1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-11 00:10:14 +02:00
openwrt-xburst/package/uboot-xburst/files/arch/mips/cpu/xburst/jz_mmc.c
Xiangfu Liu 3fd52fe91a [uboot-xburst] update u-boot to 2010.06
fixed:
 when nand read. do ecc check not just bad block.
 try to fix mmc driver. will keeping work on that.

change:
 remove bootdelay when press [S] + power.
 create a xburst in mips/ folder.
 cleanup start.S cache.S cpu.c
 follow the new sturcture of u-boot.

Signed-off-by: Xiangfu Liu <xiangfu@sharism.cc>
2010-07-09 13:25:39 +08:00

1337 lines
34 KiB
C

/*
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <part.h>
#include <mmc.h>
#include <asm/jz4740.h>
#include "jz_mmc.h"
#define CFG_MMC_BASE 0x80600000
static int sd2_0 = 0;
/*
* GPIO definition
*/
#if defined(CONFIG_SAKC)
#define __msc_init_io() \
do { \
__gpio_as_input(GPIO_SD_CD_N); \
} while (0)
#else
#define __msc_init_io() \
do { \
__gpio_as_output(GPIO_SD_VCC_EN_N); \
__gpio_as_input(GPIO_SD_CD_N); \
} while (0)
#define __msc_enable_power() \
do { \
__gpio_clear_pin(GPIO_SD_VCC_EN_N); \
} while (0)
#define __msc_disable_power() \
do { \
__gpio_set_pin(GPIO_SD_VCC_EN_N); \
} while (0)
#endif /* CONFIG_SAKE */
#define __msc_card_detected() \
({ \
int detected = 1; \
__gpio_as_input(GPIO_SD_CD_N); \
__gpio_disable_pull(GPIO_SD_CD_N); \
if (!__gpio_get_pin(GPIO_SD_CD_N)) \
detected = 0; \
detected; \
})
/*
* Local functions
*/
#ifdef CONFIG_MMC
extern int
fat_register_device(block_dev_desc_t *dev_desc, int part_no);
static block_dev_desc_t mmc_dev;
block_dev_desc_t * mmc_get_dev(int dev)
{
return ((block_dev_desc_t *)&mmc_dev);
}
/*
* FIXME needs to read cid and csd info to determine block size
v * and other parameters
*/
static uchar mmc_buf[MMC_BLOCK_SIZE];
static int mmc_ready = 0;
static struct mmc_csd mmc_csd;
static int use_4bit; /* Use 4-bit data bus */
/*
* MMC Events
*/
#define MMC_EVENT_NONE 0x00 /* No events */
#define MMC_EVENT_RX_DATA_DONE 0x01 /* Rx data done */
#define MMC_EVENT_TX_DATA_DONE 0x02 /* Tx data done */
#define MMC_EVENT_PROG_DONE 0x04 /* Programming is done */
#define MMC_IRQ_MASK() \
do { \
REG_MSC_IMASK = 0xffff; \
REG_MSC_IREG = 0xffff; \
} while (0)
/* Stop the MMC clock and wait while it happens */
static inline int jz_mmc_stop_clock(void)
{
int timeout = 1000;
REG_MSC_STRPCL = MSC_STRPCL_CLOCK_CONTROL_STOP;
while (timeout && (REG_MSC_STAT & MSC_STAT_CLK_EN)) {
timeout--;
if (timeout == 0)
return MMC_ERROR_TIMEOUT;
udelay(1);
}
return MMC_NO_ERROR;
}
/* Start the MMC clock and operation */
static inline int jz_mmc_start_clock(void)
{
REG_MSC_STRPCL = MSC_STRPCL_CLOCK_CONTROL_START | MSC_STRPCL_START_OP;
return MMC_NO_ERROR;
}
static inline u32 jz_mmc_calc_clkrt(int is_sd, u32 rate)
{
u32 clkrt = 0;
u32 clk_src = is_sd ? 24000000 : 16000000;
while (rate < clk_src) {
clkrt ++;
clk_src >>= 1;
}
return clkrt;
}
/* Set the MMC clock frequency */
void jz_mmc_set_clock(int sd, u32 rate)
{
jz_mmc_stop_clock();
/* Select clock source of MSC */
__cpm_select_msc_clk(sd);
/* Set clock dividor of MSC */
REG_MSC_CLKRT = jz_mmc_calc_clkrt(sd, rate);
}
static int jz_mmc_check_status(struct mmc_request *request)
{
u32 status = REG_MSC_STAT;
/* Checking for response or data timeout */
if (status & (MSC_STAT_TIME_OUT_RES | MSC_STAT_TIME_OUT_READ)) {
printf("MMC/SD timeout, MMC_STAT 0x%x CMD %d\n", status, request->cmd);
return MMC_ERROR_TIMEOUT;
}
/* Checking for CRC error */
if (status & (MSC_STAT_CRC_READ_ERROR | MSC_STAT_CRC_WRITE_ERROR | MSC_STAT_CRC_RES_ERR)) {
printf("MMC/CD CRC error, MMC_STAT 0x%x\n", status);
