1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-05 18:44:05 +02:00
openwrt-xburst/target/linux/brcm-2.4/files/arch/mips/bcm947xx/sbutils.c
2008-01-06 19:28:07 +00:00

4181 lines
101 KiB
C

/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright 2007, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
* $Id$
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbextif.h>
#include <sbpci.h>
#include <sbpcie.h>
#include <pcicfg.h>
#include <sbpcmcia.h>
#include <sbsocram.h>
#include <bcmnvram.h>
#include <bcmsrom.h>
#include <hndpmu.h>
/* debug/trace */
#define SB_ERROR(args)
#ifdef BCMDBG
#define SB_MSG(args) printf args
#else
#define SB_MSG(args)
#endif /* BCMDBG */
typedef uint32(*sb_intrsoff_t) (void *intr_arg);
typedef void (*sb_intrsrestore_t) (void *intr_arg, uint32 arg);
typedef bool(*sb_intrsenabled_t) (void *intr_arg);
typedef struct gpioh_item {
void *arg;
bool level;
gpio_handler_t handler;
uint32 event;
struct gpioh_item *next;
} gpioh_item_t;
/* misc sb info needed by some of the routines */
typedef struct sb_info {
struct sb_pub sb; /* back plane public state (must be first field) */
void *osh; /* osl os handle */
void *sdh; /* bcmsdh handle */
void *curmap; /* current regs va */
void *regs[SB_MAXCORES]; /* other regs va */
uint curidx; /* current core index */
uint dev_coreid; /* the core provides driver functions */
bool memseg; /* flag to toggle MEM_SEG register */
uint gpioidx; /* gpio control core index */
uint gpioid; /* gpio control coretype */
uint numcores; /* # discovered cores */
uint coreid[SB_MAXCORES]; /* id of each core */
void *intr_arg; /* interrupt callback function arg */
sb_intrsoff_t intrsoff_fn; /* turns chip interrupts off */
sb_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */
sb_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */
uint8 pciecap_lcreg_offset; /* PCIE capability LCreg offset in the config space */
bool pr42767_war;
uint8 pcie_polarity;
bool pcie_war_ovr; /* Override ASPM/Clkreq settings */
uint8 pmecap_offset; /* PM Capability offset in the config space */
bool pmecap; /* Capable of generating PME */
gpioh_item_t *gpioh_head; /* GPIO event handlers list */
char *vars;
uint varsz;
} sb_info_t;
/* local prototypes */
static sb_info_t *sb_doattach(sb_info_t * si, uint devid, osl_t * osh,
void *regs, uint bustype, void *sdh,
char **vars, uint * varsz);
static void sb_scan(sb_info_t * si);
static uint _sb_coreidx(sb_info_t * si);
static uint sb_pcidev2chip(uint pcidev);
static uint sb_chip2numcores(uint chip);
static bool sb_ispcie(sb_info_t * si);
static uint8 sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id,
uchar * buf, uint32 * buflen);
static int sb_pci_fixcfg(sb_info_t * si);
/* routines to access mdio slave device registers */
static int sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint readdr,
uint val);
static int sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint readdr,
uint * ret_val);
/* dev path concatenation util */
static char *sb_devpathvar(sb_t * sbh, char *var, int len, const char *name);
/* WARs */
static void sb_war43448(sb_t * sbh);
static void sb_war43448_aspm(sb_t * sbh);
static void sb_war32414_forceHT(sb_t * sbh, bool forceHT);
static void sb_war30841(sb_info_t * si);
static void sb_war42767(sb_t * sbh);
static void sb_war42767_clkreq(sb_t * sbh);
/* delay needed between the mdio control/ mdiodata register data access */
#define PR28829_DELAY() OSL_DELAY(10)
/* size that can take bitfielddump */
#define BITFIELD_DUMP_SIZE 32
/* global variable to indicate reservation/release of gpio's */
static uint32 sb_gpioreservation = 0;
/* global flag to prevent shared resources from being initialized multiple times in sb_attach() */
static bool sb_onetimeinit = FALSE;
#define SB_INFO(sbh) (sb_info_t*)(uintptr)sbh
#define SET_SBREG(si, r, mask, val) \
W_SBREG((si), (r), ((R_SBREG((si), (r)) & ~(mask)) | (val)))
#define GOODCOREADDR(x) (((x) >= SB_ENUM_BASE) && ((x) <= SB_ENUM_LIM) && \
ISALIGNED((x), SB_CORE_SIZE))
#define GOODREGS(regs) ((regs) && ISALIGNED((uintptr)(regs), SB_CORE_SIZE))
#define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)
#define BADCOREADDR 0
#define GOODIDX(idx) (((uint)idx) < SB_MAXCORES)
#define BADIDX (SB_MAXCORES+1)
#define NOREV -1 /* Invalid rev */
#define PCI(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCI))
#define PCIE(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCIE))
#define PCMCIA(si) ((BUSTYPE(si->sb.bustype) == PCMCIA_BUS) && (si->memseg == TRUE))
/* sonicsrev */
#define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
#define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)
#define R_SBREG(si, sbr) sb_read_sbreg((si), (sbr))
#define W_SBREG(si, sbr, v) sb_write_sbreg((si), (sbr), (v))
#define AND_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) & (v)))
#define OR_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) | (v)))
/*
* Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts before/
* after core switching to avoid invalid register accesss inside ISR.
*/
#define INTR_OFF(si, intr_val) \
if ((si)->intrsoff_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
intr_val = (*(si)->intrsoff_fn)((si)->intr_arg); }
#define INTR_RESTORE(si, intr_val) \
if ((si)->intrsrestore_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
(*(si)->intrsrestore_fn)((si)->intr_arg, intr_val); }
/* dynamic clock control defines */
#define LPOMINFREQ 25000 /* low power oscillator min */
#define LPOMAXFREQ 43000 /* low power oscillator max */
#define XTALMINFREQ 19800000 /* 20 MHz - 1% */
#define XTALMAXFREQ 20200000 /* 20 MHz + 1% */
#define PCIMINFREQ 25000000 /* 25 MHz */
#define PCIMAXFREQ 34000000 /* 33 MHz + fudge */
#define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */
#define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */
/* force HT war check */
#define FORCEHT_WAR32414(si) \
(((PCIE(si)) && (si->sb.chip == BCM4311_CHIP_ID) && ((si->sb.chiprev <= 1))) || \
((PCI(si) || PCIE(si)) && (si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev <= 3)))
#define PCIE_ASPMWARS(si) \
((PCIE(si)) && ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5)))
/* GPIO Based LED powersave defines */
#define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
#define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
#define DEFAULT_GPIOTIMERVAL ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
static uint32 sb_read_sbreg(sb_info_t * si, volatile uint32 * sbr)
{
uint8 tmp;
uint32 val, intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (PCMCIA(si)) {
INTR_OFF(si, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */
}
val = R_REG(si->osh, sbr);
if (PCMCIA(si)) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(si, intr_val);
}
return (val);
}
static void sb_write_sbreg(sb_info_t * si, volatile uint32 * sbr, uint32 v)
{
uint8 tmp;
volatile uint32 dummy;
uint32 intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (PCMCIA(si)) {
INTR_OFF(si, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */
}
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
#ifdef IL_BIGENDIAN
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, ((volatile uint16 *)sbr + 1),
(uint16) ((v >> 16) & 0xffff));
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff));
#else
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff));
dummy = R_REG(si->osh, sbr);
W_REG(si->osh, ((volatile uint16 *)sbr + 1),
(uint16) ((v >> 16) & 0xffff));
#endif /* IL_BIGENDIAN */
} else
W_REG(si->osh, sbr, v);
if (PCMCIA(si)) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(si, intr_val);
}
}
/*
* Allocate a sb handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
* bustype - pci/pcmcia/sb/sdio/etc
* vars - pointer to a pointer area for "environment" variables
* varsz - pointer to int to return the size of the vars
*/
sb_t *sb_attach(uint devid, osl_t * osh, void *regs,
uint bustype, void *sdh, char **vars,
uint * varsz) {
sb_info_t *si;
/* alloc sb_info_t */
if ((si = MALLOC(osh, sizeof(sb_info_t))) == NULL) {
SB_ERROR(("sb_attach: malloc failed! malloced %d bytes\n",
MALLOCED(osh)));
return (NULL);
}
if (sb_doattach(si, devid, osh, regs, bustype, sdh, vars, varsz) ==
NULL) {
MFREE(osh, si, sizeof(sb_info_t));
return (NULL);
}
si->vars = vars ? *vars : NULL;
si->varsz = varsz ? *varsz : 0;
return (sb_t *) si;
}
/* Using sb_kattach depends on SB_BUS support, either implicit */
/* no limiting BCMBUSTYPE value) or explicit (value is SB_BUS). */
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
/* global kernel resource */
static sb_info_t ksi;
/* generic kernel variant of sb_attach() */
sb_t *BCMINITFN(sb_kattach) (osl_t * osh) {
static bool ksi_attached = FALSE;
uint32 *regs;
if (!ksi_attached) {
uint32 cid;
regs = (uint32 *) REG_MAP(SB_ENUM_BASE, SB_CORE_SIZE);
cid = R_REG(osh, (uint32 *) regs);
if (((cid & CID_ID_MASK) == BCM4712_CHIP_ID) &&
((cid & CID_PKG_MASK) != BCM4712LARGE_PKG_ID) &&
((cid & CID_REV_MASK) <= (3 << CID_REV_SHIFT))) {
uint32 *scc, val;
scc =
(uint32 *) ((uchar *) regs +
OFFSETOF(chipcregs_t, slow_clk_ctl));
val = R_REG(osh, scc);
SB_ERROR((" initial scc = 0x%x\n", val));
val |= SCC_SS_XTAL;
W_REG(osh, scc, val);
}
if (sb_doattach(&ksi, BCM4710_DEVICE_ID, osh, (void *)regs, SB_BUS, NULL,
osh != SB_OSH ? &ksi.vars : NULL,
osh != SB_OSH ? &ksi.varsz : NULL) == NULL)
return NULL;
ksi_attached = TRUE;
}
return &ksi.sb;
}
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
static sb_info_t *BCMINITFN(sb_doattach) (sb_info_t * si, uint devid,
osl_t * osh, void *regs,
uint bustype, void *sdh,
char **vars, uint * varsz) {
uint origidx;
chipcregs_t *cc;
sbconfig_t *sb;
uint32 w;
char *pvars;
ASSERT(GOODREGS(regs));
bzero((uchar *) si, sizeof(sb_info_t));
si->sb.buscoreidx = si->gpioidx = BADIDX;
si->curmap = regs;
si->sdh = sdh;
si->osh = osh;
/* check to see if we are a sb core mimic'ing a pci core */
if (bustype == PCI_BUS) {
if (OSL_PCI_READ_CONFIG
(si->osh, PCI_SPROM_CONTROL,
sizeof(uint32)) == 0xffffffff) {
SB_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SB " "devid:0x%x\n", __FUNCTION__, devid));
bustype = SB_BUS;
}
}
si->sb.bustype = bustype;
if (si->sb.bustype != BUSTYPE(si->sb.bustype)) {
SB_ERROR(("sb_doattach: bus type %d does not match configured bus type %d\n", si->sb.bustype, BUSTYPE(si->sb.bustype)));
return NULL;
}
/* need to set memseg flag for CF card first before any sb registers access */
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS)
si->memseg = TRUE;
/* kludge to enable the clock on the 4306 which lacks a slowclock */
if (BUSTYPE(si->sb.bustype) == PCI_BUS && !sb_ispcie(si))
sb_clkctl_xtal(&si->sb, XTAL | PLL, ON);
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
w = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
if (!GOODCOREADDR(w))
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN,
sizeof(uint32), SB_ENUM_BASE);
}
/* initialize current core index value */
si->curidx = _sb_coreidx(si);
if (si->curidx == BADIDX) {
SB_ERROR(("sb_doattach: bad core index\n"));
return NULL;
}
/* get sonics backplane revision */
sb = REGS2SB(regs);
si->sb.sonicsrev =
(R_SBREG(si, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT;
/* keep and reuse the initial register mapping */
origidx = si->curidx;
if (BUSTYPE(si->sb.bustype) == SB_BUS)
si->regs[origidx] = regs;
/* is core-0 a chipcommon core? */
si->numcores = 1;
cc = (chipcregs_t *) sb_setcoreidx(&si->sb, 0);
if (sb_coreid(&si->sb) != SB_CC)
cc = NULL;
/* determine chip id and rev */
if (cc) {
/* chip common core found! */
si->sb.chip = R_REG(si->osh, &cc->chipid) & CID_ID_MASK;
si->sb.chiprev =
(R_REG(si->osh, &cc->chipid) & CID_REV_MASK) >>
CID_REV_SHIFT;
si->sb.chippkg =
(R_REG(si->osh, &cc->chipid) & CID_PKG_MASK) >>
CID_PKG_SHIFT;
} else {
/* no chip common core -- must convert device id to chip id */
if ((si->sb.chip = sb_pcidev2chip(devid)) == 0) {
SB_ERROR(("sb_doattach: unrecognized device id 0x%04x\n", devid));
sb_setcoreidx(&si->sb, origidx);
return NULL;
}
}
/* get chipcommon rev */
si->sb.ccrev = cc ? (int)sb_corerev(&si->sb) : NOREV;
/* get chipcommon capabilites */
si->sb.cccaps = cc ? R_REG(si->osh, &cc->capabilities) : 0;
/* determine numcores */
if (cc && ((si->sb.ccrev == 4) || (si->sb.ccrev >= 6)))
si->numcores =
(R_REG(si->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT;
else
si->numcores = sb_chip2numcores(si->sb.chip);
/* return to original core */
sb_setcoreidx(&si->sb, origidx);
/* sanity checks */
ASSERT(si->sb.chip);
/* scan for cores */
sb_scan(si);
/* fixup necessary chip/core configurations */
if (BUSTYPE(si->sb.bustype) == PCI_BUS && sb_pci_fixcfg(si)) {
SB_ERROR(("sb_doattach: sb_pci_fixcfg failed\n"));
return NULL;
}
/* Init nvram from sprom/otp if they exist */
if (srom_var_init
(&si->sb, BUSTYPE(si->sb.bustype), regs, si->osh, vars, varsz)) {
SB_ERROR(("sb_doattach: srom_var_init failed: bad srom\n"));
return (NULL);
}
pvars = vars ? *vars : NULL;
/* PMU specific initializations */
if ((si->sb.cccaps & CC_CAP_PMU) && !sb_onetimeinit) {
sb_pmu_init(&si->sb, si->osh);
/* Find out Crystal frequency and init PLL */
sb_pmu_pll_init(&si->sb, si->osh, getintvar(pvars, "xtalfreq"));
/* Initialize PMU resources (up/dn timers, dep masks, etc.) */
sb_pmu_res_init(&si->sb, si->osh);
}
if (cc == NULL) {
/*
* The chip revision number is hardwired into all
* of the pci function config rev fields and is
* independent from the individual core revision numbers.
