
priv->dma_device->buffer_alloc = &ifxmips_etop_dma_buffer_alloc;
priv->dma_device->buffer_free = &ifxmips_etop_dma_buffer_free;
priv->dma_device->intr_handler = &dma_intr_handler;
priv->dma_device->max_rx_chan_num = 4;
for (i = 0; i < priv->dma_device->max_rx_chan_num; i++)
{
priv->dma_device->rx_chan[i]->packet_size = ETHERNET_PACKET_DMA_BUFFER_SIZE;
priv->dma_device->rx_chan[i]->control = IFXMIPS_DMA_CH_ON;
}
for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
{
if(i == 0)
priv->dma_device->tx_chan[i]->control = IFXMIPS_DMA_CH_ON;
else
priv->dma_device->tx_chan[i]->control = IFXMIPS_DMA_CH_OFF;
}
dma_device_register(priv->dma_device);
/*read the mac address from the mac table and put them into the mac table.*/
for (i = 0; i < 6; i++)
{
retval += u_boot_ethaddr[i];
}
//TODO
/* ethaddr not set in u-boot ? */
if (retval == 0)
{
printk("use default MAC address\n");
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x11;
dev->dev_addr[2] = 0x22;
dev->dev_addr[3] = 0x33;
dev->dev_addr[4] = 0x44;
dev->dev_addr[5] = 0x55;
} else {
for (i = 0; i < 6; i++)
dev->dev_addr[i] = u_boot_ethaddr[i];
}
return 0;
}
static void
ifxmips_sw_chip_init (int mode)
{
ifxmips_pmu_enable(IFXMIPS_PMU_PWDCR_DMA);
ifxmips_pmu_enable(IFXMIPS_PMU_PWDCR_PPE);
if(mode == REV_MII_MODE)
writel((readl(IFXMIPS_PPE32_CFG) & PPE32_MII_MASK) | PPE32_MII_REVERSE, IFXMIPS_PPE32_CFG);
else if(mode == MII_MODE)
writel((readl(IFXMIPS_PPE32_CFG) & PPE32_MII_MASK) | PPE32_MII_NORMAL, IFXMIPS_PPE32_CFG);
writel(PPE32_PLEN_UNDER | PPE32_PLEN_OVER, IFXMIPS_PPE32_IG_PLEN_CTRL);
writel(PPE32_CGEN, IFXMIPS_PPE32_ENET_MAC_CFG);
wmb();
}
int __init
switch_init_module(void)
{
int result = 0;
ifxmips_mii0_dev.init = switch_init;
strcpy(ifxmips_mii0_dev.name, "eth%d");
SET_MODULE_OWNER(dev);
result = register_netdev(&ifxmips_mii0_dev);
if (result)
{
printk("error %i registering device \"%s\"\n", result, ifxmips_mii0_dev.name);
goto out;
}
/* ifxmips eval kit connects the phy/switch in REV mode */
ifxmips_sw_chip_init(REV_MII_MODE);
printk("ifxmips MAC driver loaded!\n");
out:
return result;
}
static void __exit
switch_cleanup(void)
{
struct switch_priv *priv = (struct switch_priv*)ifxmips_mii0_dev.priv;
printk("ifxmips_mii0 cleanup\n");
dma_device_unregister(priv->dma_device);
dma_device_release(priv->dma_device);
kfree(priv->dma_device);
kfree(ifxmips_mii0_dev.priv);
unregister_netdev(&ifxmips_mii0_dev);
return;
}
module_init(switch_init_module);
module_exit(switch_cleanup);