return MMC_ERROR_CRC;
}
return MMC_NO_ERROR;
}
/* Obtain response to the command and store it to response buffer */
static void jz_mmc_get_response(struct mmc_request *request)
{
int i;
u8 *buf;
u32 data;
debug("fetch response for request %d, cmd %d\n",
request->rtype, request->cmd);
buf = request->response;
request->result = MMC_NO_ERROR;
switch (request->rtype) {
case RESPONSE_R1: case RESPONSE_R1B: case RESPONSE_R6:
case RESPONSE_R3: case RESPONSE_R4: case RESPONSE_R5:
{
data = REG_MSC_RES;
buf[0] = (data >> 8) & 0xff;
buf[1] = data & 0xff;
data = REG_MSC_RES;
buf[2] = (data >> 8) & 0xff;
buf[3] = data & 0xff;
data = REG_MSC_RES;
buf[4] = data & 0xff;
debug("request %d, response [%02x %02x %02x %02x %02x]\n",
request->rtype, buf[0], buf[1], buf[2], buf[3], buf[4]);
break;
}
case RESPONSE_R2_CID: case RESPONSE_R2_CSD:
{
for (i = 0; i < 16; i += 2) {
data = REG_MSC_RES;
buf[i] = (data >> 8) & 0xff;
buf[i+1] = data & 0xff;
}
debug("request %d, response [", request->rtype);
#if CONFIG_MMC_DEBUG_VERBOSE > 2
if (g_mmc_debug >= 3) {
int n;
for (n = 0; n < 17; n++)
printk("%02x ", buf[n]);
printk("]\n");
}
#endif
break;
}
case RESPONSE_NONE:
debug("No response\n");
break;
default:
debug("unhandled response type for request %d\n", request->rtype);
break;
}
}
static int jz_mmc_receive_data(struct mmc_request *req)
{
u32 stat, timeout, data, cnt;
u8 *buf = req->buffer;
u32 wblocklen = (u32)(req->block_len + 3) >> 2; /* length in word */
timeout = 0x3ffffff;
while (timeout) {
timeout--;
stat = REG_MSC_STAT;
if (stat & MSC_STAT_TIME_OUT_READ)
return MMC_ERROR_TIMEOUT;
else if (stat & MSC_STAT_CRC_READ_ERROR)
return MMC_ERROR_CRC;
else if (!(stat & MSC_STAT_DATA_FIFO_EMPTY)
|| (stat & MSC_STAT_DATA_FIFO_AFULL)) {
/* Ready to read data */
break;
}
udelay(1);
}
if (!timeout)
return MMC_ERROR_TIMEOUT;
/* Read data from RXFIFO. It could be FULL or PARTIAL FULL */
cnt = wblocklen;
while (cnt) {
data = REG_MSC_RXFIFO;
{
*buf++ = (u8)(data >> 0);
*buf++ = (u8)(data >> 8);
*buf++ = (u8)(data >> 16);
*buf++ = (u8)(data >> 24);
}
cnt --;
while (cnt && (REG_MSC_STAT & MSC_STAT_DATA_FIFO_EMPTY))
;
}
return MMC_NO_ERROR;
}
static int jz_mmc_transmit_data(struct mmc_request *req)
{
#if 0
u32 nob = req->nob;
u32 wblocklen = (u32)(req->block_len + 3) >> 2; /* length in word */
u8 *buf = req->buffer;
u32 *wbuf = (u32 *)buf;
u32 waligned = (((u32)buf & 0x3) == 0); /* word aligned ? */
u32 stat, timeout, data, cnt;
for (nob; nob >= 1; nob--) {
timeout = 0x3FFFFFF;
while (timeout) {
timeout--;
stat = REG_MSC_STAT;
if (stat & (MSC_STAT_CRC_WRITE_ERROR | MSC_STAT_CRC_WRITE_ERROR_NOSTS))
return MMC_ERROR_CRC;
else if (!(stat & MSC_STAT_DATA_FIFO_FULL)) {
/* Ready to write data */
break;
}
udelay(1);
}
if (!timeout)
return MMC_ERROR_TIMEOUT;
/* Write data to TXFIFO */
cnt = wblocklen;
while (cnt) {
while (REG_MSC_STAT & MSC_STAT_DATA_FIFO_FULL)
;
if (waligned) {
REG_MSC_TXFIFO = *wbuf++;
}
else {
data = *buf++ | (*buf++ << 8) | (*buf++ << 16) | (*buf++ << 24);
REG_MSC_TXFIFO = data;
}
cnt--;
}
}
#endif
return MMC_NO_ERROR;
}
/*
* Name: int jz_mmc_exec_cmd()
* Function: send command to the card, and get a response
* Input: struct mmc_request *req : MMC/SD request
* Output: 0: right >0: error code
*/
int jz_mmc_exec_cmd(struct mmc_request *request)
{
u32 cmdat = 0, events = 0;
int retval, timeout = 0x3fffff;
/* Indicate we have no result yet */
request->result = MMC_NO_RESPONSE;
if (request->cmd == MMC_CIM_RESET) {
/* On reset, 1-bit bus width */
use_4bit = 0;
/* Reset MMC/SD controller */