* For example, the "A0" silicon of each chip is chip rev 0.
* For PCMCIA we get it from the CIS instead.
*/
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
ASSERT(vars);
si->sb.chiprev = getintvar(*vars, "chiprev");
} else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_REV,
sizeof(uint32));
si->sb.chiprev = w & 0xff;
} else
si->sb.chiprev = 0;
}
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
w = getintvar(pvars, "regwindowsz");
si->memseg = (w <= CFTABLE_REGWIN_2K) ? TRUE : FALSE;
}
/* gpio control core is required */
if (!GOODIDX(si->gpioidx)) {
SB_ERROR(("sb_doattach: gpio control core not found\n"));
return NULL;
}
/* get boardtype and boardrev */
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
/* do a pci config read to get subsystem id and subvendor id */
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_SVID, sizeof(uint32));
/* Let nvram variables override subsystem Vend/ID */
if ((si->sb.boardvendor =
(uint16) sb_getdevpathintvar(&si->sb, "boardvendor")) == 0)
si->sb.boardvendor = w & 0xffff;
else
SB_ERROR(("Overriding boardvendor: 0x%x instead of 0x%x\n", si->sb.boardvendor, w & 0xffff));
if ((si->sb.boardtype =
(uint16) sb_getdevpathintvar(&si->sb, "boardtype")) == 0)
si->sb.boardtype = (w >> 16) & 0xffff;
else
SB_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n", si->sb.boardtype, (w >> 16) & 0xffff));
break;
case PCMCIA_BUS:
si->sb.boardvendor = getintvar(pvars, "manfid");
si->sb.boardtype = getintvar(pvars, "prodid");
break;
case SB_BUS:
case JTAG_BUS:
si->sb.boardvendor = VENDOR_BROADCOM;
if (pvars == NULL
|| ((si->sb.boardtype = getintvar(pvars, "prodid")) == 0))
if ((si->sb.boardtype =
getintvar(NULL, "boardtype")) == 0)
si->sb.boardtype = 0xffff;
break;
}
if (si->sb.boardtype == 0) {
SB_ERROR(("sb_doattach: unknown board type\n"));
ASSERT(si->sb.boardtype);
}
si->sb.boardflags = getintvar(pvars, "boardflags");
/* setup the GPIO based LED powersave register */
if (si->sb.ccrev >= 16) {
if ((pvars == NULL) || ((w = getintvar(pvars, "leddc")) == 0))
w = DEFAULT_GPIOTIMERVAL;
sb_corereg(&si->sb, SB_CC_IDX,
OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
}
/* Determine if this board needs override */
if (PCIE(si) && (si->sb.chip == BCM4321_CHIP_ID))
si->pcie_war_ovr = ((si->sb.boardvendor == VENDOR_APPLE) &&
((uint8) getintvar(pvars, "sromrev") == 4)
&& ((uint8) getintvar(pvars, "boardrev") <=
0x71))
|| ((uint32) getintvar(pvars, "boardflags2") &
BFL2_PCIEWAR_OVR);
if (PCIE_ASPMWARS(si)) {
sb_war43448_aspm((void *)si);
sb_war42767_clkreq((void *)si);
}
if (FORCEHT_WAR32414(si)) {
si->sb.pr32414 = TRUE;
sb_clkctl_init(&si->sb);
sb_war32414_forceHT(&si->sb, 1);
}
if (PCIE(si) && ((si->sb.buscorerev == 6) || (si->sb.buscorerev == 7)))
si->sb.pr42780 = TRUE;
if (PCIE_ASPMWARS(si))
sb_pcieclkreq(&si->sb, 1, 0);
if (PCIE(si) &&
(((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) ||
((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0))))
sb_set_initiator_to(&si->sb, 0x3,
sb_findcoreidx(&si->sb, SB_D11, 0));
/* Disable gpiopullup and gpiopulldown */
if (!sb_onetimeinit && si->sb.ccrev >= 20) {
cc = (chipcregs_t *) sb_setcore(&si->sb, SB_CC, 0);
W_REG(osh, &cc->gpiopullup, 0);
W_REG(osh, &cc->gpiopulldown, 0);
sb_setcoreidx(&si->sb, origidx);
}
#ifdef BCMDBG
/* clear any previous epidiag-induced target abort */
sb_taclear(&si->sb);
#endif /* BCMDBG */
#ifdef HNDRTE
sb_onetimeinit = TRUE;
#endif
return (si);
}
/* Enable/Disable clkreq for PCIE (4311B0/4321B1) */
void sb_war42780_clkreq(sb_t * sbh, bool clkreq) {
sb_info_t *si;
si = SB_INFO(sbh);
/* Don't change clkreq value if serdespll war has not yet been applied */
if (!si->pr42767_war && PCIE_ASPMWARS(si))
return;
sb_pcieclkreq(sbh, 1, (int32) clkreq);
}
static void BCMINITFN(sb_war43448) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
/* if not pcie bus, we're done */
if (!PCIE(si) || !PCIE_ASPMWARS(si))
return;
/* Restore the polarity */
if (si->pcie_polarity != 0)
sb_pcie_mdiowrite((void *)(uintptr) & si->sb, MDIODATA_DEV_RX,
SERDES_RX_CTRL, si->pcie_polarity);
}
static void BCMINITFN(sb_war43448_aspm) (sb_t * sbh) {
uint32 w;
uint16 val16, *reg16;
sbpcieregs_t *pcieregs;
sb_info_t *si;
si = SB_INFO(sbh);
/* if not pcie bus, we're done */
if (!PCIE(si) || !PCIE_ASPMWARS(si))
return;
/* no ASPM stuff on QT or VSIM */
if (si->sb.chippkg == HDLSIM_PKG_ID || si->sb.chippkg == HWSIM_PKG_ID)
return;
pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
/* Enable ASPM in the shadow SROM and Link control */
reg16 = &pcieregs->sprom[SRSH_ASPM_OFFSET];
val16 = R_REG(si->osh, reg16);
if (!si->pcie_war_ovr)
val16 |= SRSH_ASPM_ENB;
else
val16 &= ~SRSH_ASPM_ENB;
W_REG(si->osh, reg16, val16);
w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
sizeof(uint32));
if (!si->pcie_war_ovr)
w |= PCIE_ASPM_ENAB;
else
w &= ~PCIE_ASPM_ENAB;
OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32),
w);
}
static void BCMINITFN(sb_war32414_forceHT) (sb_t * sbh, bool forceHT) {
sb_info_t *si;
uint32 val = 0;
si = SB_INFO(sbh);
ASSERT(FORCEHT_WAR32414(si));
if (forceHT)
val = SYCC_HR;
sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, system_clk_ctl),
SYCC_HR, val);
}
uint sb_coreid(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
}
uint sb_flag(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
}
uint sb_coreidx(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->curidx);
}
static uint _sb_coreidx(sb_info_t * si)
{
sbconfig_t *sb;
uint32 sbaddr = 0;
ASSERT(si);
switch (BUSTYPE(si->sb.bustype)) {
case SB_BUS:
sb = REGS2SB(si->curmap);
sbaddr = sb_base(R_SBREG(si, &sb->sbadmatch0));
break;
case PCI_BUS:
sbaddr =
OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
break;
case PCMCIA_BUS:{
uint8 tmp = 0;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
sbaddr = (uint) tmp << 12;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
sbaddr |= (uint) tmp << 16;
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
sbaddr |= (uint) tmp << 24;
break;
}
#ifdef BCMJTAG
case JTAG_BUS:
sbaddr = (uint32) si->curmap;
break;
#endif /* BCMJTAG */
default:
ASSERT(0);
}
if (!GOODCOREADDR(sbaddr))
return BADIDX;
return ((sbaddr - SB_ENUM_BASE) / SB_CORE_SIZE);
}
uint sb_corevendor(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
}
uint sb_corerev(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
uint sbidh;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
sbidh = R_SBREG(si, &sb->sbidhigh);
return (SBCOREREV(sbidh));
}
void *sb_osh(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return si->osh;
}
void sb_setosh(sb_t * sbh, osl_t * osh)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->osh != NULL) {
SB_ERROR(("osh is already set....\n"));
ASSERT(!si->osh);
}
si->osh = osh;
}
/* set sbtmstatelow core-specific flags */
void sb_coreflags_wo(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
sbconfig_t *sb;
uint32 w;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
ASSERT((val & ~mask) == 0);
/* mask and set */
w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
W_SBREG(si, &sb->sbtmstatelow, w);
}
/* set/clear sbtmstatelow core-specific flags */
uint32 sb_coreflags(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
sbconfig_t *sb;
uint32 w;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
ASSERT((val & ~mask) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
W_SBREG(si, &sb->sbtmstatelow, w);
}
/* return the new value
* for write operation, the following readback ensures the completion of write opration.
*/
return (R_SBREG(si, &sb->sbtmstatelow));
}
/* set/clear sbtmstatehigh core-specific flags */
uint32 sb_coreflagshi(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
sbconfig_t *sb;
uint32 w;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SBTMH_FL_MASK) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(si, &sb->sbtmstatehigh) & ~mask) | val;
W_SBREG(si, &sb->sbtmstatehigh, w);
}
/* return the new value */
return (R_SBREG(si, &sb->sbtmstatehigh));
}
/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
int sb_corebist(sb_t * sbh)
{
uint32 sblo;
sb_info_t *si;
sbconfig_t *sb;
int result = 0;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
sblo = R_SBREG(si, &sb->sbtmstatelow);
W_SBREG(si, &sb->sbtmstatelow, (sblo | SBTML_FGC | SBTML_BE));
SPINWAIT(((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTD) == 0),
100000);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTF)
result = -1;
W_SBREG(si, &sb->sbtmstatelow, sblo);
return result;
}
bool sb_iscoreup(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
return ((R_SBREG(si, &sb->sbtmstatelow) &
(SBTML_RESET | SBTML_REJ_MASK | SBTML_CLK)) == SBTML_CLK);
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fidleing with interrupts or core switches are needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint sb_corereg(sb_t * sbh, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
uint32 *r = NULL;
uint w;
uint intr_val = 0;
bool fast = FALSE;
sb_info_t *si;
si = SB_INFO(sbh);
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SB_CORE_SIZE);
ASSERT((val & ~mask) == 0);
#if 0
if (BUSTYPE(si->sb.bustype) == SB_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!si->regs[coreidx]) {
si->regs[coreidx] =
(void *)REG_MAP(si->coresba[coreidx], SB_CORE_SIZE);
ASSERT(GOODREGS(si->regs[coreidx]));
}
r = (uint32 *) ((uchar *) si->regs[coreidx] + regoff);
} else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((si->coreid[coreidx] == SB_CC) &&
((si->sb.buscoretype == SB_PCIE)
|| (si->sb.buscorerev >= 13))) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *) ((char *)si->curmap +
PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (si->sb.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if ((si->sb.buscoretype == SB_PCIE)
|| (si->sb.buscorerev >= 13))
r = (uint32 *) ((char *)si->curmap +
PCI_16KB0_PCIREGS_OFFSET +
regoff);
else
r = (uint32 *) ((char *)si->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET :
PCI_BAR0_PCIREGS_OFFSET)
+ regoff);
}
}
#endif
if (!fast) {
INTR_OFF(si, intr_val);
/* save current core index */
origidx = sb_coreidx(&si->sb);
/* switch core */
r = (uint32 *) ((uchar *) sb_setcoreidx(&si->sb, coreidx) +
regoff);
}
ASSERT(r);
/* mask and set */
if (mask || val) {
if (regoff >= SBCONFIGOFF) {
w = (R_SBREG(si, r) & ~mask) | val;
W_SBREG(si, r, w);
} else {
w = (R_REG(si->osh, r) & ~mask) | val;
W_REG(si->osh, r, w);
}
}
/* readback */
if (regoff >= SBCONFIGOFF)
w = R_SBREG(si, r);
else {
if ((si->sb.chip == BCM5354_CHIP_ID) &&
(coreidx == SB_CC_IDX) &&
(regoff == OFFSETOF(chipcregs_t, watchdog))) {
w = val;
} else
w = R_REG(si->osh, r);
}
if (!fast) {
/* restore core index */
if (origidx != coreidx)
sb_setcoreidx(&si->sb, origidx);
INTR_RESTORE(si, intr_val);
}
return (w);
}
#define DWORD_ALIGN(x) (x & ~(0x03))
#define BYTE_POS(x) (x & 0x3)
#define WORD_POS(x) (x & 0x1)
#define BYTE_SHIFT(x) (8 * BYTE_POS(x))
#define WORD_SHIFT(x) (16 * WORD_POS(x))
#define BYTE_VAL(a, x) ((a >> BYTE_SHIFT(x)) & 0xFF)
#define WORD_VAL(a, x) ((a >> WORD_SHIFT(x)) & 0xFFFF)
#define read_pci_cfg_byte(a) \
(BYTE_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xff)
#define read_pci_cfg_word(a) \
(WORD_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xffff)
/* return cap_offset if requested capability exists in the PCI config space */
static uint8
sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id, uchar * buf,
uint32 * buflen)
{
uint8 cap_id;
uint8 cap_ptr = 0;
uint32 bufsize;
uint8 byte_val;
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
goto end;
/* check for Header type 0 */
byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
if ((byte_val & 0x7f) != PCI_HEADER_NORMAL)
goto end;
/* check if the capability pointer field exists */
byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
if (!(byte_val & PCI_CAPPTR_PRESENT))
goto end;
cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
/* check if the capability pointer is 0x00 */
if (cap_ptr == 0x00)
goto end;
/* loop thr'u the capability list and see if the pcie capabilty exists */
cap_id = read_pci_cfg_byte(cap_ptr);
while (cap_id != req_cap_id) {
cap_ptr = read_pci_cfg_byte((cap_ptr + 1));
if (cap_ptr == 0x00)
break;
cap_id = read_pci_cfg_byte(cap_ptr);
}
if (cap_id != req_cap_id) {
goto end;
}
/* found the caller requested capability */
if ((buf != NULL) && (buflen != NULL)) {
uint8 cap_data;
bufsize = *buflen;
if (!bufsize)
goto end;
*buflen = 0;
/* copy the cpability data excluding cap ID and next ptr */
cap_data = cap_ptr + 2;
if ((bufsize + cap_data) > SZPCR)
bufsize = SZPCR - cap_data;
*buflen = bufsize;
while (bufsize--) {
*buf = read_pci_cfg_byte(cap_data);
cap_data++;
buf++;
}
}
end:
return cap_ptr;
}
uint8 sb_pcieclkreq(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
uint32 reg_val;
uint8 offset;
si = SB_INFO(sbh);
offset = si->pciecap_lcreg_offset;
if (!offset)
return 0;
reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
/* set operation */
if (mask) {
if (val)
reg_val |= PCIE_CLKREQ_ENAB;
else
reg_val &= ~PCIE_CLKREQ_ENAB;
OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), reg_val);
reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
}
if (reg_val & PCIE_CLKREQ_ENAB)
return 1;
else
return 0;
}
#ifdef BCMDBG
uint32 sb_pcielcreg(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
uint32 reg_val;
uint8 offset;
si = SB_INFO(sbh);
if (!PCIE(si))
return 0;
offset = si->pciecap_lcreg_offset;
if (!offset)
return 0;
/* set operation */
if (mask)
OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), val);
reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
return reg_val;
}
uint8 sb_pcieL1plldown(sb_t * sbh)
{
sb_info_t *si;
uint intr_val = 0;
uint origidx;
uint32 reg_val;
si = SB_INFO(sbh);
if (!PCIE(si))
return 0;
if (!((si->sb.buscorerev == 3) || (si->sb.buscorerev == 4)))
return 0;
if (!sb_pcieclkreq((void *)(uintptr) sbh, 0, 0)) {
SB_ERROR(("PCIEL1PLLDOWN requires Clkreq be enabled, so enable it\n"));
sb_pcieclkreq((void *)(uintptr) sbh, 1, 1);
}
reg_val = sb_pcielcreg((void *)(uintptr) sbh, 0, 0);
if (reg_val & PCIE_CAP_LCREG_ASPML0s) {
SB_ERROR(("PCIEL1PLLDOWN requires L0s to be disabled\n"));
reg_val &= ~PCIE_CAP_LCREG_ASPML0s;
sb_pcielcreg((void *)(uintptr) sbh, 1, reg_val);
} else
SB_ERROR(("PCIEL1PLLDOWN: L0s is already disabled\n"));
/* turnoff intrs, change core, set original back, turn on intrs back on */
origidx = si->curidx;
INTR_OFF(si, intr_val);
sb_setcore(sbh, SB_PCIE, 0);
sb_pcie_writereg((void *)(uintptr) sbh, (void *)PCIE_PCIEREGS,
PCIE_DLLP_PCIE11, 0);
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return 1;
}
#endif /* BCMDBG */
/* return TRUE if PCIE capability exists in the pci config space */
static bool sb_ispcie(sb_info_t * si)
{
uint8 cap_ptr;
cap_ptr = sb_find_pci_capability(si, PCI_CAP_PCIECAP_ID, NULL, NULL);
if (!cap_ptr)
return FALSE;
si->pciecap_lcreg_offset = cap_ptr + PCIE_CAP_LINKCTRL_OFFSET;
return TRUE;
}
/* Wake-on-wireless-LAN (WOWL) support functions */
/* return TRUE if PM capability exists in the pci config space */
bool sb_pci_pmecap(sb_t * sbh)
{
uint8 cap_ptr;
uint32 pmecap;
sb_info_t *si;
si = SB_INFO(sbh);
if (si == NULL || !(PCI(si) || PCIE(si)))
return FALSE;
if (!si->pmecap_offset) {
cap_ptr =
sb_find_pci_capability(si, PCI_CAP_POWERMGMTCAP_ID, NULL,
NULL);
if (!cap_ptr)
return FALSE;
si->pmecap_offset = cap_ptr;
pmecap =
OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset,
sizeof(uint32));
/* At least one state can generate PME */
si->pmecap = (pmecap & PME_CAP_PM_STATES) != 0;
}
return (si->pmecap);
}
/* Enable PME generation and disable clkreq */
void sb_pci_pmeen(sb_t * sbh)
{
sb_info_t *si;
uint32 w;
si = SB_INFO(sbh);
/* if not pmecapable return */
if (!sb_pci_pmecap(sbh))
return;
w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
sizeof(uint32));
w |= (PME_CSR_PME_EN);
OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
sizeof(uint32), w);
/* Disable clkreq */
if (si->pr42767_war) {
sb_pcieclkreq(sbh, 1, 0);
si->pr42767_war = FALSE;
} else if (si->sb.pr42780) {
sb_pcieclkreq(sbh, 1, 1);
}
}
/* Disable PME generation, clear the PME status bit if set and
* return TRUE if PME status set
*/
bool sb_pci_pmeclr(sb_t * sbh)
{
sb_info_t *si;
uint32 w;
bool ret = FALSE;
si = SB_INFO(sbh);
if (!sb_pci_pmecap(sbh))
return ret;
w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
sizeof(uint32));
SB_ERROR(("sb_pci_pmeclr PMECSR : 0x%x\n", w));
ret = (w & PME_CSR_PME_STAT) == PME_CSR_PME_STAT;
/* PMESTAT is cleared by writing 1 to it */
w &= ~(PME_CSR_PME_EN);
OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
sizeof(uint32), w);
return ret;
}
/* use pci dev id to determine chip id for chips not having a chipcommon core */
static uint BCMINITFN(sb_pcidev2chip) (uint pcidev) {
if ((pcidev >= BCM4710_DEVICE_ID) && (pcidev <= BCM47XX_USB_ID))
return (BCM4710_CHIP_ID);
if ((pcidev >= BCM4402_ENET_ID) && (pcidev <= BCM4402_V90_ID))
return (BCM4402_CHIP_ID);
if (pcidev == BCM4401_ENET_ID)
return (BCM4402_CHIP_ID);
if (pcidev == SDIOH_FPGA_ID)
return (SDIOH_FPGA_ID);
return (0);
}
/* Scan the enumeration space to find all cores starting from the given
* bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba'
* is the default core address at chip POR time and 'regs' is the virtual
* address that the default core is mapped at. 'ncores' is the number of
* cores expected on bus 'sbba'. It returns the total number of cores
* starting from bus 'sbba', inclusive.
*/
static void BCMINITFN(sb_scan) (sb_info_t * si) {
sb_t *sbh;
uint origidx;
uint i;
bool pci;
bool pcie;
uint pciidx;
uint pcieidx;
uint pcirev;
uint pcierev;
sbh = (sb_t *) si;
/* numcores should already be set */
ASSERT((si->numcores > 0) && (si->numcores <= SB_MAXCORES));
/* save current core index */
origidx = sb_coreidx(&si->sb);
si->sb.buscorerev = NOREV;
si->sb.buscoreidx = BADIDX;
si->gpioidx = BADIDX;
pci = pcie = FALSE;
pcirev = pcierev = NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < si->numcores; i++) {
sb_setcoreidx(&si->sb, i);
si->coreid[i] = sb_coreid(&si->sb);
if (si->coreid[i] == SB_PCI) {
pciidx = i;
pcirev = sb_corerev(&si->sb);
pci = TRUE;
} else if (si->coreid[i] == SB_PCIE) {
pcieidx = i;
pcierev = sb_corerev(&si->sb);
pcie = TRUE;
} else if (si->coreid[i] == SB_PCMCIA) {
si->sb.buscorerev = sb_corerev(&si->sb);
si->sb.buscoretype = si->coreid[i];
si->sb.buscoreidx = i;
}
}
if (pci && pcie) {
if (sb_ispcie(si))
pci = FALSE;
else
pcie = FALSE;
}
if (pci) {
si->sb.buscoretype = SB_PCI;
si->sb.buscorerev = pcirev;
si->sb.buscoreidx = pciidx;
} else if (pcie) {
si->sb.buscoretype = SB_PCIE;
si->sb.buscorerev = pcierev;
si->sb.buscoreidx = pcieidx;
}
/*
* Find the gpio "controlling core" type and index.