__msc_reset();
/* On reset, drop MMC clock down */
jz_mmc_set_clock(0, MMC_CLOCK_SLOW);
/* On reset, stop MMC clock */
jz_mmc_stop_clock();
}
if (request->cmd == MMC_CMD_SEND_OP_COND) {
debug("Have an MMC card\n");
/* always use 1bit for MMC */
use_4bit = 0;
}
if (request->cmd == SET_BUS_WIDTH) {
if (request->arg == 0x2) {
printf("Use 4-bit bus width\n");
use_4bit = 1;
}
else {
printf("Use 1-bit bus width\n");
use_4bit = 0;
}
}
/* stop clock */
jz_mmc_stop_clock();
/* mask all interrupts */
REG_MSC_IMASK = 0xffff;
/* clear status */
REG_MSC_IREG = 0xffff;
/* use 4-bit bus width when possible */
if (use_4bit)
cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;
/* Set command type and events */
switch (request->cmd) {
/* MMC core extra command */
case MMC_CIM_RESET:
cmdat |= MSC_CMDAT_INIT; /* Initialization sequence sent prior to command */
break;
/* bc - broadcast - no response */
case MMC_CMD_GO_IDLE_STATE:
case MMC_CMD_SET_DSR:
break;
/* bcr - broadcast with response */
case MMC_CMD_SEND_OP_COND:
case MMC_CMD_ALL_SEND_CID:
case MMC_GO_IRQ_STATE:
break;
/* adtc - addressed with data transfer */
case MMC_READ_DAT_UNTIL_STOP:
case MMC_CMD_READ_SINGLE_BLOCK:
case MMC_CMD_READ_MULTIPLE_BLOCK:
case SD_CMD_APP_SEND_SCR:
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
events = MMC_EVENT_RX_DATA_DONE;
break;
case MMC_WRITE_DAT_UNTIL_STOP:
case MMC_CMD_WRITE_SINGLE_BLOCK:
case MMC_CMD_WRITE_MULTIPLE_BLOCK:
case MMC_PROGRAM_CID:
case MMC_PROGRAM_CSD:
case MMC_SEND_WRITE_PROT:
case MMC_GEN_CMD:
case MMC_LOCK_UNLOCK:
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE;
events = MMC_EVENT_TX_DATA_DONE | MMC_EVENT_PROG_DONE;
break;
case MMC_CMD_STOP_TRANSMISSION:
events = MMC_EVENT_PROG_DONE;
break;
/* ac - no data transfer */
default:
break;
}
/* Set response type */
switch (request->rtype) {
case RESPONSE_NONE:
break;
case RESPONSE_R1B:
cmdat |= MSC_CMDAT_BUSY;
/*FALLTHRU*/
case RESPONSE_R1:
cmdat |= MSC_CMDAT_RESPONSE_R1;
break;
case RESPONSE_R2_CID:
case RESPONSE_R2_CSD:
cmdat |= MSC_CMDAT_RESPONSE_R2;
break;
case RESPONSE_R3:
cmdat |= MSC_CMDAT_RESPONSE_R3;
break;
case RESPONSE_R4:
cmdat |= MSC_CMDAT_RESPONSE_R4;
break;
case RESPONSE_R5:
cmdat |= MSC_CMDAT_RESPONSE_R5;
break;
case RESPONSE_R6:
cmdat |= MSC_CMDAT_RESPONSE_R6;
break;
default:
break;
}
/* Set command index */
if (request->cmd == MMC_CIM_RESET) {
REG_MSC_CMD = MMC_CMD_GO_IDLE_STATE;
} else {
REG_MSC_CMD = request->cmd;
}
/* Set argument */
REG_MSC_ARG = request->arg;
/* Set block length and nob */
if (request->cmd == SD_CMD_APP_SEND_SCR) { /* get SCR from DataFIFO */
REG_MSC_BLKLEN = 8;
REG_MSC_NOB = 1;
} else {
REG_MSC_BLKLEN = request->block_len;
REG_MSC_NOB = request->nob;
}
/* Set command */
REG_MSC_CMDAT = cmdat;
debug("Send cmd %d cmdat: %x arg: %x resp %d\n", request->cmd,
cmdat, request->arg, request->rtype);
/* Start MMC/SD clock and send command to card */
jz_mmc_start_clock();
/* Wait for command completion */
while (timeout-- && !(REG_MSC_STAT & MSC_STAT_END_CMD_RES))
;
if (timeout == 0)
return MMC_ERROR_TIMEOUT;
REG_MSC_IREG = MSC_IREG_END_CMD_RES; /* clear flag */
/* Check for status */
retval = jz_mmc_check_status(request);
if (retval) {
return retval;
}
/* Complete command with no response */
if (request->rtype == RESPONSE_NONE) {
return MMC_NO_ERROR;
}
/* Get response */
jz_mmc_get_response(request);
/* Start data operation */
if (events & (MMC_EVENT_RX_DATA_DONE | MMC_EVENT_TX_DATA_DONE)) {
if (events & MMC_EVENT_RX_DATA_DONE) {
if (request->cmd == SD_CMD_APP_SEND_SCR) {
/* SD card returns SCR register as data.