* Precedence:
* - if there's a chip common core - use that
* - else if there's a pci core (rev >= 2) - use that
* - else there had better be an extif core (4710 only)
*/
if (GOODIDX(sb_findcoreidx(sbh, SB_CC, 0))) {
si->gpioidx = sb_findcoreidx(sbh, SB_CC, 0);
si->gpioid = SB_CC;
} else if (PCI(si) && (si->sb.buscorerev >= 2)) {
si->gpioidx = si->sb.buscoreidx;
si->gpioid = SB_PCI;
} else if (sb_findcoreidx(sbh, SB_EXTIF, 0)) {
si->gpioidx = sb_findcoreidx(sbh, SB_EXTIF, 0);
si->gpioid = SB_EXTIF;
} else
ASSERT(si->gpioidx != BADIDX);
/* return to original core index */
sb_setcoreidx(&si->sb, origidx);
}
/* may be called with core in reset */
void sb_detach(sb_t * sbh)
{
sb_info_t *si;
uint idx;
si = SB_INFO(sbh);
if (si == NULL)
return;
if (BUSTYPE(si->sb.bustype) == SB_BUS)
for (idx = 0; idx < SB_MAXCORES; idx++)
if (si->regs[idx]) {
REG_UNMAP(si->regs[idx]);
si->regs[idx] = NULL;
}
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
if (si != &ksi)
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
MFREE(si->osh, si, sizeof(sb_info_t));
}
/* convert chip number to number of i/o cores */
static uint BCMINITFN(sb_chip2numcores) (uint chip) {
if (chip == BCM4710_CHIP_ID)
return (9);
if (chip == BCM4402_CHIP_ID)
return (3);
if (chip == BCM4306_CHIP_ID) /* < 4306c0 */
return (6);
if (chip == BCM4704_CHIP_ID)
return (9);
if (chip == BCM5365_CHIP_ID)
return (7);
if (chip == SDIOH_FPGA_ID)
return (2);
SB_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip));
ASSERT(0);
return (1);
}
/* return index of coreid or BADIDX if not found */
uint sb_findcoreidx(sb_t * sbh, uint coreid, uint coreunit)
{
sb_info_t *si;
uint found;
uint i;
si = SB_INFO(sbh);
found = 0;
for (i = 0; i < si->numcores; i++)
if (si->coreid[i] == coreid) {
if (found == coreunit)
return (i);
found++;
}
return (BADIDX);
}
/*
* this function changes logical "focus" to the indiciated core,
* must be called with interrupt off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void *sb_setcoreidx(sb_t * sbh, uint coreidx)
{
sb_info_t *si;
uint32 sbaddr;
uint8 tmp;
si = SB_INFO(sbh);
if (coreidx >= si->numcores)
return (NULL);
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((si->intrsenabled_fn == NULL)
|| !(*(si)->intrsenabled_fn) ((si)->intr_arg));
sbaddr = SB_ENUM_BASE + (coreidx * SB_CORE_SIZE);
switch (BUSTYPE(si->sb.bustype)) {
case SB_BUS:
/* map new one */
if (!si->regs[coreidx]) {
si->regs[coreidx] =
(void *)REG_MAP(sbaddr, SB_CORE_SIZE);
ASSERT(GOODREGS(si->regs[coreidx]));
}
si->curmap = si->regs[coreidx];
break;
case PCI_BUS:
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, 4, sbaddr);
break;
case PCMCIA_BUS:
tmp = (sbaddr >> 12) & 0x0f;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
tmp = (sbaddr >> 16) & 0xff;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
tmp = (sbaddr >> 24) & 0xff;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
break;
#ifdef BCMJTAG
case JTAG_BUS:
/* map new one */
if (!si->regs[coreidx]) {
si->regs[coreidx] = (void *)sbaddr;
ASSERT(GOODREGS(si->regs[coreidx]));
}
si->curmap = si->regs[coreidx];
break;
#endif /* BCMJTAG */
}
si->curidx = coreidx;
return (si->curmap);
}
/*
* this function changes logical "focus" to the indiciated core,
* must be called with interrupt off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void *sb_setcore(sb_t * sbh, uint coreid, uint coreunit)
{
uint idx;
idx = sb_findcoreidx(sbh, coreid, coreunit);
if (!GOODIDX(idx))
return (NULL);
return (sb_setcoreidx(sbh, idx));
}
/* return chip number */
uint BCMINITFN(sb_chip) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chip);
}
/* return chip revision number */
uint BCMINITFN(sb_chiprev) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chiprev);
}
/* return chip common revision number */
uint BCMINITFN(sb_chipcrev) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.ccrev);
}
/* return chip package option */
uint BCMINITFN(sb_chippkg) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.chippkg);
}
/* return PCI core rev. */
uint BCMINITFN(sb_pcirev) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
bool BCMINITFN(sb_war16165) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (PCI(si) && (si->sb.buscorerev <= 10));
}
static void BCMINITFN(sb_war30841) (sb_info_t * si) {
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128);
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100);
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466);
}
/* return PCMCIA core rev. */
uint BCMINITFN(sb_pcmciarev) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
/* return board vendor id */
uint BCMINITFN(sb_boardvendor) (sb_t * sbh) {
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.boardvendor);
}
/* return boardtype */
uint BCMINITFN(sb_boardtype) (sb_t * sbh) {
sb_info_t *si;
char *var;
si = SB_INFO(sbh);
if (BUSTYPE(si->sb.bustype) == SB_BUS && si->sb.boardtype == 0xffff) {
/* boardtype format is a hex string */
si->sb.boardtype = getintvar(NULL, "boardtype");
/* backward compatibility for older boardtype string format */
if ((si->sb.boardtype == 0)
&& (var = getvar(NULL, "boardtype"))) {
if (!strcmp(var, "bcm94710dev"))
si->sb.boardtype = BCM94710D_BOARD;
else if (!strcmp(var, "bcm94710ap"))
si->sb.boardtype = BCM94710AP_BOARD;
else if (!strcmp(var, "bu4710"))
si->sb.boardtype = BU4710_BOARD;
else if (!strcmp(var, "bcm94702mn"))
si->sb.boardtype = BCM94702MN_BOARD;
else if (!strcmp(var, "bcm94710r1"))
si->sb.boardtype = BCM94710R1_BOARD;
else if (!strcmp(var, "bcm94710r4"))
si->sb.boardtype = BCM94710R4_BOARD;
else if (!strcmp(var, "bcm94702cpci"))
si->sb.boardtype = BCM94702CPCI_BOARD;
else if (!strcmp(var, "bcm95380_rr"))
si->sb.boardtype = BCM95380RR_BOARD;
}
}
return (si->sb.boardtype);
}
/* return bus type of sbh device */
uint sb_bus(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.bustype);
}
/* return bus core type */
uint sb_buscoretype(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscoretype);
}
/* return bus core revision */
uint sb_buscorerev(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (si->sb.buscorerev);
}
/* return list of found cores */
uint sb_corelist(sb_t * sbh, uint coreid[])
{
sb_info_t *si;
si = SB_INFO(sbh);
bcopy((uchar *) si->coreid, (uchar *) coreid,
(si->numcores * sizeof(uint)));
return (si->numcores);
}
/* return current register mapping */
void *sb_coreregs(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
return (si->curmap);
}
#if defined(BCMDBG_ASSERT)
/* traverse all cores to find and clear source of serror */
static void sb_serr_clear(sb_info_t * si)
{
sbconfig_t *sb;
uint origidx;
uint i, intr_val = 0;
void *corereg = NULL;
INTR_OFF(si, intr_val);
origidx = sb_coreidx(&si->sb);
for (i = 0; i < si->numcores; i++) {
corereg = sb_setcoreidx(&si->sb, i);
if (NULL != corereg) {
sb = REGS2SB(corereg);
if ((R_SBREG(si, &sb->sbtmstatehigh)) & SBTMH_SERR) {
AND_SBREG(si, &sb->sbtmstatehigh, ~SBTMH_SERR);
SB_ERROR(("sb_serr_clear: SError at core 0x%x\n", sb_coreid(&si->sb)));
}
}
}
sb_setcoreidx(&si->sb, origidx);
INTR_RESTORE(si, intr_val);
}
/*
* Check if any inband, outband or timeout errors has happened and clear them.
* Must be called with chip clk on !
*/
bool sb_taclear(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
uint origidx;
uint intr_val = 0;
bool rc = FALSE;
uint32 inband = 0, serror = 0, timeout = 0;
void *corereg = NULL;
volatile uint32 imstate, tmstate;
si = SB_INFO(sbh);
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
volatile uint32 stcmd;
/* inband error is Target abort for PCI */
stcmd =
OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_CMD, sizeof(uint32));
inband = stcmd & PCI_CFG_CMD_STAT_TA;
if (inband) {
#ifdef BCMDBG
SB_ERROR(("inband:\n"));
sb_viewall((void *)si);
#endif
OSL_PCI_WRITE_CONFIG(si->osh, PCI_CFG_CMD,
sizeof(uint32), stcmd);
}
/* serror */
stcmd =
OSL_PCI_READ_CONFIG(si->osh, PCI_INT_STATUS,
sizeof(uint32));
serror = stcmd & PCI_SBIM_STATUS_SERR;
if (serror) {
#ifdef BCMDBG
SB_ERROR(("serror:\n"));
sb_viewall((void *)si);
#endif
sb_serr_clear(si);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_STATUS,
sizeof(uint32), stcmd);
}
/* timeout */
imstate = sb_corereg(sbh, si->sb.buscoreidx,
SBCONFIGOFF + OFFSETOF(sbconfig_t,
sbimstate), 0, 0);
if ((imstate != 0xffffffff) && (imstate & (SBIM_IBE | SBIM_TO))) {
sb_corereg(sbh, si->sb.buscoreidx,
SBCONFIGOFF + OFFSETOF(sbconfig_t,
sbimstate), ~0,
(imstate & ~(SBIM_IBE | SBIM_TO)));
/* inband = imstate & SBIM_IBE; same as TA above */
timeout = imstate & SBIM_TO;
if (timeout) {
#ifdef BCMDBG
SB_ERROR(("timeout:\n"));
sb_viewall((void *)si);
#endif
}
}
if (inband) {
/* dump errlog for sonics >= 2.3 */
if (si->sb.sonicsrev == SONICS_2_2) ;
else {
uint32 imerrlog, imerrloga;
imerrlog =
sb_corereg(sbh, si->sb.buscoreidx,
SBIMERRLOG, 0, 0);
if (imerrlog & SBTMEL_EC) {
imerrloga =
sb_corereg(sbh, si->sb.buscoreidx,
SBIMERRLOGA, 0, 0);
/* clear errlog */
sb_corereg(sbh, si->sb.buscoreidx,
SBIMERRLOG, ~0, 0);
SB_ERROR(("sb_taclear: ImErrLog 0x%x, ImErrLogA 0x%x\n", imerrlog, imerrloga));
}
}
}
} else if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
corereg = sb_setcore(sbh, SB_PCMCIA, 0);
if (NULL != corereg) {
sb = REGS2SB(corereg);
imstate = R_SBREG(si, &sb->sbimstate);
/* handle surprise removal */
if ((imstate != 0xffffffff)
&& (imstate & (SBIM_IBE | SBIM_TO))) {
AND_SBREG(si, &sb->sbimstate,
~(SBIM_IBE | SBIM_TO));
inband = imstate & SBIM_IBE;
timeout = imstate & SBIM_TO;
}
tmstate = R_SBREG(si, &sb->sbtmstatehigh);
if ((tmstate != 0xffffffff)
&& (tmstate & SBTMH_INT_STATUS)) {
if (!inband) {
serror = 1;
sb_serr_clear(si);
}
OR_SBREG(si, &sb->sbtmstatelow, SBTML_INT_ACK);
AND_SBREG(si, &sb->sbtmstatelow,
~SBTML_INT_ACK);
}
}
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
if (inband | timeout | serror) {
rc = TRUE;
SB_ERROR(("sb_taclear: inband 0x%x, serror 0x%x, timeout 0x%x!\n", inband, serror, timeout));
}
return (rc);
}
#endif /* BCMDBG */
/* do buffered registers update */
void sb_commit(sb_t * sbh)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
si = SB_INFO(sbh);
origidx = si->curidx;
ASSERT(GOODIDX(origidx));
INTR_OFF(si, intr_val);
/* switch over to chipcommon core if there is one, else use pci */
if (si->sb.ccrev != NOREV) {
chipcregs_t *ccregs = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
/* do the buffer registers update */
W_REG(si->osh, &ccregs->broadcastaddress, SB_COMMIT);
W_REG(si->osh, &ccregs->broadcastdata, 0x0);
} else if (PCI(si)) {
sbpciregs_t *pciregs =
(sbpciregs_t *) sb_setcore(sbh, SB_PCI, 0);
/* do the buffer registers update */
W_REG(si->osh, &pciregs->bcastaddr, SB_COMMIT);
W_REG(si->osh, &pciregs->bcastdata, 0x0);
} else
ASSERT(0);
/* restore core index */
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
void sb_core_reset(sb_t * sbh, uint32 bits, uint32 resetbits)
{
sb_info_t *si;
sbconfig_t *sb;
volatile uint32 dummy;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
/*
* Must do the disable sequence first to work for arbitrary current core state.
*/
sb_core_disable(sbh, (bits | resetbits));
/*
* Now do the initialization sequence.
*/
/* set reset while enabling the clock and forcing them on throughout the core */
W_SBREG(si, &sb->sbtmstatelow,
(SBTML_FGC | SBTML_CLK | SBTML_RESET | bits | resetbits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_SERR) {
W_SBREG(si, &sb->sbtmstatehigh, 0);
}
if ((dummy = R_SBREG(si, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
AND_SBREG(si, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
}
/* clear reset and allow it to propagate throughout the core */
W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | bits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
/* leave clock enabled */
W_SBREG(si, &sb->sbtmstatelow, (SBTML_CLK | bits));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
}
void sb_core_tofixup(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
if ((BUSTYPE(si->sb.bustype) != PCI_BUS) || PCIE(si) ||
(PCI(si) && (si->sb.buscorerev >= 5)))
return;
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
if (BUSTYPE(si->sb.bustype) == SB_BUS) {
SET_SBREG(si, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x5 << SBIMCL_RTO_SHIFT) | 0x3);
} else {
if (sb_coreid(sbh) == SB_PCI) {
SET_SBREG(si, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
} else {
SET_SBREG(si, &sb->sbimconfiglow,
(SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0);
}
}
sb_commit(sbh);
}
/*
* Set the initiator timeout for the "master core".
* The master core is defined to be the core in control
* of the chip and so it issues accesses to non-memory
* locations (Because of dma *any* core can access memeory).
*
* The routine uses the bus to decide who is the master:
* SB_BUS => mips
* JTAG_BUS => chipc
* PCI_BUS => pci or pcie
* PCMCIA_BUS => pcmcia
* SDIO_BUS => pcmcia
*
* This routine exists so callers can disable initiator
* timeouts so accesses to very slow devices like otp
* won't cause an abort. The routine allows arbitrary
* settings of the service and request timeouts, though.
*
* Returns the timeout state before changing it or -1
* on error.
*/
#define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK)
uint32 sb_set_initiator_to(sb_t * sbh, uint32 to, uint idx)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
uint32 tmp, ret = 0xffffffff;
sbconfig_t *sb;
si = SB_INFO(sbh);
if ((to & ~TO_MASK) != 0)
return ret;
/* Figure out the master core */
if (idx == BADIDX) {
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
idx = si->sb.buscoreidx;
break;
case JTAG_BUS:
idx = SB_CC_IDX;
break;
case PCMCIA_BUS:
case SDIO_BUS:
idx = sb_findcoreidx(sbh, SB_PCMCIA, 0);
break;
case SB_BUS:
if ((idx = sb_findcoreidx(sbh, SB_MIPS33, 0)) == BADIDX)
idx = sb_findcoreidx(sbh, SB_MIPS, 0);
break;
default:
ASSERT(0);
}
if (idx == BADIDX)
return ret;
}
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
sb = REGS2SB(sb_setcoreidx(sbh, idx));
tmp = R_SBREG(si, &sb->sbimconfiglow);
ret = tmp & TO_MASK;
W_SBREG(si, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);
sb_commit(sbh);
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return ret;
}
void sb_core_disable(sb_t * sbh, uint32 bits)
{
sb_info_t *si;
volatile uint32 dummy;
uint32 rej;
sbconfig_t *sb;
si = SB_INFO(sbh);
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
/* if core is already in reset, just return */
if (R_SBREG(si, &sb->sbtmstatelow) & SBTML_RESET)
return;
/* reject value changed between sonics 2.2 and 2.3 */
if (si->sb.sonicsrev == SONICS_2_2)
rej = (1 << SBTML_REJ_SHIFT);
else
rej = (2 << SBTML_REJ_SHIFT);
/* if clocks are not enabled, put into reset and return */
if ((R_SBREG(si, &sb->sbtmstatelow) & SBTML_CLK) == 0)
goto disable;
/* set target reject and spin until busy is clear (preserve core-specific bits) */
OR_SBREG(si, &sb->sbtmstatelow, rej);
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(1);
SPINWAIT((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY)
SB_ERROR(("%s: target state still busy\n", __FUNCTION__));
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) {
OR_SBREG(si, &sb->sbimstate, SBIM_RJ);
dummy = R_SBREG(si, &sb->sbimstate);
OSL_DELAY(1);
SPINWAIT((R_SBREG(si, &sb->sbimstate) & SBIM_BY), 100000);
}
/* set reset and reject while enabling the clocks */
W_SBREG(si, &sb->sbtmstatelow,
(bits | SBTML_FGC | SBTML_CLK | rej | SBTML_RESET));
dummy = R_SBREG(si, &sb->sbtmstatelow);
OSL_DELAY(10);
/* don't forget to clear the initiator reject bit */
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT)
AND_SBREG(si, &sb->sbimstate, ~SBIM_RJ);
disable:
/* leave reset and reject asserted */
W_SBREG(si, &sb->sbtmstatelow, (bits | rej | SBTML_RESET));
OSL_DELAY(1);
}
/* set chip watchdog reset timer to fire in 'ticks' backplane cycles */
void sb_watchdog(sb_t * sbh, uint ticks)
{
sb_info_t *si = SB_INFO(sbh);
/* make sure we come up in fast clock mode; or if clearing, clear clock */
if (ticks)
sb_clkctl_clk(sbh, CLK_FAST);
else
sb_clkctl_clk(sbh, CLK_DYNAMIC);
if (sbh->chip == BCM4328_CHIP_ID && ticks != 0)
sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, min_res_mask),
PMURES_BIT(RES4328_ROM_SWITCH),
PMURES_BIT(RES4328_ROM_SWITCH));
/* instant NMI */
switch (si->gpioid) {
case SB_CC:
sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0,
ticks);
break;
case SB_EXTIF:
sb_corereg(sbh, si->gpioidx, OFFSETOF(extifregs_t, watchdog),
~0, ticks);
break;
}
}
/* initialize the pcmcia core */
void sb_pcmcia_init(sb_t * sbh)
{
sb_info_t *si;
uint8 cor = 0;
si = SB_INFO(sbh);
/* enable d11 mac interrupts */
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
cor |= COR_IRQEN | COR_FUNEN;
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
}
void BCMINITFN(sb_pci_up) (sb_t * sbh) {
sb_info_t *si = SB_INFO(sbh);
if (si->gpioid == SB_EXTIF)
return;
/* if not pci bus, we're done */
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
return;
if (FORCEHT_WAR32414(si))
sb_war32414_forceHT(sbh, 1);
if (PCIE_ASPMWARS(si) || si->sb.pr42780)
sb_pcieclkreq(sbh, 1, 0);
if (PCIE(si) &&
(((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) ||
((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0))))
sb_set_initiator_to((void *)si, 0x3,
sb_findcoreidx((void *)si, SB_D11, 0));
}
/* Unconfigure and/or apply various WARs when system is going to sleep mode */
void BCMUNINITFN(sb_pci_sleep) (sb_t * sbh) {
sb_info_t *si = SB_INFO(sbh);
if (si->gpioid == SB_EXTIF)
return;
uint32 w;
/* if not pci bus, we're done */
if (!PCIE(si) || !PCIE_ASPMWARS(si))
return;
w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
sizeof(uint32));
w &= ~PCIE_CAP_LCREG_ASPML1;
OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32),
w);
}
/* Unconfigure and/or apply various WARs when going down */
void BCMINITFN(sb_pci_down) (sb_t * sbh) {
sb_info_t *si = SB_INFO(sbh);
if (si->gpioid == SB_EXTIF)
return;
/* if not pci bus, we're done */
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
return;
if (FORCEHT_WAR32414(si))
sb_war32414_forceHT(sbh, 0);
if (si->pr42767_war) {
sb_pcieclkreq(sbh, 1, 1);
si->pr42767_war = FALSE;
} else if (si->sb.pr42780) {
sb_pcieclkreq(sbh, 1, 1);
}
}
static void BCMINITFN(sb_war42767_clkreq) (sb_t * sbh) {
sbpcieregs_t *pcieregs;
uint16 val16, *reg16;
sb_info_t *si;
si = SB_INFO(sbh);
/* if not pcie bus, we're done */
if (!PCIE(si) || !PCIE_ASPMWARS(si))
return;
pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET];
val16 = R_REG(si->osh, reg16);
/* if clockreq is not advertized advertize it */
if (!si->pcie_war_ovr) {
val16 |= SRSH_CLKREQ_ENB;
si->pr42767_war = TRUE;
si->sb.pr42780 = TRUE;
} else
val16 &= ~SRSH_CLKREQ_ENB;
W_REG(si->osh, reg16, val16);
}
static void BCMINITFN(sb_war42767) (sb_t * sbh) {
uint32 w = 0;
sb_info_t *si;
si = SB_INFO(sbh);
/* if not pcie bus, we're done */
if (!PCIE(si) || !PCIE_ASPMWARS(si))
return;
sb_pcie_mdioread(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, &w);
if (w & PLL_CTRL_FREQDET_EN) {
w &= ~PLL_CTRL_FREQDET_EN;
sb_pcie_mdiowrite(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, w);
}
}
/*
* Configure the pci core for pci client (NIC) action
* coremask is the bitvec of cores by index to be enabled.
*/
void BCMINITFN(sb_pci_setup) (sb_t * sbh, uint coremask) {
sb_info_t *si;
sbconfig_t *sb;
sbpciregs_t *pciregs;
uint32 sbflag;
uint32 w;
uint idx;
si = SB_INFO(sbh);
/* if not pci bus, we're done */
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
return;
ASSERT(PCI(si) || PCIE(si));
ASSERT(si->sb.buscoreidx != BADIDX);
/* get current core index */
idx = si->curidx;
/* we interrupt on this backplane flag number */
ASSERT(GOODREGS(si->curmap));
sb = REGS2SB(si->curmap);
sbflag = R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
/* switch over to pci core */
pciregs = (sbpciregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
sb = REGS2SB(pciregs);
/*
* Enable sb->pci interrupts. Assume
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
*/
if (PCIE(si) || (PCI(si) && ((si->sb.buscorerev) >= 6))) {
/* pci config write to set this core bit in PCIIntMask */
w = OSL_PCI_READ_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32));
w |= (coremask << PCI_SBIM_SHIFT);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32), w);
} else {
/* set sbintvec bit for our flag number */
OR_SBREG(si, &sb->sbintvec, (1 << sbflag));
}
if (PCI(si)) {
OR_REG(si->osh, &pciregs->sbtopci2,
(SBTOPCI_PREF | SBTOPCI_BURST));
if (si->sb.buscorerev >= 11)
OR_REG(si->osh, &pciregs->sbtopci2,
SBTOPCI_RC_READMULTI);
if (si->sb.buscorerev < 5) {
SET_SBREG(si, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
sb_commit(sbh);
}
}
/* PCIE workarounds */
if (PCIE(si)) {
if ((si->sb.buscorerev == 0) || (si->sb.buscorerev == 1)) {
w = sb_pcie_readreg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_TLP_WORKAROUNDSREG);
w |= 0x8;
sb_pcie_writereg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_TLP_WORKAROUNDSREG, w);
}
if (si->sb.buscorerev == 1) {
w = sb_pcie_readreg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_DLLP_LCREG);
w |= (0x40);
sb_pcie_writereg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_DLLP_LCREG, w);
}
if (si->sb.buscorerev == 0)
sb_war30841(si);
if ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5)) {
w = sb_pcie_readreg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_DLLP_PMTHRESHREG);
w &= ~(PCIE_L1THRESHOLDTIME_MASK);
w |= (PCIE_L1THRESHOLD_WARVAL <<
PCIE_L1THRESHOLDTIME_SHIFT);
sb_pcie_writereg((void *)(uintptr) sbh,
(void *)(uintptr) PCIE_PCIEREGS,
PCIE_DLLP_PMTHRESHREG, w);
sb_war43448(sbh);
sb_war42767(sbh);
sb_war43448_aspm(sbh);
sb_war42767_clkreq(sbh);
}
}
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
}
uint32 sb_base(uint32 admatch)
{
uint32 base;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
base = 0;
if (type == 0) {
base = admatch & SBAM_BASE0_MASK;
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE1_MASK;
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE2_MASK;
}
return (base);
}
uint32 sb_size(uint32 admatch)
{
uint32 size;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
size = 0;
if (type == 0) {
size =
1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) +
1);
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size =
1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) +
1);
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size =
1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) +
1);
}
return (size);
}
/* return the core-type instantiation # of the current core */
uint sb_coreunit(sb_t * sbh)
{
sb_info_t *si;
uint idx;
uint coreid;
uint coreunit;
uint i;
si = SB_INFO(sbh);
coreunit = 0;
idx = si->curidx;
ASSERT(GOODREGS(si->curmap));
coreid = sb_coreid(sbh);
/* count the cores of our type */
for (i = 0; i < idx; i++)
if (si->coreid[i] == coreid)
coreunit++;
return (coreunit);
}
static uint32 BCMINITFN(factor6) (uint32 x) {
switch (x) {
case CC_F6_2:
return 2;
case CC_F6_3:
return 3;
case CC_F6_4:
return 4;
case CC_F6_5:
return 5;
case CC_F6_6:
return 6;
case CC_F6_7:
return 7;
default:
return 0;
}
}
/* calculate the speed the SB would run at given a set of clockcontrol values */
uint32 BCMINITFN(sb_clock_rate) (uint32 pll_type, uint32 n, uint32 m) {
uint32 n1, n2, clock, m1, m2, m3, mc;
n1 = n & CN_N1_MASK;
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
if (pll_type == PLL_TYPE6) {
if (m & CC_T6_MMASK)
return CC_T6_M1;
else
return CC_T6_M0;
} else if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
n1 = factor6(n1);
n2 += CC_F5_BIAS;
} else if (pll_type == PLL_TYPE2) {
n1 += CC_T2_BIAS;
n2 += CC_T2_BIAS;
ASSERT((n1 >= 2) && (n1 <= 7));
ASSERT((n2 >= 5) && (n2 <= 23));
} else if (pll_type == PLL_TYPE5) {
return (100000000);
} else
ASSERT(0);
/* PLL types 3 and 7 use BASE2 (25Mhz) */
if ((pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE7)) {
clock = CC_CLOCK_BASE2 * n1 * n2;
} else
clock = CC_CLOCK_BASE1 * n1 * n2;
if (clock == 0)
return 0;
m1 = m & CC_M1_MASK;
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
m1 = factor6(m1);
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
m2 += CC_F5_BIAS;
else
m2 = factor6(m2);
m3 = factor6(m3);
switch (mc) {
case CC_MC_BYPASS:
return (clock);
case CC_MC_M1:
return (clock / m1);
case CC_MC_M1M2:
return (clock / (m1 * m2));
case CC_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case CC_MC_M1M3:
return (clock / (m1 * m3));
default:
return (0);
}
} else {
ASSERT(pll_type == PLL_TYPE2);
m1 += CC_T2_BIAS;
m2 += CC_T2M2_BIAS;
m3 += CC_T2_BIAS;
ASSERT((m1 >= 2) && (m1 <= 7));
ASSERT((m2 >= 3) && (m2 <= 10));
ASSERT((m3 >= 2) && (m3 <= 7));
if ((mc & CC_T2MC_M1BYP) == 0)
clock /= m1;
if ((mc & CC_T2MC_M2BYP) == 0)
clock /= m2;
if ((mc & CC_T2MC_M3BYP) == 0)
clock /= m3;
return (clock);
}
}
/* returns the current speed the SB is running at */
uint32 BCMINITFN(sb_clock) (sb_t * sbh) {
sb_info_t *si;
extifregs_t *eir;
chipcregs_t *cc;
uint32 n, m;
uint idx;
uint32 cap, pll_type, rate;
uint intr_val = 0;
si = SB_INFO(sbh);
idx = si->curidx;
pll_type = PLL_TYPE1;
INTR_OFF(si, intr_val);
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
n = R_REG(si->osh, &eir->clockcontrol_n);
m = R_REG(si->osh, &eir->clockcontrol_sb);
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
cap = R_REG(si->osh, &cc->capabilities);
if (cap & CC_CAP_PMU) {
if (sb_chip(sbh) == BCM5354_CHIP_ID) {
/* 5354 has a constant sb clock of 120MHz */
rate = 120000000;
goto end;
} else
if (sb_chip(sbh) == BCM4328_CHIP_ID) {
rate = 80000000;
goto end;
} else
ASSERT(0);
}
pll_type = cap & CC_CAP_PLL_MASK;
if (pll_type == PLL_NONE) {
INTR_RESTORE(si, intr_val);
return 80000000;
}