MMC core expect it in the response buffer,
after normal response. */
request->buffer = (u8 *)((u32)request->response + 5);
}
jz_mmc_receive_data(request);
}
if (events & MMC_EVENT_TX_DATA_DONE) {
jz_mmc_transmit_data(request);
}
/* Wait for Data Done */
while (!(REG_MSC_IREG & MSC_IREG_DATA_TRAN_DONE))
;
REG_MSC_IREG = MSC_IREG_DATA_TRAN_DONE; /* clear status */
}
/* Wait for Prog Done event */
if (events & MMC_EVENT_PROG_DONE) {
while (!(REG_MSC_IREG & MSC_IREG_PRG_DONE))
;
REG_MSC_IREG = MSC_IREG_PRG_DONE; /* clear status */
}
/* Command completed */
return MMC_NO_ERROR; /* return successfully */
}
int mmc_block_read(u8 *dst, ulong src, ulong len)
{
struct mmc_request request;
struct mmc_response_r1 r1;
int retval;
if (len == 0) {
return 0;
}
mmc_simple_cmd(&request, MMC_CMD_SEND_STATUS, mmcinfo.rca, RESPONSE_R1);
retval = mmc_unpack_r1(&request, &r1, 0);
if (retval && (retval != MMC_ERROR_STATE_MISMATCH)) {
return retval;
}
mmc_simple_cmd(&request, MMC_CMD_SET_BLOCKLEN, len, RESPONSE_R1);
if ((retval = mmc_unpack_r1(&request, &r1, 0))) {
return retval;
}
if (sd2_0)
src /= len;
mmc_send_cmd(&request, MMC_CMD_READ_SINGLE_BLOCK, src, 1,len, RESPONSE_R1, dst);
if ((retval = mmc_unpack_r1(&request, &r1, 0))) {
return retval;
}
return retval;
}
int mmc_block_write(ulong dst, uchar *src, int len)
{
return 0;
}
int xburst_mmc_read(u64 src, uchar *dst, int size)
{
ulong end, part_start, part_end, part_len, aligned_start, aligned_end;
ulong mmc_block_size, mmc_block_address;
if (size == 0) {
return 0;
}
if (!mmc_ready) {
printf("MMC card is not ready\n");
return -1;
}
mmc_block_size = MMC_BLOCK_SIZE;
mmc_block_address = ~(mmc_block_size - 1);
//src -= CFG_MMC_BASE;
end = src + size;
part_start = ~mmc_block_address & src;
part_end = ~mmc_block_address & end;
aligned_start = mmc_block_address & src;
aligned_end = mmc_block_address & end;
/* all block aligned accesses */
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if (part_start) {
part_len = mmc_block_size - part_start;
debug("ps src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if ((mmc_block_read(mmc_buf, aligned_start, mmc_block_size)) < 0) {
return -1;
}
memcpy(dst, mmc_buf+part_start, part_len);
dst += part_len;
src += part_len;
}
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
for (; src < aligned_end; src += mmc_block_size, dst += mmc_block_size) {
debug("al src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if ((mmc_block_read((uchar *)(dst), src, mmc_block_size)) < 0) {
return -1;
}
}
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if (part_end && src < end) {
if ((mmc_block_read(mmc_buf, aligned_end, mmc_block_size)) < 0) {
return -1;
}
memcpy(dst, mmc_buf, part_end);
}
return 0;
}
int mmc_write(uchar *src, ulong dst, int size)
{
ulong end, part_start, part_end, part_len, aligned_start, aligned_end;
ulong mmc_block_size, mmc_block_address;
if (size == 0) {
return 0;
}
if (!mmc_ready) {
printf("MMC card is not ready\n");
return -1;
}
mmc_block_size = MMC_BLOCK_SIZE;
mmc_block_address = ~(mmc_block_size - 1);
dst -= CFG_MMC_BASE;
end = dst + size;
part_start = ~mmc_block_address & dst;
part_end = ~mmc_block_address & end;
aligned_start = mmc_block_address & dst;
aligned_end = mmc_block_address & end;
/* all block aligned accesses */
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if (part_start) {
part_len = mmc_block_size - part_start;
debug("ps src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
(ulong)src, dst, end, part_start, part_end, aligned_start, aligned_end);
if ((mmc_block_read(mmc_buf, aligned_start, mmc_block_size)) < 0) {
return -1;
}
memcpy(mmc_buf+part_start, src, part_len);
if ((mmc_block_write(aligned_start, mmc_buf, mmc_block_size)) < 0) {
return -1;
}
dst += part_len;
src += part_len;
}
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
for (; dst < aligned_end; src += mmc_block_size, dst += mmc_block_size) {