n = R_REG(si->osh, &cc->clockcontrol_n);
if (pll_type == PLL_TYPE6)
m = R_REG(si->osh, &cc->clockcontrol_m3);
else if (pll_type == PLL_TYPE3
&& !(BCMINIT(sb_chip) (sbh) == 0x5365))
m = R_REG(si->osh, &cc->clockcontrol_m2);
else
m = R_REG(si->osh, &cc->clockcontrol_sb);
} else {
INTR_RESTORE(si, intr_val);
return 0;
}
/* calculate rate */
if (BCMINIT(sb_chip) (sbh) == 0x5365)
rate = 100000000;
else {
rate = sb_clock_rate(pll_type, n, m);
if (pll_type == PLL_TYPE3)
rate = rate / 2;
}
end:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
INTR_RESTORE(si, intr_val);
return rate;
}
uint32 BCMINITFN(sb_alp_clock) (sb_t * sbh) {
uint32 clock = ALP_CLOCK;
if (sbh->cccaps & CC_CAP_PMU)
clock = sb_pmu_alp_clock(sbh, sb_osh(sbh));
return clock;
}
/* change logical "focus" to the gpio core for optimized access */
void *sb_gpiosetcore(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return (sb_setcoreidx(sbh, si->gpioidx));
}
/* mask&set gpiocontrol bits */
uint32 sb_gpiocontrol(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpiocontrol);
break;
case SB_EXTIF:
return (0);
}
return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio output enable bits */
uint32 sb_gpioouten(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioouten);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioouten);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpio[0].outen);
break;
}
return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio output bits */
uint32 sb_gpioout(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioout);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioout);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpio[0].out);
break;
}
return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
}
/* reserve one gpio */
uint32 sb_gpioreserve(sb_t * sbh, uint32 gpio_bitmask, uint8 priority)
{
sb_info_t *si;
si = SB_INFO(sbh);
/* only cores on SB_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
return -1;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask)
&& !((gpio_bitmask) & (gpio_bitmask - 1)));
return -1;
}
/* already reserved */
if (sb_gpioreservation & gpio_bitmask)
return -1;
/* set reservation */
sb_gpioreservation |= gpio_bitmask;
return sb_gpioreservation;
}
/* release one gpio */
/*
* releasing the gpio doesn't change the current value on the GPIO last write value
* persists till some one overwrites it
*/
uint32 sb_gpiorelease(sb_t * sbh, uint32 gpio_bitmask, uint8 priority)
{
sb_info_t *si;
si = SB_INFO(sbh);
/* only cores on SB_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
return -1;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask)
&& !((gpio_bitmask) & (gpio_bitmask - 1)));
return -1;
}
/* already released */
if (!(sb_gpioreservation & gpio_bitmask))
return -1;
/* clear reservation */
sb_gpioreservation &= ~gpio_bitmask;
return sb_gpioreservation;
}
/* return the current gpioin register value */
uint32 sb_gpioin(sb_t * sbh)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpioin);
break;
case SB_PCI:
regoff = OFFSETOF(sbpciregs_t, gpioin);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpioin);
break;
}
return (sb_corereg(sbh, si->gpioidx, regoff, 0, 0));
}
/* mask&set gpio interrupt polarity bits */
uint32 sb_gpiointpolarity(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
break;
case SB_PCI:
/* pci gpio implementation does not support interrupt polarity */
ASSERT(0);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpiointpolarity);
break;
}
return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
}
/* mask&set gpio interrupt mask bits */
uint32 sb_gpiointmask(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
{
sb_info_t *si;
uint regoff;
si = SB_INFO(sbh);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
mask = priority ? (sb_gpioreservation & mask) :
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
val &= mask;
}
switch (si->gpioid) {
case SB_CC:
regoff = OFFSETOF(chipcregs_t, gpiointmask);
break;
case SB_PCI:
/* pci gpio implementation does not support interrupt mask */
ASSERT(0);
break;
case SB_EXTIF:
regoff = OFFSETOF(extifregs_t, gpiointmask);
break;
}
return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
}
/* assign the gpio to an led */
uint32 sb_gpioled(sb_t * sbh, uint32 mask, uint32 val)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->sb.ccrev < 16)
return -1;
/* gpio led powersave reg */
return (sb_corereg
(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask,
val));
}
/* mask&set gpio timer val */
uint32 sb_gpiotimerval(sb_t * sbh, uint32 mask, uint32 gpiotimerval)
{
sb_info_t *si;
si = SB_INFO(sbh);
if (si->sb.ccrev < 16)
return -1;
return (sb_corereg(sbh, SB_CC_IDX,
OFFSETOF(chipcregs_t, gpiotimerval), mask,
gpiotimerval));
}
uint32 sb_gpiopull(sb_t * sbh, bool updown, uint32 mask, uint32 val)
{
sb_info_t *si;
uint offs;
si = SB_INFO(sbh);
if (si->sb.ccrev < 20)
return -1;
offs =
(updown ? OFFSETOF(chipcregs_t, gpiopulldown) :
OFFSETOF(chipcregs_t, gpiopullup));
return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val));
}
uint32 sb_gpioevent(sb_t * sbh, uint regtype, uint32 mask, uint32 val)
{
sb_info_t *si;
uint offs;
si = SB_INFO(sbh);
if (si->sb.ccrev < 11)
return -1;
if (regtype == GPIO_REGEVT)
offs = OFFSETOF(chipcregs_t, gpioevent);
else if (regtype == GPIO_REGEVT_INTMSK)
offs = OFFSETOF(chipcregs_t, gpioeventintmask);
else if (regtype == GPIO_REGEVT_INTPOL)
offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
else
return -1;
return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val));
}
void *BCMINITFN(sb_gpio_handler_register) (sb_t * sbh, uint32 event,
bool level, gpio_handler_t cb,
void *arg) {
sb_info_t *si;
gpioh_item_t *gi;
ASSERT(event);
ASSERT(cb);
si = SB_INFO(sbh);
if (si->sb.ccrev < 11)
return NULL;
if ((gi = MALLOC(si->osh, sizeof(gpioh_item_t))) == NULL)
return NULL;
bzero(gi, sizeof(gpioh_item_t));
gi->event = event;
gi->handler = cb;
gi->arg = arg;
gi->level = level;
gi->next = si->gpioh_head;
si->gpioh_head = gi;
return (void *)(gi);
}
void BCMINITFN(sb_gpio_handler_unregister) (sb_t * sbh, void *gpioh) {
sb_info_t *si;
gpioh_item_t *p, *n;
si = SB_INFO(sbh);
if (si->sb.ccrev < 11)
return;
ASSERT(si->gpioh_head);
if ((void *)si->gpioh_head == gpioh) {
si->gpioh_head = si->gpioh_head->next;
MFREE(si->osh, gpioh, sizeof(gpioh_item_t));
return;
} else {
p = si->gpioh_head;
n = p->next;
while (n) {
if ((void *)n == gpioh) {
p->next = n->next;
MFREE(si->osh, gpioh, sizeof(gpioh_item_t));
return;
}
p = n;
n = n->next;
}
}
ASSERT(0); /* Not found in list */
}
void sb_gpio_handler_process(sb_t * sbh)
{
sb_info_t *si;
gpioh_item_t *h;
uint32 status;
uint32 level = sb_gpioin(sbh);
uint32 edge = sb_gpioevent(sbh, GPIO_REGEVT, 0, 0);
si = SB_INFO(sbh);
for (h = si->gpioh_head; h != NULL; h = h->next) {
if (h->handler) {
status = (h->level ? level : edge);
if (status & h->event)
h->handler(status, h->arg);
}
}
sb_gpioevent(sbh, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
}
uint32 sb_gpio_int_enable(sb_t * sbh, bool enable)
{
sb_info_t *si;
uint offs;
si = SB_INFO(sbh);
if (si->sb.ccrev < 11)
return -1;
offs = OFFSETOF(chipcregs_t, intmask);
return (sb_corereg
(sbh, SB_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
}
#ifdef BCMDBG
void sb_dump(sb_t * sbh, struct bcmstrbuf *b)
{
sb_info_t *si;
uint i;
si = SB_INFO(sbh);
bcm_bprintf(b,
"si %p chip 0x%x chiprev 0x%x boardtype 0x%x boardvendor 0x%x bus %d\n",
si, si->sb.chip, si->sb.chiprev, si->sb.boardtype,
si->sb.boardvendor, si->sb.bustype);
bcm_bprintf(b, "osh %p curmap %p\n", si->osh, si->curmap);
bcm_bprintf(b,
"sonicsrev %d ccrev %d buscoretype 0x%x buscorerev %d curidx %d\n",
si->sb.sonicsrev, si->sb.ccrev, si->sb.buscoretype,
si->sb.buscorerev, si->curidx);
bcm_bprintf(b, "forceHT %d ASPM overflowPR42780 %d pcie_polarity %d\n",
si->sb.pr32414, si->sb.pr42780, si->pcie_polarity);
bcm_bprintf(b, "cores: ");
for (i = 0; i < si->numcores; i++)
bcm_bprintf(b, "0x%x ", si->coreid[i]);
bcm_bprintf(b, "\n");
}
/* print interesting sbconfig registers */
void sb_dumpregs(sb_t * sbh, struct bcmstrbuf *b)
{
sb_info_t *si;
sbconfig_t *sb;
uint origidx;
uint curidx, i, intr_val = 0;
si = SB_INFO(sbh);
origidx = si->curidx;
INTR_OFF(si, intr_val);
curidx = si->curidx;
for (i = 0; i < si->numcores; i++) {
sb = REGS2SB(sb_setcoreidx(sbh, i));
bcm_bprintf(b, "core 0x%x: \n", si->coreid[i]);
bcm_bprintf(b,
"sbtmstatelow 0x%x sbtmstatehigh 0x%x sbidhigh 0x%x "
"sbimstate 0x%x\n sbimconfiglow 0x%x sbimconfighigh 0x%x\n",
R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si,
&sb->
sbtmstatehigh),
R_SBREG(si, &sb->sbidhigh), R_SBREG(si,
&sb->sbimstate),
R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si,
&sb->
sbimconfighigh));
}
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
void sb_view(sb_t * sbh)
{
sb_info_t *si;
sbconfig_t *sb;
si = SB_INFO(sbh);
sb = REGS2SB(si->curmap);
if (si->sb.sonicsrev > SONICS_2_2)
SB_ERROR(("sbimerrlog 0x%x sbimerrloga 0x%x\n",
sb_corereg(sbh, sb_coreidx(&si->sb), SBIMERRLOG, 0,
0), sb_corereg(sbh, sb_coreidx(&si->sb),
SBIMERRLOGA, 0, 0)));
SB_ERROR(("sbipsflag 0x%x sbtpsflag 0x%x sbtmerrloga 0x%x sbtmerrlog 0x%x\n", R_SBREG(si, &sb->sbipsflag), R_SBREG(si, &sb->sbtpsflag), R_SBREG(si, &sb->sbtmerrloga), R_SBREG(si, &sb->sbtmerrlog)));
SB_ERROR(("sbadmatch3 0x%x sbadmatch2 0x%x sbadmatch1 0x%x\n",
R_SBREG(si, &sb->sbadmatch3), R_SBREG(si, &sb->sbadmatch2),
R_SBREG(si, &sb->sbadmatch1)));
SB_ERROR(("sbimstate 0x%x sbintvec 0x%x sbtmstatelow 0x%x sbtmstatehigh 0x%x\n", R_SBREG(si, &sb->sbimstate), R_SBREG(si, &sb->sbintvec), R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si, &sb->sbtmstatehigh)));
SB_ERROR(("sbbwa0 0x%x sbimconfiglow 0x%x sbimconfighigh 0x%x sbadmatch0 0x%x\n", R_SBREG(si, &sb->sbbwa0), R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si, &sb->sbimconfighigh), R_SBREG(si, &sb->sbadmatch0)));
SB_ERROR(("sbtmconfiglow 0x%x sbtmconfighigh 0x%x sbbconfig 0x%x sbbstate 0x%x\n", R_SBREG(si, &sb->sbtmconfiglow), R_SBREG(si, &sb->sbtmconfighigh), R_SBREG(si, &sb->sbbconfig), R_SBREG(si, &sb->sbbstate)));
SB_ERROR(("sbactcnfg 0x%x sbflagst 0x%x sbidlow 0x%x sbidhigh 0x%x\n",
R_SBREG(si, &sb->sbactcnfg), R_SBREG(si, &sb->sbflagst),
R_SBREG(si, &sb->sbidlow), R_SBREG(si, &sb->sbidhigh)));
}
void sb_viewall(sb_t * sbh)
{
sb_info_t *si;
uint curidx, i;
uint intr_val = 0;
si = SB_INFO(sbh);
curidx = si->curidx;
for (i = 0; i < si->numcores; i++) {
INTR_OFF(si, intr_val);
sb_setcoreidx(sbh, i);
sb_view(sbh);
INTR_RESTORE(si, intr_val);
}
sb_setcoreidx(sbh, curidx);
}
#endif /* BCMDBG */
/* return the slow clock source - LPO, XTAL, or PCI */
static uint sb_slowclk_src(sb_info_t * si)
{
chipcregs_t *cc;
ASSERT(sb_coreid(&si->sb) == SB_CC);
if (si->sb.ccrev < 6) {
if ((BUSTYPE(si->sb.bustype) == PCI_BUS) &&
(OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32))
& PCI_CFG_GPIO_SCS))
return (SCC_SS_PCI);
else
return (SCC_SS_XTAL);
} else if (si->sb.ccrev < 10) {
cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx);
return (R_REG(si->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
} else /* Insta-clock */
return (SCC_SS_XTAL);
}
/* return the ILP (slowclock) min or max frequency */
static uint sb_slowclk_freq(sb_info_t * si, bool max_freq)
{
chipcregs_t *cc;
uint32 slowclk;
uint div;
ASSERT(sb_coreid(&si->sb) == SB_CC);
cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx);
/* shouldn't be here unless we've established the chip has dynamic clk control */
ASSERT(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
slowclk = sb_slowclk_src(si);
if (si->sb.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / 64)
: (PCIMINFREQ / 64));
else
return (max_freq ? (XTALMAXFREQ / 32)
: (XTALMINFREQ / 32));
} else if (si->sb.ccrev < 10) {
div =
4 *
(((R_REG(si->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >>
SCC_CD_SHIFT)
+ 1);
if (slowclk == SCC_SS_LPO)
return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
else if (slowclk == SCC_SS_XTAL)
return (max_freq ? (XTALMAXFREQ / div)
: (XTALMINFREQ / div));
else if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / div)
: (PCIMINFREQ / div));
else
ASSERT(0);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(si->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
}
return (0);
}
static void BCMINITFN(sb_clkctl_setdelay) (sb_info_t * si, void *chipcregs) {
chipcregs_t *cc;
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
* since the xtal will also be powered down by dynamic clk control logic.