debug("al src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if ((mmc_block_write(dst, (uchar *)src, mmc_block_size)) < 0) {
return -1;
}
}
debug("src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if (part_end && dst < end) {
debug("pe src %lx dst %lx end %lx pstart %lx pend %lx astart %lx aend %lx\n",
src, (ulong)dst, end, part_start, part_end, aligned_start, aligned_end);
if ((mmc_block_read(mmc_buf, aligned_end, mmc_block_size)) < 0) {
return -1;
}
memcpy(mmc_buf, src, part_end);
if ((mmc_block_write(aligned_end, mmc_buf, mmc_block_size)) < 0) {
return -1;
}
}
return 0;
}
ulong mmc_bread(int dev_num, ulong blknr, ulong blkcnt, ulong *dst)
{
ulong src;
int mmc_block_size = MMC_BLOCK_SIZE;
src = blknr * mmc_block_size ;//+ CFG_MMC_BASE;
xburst_mmc_read(src, (uchar *)dst, blkcnt*mmc_block_size);
return blkcnt;
}
int mmc_select_card(void)
{
struct mmc_request request;
struct mmc_response_r1 r1;
int retval;
mmc_simple_cmd(&request, MMC_CMD_SELECT_CARD, mmcinfo.rca, RESPONSE_R1B);
retval = mmc_unpack_r1(&request, &r1, 0);
if (retval) {
return retval;
}
if (mmcinfo.sd) {
mmc_simple_cmd(&request, MMC_CMD_APP_CMD, mmcinfo.rca, RESPONSE_R1);
retval = mmc_unpack_r1(&request,&r1,0);
if (retval) {
return retval;
}
#if defined(MMC_BUS_WIDTH_1BIT)
mmc_simple_cmd(&request, SET_BUS_WIDTH, 1, RESPONSE_R1);
#else
mmc_simple_cmd(&request, SET_BUS_WIDTH, 2, RESPONSE_R1);
#endif
retval = mmc_unpack_r1(&request,&r1,0);
if (retval) {
return retval;
}
}
return 0;
}
/*
* Configure card
*/
static void mmc_configure_card(void)
{
u32 rate;
/* Get card info */
if (sd2_0)
mmcinfo.block_num = (mmcinfo.csd.c_size + 1) << 10;
else
mmcinfo.block_num = (mmcinfo.csd.c_size + 1) * (1 << (mmcinfo.csd.c_size_mult + 2));
mmcinfo.block_len = 1 << mmcinfo.csd.read_bl_len;
/* Fix the clock rate */
rate = mmc_tran_speed(mmcinfo.csd.tran_speed);
if (rate < MMC_CLOCK_SLOW)
rate = MMC_CLOCK_SLOW;
if ((mmcinfo.sd == 0) && (rate > MMC_CLOCK_FAST))
rate = MMC_CLOCK_FAST;
if ((mmcinfo.sd) && (rate > SD_CLOCK_FAST))
rate = SD_CLOCK_FAST;
debug("%s: block_len=%d block_num=%d rate=%d\n",
__func__, mmcinfo.block_len, mmcinfo.block_num, rate);
jz_mmc_set_clock(mmcinfo.sd, rate);
}
/*
* State machine routines to initialize card(s)
*/
/*
CIM_SINGLE_CARD_ACQ (frequency at 400 kHz)
--- Must enter from GO_IDLE_STATE ---
1. SD_SEND_OP_COND (SD Card) [CMD55] + [CMD41]
2. SEND_OP_COND (Full Range) [CMD1] {optional}
3. SEND_OP_COND (Set Range ) [CMD1]
If busy, delay and repeat step 2
4. ALL_SEND_CID [CMD2]
If timeout, set an error (no cards found)
5. SET_RELATIVE_ADDR [CMD3]
6. SEND_CSD [CMD9]
7. SET_DSR [CMD4] Only call this if (csd.dsr_imp).
8. Set clock frequency (check available in csd.tran_speed)
*/
#define MMC_INIT_DOING 0
#define MMC_INIT_PASSED 1
#define MMC_INIT_FAILED 2
static int mmc_init_card_state(struct mmc_request *request)
{
struct mmc_response_r1 r1;
struct mmc_response_r3 r3;
int retval;
int ocr = 0x40300000;
int limit_41 = 0;
switch (request->cmd) {
case MMC_CMD_GO_IDLE_STATE: /* No response to parse */
if (mmcinfo.sd)
mmc_simple_cmd(request, 8, 0x1aa, RESPONSE_R1);
else
mmc_simple_cmd(request, MMC_CMD_SEND_OP_COND, MMC_OCR_ARG, RESPONSE_R3);
break;
case 8:
retval = mmc_unpack_r1(request,&r1,mmcinfo.state);
mmc_simple_cmd(request, MMC_CMD_APP_CMD, 0, RESPONSE_R1);
break;
case MMC_CMD_APP_CMD:
retval = mmc_unpack_r1(request,&r1,mmcinfo.state);
if (retval & (limit_41 < 100)) {
debug("%s: unable to MMC_APP_CMD error=%d (%s)\n",
__func__, retval, mmc_result_to_string(retval));
limit_41++;
mmc_simple_cmd(request, SD_CMD_APP_SEND_OP_COND, ocr, RESPONSE_R3);
} else if (limit_41 < 100) {
limit_41++;
mmc_simple_cmd(request, SD_CMD_APP_SEND_OP_COND, ocr, RESPONSE_R3);
} else{
/* reset the card to idle*/
mmc_simple_cmd(request, MMC_CMD_GO_IDLE_STATE, 0, RESPONSE_NONE);
mmcinfo.sd = 0;
}
break;
case SD_CMD_APP_SEND_OP_COND:
retval = mmc_unpack_r3(request, &r3);
if (retval) {
/* Try MMC card */
mmc_simple_cmd(request, SD_CMD_APP_SEND_OP_COND, MMC_OCR_ARG, RESPONSE_R3);
break;
}
debug("%s: read ocr value = 0x%08x\n", __func__, r3.ocr);
if(!(r3.ocr & MMC_CARD_BUSY || ocr == 0)){
udelay(10000);
mmc_simple_cmd(request, MMC_CMD_APP_CMD, 0, RESPONSE_R1);
}
else {
/* Set the data bus width to 4 bits */
mmcinfo.sd = 1; /* SD Card ready */
mmcinfo.state = CARD_STATE_READY;
mmc_simple_cmd(request, MMC_CMD_ALL_SEND_CID, 0, RESPONSE_R2_CID);
}
break;
case MMC_CMD_SEND_OP_COND:
retval = mmc_unpack_r3(request, &r3);
if (retval) {
debug("%s: failed SEND_OP_COND error=%d (%s)\n",
__func__, retval, mmc_result_to_string(retval));
return MMC_INIT_FAILED;
}
debug("%s: read ocr value = 0x%08x\n", __func__, r3.ocr);
if (!(r3.ocr & MMC_CARD_BUSY)) {
mmc_simple_cmd(request, MMC_CMD_SEND_OP_COND, MMC_OCR_ARG, RESPONSE_R3);
} else {
mmcinfo.sd = 0; /* MMC Card ready */
mmcinfo.state = CARD_STATE_READY;
mmc_simple_cmd(request, MMC_CMD_ALL_SEND_CID, 0, RESPONSE_R2_CID);
}
break;
case MMC_CMD_ALL_SEND_CID:
retval = mmc_unpack_cid( request, &mmcinfo.cid );
/*FIXME:ignore CRC error for CMD2/CMD9/CMD10 */
if ( retval && (retval != MMC_ERROR_CRC)) {
debug("mmc_init_card_state: unable to ALL_SEND_CID error=%d (%s)\n",
retval, mmc_result_to_string(retval));
return MMC_INIT_FAILED;
}
mmcinfo.state = CARD_STATE_IDENT;
if(mmcinfo.sd)
mmc_simple_cmd(request, MMC_CMD_SET_RELATIVE_ADDR, 0, RESPONSE_R6);
else
mmc_simple_cmd(request, MMC_CMD_SET_RELATIVE_ADDR, ID_TO_RCA(mmcinfo.id) << 16, RESPONSE_R1);
break;
case MMC_CMD_SET_RELATIVE_ADDR:
if (mmcinfo.sd) {
retval = mmc_unpack_r6(request, &r1, mmcinfo.state, &mmcinfo.rca);
mmcinfo.rca = mmcinfo.rca << 16;
debug("%s: Get RCA from SD: 0x%04x Status: %x\n",
__func__, mmcinfo.rca, r1.status);
} else {
retval = mmc_unpack_r1(request,&r1,mmcinfo.state);
mmcinfo.rca = ID_TO_RCA(mmcinfo.id) << 16;
}
if (retval) {
debug("%s: unable to SET_RELATIVE_ADDR error=%d (%s)\n",
__func__, retval, mmc_result_to_string(retval));
return MMC_INIT_FAILED;
}
mmcinfo.state = CARD_STATE_STBY;
mmc_simple_cmd(request, MMC_CMD_SEND_CSD, mmcinfo.rca, RESPONSE_R2_CSD);
break;
case MMC_CMD_SEND_CSD:
retval = mmc_unpack_csd(request, &mmcinfo.csd);
struct mmc_csd *csd = (struct mmc_csd *)retval;
memcpy(&mmc_csd, csd, sizeof(csd));
mmc_ready = 1;
printf("MMC card is ready\n");
/* FIXME add verbose printout for csd */
/*FIXME:ignore CRC error for CMD2/CMD9/CMD10 */
if (retval && (retval != MMC_ERROR_CRC)) {
debug("%s: unable to SEND_CSD error=%d (%s)\n",
__func__, retval, mmc_result_to_string(retval));
return MMC_INIT_FAILED;
}
if (mmcinfo.csd.dsr_imp) {
debug("%s: driver doesn't support setting DSR\n", __func__);
}
mmc_configure_card();
return MMC_INIT_PASSED;
default:
debug("%s: error! Illegal last cmd %d\n", __func__, request->cmd);
return MMC_INIT_FAILED;
}
return MMC_INIT_DOING;
}
int mmc_init_card(void)
{
struct mmc_request request;
int retval;
mmc_simple_cmd(&request, MMC_CIM_RESET, 0, RESPONSE_NONE); /* reset card */
mmc_simple_cmd(&request, MMC_CMD_GO_IDLE_STATE, 0, RESPONSE_NONE);
mmcinfo.sd = 1; /* assuming a SD card */
while ((retval = mmc_init_card_state(&request)) == MMC_INIT_DOING)
;
if (retval == MMC_INIT_PASSED)
return MMC_NO_ERROR;
else
return MMC_NO_RESPONSE;
}
int mmc_legacy_init(int verbose)
{
if (!__msc_card_detected())
return 1;
/* Step-1: init GPIO */
__gpio_as_msc();
__msc_init_io();
/* Step-2: turn on power of card */
#if !defined(CONFIG_SAKC)
__msc_enable_power();
#endif
/* Step-3: Reset MSC Controller. */
__msc_reset();
/* Step-3: mask all IRQs. */
MMC_IRQ_MASK();
/* Step-4: stop MMC/SD clock */
jz_mmc_stop_clock();
mmc_init_card();
mmc_select_card();
mmc_dev.block_read = mmc_bread;
fat_register_device(&mmc_dev,1); /* partitions start counting with 1 */
return 0;
}
int mmc_ident(block_dev_desc_t *dev)
{
return 0;
}
int mmc2info(ulong addr)
{
/* FIXME hard codes to 32 MB device */
if (addr >= CFG_MMC_BASE && addr < CFG_MMC_BASE + 0x02000000) {
return 1;
}
return 0;;
}
/*
* Debugging functions
*/