*/
slowclk = sb_slowclk_src(si);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq = sb_slowclk_freq(si, (si->sb.ccrev >= 10) ? FALSE : TRUE);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
cc = (chipcregs_t *) chipcregs;
W_REG(si->osh, &cc->pll_on_delay, pll_on_delay);
W_REG(si->osh, &cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void BCMINITFN(sb_clkctl_init) (sb_t * sbh) {
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
si = SB_INFO(sbh);
origidx = si->curidx;
if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL)
return;
if ((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev < 2))
W_REG(si->osh, &cc->chipcontrol,
(si->sb.chiprev ==
0) ? CHIPCTRL_4321A0_DEFAULT : CHIPCTRL_4321A1_DEFAULT);
if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL))
goto done;
/* set all Instaclk chip ILP to 1 MHz */
if (si->sb.ccrev >= 10)
SET_REG(si->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
sb_clkctl_setdelay(si, (void *)(uintptr) cc);
done:
sb_setcoreidx(sbh, origidx);
}
/* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */
uint16 BCMINITFN(sb_clkctl_fast_pwrup_delay) (sb_t * sbh) {
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
uint slowminfreq;
uint16 fpdelay;
uint intr_val = 0;
si = SB_INFO(sbh);
fpdelay = 0;
origidx = si->curidx;
INTR_OFF(si, intr_val);
if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL)
goto done;
if (sbh->cccaps & CC_CAP_PMU) {
fpdelay = sb_pmu_fast_pwrup_delay(sbh, si->osh);
goto done;
}
if (!(sbh->cccaps & CC_CAP_PWR_CTL))
goto done;
slowminfreq = sb_slowclk_freq(si, FALSE);
fpdelay = (((R_REG(si->osh, &cc->pll_on_delay) + 2) * 1000000) +
(slowminfreq - 1)) / slowminfreq;
done:
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return (fpdelay);
}
/* turn primary xtal and/or pll off/on */
int sb_clkctl_xtal(sb_t * sbh, uint what, bool on)
{
sb_info_t *si;
uint32 in, out, outen;
si = SB_INFO(sbh);
switch (BUSTYPE(si->sb.bustype)) {
case PCMCIA_BUS:
return (0);
case PCI_BUS:
/* pcie core doesn't have any mapping to control the xtal pu */
if (PCIE(si))
return -1;
in = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_IN, sizeof(uint32));
out =
OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32));
outen =
OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN,
sizeof(uint32));
/*
* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (on && (in & PCI_CFG_GPIO_XTAL))
return (0);
if (what & XTAL)
outen |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
outen |= PCI_CFG_GPIO_PLL;
if (on) {
/* turn primary xtal on */
if (what & XTAL) {
out |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
sizeof(uint32), outen);
OSL_DELAY(XTAL_ON_DELAY);
}
/* turn pll on */
if (what & PLL) {
out &= ~PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_DELAY(2000);
}
} else {
if (what & XTAL)
out &= ~PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32), out);
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
sizeof(uint32), outen);
}
default:
return (-1);
}
return (0);
}
/* set dynamic clk control mode (forceslow, forcefast, dynamic) */
/* returns true if we are forcing fast clock */
bool sb_clkctl_clk(sb_t * sbh, uint mode)
{
sb_info_t *si;
uint origidx;
chipcregs_t *cc;
uint32 scc;
uint intr_val = 0;
si = SB_INFO(sbh);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (si->sb.ccrev < 6)
return (FALSE);
/* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */
ASSERT(si->sb.ccrev != 10);
INTR_OFF(si, intr_val);
origidx = si->curidx;
if (sb_setcore(sbh, SB_MIPS33, 0) && (sb_corerev(&si->sb) <= 7) &&
(BUSTYPE(si->sb.bustype) == SB_BUS) && (si->sb.ccrev >= 10))
goto done;
if (FORCEHT_WAR32414(si))
goto done;
cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
ASSERT(cc != NULL);
if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL)
&& (si->sb.ccrev < 20))
goto done;
switch (mode) {
case CLK_FAST: /* force fast (pll) clock */
if (si->sb.ccrev < 10) {
/* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */
sb_clkctl_xtal(&si->sb, XTAL, ON);
SET_REG(si->osh, &cc->slow_clk_ctl,
(SCC_XC | SCC_FS | SCC_IP), SCC_IP);
} else if (si->sb.ccrev < 20) {
OR_REG(si->osh, &cc->system_clk_ctl, SYCC_HR);
} else {
OR_REG(si->osh, &cc->clk_ctl_st, CCS_FORCEHT);
}
/* wait for the PLL */
if (R_REG(si->osh, &cc->capabilities) & CC_CAP_PMU) {
SPINWAIT(((R_REG(si->osh, &cc->clk_ctl_st) &
CCS_HTAVAIL) == 0), PMU_MAX_TRANSITION_DLY);
ASSERT(R_REG(si->osh, &cc->clk_ctl_st) & CCS_HTAVAIL);
} else {
OSL_DELAY(PLL_DELAY);
}
break;
case CLK_DYNAMIC: /* enable dynamic clock control */
if (si->sb.ccrev < 10) {
scc = R_REG(si->osh, &cc->slow_clk_ctl);
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
scc |= SCC_XC;
W_REG(si->osh, &cc->slow_clk_ctl, scc);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (scc & SCC_XC)
sb_clkctl_xtal(&si->sb, XTAL, OFF);
} else if (si->sb.ccrev < 20) {
/* Instaclock */
AND_REG(si->osh, &cc->system_clk_ctl, ~SYCC_HR);
} else {
AND_REG(si->osh, &cc->clk_ctl_st, ~CCS_FORCEHT);
}
break;
default:
ASSERT(0);
}
done:
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
return (mode == CLK_FAST);
}
/* register driver interrupt disabling and restoring callback functions */
void
sb_register_intr_callback(sb_t * sbh, void *intrsoff_fn,
void *intrsrestore_fn, void *intrsenabled_fn,
void *intr_arg)
{
sb_info_t *si;
si = SB_INFO(sbh);
si->intr_arg = intr_arg;
si->intrsoff_fn = (sb_intrsoff_t) intrsoff_fn;
si->intrsrestore_fn = (sb_intrsrestore_t) intrsrestore_fn;
si->intrsenabled_fn = (sb_intrsenabled_t) intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
si->dev_coreid = si->coreid[si->curidx];
}
void sb_deregister_intr_callback(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
si->intrsoff_fn = NULL;
}
#ifdef BCMDBG
/* dump dynamic clock control related registers */
void sb_clkctl_dump(sb_t * sbh, struct bcmstrbuf *b)
{
sb_info_t *si;
chipcregs_t *cc;
uint origidx;
uint intr_val = 0;
si = SB_INFO(sbh);
INTR_OFF(si, intr_val);
origidx = si->curidx;
if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL) {
INTR_RESTORE(si, intr_val);
return;
}
if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL))
goto done;
bcm_bprintf(b, "pll_on_delay 0x%x fref_sel_delay 0x%x ",
cc->pll_on_delay, cc->fref_sel_delay);
if ((si->sb.ccrev >= 6) && (si->sb.ccrev < 10))
bcm_bprintf(b, "slow_clk_ctl 0x%x ", cc->slow_clk_ctl);
if (si->sb.ccrev >= 10) {
bcm_bprintf(b, "system_clk_ctl 0x%x ", cc->system_clk_ctl);
bcm_bprintf(b, "clkstatestretch 0x%x ", cc->clkstatestretch);
}
if (BUSTYPE(si->sb.bustype) == PCI_BUS)
bcm_bprintf(b, "gpioout 0x%x gpioouten 0x%x ",
OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT,
sizeof(uint32)),
OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN,
sizeof(uint32)));
bcm_bprintf(b, "\n");
done:
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
#endif /* BCMDBG */
uint16 BCMINITFN(sb_d11_devid) (sb_t * sbh) {
sb_info_t *si = SB_INFO(sbh);
uint16 device;
#if defined(BCM4328)
/* Fix device id for dual band BCM4328 */
if (sbh->chip == BCM4328_CHIP_ID &&
(sbh->chippkg == BCM4328USBDUAL_PKG_ID
|| sbh->chippkg == BCM4328SDIODUAL_PKG_ID))
device = BCM4328_D11DUAL_ID;
else
#endif /* BCM4328 */
/* Let an nvram variable with devpath override devid */
if ((device = (uint16) sb_getdevpathintvar(sbh, "devid")) != 0) ;
/* Get devid from OTP/SPROM depending on where the SROM is read */
else if ((device = (uint16) getintvar(si->vars, "devid")) != 0) ;
/*
* no longer support wl0id, but keep the code
* here for backward compatibility.
*/
else if ((device = (uint16) getintvar(si->vars, "wl0id")) != 0) ;
/* Chip specific conversion */
else if (sbh->chip == BCM4712_CHIP_ID) {
if (sbh->chippkg == BCM4712SMALL_PKG_ID)
device = BCM4306_D11G_ID;
else
device = BCM4306_D11DUAL_ID;
}
/* ignore it */
else
device = 0xffff;
return device;
}
int
BCMINITFN(sb_corepciid) (sb_t * sbh, uint func, uint16 * pcivendor,
uint16 * pcidevice, uint8 * pciclass,
uint8 * pcisubclass, uint8 * pciprogif,
uint8 * pciheader) {
uint16 vendor = 0xffff, device = 0xffff;
uint8 class, subclass, progif = 0;
uint8 header = PCI_HEADER_NORMAL;
uint32 core = sb_coreid(sbh);
/* Verify whether the function exists for the core */
if (func >= (uint) (core == SB_USB20H ? 2 : 1))
return -1;
/* Known vendor translations */
switch (sb_corevendor(sbh)) {
case SB_VEND_BCM:
vendor = VENDOR_BROADCOM;
break;
default:
return -1;
}
/* Determine class based on known core codes */
switch (core) {
case SB_ILINE20:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_ILINE_ID;
break;
case SB_ENET:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_ENET_ID;
break;
case SB_GIGETH:
class = PCI_CLASS_NET;
subclass = PCI_NET_ETHER;
device = BCM47XX_GIGETH_ID;
break;
case SB_SDRAM:
case SB_MEMC:
class = PCI_CLASS_MEMORY;
subclass = PCI_MEMORY_RAM;
device = (uint16) core;
break;
case SB_PCI:
case SB_PCIE:
class = PCI_CLASS_BRIDGE;
subclass = PCI_BRIDGE_PCI;
device = (uint16) core;
header = PCI_HEADER_BRIDGE;
break;
case SB_MIPS:
case SB_MIPS33:
class = PCI_CLASS_CPU;
subclass = PCI_CPU_MIPS;
device = (uint16) core;
break;
case SB_CODEC:
class = PCI_CLASS_COMM;
subclass = PCI_COMM_MODEM;
device = BCM47XX_V90_ID;
break;
case SB_USB:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = 0x10; /* OHCI */
device = BCM47XX_USB_ID;
break;
case SB_USB11H:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = 0x10; /* OHCI */
device = BCM47XX_USBH_ID;
break;
case SB_USB20H:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
progif = func == 0 ? 0x10 : 0x20; /* OHCI/EHCI */
device = BCM47XX_USB20H_ID;
header = 0x80; /* multifunction */
break;
case SB_IPSEC:
class = PCI_CLASS_CRYPT;
subclass = PCI_CRYPT_NETWORK;
device = BCM47XX_IPSEC_ID;
break;
case SB_ROBO:
class = PCI_CLASS_NET;
subclass = PCI_NET_OTHER;
device = BCM47XX_ROBO_ID;
break;
case SB_EXTIF:
case SB_CC:
class = PCI_CLASS_MEMORY;
subclass = PCI_MEMORY_FLASH;
device = (uint16) core;
break;
case SB_SATAXOR:
class = PCI_CLASS_XOR;
subclass = PCI_XOR_QDMA;
device = BCM47XX_SATAXOR_ID;
break;
case SB_ATA100:
class = PCI_CLASS_DASDI;
subclass = PCI_DASDI_IDE;
device = BCM47XX_ATA100_ID;
break;
case SB_USB11D:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
device = BCM47XX_USBD_ID;
break;
case SB_USB20D:
class = PCI_CLASS_SERIAL;
subclass = PCI_SERIAL_USB;
device = BCM47XX_USB20D_ID;
break;
case SB_D11:
class = PCI_CLASS_NET;
subclass = PCI_NET_OTHER;
device = sb_d11_devid(sbh);
break;
default:
class = subclass = progif = 0xff;
device = (uint16) core;
break;
}
*pcivendor = vendor;
*pcidevice = device;
*pciclass = class;
*pcisubclass = subclass;
*pciprogif = progif;
*pciheader = header;
return 0;
}
/* use the mdio interface to read from mdio slaves */
static int
sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint regaddr, uint * regval)
{
uint mdiodata;
uint i = 0;
sbpcieregs_t *pcieregs;
pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
ASSERT(pcieregs);
/* enable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol),
MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
mdiodata = MDIODATA_START | MDIODATA_READ |
(physmedia << MDIODATA_DEVADDR_SHF) |
(regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA;
W_REG(si->osh, &pcieregs->mdiodata, mdiodata);
PR28829_DELAY();
/* retry till the transaction is complete */
while (i < 10) {
if (R_REG(si->osh, &(pcieregs->mdiocontrol)) &
MDIOCTL_ACCESS_DONE) {
PR28829_DELAY();
*regval =
(R_REG(si->osh, &(pcieregs->mdiodata)) &
MDIODATA_MASK);
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
return 0;
}
OSL_DELAY(1000);
i++;
}
SB_ERROR(("sb_pcie_mdioread: timed out\n"));
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
return 1;
}
/* use the mdio interface to write to mdio slaves */
static int
sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint regaddr, uint val)
{
uint mdiodata;
uint i = 0;
sbpcieregs_t *pcieregs;
pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
ASSERT(pcieregs);
/* enable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol),
MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
mdiodata = MDIODATA_START | MDIODATA_WRITE |
(physmedia << MDIODATA_DEVADDR_SHF) |
(regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA | val;
W_REG(si->osh, (&pcieregs->mdiodata), mdiodata);
PR28829_DELAY();
/* retry till the transaction is complete */
while (i < 10) {
if (R_REG(si->osh, &(pcieregs->mdiocontrol)) &
MDIOCTL_ACCESS_DONE) {
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
return 0;
}
OSL_DELAY(1000);
i++;
}
SB_ERROR(("sb_pcie_mdiowrite: timed out\n"));
/* Disable mdio access to SERDES */
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
return 1;
}
/* indirect way to read pcie config regs */
uint sb_pcie_readreg(void *sb, void *arg1, uint offset)
{
sb_info_t *si;
sb_t *sbh;
uint retval = 0xFFFFFFFF;
sbpcieregs_t *pcieregs;
uint addrtype;
sbh = (sb_t *) sb;
si = SB_INFO(sbh);
ASSERT(PCIE(si));
pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0);
ASSERT(pcieregs);
addrtype = (uint) ((uintptr) arg1);
switch (addrtype) {
case PCIE_CONFIGREGS:
W_REG(si->osh, (&pcieregs->configaddr), offset);
retval = R_REG(si->osh, &(pcieregs->configdata));
break;
case PCIE_PCIEREGS:
W_REG(si->osh, &(pcieregs->pcieindaddr), offset);
retval = R_REG(si->osh, &(pcieregs->pcieinddata));
break;
default:
ASSERT(0);
break;
}
return retval;
}
/* indirect way to write pcie config/mdio/pciecore regs */
uint sb_pcie_writereg(sb_t * sbh, void *arg1, uint offset, uint val)
{
sb_info_t *si;
sbpcieregs_t *pcieregs;
uint addrtype;
si = SB_INFO(sbh);
ASSERT(PCIE(si));
pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0);
ASSERT(pcieregs);
addrtype = (uint) ((uintptr) arg1);
switch (addrtype) {
case PCIE_CONFIGREGS:
W_REG(si->osh, (&pcieregs->configaddr), offset);
W_REG(si->osh, (&pcieregs->configdata), val);
break;
case PCIE_PCIEREGS:
W_REG(si->osh, (&pcieregs->pcieindaddr), offset);
W_REG(si->osh, (&pcieregs->pcieinddata), val);
break;
default:
ASSERT(0);
break;
}
return 0;
}
/* Build device path. Support SB, PCI, and JTAG for now. */
int BCMINITFN(sb_devpath) (sb_t * sbh, char *path, int size) {
int slen;
ASSERT(path);
ASSERT(size >= SB_DEVPATH_BUFSZ);
if (!path || size <= 0)
return -1;
switch (BUSTYPE((SB_INFO(sbh))->sb.bustype)) {
case SB_BUS:
case JTAG_BUS:
slen = snprintf(path, (size_t) size, "sb/%u/", sb_coreidx(sbh));
break;
case PCI_BUS:
ASSERT((SB_INFO(sbh))->osh);
slen = snprintf(path, (size_t) size, "pci/%u/%u/",
OSL_PCI_BUS((SB_INFO(sbh))->osh),
OSL_PCI_SLOT((SB_INFO(sbh))->osh));
break;
case PCMCIA_BUS:
SB_ERROR(("sb_devpath: OSL_PCMCIA_BUS() not implemented, bus 1 assumed\n"));
SB_ERROR(("sb_devpath: OSL_PCMCIA_SLOT() not implemented, slot 1 assumed\n"));
slen = snprintf(path, (size_t) size, "pc/1/1/");
break;
default:
slen = -1;
ASSERT(0);
break;
}
if (slen < 0 || slen >= size) {
path[0] = '\0';
return -1;
}
return 0;
}
/* Get a variable, but only if it has a devpath prefix */
char *BCMINITFN(sb_getdevpathvar) (sb_t * sbh, const char *name) {
char varname[SB_DEVPATH_BUFSZ + 32];
sb_devpathvar(sbh, varname, sizeof(varname), name);
return (getvar(NULL, varname));
}
/* Get a variable, but only if it has a devpath prefix */
int BCMINITFN(sb_getdevpathintvar) (sb_t * sbh, const char *name) {
char varname[SB_DEVPATH_BUFSZ + 32];
sb_devpathvar(sbh, varname, sizeof(varname), name);
return (getintvar(NULL, varname));
}
/* Concatenate the dev path with a varname into the given 'var' buffer
* and return the 'var' pointer.
* Nothing is done to the arguments if len == 0 or var is NULL, var is still returned.
* On overflow, the first char will be set to '\0'.
*/
static char *BCMINITFN(sb_devpathvar) (sb_t * sbh, char *var, int len,
const char *name) {
uint path_len;
if (!var || len <= 0)
return var;
if (sb_devpath(sbh, var, len) == 0) {
path_len = strlen(var);
if (strlen(name) + 1 > (uint) (len - path_len))
var[0] = '\0';
else
strncpy(var + path_len, name, len - path_len - 1);
}
return var;
}
/*
* Fixup SROMless PCI device's configuration.
* The current core may be changed upon return.
*/
static int sb_pci_fixcfg(sb_info_t * si)
{
uint origidx, pciidx;
sbpciregs_t *pciregs;
sbpcieregs_t *pcieregs = NULL;
uint16 val16, *reg16;
uint32 w;
ASSERT(BUSTYPE(si->sb.bustype) == PCI_BUS);
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
/* save the current index */
origidx = sb_coreidx(&si->sb);
/* check 'pi' is correct and fix it if not */
if (si->sb.buscoretype == SB_PCIE) {
pcieregs = (sbpcieregs_t *) sb_setcore(&si->sb, SB_PCIE, 0);
ASSERT(pcieregs);
reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
} else if (si->sb.buscoretype == SB_PCI) {
pciregs = (sbpciregs_t *) sb_setcore(&si->sb, SB_PCI, 0);
ASSERT(pciregs);
reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
} else {
ASSERT(0);
return -1;
}
pciidx = sb_coreidx(&si->sb);
val16 = R_REG(si->osh, reg16);
if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16) pciidx) {
val16 =
(uint16) (pciidx << SRSH_PI_SHIFT) | (val16 &
~SRSH_PI_MASK);
W_REG(si->osh, reg16, val16);
}
if (PCIE_ASPMWARS(si)) {
w = sb_pcie_readreg((void *)(uintptr) & si->sb,
(void *)PCIE_PCIEREGS, PCIE_PLP_STATUSREG);
/* Detect the current polarity at attach and force that polarity and
* disable changing the polarity
*/
if ((w & PCIE_PLP_POLARITYINV_STAT) == 0) {
si->pcie_polarity = (SERDES_RX_CTRL_FORCE);
} else {
si->pcie_polarity = (SERDES_RX_CTRL_FORCE |
SERDES_RX_CTRL_POLARITY);
}
w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
sizeof(uint32));
if (w & PCIE_CLKREQ_ENAB) {
reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET];
val16 = R_REG(si->osh, reg16);
/* if clockreq is not advertized clkreq should not be enabled */
if (!(val16 & SRSH_CLKREQ_ENB))
SB_ERROR(("WARNING: CLK REQ enabled already 0x%x\n", w));
}
sb_war43448(&si->sb);
sb_war42767(&si->sb);
}
/* restore the original index */
sb_setcoreidx(&si->sb, origidx);
return 0;
}
/* Return ADDR64 capability of the backplane */
bool sb_backplane64(sb_t * sbh)
{
sb_info_t *si;
si = SB_INFO(sbh);
return ((si->sb.cccaps & CC_CAP_BKPLN64) != 0);
}
void sb_btcgpiowar(sb_t * sbh)
{
sb_info_t *si;
uint origidx;
uint intr_val = 0;
chipcregs_t *cc;
si = SB_INFO(sbh);
/* Make sure that there is ChipCommon core present &&
* UART_TX is strapped to 1
*/
if (!(si->sb.cccaps & CC_CAP_UARTGPIO))
return;
/* sb_corereg cannot be used as we have to guarantee 8-bit read/writes */
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
ASSERT(cc);
W_REG(si->osh, &cc->uart0mcr, R_REG(si->osh, &cc->uart0mcr) | 0x04);
/* restore the original index */
sb_setcoreidx(sbh, origidx);
INTR_RESTORE(si, intr_val);
}
/* check if the device is removed */
bool sb_deviceremoved(sb_t * sbh)
{
uint32 w;
sb_info_t *si;
si = SB_INFO(sbh);
switch (BUSTYPE(si->sb.bustype)) {
case PCI_BUS:
ASSERT(si->osh);
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_VID, sizeof(uint32));
if ((w & 0xFFFF) != VENDOR_BROADCOM)
return TRUE;
else
return FALSE;
default:
return FALSE;
}
return FALSE;
}
#if 0
/* Return the RAM size of the SOCRAM core */
uint32 BCMINITFN(sb_socram_size) (sb_t * sbh) {
sb_info_t *si;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
uint32 coreinfo;
uint memsize = 0;
si = SB_INFO(sbh);
ASSERT(si);
/* Block ints and save current core */
INTR_OFF(si, intr_val);
origidx = sb_coreidx(sbh);
/* Switch to SOCRAM core */
if (!(regs = sb_setcore(sbh, SB_SOCRAM, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = sb_iscoreup(sbh)))
sb_core_reset(sbh, 0, 0);
corerev = sb_corerev(sbh);
coreinfo = R_REG(si->osh, &regs->coreinfo);
/* Calculate size from coreinfo based on rev */
if (corerev == 0)
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
else if (corerev < 3) {
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
} else {
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
if (lss != 0)
nb--;
memsize = nb * (1 << (bsz + SR_BSZ_BASE));
if (lss != 0)
memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
}
/* Return to previous state and core */
if (!wasup)
sb_core_disable(sbh, 0);
sb_setcoreidx(sbh, origidx);
done:
INTR_RESTORE(si, intr_val);
return memsize;
}
#endif