static char * mmc_result_strings[] = {
"NO_RESPONSE",
"NO_ERROR",
"ERROR_OUT_OF_RANGE",
"ERROR_ADDRESS",
"ERROR_BLOCK_LEN",
"ERROR_ERASE_SEQ",
"ERROR_ERASE_PARAM",
"ERROR_WP_VIOLATION",
"ERROR_CARD_IS_LOCKED",
"ERROR_LOCK_UNLOCK_FAILED",
"ERROR_COM_CRC",
"ERROR_ILLEGAL_COMMAND",
"ERROR_CARD_ECC_FAILED",
"ERROR_CC",
"ERROR_GENERAL",
"ERROR_UNDERRUN",
"ERROR_OVERRUN",
"ERROR_CID_CSD_OVERWRITE",
"ERROR_STATE_MISMATCH",
"ERROR_HEADER_MISMATCH",
"ERROR_TIMEOUT",
"ERROR_CRC",
"ERROR_DRIVER_FAILURE",
};
char * mmc_result_to_string(int i)
{
return mmc_result_strings[i+1];
}
static char * card_state_strings[] = {
"empty",
"idle",
"ready",
"ident",
"stby",
"tran",
"data",
"rcv",
"prg",
"dis",
};
static inline char * card_state_to_string(int i)
{
return card_state_strings[i+1];
}
/*
* Utility functions
*/
#define PARSE_U32(_buf,_index) \
(((u32)_buf[_index]) << 24) | (((u32)_buf[_index+1]) << 16) | \
(((u32)_buf[_index+2]) << 8) | ((u32)_buf[_index+3]);
#define PARSE_U16(_buf,_index) \
(((u16)_buf[_index]) << 8) | ((u16)_buf[_index+1]);
int mmc_unpack_csd(struct mmc_request *request, struct mmc_csd *csd)
{
u8 *buf = request->response;
int num = 0;
if (request->result)
return request->result;
csd->csd_structure = (buf[1] & 0xc0) >> 6;
if (csd->csd_structure)
sd2_0 = 1;
else
sd2_0 = 0;
switch (csd->csd_structure) {
case 0 :
csd->taac = buf[2];
csd->nsac = buf[3];
csd->tran_speed = buf[4];
csd->ccc = (((u16)buf[5]) << 4) | ((buf[6] & 0xf0) >> 4);
csd->read_bl_len = buf[6] & 0x0f;
/* for support 2GB card*/
if (csd->read_bl_len >= 10)
{
num = csd->read_bl_len - 9;
csd->read_bl_len = 9;
}
csd->read_bl_partial = (buf[7] & 0x80) ? 1 : 0;
csd->write_blk_misalign = (buf[7] & 0x40) ? 1 : 0;
csd->read_blk_misalign = (buf[7] & 0x20) ? 1 : 0;
csd->dsr_imp = (buf[7] & 0x10) ? 1 : 0;
csd->c_size = ((((u16)buf[7]) & 0x03) << 10) | (((u16)buf[8]) << 2) | (((u16)buf[9]) & 0xc0) >> 6;
if (num)
csd->c_size = csd->c_size << num;
csd->vdd_r_curr_min = (buf[9] & 0x38) >> 3;
csd->vdd_r_curr_max = buf[9] & 0x07;
csd->vdd_w_curr_min = (buf[10] & 0xe0) >> 5;
csd->vdd_w_curr_max = (buf[10] & 0x1c) >> 2;
csd->c_size_mult = ((buf[10] & 0x03) << 1) | ((buf[11] & 0x80) >> 7);
csd->sector_size = (buf[11] & 0x7c) >> 2;
csd->erase_grp_size = ((buf[11] & 0x03) << 3) | ((buf[12] & 0xe0) >> 5);
csd->wp_grp_size = buf[12] & 0x1f;
csd->wp_grp_enable = (buf[13] & 0x80) ? 1 : 0;
csd->default_ecc = (buf[13] & 0x60) >> 5;
csd->r2w_factor = (buf[13] & 0x1c) >> 2;
csd->write_bl_len = ((buf[13] & 0x03) << 2) | ((buf[14] & 0xc0) >> 6);
if (csd->write_bl_len >= 10)
csd->write_bl_len = 9;
csd->write_bl_partial = (buf[14] & 0x20) ? 1 : 0;
csd->file_format_grp = (buf[15] & 0x80) ? 1 : 0;
csd->copy = (buf[15] & 0x40) ? 1 : 0;
csd->perm_write_protect = (buf[15] & 0x20) ? 1 : 0;
csd->tmp_write_protect = (buf[15] & 0x10) ? 1 : 0;
csd->file_format = (buf[15] & 0x0c) >> 2;
csd->ecc = buf[15] & 0x03;
break;
case 1 :
csd->taac = 0;
csd->nsac = 0;
csd->tran_speed = buf[4];
csd->ccc = (((u16)buf[5]) << 4) | ((buf[6] & 0xf0) >> 4);
csd->read_bl_len = 9;
csd->read_bl_partial = 0;
csd->write_blk_misalign = 0;
csd->read_blk_misalign = 0;
csd->dsr_imp = (buf[7] & 0x10) ? 1 : 0;
csd->c_size = ((((u16)buf[8]) & 0x3f) << 16) | (((u16)buf[9]) << 8) | ((u16)buf[10]) ;
csd->sector_size = 0x7f;
csd->erase_grp_size = 0;
csd->wp_grp_size = 0;
csd->wp_grp_enable = 0;
csd->default_ecc = (buf[13] & 0x60) >> 5;
csd->r2w_factor = 4;/* Unused */
csd->write_bl_len = 9;
csd->write_bl_partial = 0;
csd->file_format_grp = 0;
csd->copy = (buf[15] & 0x40) ? 1 : 0;
csd->perm_write_protect = (buf[15] & 0x20) ? 1 : 0;
csd->tmp_write_protect = (buf[15] & 0x10) ? 1 : 0;
csd->file_format = 0;
csd->ecc = buf[15] & 0x03;
}
mmc_dev.if_type = IF_TYPE_SD;
mmc_dev.part_type = PART_TYPE_DOS;
mmc_dev.dev = 0;
mmc_dev.lun = 0;
mmc_dev.type = 0;
mmc_dev.blksz = 512;
mmc_dev.lba = (1 + csd->c_size) << 10;
mmc_dev.removable = 0;
printf("SD%s Detected: %lu blocks of %lu bytes (%luMB)\n",
sd2_0 == 1 ? "HC" : " ",
mmc_dev.lba,
mmc_dev.blksz,
mmc_dev.lba * mmc_dev.blksz / (1024 * 1024));
if (buf[0] != 0x3f) return MMC_ERROR_HEADER_MISMATCH;
return 0;
}
int mmc_unpack_r1(struct mmc_request *request, struct mmc_response_r1 *r1, enum card_state state)
{
u8 *buf = request->response;
if (request->result)
return request->result;
r1->cmd = buf[0];
r1->status = PARSE_U32(buf,1);
debug("mmc_unpack_r1: cmd=%d status=%08x\n", r1->cmd, r1->status);
if (R1_STATUS(r1->status)) {
if (r1->status & R1_OUT_OF_RANGE) return MMC_ERROR_OUT_OF_RANGE;
if (r1->status & R1_ADDRESS_ERROR) return MMC_ERROR_ADDRESS;
if (r1->status & R1_BLOCK_LEN_ERROR) return MMC_ERROR_BLOCK_LEN;
if (r1->status & R1_ERASE_SEQ_ERROR) return MMC_ERROR_ERASE_SEQ;
if (r1->status & R1_ERASE_PARAM) return MMC_ERROR_ERASE_PARAM;
if (r1->status & R1_WP_VIOLATION) return MMC_ERROR_WP_VIOLATION;
/*if (r1->status & R1_CARD_IS_LOCKED) return MMC_ERROR_CARD_IS_LOCKED; */
if (r1->status & R1_LOCK_UNLOCK_FAILED) return MMC_ERROR_LOCK_UNLOCK_FAILED;
if (r1->status & R1_COM_CRC_ERROR) return MMC_ERROR_COM_CRC;
if (r1->status & R1_ILLEGAL_COMMAND) return MMC_ERROR_ILLEGAL_COMMAND;
if (r1->status & R1_CARD_ECC_FAILED) return MMC_ERROR_CARD_ECC_FAILED;
if (r1->status & R1_CC_ERROR) return MMC_ERROR_CC;
if (r1->status & R1_ERROR) return MMC_ERROR_GENERAL;
if (r1->status & R1_UNDERRUN) return MMC_ERROR_UNDERRUN;
if (r1->status & R1_OVERRUN) return MMC_ERROR_OVERRUN;
if (r1->status & R1_CID_CSD_OVERWRITE) return MMC_ERROR_CID_CSD_OVERWRITE;
}
if (buf[0] != request->cmd)
return MMC_ERROR_HEADER_MISMATCH;
/* This should be last - it's the least dangerous error */
return 0;
}
int mmc_unpack_scr(struct mmc_request *request, struct mmc_response_r1 *r1, enum card_state state, u32 *scr)
{
u8 *buf = request->response;
if (request->result)
return request->result;
*scr = PARSE_U32(buf, 5); /* Save SCR returned by the SD Card */
return mmc_unpack_r1(request, r1, state);
}
int mmc_unpack_r6(struct mmc_request *request, struct mmc_response_r1 *r1, enum card_state state, int *rca)
{
u8 *buf = request->response;
if (request->result)
return request->result;
*rca = PARSE_U16(buf,1); /* Save RCA returned by the SD Card */
*(buf+1) = 0;
*(buf+2) = 0;
return mmc_unpack_r1(request, r1, state);
}
int mmc_unpack_cid(struct mmc_request *request, struct mmc_cid *cid)
{
int i;
u8 *buf = request->response;
if (request->result)
return request->result;
cid->mid = buf[1];
cid->oid = PARSE_U16(buf,2);
for (i = 0 ; i < 6 ; i++)
cid->pnm[i] = buf[4+i];
cid->pnm[6] = 0;
cid->prv = buf[10];
cid->psn = PARSE_U32(buf,11);
cid->mdt = buf[15];
printf("CID info:\n"
" mid=%d\n"
" oid=%d\n"
" pnm=%s\n"
" prv=%d.%d\n"
" psn=%08x\n"
" mdt=%d/%d\n",
cid->mid,
cid->oid,
cid->pnm,
cid->prv >> 4,
cid->prv & 0xf,
cid->psn,
cid->mdt >> 4,
(cid->mdt & 0xf) + 1997);
if (buf[0] != 0x3f) return MMC_ERROR_HEADER_MISMATCH;
return 0;
}
int mmc_unpack_r3(struct mmc_request *request, struct mmc_response_r3 *r3)
{
u8 *buf = request->response;
if (request->result)
return request->result;
r3->ocr = PARSE_U32(buf,1);
debug("mmc_unpack_r3: ocr=%08x\n", r3->ocr);
if (buf[0] != 0x3f) return MMC_ERROR_HEADER_MISMATCH;
return 0;
}
#define KBPS 1
#define MBPS 1000
static u32 ts_exp[] = { 100*KBPS, 1*MBPS, 10*MBPS, 100*MBPS, 0, 0, 0, 0 };
static u32 ts_mul[] = { 0, 1000, 1200, 1300, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000 };
u32 mmc_tran_speed(u8 ts)
{
u32 rate = ts_exp[(ts & 0x7)] * ts_mul[(ts & 0x78) >> 3];
if (rate <= 0) {
debug("%s: error - unrecognized speed 0x%02x\n", __func__, ts);
return 1;
}
return rate;
}
void mmc_send_cmd(struct mmc_request *request, int cmd, u32 arg,
u16 nob, u16 block_len, enum mmc_rsp_t rtype, u8 *buffer)
{
request->cmd = cmd;
request->arg = arg;
request->rtype = rtype;
request->nob = nob;
request->block_len = block_len;
request->buffer = buffer;
request->cnt = nob * block_len;
jz_mmc_exec_cmd(request);
}
#endif /* CONFIG_MMC */